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Abstract. It has been established that the local mass of blow-up solutions to Toda systems associated with the
simple Lie algebras An, Bn, Cn and G2 can be represented by a finite Weyl group. In particular, at each blow-
up point, after a sequence of bubbling steps (via scaling) is performed, the transformation of the local mass at
each step corresponds to the action of an element in the Weyl group. In this article, we present the results in
the same spirit for the affine B(1)

2 Toda system with singularities. Compared with the Toda system with simple
Lie algebras, the computation of local masses is more challenging due to the infinite number of elements of the
affine Weyl group of type B(1)

2 . In order to give an explicit expression for the local mass formula we introduce
two free integers and write down all the possibilities into 8 types. This shows a striking difference to previous
results on Toda systems with simple Lie algebras. The main result of this article seems to provide the first major
advance in understanding the relation between the blow-up analysis of affine Toda system and the affine Weyl
group of the associated Lie algebras.
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1. Introduction and main results

The main focus of this article is to derive the relation between the quantization result from the blow up
analysis and the associated algebraic structure for the following system

(1.1)

∆ui+
3∑

j=1
ai jeu j = 4πγiδ0 in B1(0) ⊆ R2, i = 1,2,3,

u1+u2+2u3 = 0 in B1(0),

where γi > −1 for i = 1,2,3, δ0 stands for the Dirac measure at the point 0 and

(1.2) A := (ai j)3×3 =

 1 0 −1
0 1 −1
− 1

2 − 1
2 1

 .
Up to a constant one sees that the coefficient matrix A is exactly the Cartan matrix of affine Lie algebra B(1)

2
and we call (1.1) the affine B(1)

2 Toda system. Let

u1 = −ω+η, u2 = −ω−η, u3 = ω,

then (1.1) is equivalent to

(1.3)


∆ω+ eω− 1

2 e−ω+η− 1
2 e−ω−η = 4πγ3δ0,

∆η+ 1
2 e−ω+η− 1

2 e−ω−η = 2π(γ1−γ2)δ0.

When γ1 = γ2 = 0, system (1.3) is related to minimal surface into S4 without superminimal points [18] and
also appeared in the work of integrable system by Fordy-Gibbons in [19]. If η = 0 then system (1.3) is
reduced to the simplest affine Toda system, i.e., the well-known sinh-Gordon equation

(1.4) ∆u+ eu− e−u = 0,

which was originally introduced by Edmond Bour [7] in the study of surfaces of constant negative curvature
as the Gauss-Codazzi equation for surfaces of curvature −1 in 3-sphere, see [30, 48, 51] for its further
applications in many other mathematical and physical problems. It is also interesting to remark that system
(1.3) shared some similar structures with the rank two TT ∗ Toda system (1.5) which appeared in the work
of Cecotti-Vafa (see [9]) on topological-anti-topological fusion,

(1.5)

{
∆w0− ew0 + e

1
2 (w1−w0) = 0,

∆w1+ e−w1 − e
1
2 (w1−w0) = 0.

Indeed, if we write

v1 = w0, v2 = −w1, v3 =
1
2

(w1−w0),

then (v1,v2,v3) satisfies

∆

v1
v2
v3

−A

v1
v2
v3

 = 0, v1+ v2+2v3 = 0,

which differs from (1.1) only in the sign of A. For more backgrounds and recent developments on TT ∗ Toda
system we refer the readers to [20–23] and references therein.

From the analytic point of view, one of the fundamental issue is to establish the compactness result of the
solution space of system (1.1). It is a very challenging problem due to the critical nonlinearity in dimension
two and lack of compactness in general situation. One of the important techniques attacking this issue is
the so called blow up analysis method, which dates back at least to the famous work of Sacks-Uhlenbeck
[50] on the investigation of the blow up phenomena for two-dimensional harmonic maps. Since then, there
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are a lot of works concerning the blow up analysis for harmonic maps [15, 17], minimal surfaces [52], the
Yamabe equation [1, 10], the Liouville equation and systems [3, 8, 11–14, 34, 35, 46] and Toda system of
simple Lie algebras [27–29, 36, 38–41].

Among the aforementioned equations, Liouville equation and Toda system of simple Lie algebras have
the closest relation to the system we considered in the current article. In the pioneering work of Brezis-Merle
[8], Li-Shafrir [35], Li [34], Bartolucci-Tarantello [3, 4], Lin-Kuo [33], Wei-Zhang [54–56], the blow up
phenomena for the single Liouvlle equation with singularity has been fully understood

∆u+ eu = 4παδ0, α > −1.

After that, the following Toda system has been widely studied (See [5, 6, 16, 27–29, 31, 32, 36–41, 45, 47])

(1.6) ∆ui+

n∑
j=1

ai jeu j = 4παiδ0, αi > −1, i = 1, · · · ,n,

where A = (ai j)n×n is the Cartan matrix of a simple Lie algebra of rank n. It is known that all the simple Lie
algebras are An, Bn, Cn, Dn, E6, E7, E8, F4 and G2. In [27, 29], the authors initiated the study on the blow
up analysis for the A2 Toda system. The first step of the blow up analysis is to classify the possible values
of the local mass at a blow up point p, which is defined as

σi(p) :=
1

2π
lim
r→0

lim
k→∞

∫
Br(p)

euk
i (x)dx, i = 1,2,

for a sequence of blow up solutions {(uk
1,u

k
2)}. Under some mild assumptions Jost-Lin-Wang [27] proved

that the local mass value (σ1(p),σ2(p)) belongs to the following set

{(0,2), (2,0), (0,4), (4,0), (4,4)} .

Since then there has appeared several works [36, 38, 39, 41] concerning the compactness issue for rank
two Toda system with simple Lie algebras A2, B2(C2) and G2. While for Toda system with rank n ≥ 3,
Lin-Yang-Zhong [40] considered the cases for An, Bn, Cn and G2. Especially, they have shown that the
formula of the local mass has a deep connection with the Weyl group of the corresponding Lie algebra. In
more precise terms, we consider the An type Toda system, we set

βi = 1+αi, i = 1, · · · ,n.

Then the local mass for the blow up solutions to (1.6) at the singular point 0 can be represented by

(1.7) σi(0) = 2
i−1∑
j=0

( f ( j)∑
ℓ=1

βℓ −

j∑
ℓ=1

βℓ

)
+2Ni, i = 1, · · · ,n,

where Ni ∈ Z for any i = 1, · · · ,n and f is a permutation map from {0, · · · ,n} to itself, which is exactly iso-
morphic to the associated Weyl group of the An type Lie algebra. The essential point of obtaining the above
formula (1.7) is that for the Lie algebras of types An, Bn, Cn and G2 the solution is related to an complex
ODE whose coefficients are the W-invariants of the Toda system. The crucial fact of the corresponding
ODE is that the local monodromy matrix is unitary. It is interesting to mention that the representation of
the underlying Lie algebra plays a vital role in deriving the ODE. For the other types of Lie algebras, even
though we are only able to get a pseudo differential operator instead of an ODE (see [2]), one can derive the
local mass value for D4 and F4 Toda systems. The reason is that any sub-system belongs to one of An, Bn
or Cn type Toda systems with lower rank, see [31].

In the current article we shall compute the local mass value of the blow up solutions to (1.1) and try to
connect it with the associated algebraic structure of the affine Lie algebra B(1)

2 . It is known that (see [44]
for instance) the corresponding algebraic structure of B(1)

2 is the following affine Weyl group: letting G be a
group generated by the following generators

(1.8) G = ⟨R1, R2, R3⟩
3



with Ri, i = 1,2,3 satisfying

(1.9)

R1 ◦R2 = R2 ◦R1, |R1 ◦R2| = 2,

(R1 ◦R3)2 = (R3 ◦R1)2, |R1 ◦R3| = 4,

(R2 ◦R3)2 = (R3 ◦R2)2, |R2 ◦R3| = 4,

R
2
1 = R

2
2 = R

2
3 = I, |Ri| = 2, i = 1,2,3,

where I and ◦ denotes the identity and the operation of G respectively, |R| represents the order of the element
R, i.e., R|R| = I. To simplify the notation, we omit the operation notation ”◦ ” in this article and denote

R12 = R1R2, R13 = (R1R3)2 , R23 = (R2R3)2 .

To state the main result, we formulate the problem as follows.
Let uk = (uk

1,u
k
2,u

k
3) be a sequence of blow up solutions to (1.1) satisfying the following conditions

(1.10)


(i) : 0 is the only blow up point of uk in B1(0), i.e.,

max
i

sup
x∈B1(0)

uk
i (x)+2γi log |x| → +∞ and max

i
sup

K⊆B1(0)\{0}
uk

i ≤C(K),

(ii) : |uk
i (x)−uk

i (y)| ≤C, ∀x,y on ∂B1(0), i = 1,2,3,
(iii) :

∫
B1(0) euk

i dx ≤C, i = 1,2,3.

For this sequence of blow up solutions we define the local mass by

(1.11) σi =
1

2π
lim
r→0

lim
k→+∞

∫
Br(0)

euk
i dx, i = 1,2,3.

We shall see in next section that σ = (σ1,σ2,σ3) always satisfies the Pohozaev identity

(1.12) (σ1−σ3)2+ (σ2−σ3)2 = 4(µ1σ1+µ2σ2+2µ3σ3), where µi = 1+γi, i = 1,2,3.

For a given µ = (µ1,µ2,µ3) we introduce the set Γ(µ) = Γ(µ1,µ2,µ3) for the local mass quantity σ via the
following way:

(i) 0 = (0,0,0) ∈ Γ(µ).
(ii) Ifσ= (σ1,σ2,σ3) ∈ Γ(µ), thenRσ ∈ Γ(µ) for anyR ∈G satisfying (1.8) and (1.9), where each generator
Ri, i = 1,2,3 sends σ to Riσ with

(Riσ) j =

4µi−2
3∑

j=1
ai jσ j+σi, if j = i,

σ j, if j , i.

Here, (ai j)3×3 is given in (1.2).
It is easy to see that for any σ = (σ1,σ2,σ3) ∈ Γ(µ), σi is a degree one polynomial of µ1, µ2 and µ3. Now
we are able to state the first result of this article

Theorem 1.1. Let uk = (uk
1,u

k
2,u

k
3) be a sequence of solutions of system (1.1) satisfying (1.10) and the local

mass σ = (σ1,σ2,σ3) be defined by (1.11). Then there exists σ̂ = (σ̂1, σ̂2, σ̂3) ∈ Γ(µ) such that

σi = σ̂i+4mi, mi ∈ Z, i = 1,2,3.

In section 3 we can give an equivalent definition of Γ(µ) in some concrete way. We have already pointed
out σ satisfies (1.12), based on this fact we shall prove that (see Proposition 3.4)

(1.13) Γ(µ) = ΓN(µ) :=

σ ∣∣ σ satisfies (1.12) and σi = 4
3∑

j=1

ni jµ j, ni j ∈ N∪{0}, i = 1,2,3

 .
In fact, we can give explicit formulas for the coefficients ni j, i, j= 1,2,3, see Theorem 3.7. As a consequence,
we can restate the Theorem 1.1 as the following corollary
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Corollary 1.2. Under the setting of Theorem 1.1 we can find σ̂ = (σ̂1, σ̂2, σ̂3) ∈ ΓN(µ) such that

σi = σ̂i+4mi, mi ∈ Z, i = 1,2,3.

Remark 1. By the fourth equation of (1.1), γ1, γ2, γ3 are forced to verify that γ1 +γ2 +2γ3 = 0. Actually,
the conclusion of Theorem 1.1 still holds if we replace the fourth equation of (1.1) by uk

1+uk
2+2uk

3 =Ck with
Ck being uniformly bounded from above for any k.

Remark 2. The computation on the local mass for (1.1) without singularity is given by Liu-Wang [43], they
have shown that each σi is multiple of 4, see Remark 7 for the explicit expressions. When u1 = u2, system
(1.1) is reduced to the sinh-Gordon equation (1.4) with singular source (see system (7.2)). In Section 7 we
shall present the results on the computation of its local mass, which extends the corresponding quantitative
results of the sinh-Gordon equation (1.4) in [24, 25, 30] to the case with singularity.

Remark 3. In [40] we have already seen that the Weyl group of the corresponding Lie algebra plays an
important role in determining the local mass of the blow-up solutions. From the result of Theorem 1.1 and
Theorem 3.7, we find that similar things also happen for the affine Toda system. However, there is a major
difference between these two types of systems. In the former one, the Weyl group is just the permutation
map from {0,1, · · · ,n} to itself and the number of elements is finite; while for the later one, from the work
[24] and [43] we see that there are infinite choices for the values of local mass due to the fact that the
corresponding affine Weyl group has infinite number of elements. Even though it is not difficult to guess
that there are two free integers in the expression of the local mass for B(1)

2 Toda system (there is only one
free integer for the sinh-Gordon equation and Tzitzéica equation, see [24, 25, 30] and [26, 53] for these
two equations respectively), it is not easy to write all of them in a clean form. Instead, we have found that
there are 8 types of expression formulas according to the remainder integers after modulo the number 4, see
Theorem 3.7 for details.

Theorem 1.1 has several important applications for the affine Toda system defined on compact Riemann
surface. For example, let (M,g) be a compact Riemann surface, ∆g be the Beltrami operator on M, we
consider a sequence of solutions uk = (uk

1,u
k
2,u

k
3) to the following system

(1.14)

∆guk
i +

3∑
j=1

ai jρ
k
j

(
hk

je
uk

j∫
M hk

je
uk

j dVg

− 1
|M|

)
= 4π

∑
p∈S
αp,i

(
δp−

1
|M|

)
, i = 1,2,3,

uk
1+uk

2+2uk
3 = 0 on M,

where hk
1,h

k
2,h

k
3 are positive and smooth functions on M with their C3(M) norm being uniformly bounded in

M, S is a finite set of M, αp,i > −1 is the strength of the Dirac mass δp, and ρk = (ρk
1,ρ

k
2,ρ

k
3) is a sequence

of constant vectors with nonnegative components satisfying lim
k→+∞

ρk = (ρ1,ρ2,ρ3). As the Toda system with

simple Lie algebra and Liouville equation, (1.14) can be regarded as a natural extension of the local version
(1.1) to the case on Riemannian manifold. Equation (1.14) together with (1.1) are closely related to the
nonlinear Klein-Gordon equations ([19]) and the minimal tori in S4 ([18]). We notice that (1.14) remains
the same if ui is replaced by ui+ ci for any constant ci. Thus it is reasonable to assume that each component
of uk is in

H̊1(M) =
{

f ∈ H1(M)
∣∣ ∫

M
f dVg = 0

}
.

Simultaneously, from the equation uk
1+uk

2+2uk
3 = 0 one can easily verify that

(1.15) αp,1+αp,2+2αp,3 = 0, ∀p ∈ S .

By introducing the following Green function on Riemann surface M

∆G(x, p)+
(
δp−

1
|M|

)
= 0,

∫
M

G(x, p)dVg = 0,
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we decompose

uk
i (x) = ũk

i (x)−4π
∑
p∈S

αp,iG(x, p), i = 1,2,3.

Then (1.14) can be rewritten as

(1.16)

∆gũk
i +

3∑
j=1

ai jρ
k
j

(
h̃k

je
ũk

j∫
M h̃k

je
ũk

j dVg

− 1
|M|

)
= 0, i = 1,2,3,

ũk
1+ ũk

2+2ũk
3 = 0 on M,

where

h̃k
i = hk

i exp

−4π
∑
p∈S

αp,iG(x, p)

 , i = 1,2,3.

Let µp,i = 1+αp,i for i = 1,2,3 and denote

Γi =

2π
∑
p∈R

σp,i+8πmi
∣∣ (σp,1,σp,2,σp,3) ∈ Γ(µp,1,µp,2,µp,3), R ⊆ S , mi ∈ Z

 .
The second result in this article is the following a priori estimate for the system (1.16).

Theorem 1.3. Suppose that ρi < Γi for i = 1,2,3. Then there exists a constant C > 0 depending on ρi such
that for any solution (ũ1, ũ2, ũ3) of system (1.16) in H̊1(M),

|ũi(x)| ≤C, ∀x ∈ M, i = 1,2,3.

To prove Theorem 1.3, we shall determine the local mass at each blow-up point of solutions ũk. Here the
blow up point p is defined by

∃ a sequence pk→ p such that max
i

ũk
i (pk)→ +∞.

The set B of all blow up points is called the blow up set. For each point p ∈ B we define the local mass by

σi(p) =
1

2π
lim
r→0

lim
k→+∞

ρk
i

∫
B(p,r) h̃k

i eũk
i dVg∫

M h̃k
i eũk

i dVg
, i = 1,2,3.

By Theorem 1.1 we are able to compute σi(p). Together with the assumption ρi < Γi we shall see that B = ∅
and it leads to the compactness of (1.16).

The organization of this article is as follows. In Section 2, we establish a selection process of a sequence
of blow up solutions, an oscillation estimate outside the blow-up set, and the local Pohozaev identities
corresponding to the system (1.1). In Section 3, we study the Pohozaev identity of blow up solutions and
classify all the possible values of Γ(µ). In Section 4, we present several important lemmas for later use.
In Section 5 and Section 6, we discuss the local mass on each bubbling disk centered at 0 and not at 0
respectively, then we prove Theorem 1.1 by grouping these bubbling areas together. Furthermore, we sketch
the proof of Theorem 1.3. In Section 7, we carry out the blow-up analysis for sinh-Gordon equation with
singular source. In Section 8, we collect some classification results which are used in our proof.

In this article, we always use the notation rk = o(1)sk to express rk/sk → 0 as k→∞, and the notation
rk = O(1)sk to represent C−1 ≤ rk/sk ≤C as k→∞ for some constant C > 0. For the sake of brevity, we use
boldface type for sequence and vectors, such as s = {sk}, r = {rk}, τ = {τk} and σ = (σ1,σ2,σ3). We will not
distinguish sequence and subsequence in this article, i.e., we shall still denote uk the subsequence of itself if
necessary.
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2. Bubbling analysis and Pohozaev identity

In this section, we analyze the bubbling areas by a standard selection procedure and establish some type
of Pohozaev identity for local mass.

Proposition 2.1. Let uk be a sequence of solutions of system (1.1) satisfying (1.10). Then there exists a
sequence of finite points Σk := {0, xk

1, · · · , x
k
m} (if 0 is not a singular point, then 0 can be deleted from Σk) and

a sequence of positive numbers lk1, · · · , l
k
m such that

(1) xk
j→ 0 and lkj→ 0 as k→ +∞, lkj ≤

1
2 dist(xk

j,Σk \ {xk
j}), j = 1, · · · ,m. Furthermore, B(xk

i , l
k
i )∩B(xk

j, l
k
j) = ∅

for 1 ≤ i, j ≤ m, i , j.
(2) max

i=1,2,3
uk

i (xk
j) = max

i=1,2,3
max

B(xk
j ,l

k
j)

uk
i (x)→ +∞ as k→ +∞, j = 1, · · · ,m. Denote

εk
j := e

− 1
2 max

i=1,2,3
uk

i (xk
j)
, j = 1, · · · ,m.

Then Rk
j :=

lkj
εkj
→ +∞ as k→ +∞, j = 1, · · · ,m.

(3) In each B(xk
i , l

k
i ), set

vk
i (y) := uk

i (xk
j +ε

k
jy)+2logεk

j, i = 1,2,3.
Then one of the following alternatives holds:
(a) vk

1 and vk
3 (or vk

2 and vk
3) converge to a solution of the following Toda system in C2

loc(R2),{
−∆v = ev− ew,

−∆w = − 1
2 ev+ ew,

in R2,

while vk
2 (or vk

1) converges to −∞ in L∞loc(R2);
(b) vk

1 and vk
2 converge to solutions of Liouville equation in C2

loc(R2), while vk
3 converges to −∞ in

L∞loc(R2);
(c) One component of vk converges to a solution of Liouville equation in C2

loc(R2), while the left ones
converge to −∞ in L∞loc(R2).

(4) There exists a constant C independent of k such that the following Harnack-type inequality holds:

(2.1) max
i=1,2,3

{
uk

i (x)+2logdist(x,Σk)
}
≤C, ∀x ∈ B1(0).

Proof. We construct Σk by induction. If γi = 0 for i = 1,2,3, i.e., the system (1.1) has no singularity at 0, we
start with Σk = ∅ and the proof is in line with that of [43, Lemma 2.1]. Otherwise, we start with Σk = {0} and
the proof is similar. But it should be mentioned that all components of vk cannot be bounded at the same
time by the fourth equation of (1.1). □

We have the following oscillation estimate generated by the Harnack-type inequality (2.1).

Proposition 2.2. Let Σk = {0, xk
1, · · · , x

k
m} be the blow-up set (if 0 is not a singular point, then 0 can be

deleted from Σk). Suppose that uk is a sequence of solutions to system (1.1) satisfying (1.10). Then for any
x0 ∈ B1(0) \Σk, there exists a constant C0 independent of x0 and k such that

|uk
i (x1)−uk

i (x2)| ≤C0, ∀x1, x2 ∈ B(x0,dist(x0,Σk)/2), i = 1,2,3.

Proof. One can prove this result by following the same arguments of [38, Lemma 2.1] and [43, Lemma 2.2],
here we omit the details. □

Next we introduce the definitions of fast decay and slow decay.

Definition 2.3. (i) We say uk
i has fast decay on ∂B(xk,rk) if

uk
i (x)+2log |x− xk| ≤ −Nk, ∀x ∈ ∂B(xk,rk),

for some Nk→ +∞ as k→ +∞.
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(ii) We say uk
i has slow decay on ∂B(xk,rk) if

uk
i (x)+2log |x− xk| ≥ −C, ∀x ∈ ∂B(xk,rk),

for some constant C > 0 which is independent of k.

At the end of this section, we can establish a Pohozaev identity of local masses for the system (1.1). In
Proposition 2.4 and Remark 4, we denote

σ(r, x0;u) :=
1

2π

∫
Br(x0)

eu(x)dx, σk
i (r, x0) := σ(r, x0;uk

i ), σk
i (r) := σ(r,0;uk

i ), i = 1,2,3.

Let xk
l ∈ Σk and τkl =

1
2 dist

(
xk

l ,Σk \ {xk
l }
)
, then we can derive from system (1.1) and Proposition 2.2 that

(2.2) uk
i (x) = uk

xk
l ,i

(r)+O(1), x ∈ B(xk
l , τ

k
l ),

where r = |x− xk
l | and

uk
xk

l ,i
(r) =

1
2πr

∫
∂B(xk

l ,r)
uk

i dS ,

and O(1) is independent of r and k.

Proposition 2.4. Let Σ′k ⊆ Σk be a subset of Σk with 0 ∈ Σ′k ⊆ B(xk,rk) ⊆ B1(0), and there holds

dist(Σ′k,∂B(xk,rk)) = o(1)dist(Σk \Σ
′
k,∂B(xk,rk)).

Suppose uk
1,u

k
2,u

k
3 have fast decay on ∂B(xk,rk). Then we have the following Pohozaev identity

(2.3)

(
σk

1(rk, xk)−σk
3(rk, xk)−2γ1

)2
+
(
σk

2(rk, xk)−σk
3(rk, xk)−2γ2

)2

= 4
(
σk

1(rk, xk)+σk
2(rk, xk)+2σk

3(rk, xk)
)
+4
(
γ2

1 +γ
2
2
)
+o(1).

Furthermore, let µi = 1+γi for i = 1,2,3, then σ = (σ1,σ2,σ3) satisfies the Pohozaev identity

(2.4) (σ1−σ3)2+ (σ2−σ3)2 = 4(µ1σ1+µ2σ2+2µ3σ3),

where µ1+µ2+2µ3 = 4 and σi = lim
k→+∞

σk
i (rk, xk) for i = 1,2,3.

Proof. Without loss of generality, we assume xk = 0. For fixed θ ∈ (0,1), let Ω = Bθ(0) \Bε(0), where ε > 0
is small enough. Then applying the standard Pohozaev identity for the first two equations of (1.1) on Ω, we
have

1
2

∫
∂Ω
|∇uk

i |
2(x · ν)dS −

∫
∂Ω

(x · ∇uk
i )(ν · ∇uk

i )dS

= −2
∫
Ω

euk
i dx+

∫
∂Ω

euk
i (x · ν)dS −

∫
Ω

euk
3(x · ∇uk

i )dx, i = 1,2,

where ν denotes the unit outer normal vector. Combining the above equations and the fourth equation of
(1.1) we derive that

(2.5)

1
2

∫
∂Ω

(
|∇uk

1|
2+ |∇uk

2|
2) (x · ν)dS −

∫
∂Ω

(
(x · ∇uk

1)(ν · ∇uk
1)+ (x · ∇uk

2)(ν · ∇uk
2)
)

dS

= −2
∫
Ω

(euk
1 + euk

2)dx+
∫
∂Ω

(euk
1 + euk

2)(x · ν)dS −
∫
Ω

euk
3
(

x · (∇uk
1+∇uk

2)
)

dx

= −2
∫
Ω

(euk
1 + euk

2)dx+
∫
∂Ω

(euk
1 + euk

2)(x · ν)dS +2
∫
Ω

euk
3(x · ∇uk

3)dx

= −2
∫
Ω

(euk
1 + euk

2 +2euk
3)dx+

∫
∂Ω

(euk
1 + euk

2 +2euk
3)(x · ν)dS .

8



We calculate the L.H.S. and R.H.S. of (2.5) respectively. By (iii) of (1.10), we obtain

R.H.S. = −2
∫
Ω

(euk
1 + euk

2 +2euk
3)dx+

∫
∂Ω

(euk
1 + euk

2 +2euk
3)(x · ν)dS

= −2
∫

Bθ(0)\Bε(0)
(euk

1 + euk
2 +2euk

3)dx+ θ
∫
∂Bθ(0)

(euk
1 + euk

2 +2euk
3)dS

−ε

∫
∂Bε(0)

(euk
1 + euk

2 +2euk
3)dS +o(1)

= −4π(σk
1(θ)+σk

2(θ)+2σk
3(θ))+ θ

∫
∂Bθ(0)

(euk
1 + euk

2 +2euk
3)dS +o(1).

On the other hand, we have

L.H.S. =
1
2

∫
∂Ω

(
|∇uk

1|
2+ |∇uk

2|
2) (x · ν)dS −

∫
∂Ω

(
(x · ∇uk

1)(ν · ∇uk
1)+ (x · ∇uk

2)(ν · ∇uk
2)
)

dS

=
θ

2

∫
∂Bθ(0)

(
|∇uk

1|
2+ |∇uk

2|
2)dS −

ε

2

∫
∂Bε(0)

(|∇uk
1|

2+ |∇uk
2|

2)dS

− θ

∫
∂Bθ(0)

((
ν · ∇uk

1
)2
+
(
ν · ∇uk

2
)2
)

dS +ε
∫
∂Bε(0)

((
ν · ∇uk

1
)2
+
(
ν · ∇uk

2
)2
)

dS .

Applying the same argument of [42, Lemma 4.1], we deduce the following estimate

(2.6) ∇uk
i (x) = −2γix/|x|2+o(1) near the origin,

which implies that

−
ε

2

∫
∂Bε(0)

(
|∇uk

1|
2+ |∇uk

2|
2)dS +ε

∫
∂Bε(0)

((
ν · ∇uk

1
)2
+
(
ν · ∇uk

2
)2
)

dS = 4π(γ2
1 +γ

2
2)+o(1).

Hence we can rewrite (2.5) as

(2.7)

θ

2

∫
∂Bθ(0)

(|∇uk
1|

2+ |∇uk
2|

2)dS − θ
∫
∂Bθ(0)

((
ν · ∇uk

1
)2
+
(
ν · ∇uk

2
)2
)

dS +4π(γ2
1 +γ

2
2)

= −4π
(
σk

1(θ)+σk
2(θ)+2σk

3(θ)
)
+ θ

∫
∂Bθ(0)

(euk
1 + euk

2 +2euk
3)dS +o(1).

Since uk
1,u

k
2,u

k
3 have fast decay on ∂B(0,rk), i.e.,

uk
i (x)+2log |x| ≤ −Nk, |x| = rk, i = 1,2,3

for some Nk→ +∞, then by [43, Lemma 2.4], there exists Rk
1→ +∞ such that

Rk
1dist(Σ′k,∂B(xk,rk)) = o(1)dist(Σk \Σ

′
k,∂B(xk,rk))

and
uk

i (x)+2log |x| ≤ −Nk, rk ≤ |x| ≤ Rk
1rk,

for some Nk → +∞. So we can choose Rk → +∞ with Rk ≤ Rk
1 such that uk

1,u
k
2,u

k
3 have fast decay on

∂B(0,Rkrk) and ∫
B(0,Rkrk)\B(0,rk)

euk
i (x)dx ≤Ce−Nk logRk = o(1), i = 1,2,3,

which implies that
σk

i (Rkrk) = σk
i (rk)+o(1), i = 1,2,3.

Letting θ =
√

Rkrk, then we have

−4π(σk
1(θ)+σk

2(θ)+2σk
3(θ)) = −4π(σk

1(rk)+σk
2(rk)+2σk

3(rk))+o(1)
9



and

θ

∫
∂Bθ(0)

(
euk

1 + euk
2 +2euk

3

)
dS = o(1),

since uk
1,u

k
2,u

k
3 have fast decay on ∂B(0,

√
Rkrk). Therefore, (2.7) can be rewritten as

(2.8)
−

√
Rkrk

2

∫
∂B√

Rkrk
(0)

(
|∇uk

1|
2+ |∇uk

2|
2)dS +

√
Rkrk

∫
∂B√

Rkrk
(0)

((
ν · ∇uk

1
)2
+
(
ν · ∇uk

2
)2
)

dS

= 4π
(
σk

1(rk)+σk
2(rk)+2σk

3(rk)
)
+4π

(
γ2

1 +γ
2
2
)
+o(1).

Similar to the estimate (2.6) (by [42, Lemma 4.1] and a scaling argument), we obtain

∇uk
1(x) = −

x
|x|2

(σk
1(rk)−σk

3(rk)−2γ1)+
o(1)
|x|
, x ∈ ∂B√Rkrk

(0),

and
∇uk

2(x) = −
x
|x|2

(σk
2(rk)−σk

3(rk)−2γ2)+
o(1)
|x|
, x ∈ ∂B√Rkrk

(0).

Therefore, we conclude from (2.8) that(
σk

1(rk)−σk
3(rk)−2γ1

)2
+
(
σk

2(rk)−σk
3(rk)−2γ2

)2
= 4
(
σk

1(rk)+σk
2(rk)+2σk

3(rk)
)
+4
(
γ2

1 +γ
2
2
)
+o(1).

Finally, taking µi = 1+γi for i = 1,2,3 and letting k→ +∞, we can rewrite (2.3) as (2.4). This completes
the proof of Proposition 2.4. □

Remark 4. Let Σ′k ⊆ Σk be a subset of Σk with 0 < Σ′k ⊆ B(xk,rk) ⊆ B1(0), and there holds

dist(Σ′k,∂B(xk,rk)) = o(1)dist(Σk \Σ
′
k,∂B(xk,rk)).

Suppose uk
1,u

k
2,u

k
3 have fast decay on ∂B(xk,rk). Then we have the following Pohozaev identity(

σk
1(rk, xk)−σk

3(rk, xk)
)2
+
(
σk

2(rk, xk)−σk
3(rk, xk)

)2
= 4
(
σk

1(rk, xk)+σk
2(rk, xk)+2σk

3(rk, xk)
)
+o(1).

In other words,
(σ1−σ3)2+ (σ2−σ3)2 = 4(σ1+σ2+2σ3).

3. The structure of Γ(µ1,µ2,µ3) and affineWeyl group of B(1)
2

In this section, we shall compute all the possible local mass values for the blow up solutions to (1.1) by
studying the set Γ(µ), which is introduced in the introduction (Section 1). First of all, we prove that each
element of Γ(µ) verifies the Pohozaev identity (2.4).

Proposition 3.1. For each element σ ∈ Γ(µ), σ satisfies the Pohozaev identity (2.4).

Proof. One can get it easily by Vieta’s theorem and Pohozaev identity (2.4). □

As indicated by the setting of G, there might have several ways defining the same elements in Γ(µ). In
order to represent each element in the cheapest way we introduce the following concept

Definition 3.2. We say R̃ =RinRin−1 · · ·Ri1 (ia ∈ {1,2,3}, 1 ≤ a ≤ n) is a simplest chain with length n if R̃ can
not be reduced to a sub-chain R jmR jm−1 · · ·R j1 for any m < n, ja ∈ {1,2,3}, 1 ≤ a ≤ m.

Remark 5. For example, R3R1R2R1 is not a simplest chain, while R3R1R2R3 is a simplest chain with
length 4.

Proposition 3.3. For any σ = (σ1,σ2,σ3) ∈ Γ(µ), σi = 4
∑3

j=1 ni jµ j for some ni j ∈ N∪{0}.

Proof. By induction, one can easily verify that σi = 4
∑3

j=1 ni jµ j is a polynomial of µ j with ni j ∈ N∪{0}. In
fact, direct computation shows that the first 3 levels of Γ(µ) are given as

10



����(0,0,0)

(4µ1,0,0) (4µ1,4µ2,0) · · ·

(4µ1,0,4µ1+4µ3) · · ·

(4µ1,4µ2,0) · · ·

0 (0,4µ2,0) ����(0,0,0)

(0,4µ2,4µ2+4µ3) · · ·

(4µ1+8µ3,0,4µ3) · · ·

(0,0,4µ3) (0,4µ2+8µ3,4µ3) · · ·

����(0,0,0)

1st level 2nd level 3rd level · · ·

R 1

R2

R
3

R1

R2

R3

R1

R2

R3

R1

R2

R3

For any σ ∈ Γ(µ), there exists a simplest chain R̃ = RinRin−1 · · ·Ri1 with length n such that σ = R̃(0). In this
case, we say that σ is in the n-th level. Now the conclusion is true for those σ in the L-th level, 1 ≤ L ≤ 3.
By induction, we suppose that the conclusion holds for all σ(L) in the L-th level, then we shall prove it also
holds in the (L+1)-th level. Let σ(L) = (σ(L)

1 ,σ
(L)
2 ,σ

(L)
3 ), where σ(L)

i = 4
∑3

j=1 n(L)
i j µ j, n(L)

i j ∈ N∪{0}. Then(
R1σ

(L))
1 =
(

4−4n(L)
11 +8n(L)

31

)
µ1+

(
−4n(L)

12 +8n(L)
32

)
µ2+

(
−4n(L)

13 +8n(L)
33

)
µ3,(

R2σ
(L))

2 =
(
−4n(L)

21 +8n(L)
31

)
µ1+

(
4−4n(L)

22 +8n(L)
32

)
µ2+

(
−4n(L)

23 +8n(L)
33

)
µ3,

and (
R3σ

(L))
3 =
(

4n(L)
11 +4n(L)

21 −4n(L)
31

)
µ1+

(
4n(L)

12 +4n(L)
22 −4n(L)

32

)
µ2+

(
4+4n(L)

13 +4n(L)
23 −4n(L)

33

)
µ3.

Obviously, the coefficients of µi in the above components are multiples of 4. Thus we shall prove that these
coefficients are nonnegative. We divide the proof into two steps as follows.

Step 1. We claim

(3.1) 4−4n(L)
11 +8n(L)

31 ≥ 0, −4n(L)
12 +8n(L)

32 ≥ 0, −4n(L)
13 +8n(L)

33 ≥ 0,

and

(3.2) −4n(L)
21 +8n(L)

31 ≥ 0, 4−4n(L)
22 +8n(L)

32 ≥ 0, −4n(L)
23 +8n(L)

33 ≥ 0.
11



Since the proof for (3.1) and (3.2) are almost the same, we shall only give details for the first one. Using (2.4)
and substituting the expression of σ(L) (or R1σ

(L)) into (2.4), we can obtain the following three equations
by comparing the coefficients of µ2

j , j = 1,2,3,(
n(L)

11 −n(L)
31

)2
+
(

n(L)
21 −n(L)

31

)2
= n(L)

11 ,(3.3) (
n(L)

12 −n(L)
32

)2
+
(

n(L)
22 −n(L)

32

)2
= n(L)

22 ,(3.4) (
n(L)

13 −n(L)
33

)2
+
(

n(L)
23 −n(L)

33

)2
= 2n(L)

33 .(3.5)

By (3.3), we can regard n(L)
11 as a solution of the following quadratic equation

(3.6) x2−

(
2n(L)

31 +1
)

x+
(

n(L)
31

)2
+
(

n(L)
21 −n(L)

31

)2
= 0.

Since
(

n(L)
31

)2
+
(

n(L)
21 −n(L)

31

)2
≥ 0, then the other solution of (3.6) satisfies

2n(L)
31 +1−n(L)

11 ≥ 0 ⇐⇒ 4−4n(L)
11 +8n(L)

31 ≥ 0.

In a similar manner, by (3.4) we can view n(L)
12 as a solution of the following quadratic equation

(3.7) x2−2n(L)
32 x+

(
n(L)

32

)2
+
(

n(L)
22 −n(L)

32

)2
−n(L)

22 = 0.

It is not difficult to check that (
n(L)

32

)2
+
(

n(L)
22 −n(L)

32

)2
−n(L)

22 ≥ 0.

Hence, the other solution of (3.7) satisfies

2n(L)
32 −n(L)

12 ≥ 0 ⇐⇒ −4n(L)
12 +8n(L)

32 ≥ 0.

As n(L)
11 and n(L)

12 , by (3.5) we can treat n(L)
13 as a solution of the following quadratic equation

(3.8) x2−2n(L)
33 x+

(
n(L)

33

)2
+
(

n(L)
23 −n(L)

33

)2
−2n(L)

33 = 0.

Notice that if

(3.9)
(

n(L)
33

)2
+
(

n(L)
23 −n(L)

33

)2
−2n(L)

33 ≥ 0,

then the other solution of (3.8) satisfies

2n(L)
33 −n(L)

13 ≥ 0 ⇐⇒ −4n(L)
13 +8n(L)

33 ≥ 0.

Therefore, (3.1) is proved. So it remains to verify (3.9). For the cases of n(L)
33 ≥ 2 and n(L)

33 = 0, it is trivial.

While if n(L)
33 = 1, we must have

(
n(L)

23 −1
)2
≥ 1. Indeed, comparing the coefficients of µ2µ3 in the Pohozaev

identity, we find n(L)
23 is even. Hence (3.1) is proved.

Step 2. We claim that

(3.10) 4n(L)
11 +4n(L)

21 −4n(L)
31 ≥ 0, 4n(L)

12 +4n(L)
22 −4n(L)

32 ≥ 0, 4+4n(L)
13 +4n(L)

23 −4n(L)
33 ≥ 0.

12



As Step 1, we can apply (2.4) to get that n(L)
3i , i = 1,2,3 are the solution to the following three equations

respectively 
2x2−2

(
n(L)

11 +n(L)
21

)
x+
(

n(L)
11

)2
+
(

n(L)
21

)2
−n(L)

11 = 0,

2x2−2
(

n(L)
12 +n(L)

22

)
x+
(

n(L)
12

)2
+
(

n(L)
22

)2
−n(L)

22 = 0,

2x2−2
(

n(L)
13 +n(L)

23 +1
)

x+
(

n(L)
13

)2
+
(

n(L)
23

)2
= 0.

Notice that (
n(L)

11

)2
+
(

n(L)
21

)2
−n(L)

11 ≥ 0,
(

n(L)
12

)2
+
(

n(L)
22

)2
−n(L)

22 ≥ 0,
(

n(L)
13

)2
+
(

n(L)
23

)2
≥ 0,

then by the same argument of Step 1, we conclude that

n(L)
11 +n(L)

21 −n(L)
31 ≥ 0, n(L)

12 +n(L)
22 −n(L)

32 ≥ 0, 1+n(L)
13 +n(L)

23 −n(L)
33 ≥ 0.

Hence (3.10) is proved and we finish the proof. □

Proposition 3.4. Let ΓN(µ) be defined as

(3.11) ΓN(µ) =

σ ∣∣ σ satisfies the Pohozaev identity (2.4), σi = 4
3∑

j=1

ni jµ j, ni j ∈ N∪{0}, i = 1,2,3

 .
Then

ΓN(µ) = Γ(µ).

Proof. It is easy to see that Γ(µ) ⊆ ΓN(µ) by Proposition 3.1 and Proposition 3.3. Thus it remains to show
ΓN(µ) ⊆ Γ(µ). For any σ = (σ1,σ2,σ3) ∈ ΓN(µ), by Proposition 3.1, Riσ satisfies the Pohozaev identity
(2.4). So we shall prove

(3.12) if σ ∈ ΓN(µ), then Riσ ∈ ΓN(µ), i = 1,2,3.

Let σ ∈ ΓN(µ), σi = 4
∑3

j=1 ni jµ j, i = 1,2,3, where ni j ∈N∪{0}. Then by the same arguments of Proposition
3.3, we obtain

4−4n11+8n31 ≥ 0,
−4n12+8n32 ≥ 0,
−4n13+8n33 ≥ 0,


−4n21+8n31 ≥ 0,

4−4n22+8n32 ≥ 0,
−4n23+8n33 ≥ 0,

and


4n11+4n21−4n31 ≥ 0,
4n12+4n22−4n32 ≥ 0,

4+4n13+4n23−4n33 ≥ 0.

This completes the proof of (3.12).
Next we define a partial order ⪯ in ΓN(µ), we say

σ1 ⪯ σ2 provided (σ1)i ≤ (σ2)i, i = 1,2,3.

Then there must hold
either σ ⪯ Riσ or Riσ ⪯ σ, i = 1,2,3.

For any σ ∈ ΓN(µ), let

Γσ :=
{
Ri1Ri2 · · ·Rinσ | n ∈ N∪{0}, ik ∈ {1,2,3}, 1 ≤ k ≤ n

}
.

Thus for any σ1,σ2 ∈ ΓN(µ), we have either

(3.13) Γσ1 = Γσ2 or Γσ1 ∩Γσ2 = ∅.

Now we can prove that 0 = (0,0,0) ∈ Γσ for any σ ∈ ΓN(µ). An element σ̂ ∈ Γσ is minimal if σ̃ ⪯ σ̂ for
some σ̃ ∈ Γσ, then σ̃ = σ̂. By well-ordering Principle, we conclude that Γσ has a local minimal element
σ0 = (σ1,0,σ2,0,σ3,0), i.e.,

σ0 ⪯ Riσ0, i = 1,2,3.
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Therefore, we have

4µi−2
3∑

j=1

ai jσ j,0 ≥ 0, i = 1,2,3.

On the other hand, since σ0 satisfies the Pohozaev identity (2.4), we get

0 ≤ σ1,0

2
3∑

j=1

a1 jσ j,0−4µ1

+σ2,0

2
3∑

j=1

a2 jσ j,0−4µ2

+2σ3,0

2
3∑

j=1

a3 jσ j,0−4µ3

 ≤ 0,

which implies that σi,0 = 0, i = 1,2,3. Otherwise, we must have

2
(
σ1,0−σ3,0

)
= 4µ1, 2

(
σ2,0−σ3,0

)
= 4µ2, 2

(
−

1
2
σ1,0−

1
2
σ2,0+σ3,0

)
= 4µ3,

then 2µ1 + 2µ2 + 4µ3 = 0, a contradiction. Hence 0 ∈ Γσ. By (3.13), we obtain Γσ = Γ0 for any σ ∈ ΓN(µ).
This amounts to say that

ΓN(µ) = Γ(µ).

The proof of Proposition 3.4 is complete. □

In the following of this section we are focused on giving a precise expression for any element in Γ(µ).

Lemma 3.5. Let γi = 0, i = 1,2,3. For any σ = (σ1,σ2,σ3) ∈ Γ(1,1,1) with σi = 4ni and ni ∈ N∪ {0},
i = 1,2,3, we set

n1−n3 ≡ m′1 (mod 4), n2−n3 ≡ m′2 (mod 4) for some m′1,m
′
2 ∈ {0,1,2,3}.

Then (m′1,m
′
2) admits all the following 8 types:{

(0,0), (0,1), (1,0), (1,1), (2,2), (2,3), (3,2), (3,3)
}
.

In this way, we call that σ is of type (m′1,m
′
2).

Proof. Applying the Pohozaev identity (2.4) with µi = 1, i = 1,2,3, we obtain

(3.14) (n1−n3)2+ (n2−n3)2 = n1+n2+2n3.

Notice that

(3.15) n1−n3 = 4k1+m′1, n2−n3 = 4k2+m′2

for some k1,k2 ∈ Z and m′1,m
′
2 = 0,1,2,3. Substituting (3.15) into (3.14), we conclude that

m′1
2
+m′2

2
≡ m′1+m′2 (mod 4),

which is solvable if and only if

(m′1,m
′
2) ∈

{
(0,0), (0,1), (1,0), (1,1), (2,2), (2,3), (3,2), (3,3)

}
.

We notice that the following 8 elements satisfy the Pohozaev identity (2.4) with µi = 1, i = 1,2,3, and

(0,0,0) is of type (0,0), (4,0,0) is of type (1,0),
(0,4,0) is of type (0,1), (4,4,0) is of type (1,1),

(4,4,12) is of type (2,2), (4,0,8) is of type (3,2),
(0,4,8) is of type (2,3), (0,0,4) is of type (3,3).

Therefore, all the 8 types could happen. □
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Remark 6. (1) For any σ = (σ1,σ2,σ3) ∈ Γ(1,1,1) which is of type (m′1,m
′
2), one can easily check that Riσ

is of type (n′1,n
′
2), where

n′1 ≡ −m′1+1 (mod 4), n′2 = m′2, if i = 1,
n′1 = m′1, n′2 ≡ −m′2+1 (mod 4), if i = 2,
n′1 ≡ −m′2−1 (mod 4), n′2 ≡ −m′1−1 (mod 4), if i = 3.

Precisely, we conclude that

if σ is of type (0,0), R1σ is of type (1,0), R2σ is of type (0,1), R3σ is of type (3,3);

if σ is of type (0,1), R1σ is of type (1,1), R2σ is of type (0,0), R3σ is of type (2,3);
if σ is of type (1,0), R1σ is of type (0,0), R2σ is of type (1,1), R3σ is of type (3,2);
if σ is of type (1,1), R1σ is of type (0,1), R2σ is of type (1,0), R3σ is of type (2,2);
if σ is of type (2,2), R1σ is of type (3,2), R2σ is of type (2,3), R3σ is of type (1,1);
if σ is of type (2,3), R1σ is of type (3,3), R2σ is of type (2,2), R3σ is of type (0,1);
if σ is of type (3,2), R1σ is of type (2,2), R2σ is of type (3,3), R3σ is of type (1,0);
if σ is of type (3,3), R1σ is of type (2,3), R2σ is of type (3,2), R3σ is of type (0,0).

(2) For any general σ ∈ Γ(µ), σi = 4
∑3

j=1 ni jµ j, ni j ∈ N∪{0}. Let N(σi) = 4
∑3

j=1 ni j and denote

1
4

(N(σ1)−N(σ3)) ≡ m′1 (mod 4),
1
4

(N(σ2)−N(σ3)) ≡ m′2 (mod 4) for some m′1,m
′
2 ∈ {0,1,2,3}.

Then (m′1,m
′
2) also admits all the following 8 types:{

(0,0), (0,1), (1,0), (1,1), (2,2), (2,3), (3,2), (3,3)
}
.

We will prove this result in Lemma 3.6. In this way, we say that σ is of type (m′1,m
′
2) as well.

Lemma 3.6. For any σ ∈ Γ(µ), suppose that σ is of type (m′1,m
′
2) for some m′1,m

′
2 = 0,1,2,3. Then (m′1,m

′
2)

admits all the following 8 types:

(3.16)
{

(0,0), (0,1), (1,0), (1,1), (2,2), (2,3), (3,2), (3,3)
}
.

Proof. We prove this result by induction. Recall the binary tree diagram given in the proof of Proposition
3.3 and we can directly check that

(0,0,0) is of type (0,0), (4µ1,0,0) is of type (1,0),
(0,4µ2,0) is of type (0,1), (0,0,4µ3) is of type (3,3),

(4µ1,4µ2,0) is of type (1,1), (4µ1,0,4µ1+4µ3) is of type (3,2),
(0,4µ2,4µ2+4µ3) is of type (2,3), (4µ1+8µ3,0,4µ3) is of type (2,3),
(0,4µ2+8µ3,4µ3) is of type (3,2), (4µ1,4µ2,4µ1+4µ2+4µ3) is of type (2,2).

The first 9 elements are in the 1-st, 2-nd and 3-rd levels, the last one is in the 4-th level. Obviously, these
elements are of type (i, j) described as in (3.16) and all 8 types could happen. We suppose that each element
in the N-th level is of type (i, j), which is one of (3.16). Then we shall prove each element in the (N +1)-th
level is of type (i′, j′), where (i′, j′) admits a form belonging to (3.16).

Suppose σ = (σ1,σ2,σ3) ∈ Γ(µ) is an element in the (N+1)-level, where σi = 4
∑3

j=1 ni jµ j, ni j ∈N∪{0}.
Without loss of generality, we assume that σ is of type (0,0). Then one can easily check that Riσ is of type
(n′1,n

′
2), where for i = 1,2,3, respectively,{

n′1 ≡ −m′1+1 (mod 4),
n′2 = m′2,

{
n′1 = m′1,
n′2 ≡ −m′2+1 (mod 4),

{
n′1 ≡ −m′2−1 (mod 4),
n′2 ≡ −m′1−1 (mod 4).

Then we get the same conclusion holds by Remark 6-(1). Thus, we finish the proof. □
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Theorem 3.7. For each element σ ∈ Γ(µ), we can express σ as σt = Fµt, where F = ( fi j)3×3 is a matrix, fi j
are multiples of 4 by Proposition 3.4, and t denotes the transpose operator, i.e., σ1

σ2
σ3

 = Fµt =

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 µ1
µ2
µ3

 .
Let

ΓF(µ) =
{
σ | σt = Fµt, where F admits F(ℓ), ℓ = 1, · · · ,8

}
.

Then ΓF(µ) = ΓN(µ). Here F(ℓ) are defined as the following:

Type (0,0). For any m1,m2 ∈ Z with (m1,m2) ≡ (0,0) (mod 4), we have

F(1) =

 1
4 m2

1+
1
4 m2

2
1
4 m2

1+m1+
1
4 m2

2−m2
1
2 m2

1+2m1+
1
2 m2

2
1
4 m2

1−m1+
1
4 m2

2+m2
1
4 m2

1+
1
4 m2

2
1
2 m2

1+
1
2 m2

2+2m2
1
4 m2

1−m1+
1
4 m2

2
1
4 m2

1+
1
4 m2

2−m2
1
2 m2

1+
1
2 m2

2

 .
Type (0,1). For any m1,m2 ∈ Z with (m1,m2) ≡ (0,1) (mod 4), we have

F(2) =

 1
4 m2

1+
1
4 m2

2−
1
2 m2+

1
4

1
4 m2

1+m1+
1
4 m2

2+
1
2 m2−

3
4

1
2 m2

1+2m1+
1
2 m2

2−m2+
1
2

1
4 m2

1−m1+
1
4 m2

2+
1
2 m2−

3
4

1
4 m2

1+
1
4 m2

2+
3
2 m2+

9
4

1
2 m2

1+
1
2 m2

2+m2−
3
2

1
4 m2

1−m1+
1
4 m2

2−
1
2 m2+

1
4

1
4 m2

1+
1
4 m2

2+
1
2 m2−

3
4

1
2 m2

1+
1
2 m2

2−m2+
1
2

 .
Type (1,0). For any m1,m2 ∈ Z with (m1,m2) ≡ (1,0) (mod 4), we have

F(3) =

 1
4 m2

1+
3
2 m1+

1
4 m2

2+
9
4

1
4 m2

1+
1
2 m1+

1
4 m2

2−m2−
3
4

1
2 m2

1+m1+
1
2 m2

2−
3
2

1
4 m2

1+
1
2 m1+

1
4 m2

2+m2−
3
4

1
4 m2

1−
1
2 m1+

1
4 m2

2+
1
4

1
2 m2

1−m1+
1
2 m2

2+2m2+
1
2

1
4 m2

1+
1
2 m1+

1
4 m2

2−
3
4

1
4 m2

1−
1
2 m1+

1
4 m2

2−m2+
1
4

1
2 m2

1−m1+
1
2 m2

2+
1
2

 .
Type (1,1). For any m1,m2 ∈ Z with (m1,m2) ≡ (1,1) (mod 4), we have

F(4) =

 1
4 m2

1+
3
2 m1+

1
4 m2

2−
1
2 m2+

5
2

1
4 m2

1+
1
2 m1+

1
4 m2

2+
1
2 m2−

3
2

1
2 m2

1+m1+
1
2 m2

2−m2−1
1
4 m2

1+
1
2 m1+

1
4 m2

2+
1
2 m2−

3
2

1
4 m2

1−
1
2 m1+

1
4 m2

2+
3
2 m2+

5
2

1
2 m2

1−m1+
1
2 m2

2+m2−1
1
4 m2

1+
1
2 m1+

1
4 m2

2−
1
2 m2−

1
2

1
4 m2

1−
1
2 m1+

1
4 m2

2+
1
2 m2−

1
2

1
2 m2

1−m1+
1
2 m2

2−m2+1

 .
Type (2,2). For any m1,m2 ∈ Z with (m1,m2) ≡ (2,2) (mod 4), we have

F(5) =

 1
4 m2

1+m1+
1
4 m2

2−m2+2 1
4 m2

1+
1
4 m2

2−2 1
2 m2

1+2m1+
1
2 m2

2
1
4 m2

1+
1
4 m2

2−2 1
4 m2

1−m1+
1
4 m2

2+m2+2 1
2 m2

1+
1
2 m2

2+2m2
1
4 m2

1+
1
4 m2

2−m2
1
4 m2

1−m1+
1
4 m2

2
1
2 m2

1+
1
2 m2

2

 .
Type (2,3). For any m1,m2 ∈ Z with (m1,m2) ≡ (2,3) (mod 4), we have

F(6) =

 1
4 m2

1+m1+
1
4 m2

2+
1
2 m2+

5
4

1
4 m2

1+
1
4 m2

2−
1
2 m2−

7
4

1
2 m2

1+2m1+
1
2 m2

2−m2+
1
2

1
4 m2

1+
1
4 m2

2+
3
2 m2+

1
4

1
4 m2

1−m1+
1
4 m2

2+
1
2 m2+

5
4

1
2 m2

1+
1
2 m2

2+m2−
3
2

1
4 m2

1+
1
4 m2

2+
1
2 m2−

3
4

1
4 m2

1−m1+
1
4 m2

2−
1
2 m2+

1
4

1
2 m2

1+
1
2 m2

2−m2+
1
2

 .
Type (3,2). For any m1,m2 ∈ Z with (m1,m2) ≡ (3,2) (mod 4), we have

F(7) =

 1
4 m2

1+
1
2 m1+

1
4 m2

2−m2+
5
4

1
4 m2

1+
3
2 m1+

1
4 m2

2+
1
4

1
2 m2

1+m1+
1
2 m2

2−
3
2

1
4 m2

1−
1
2 m1+

1
4 m2

2−
7
4

1
4 m2

1+
1
2 m1+

1
4 m2

2+m2+
5
4

1
2 m2

1−m1+
1
2 m2

2+2m2+
1
2

1
4 m2

1−
1
2 m1+

1
4 m2

2−m2+
1
4

1
4 m2

1+
1
2 m1+

1
4 m2

2−
3
4

1
2 m2

1−m1+
1
2 m2

2+
1
2

 .
Type (3,3). For any m1,m2 ∈ Z with (m1,m2) ≡ (3,3) (mod 4), we have

F(8) =

 1
4 m2

1+
1
2 m1+

1
4 m2

2+
1
2 m2+

1
2

1
4 m2

1+
3
2 m1+

1
4 m2

2−
1
2 m2+

1
2

1
2 m2

1+m1+
1
2 m2

2−m2−1
1
4 m2

1−
1
2 m1+

1
4 m2

2+
3
2 m2+

1
2

1
4 m2

1+
1
2 m1+

1
4 m2

2+
1
2 m2+

1
2

1
2 m2

1−m1+
1
2 m2

2+m2−1
1
4 m2

1−
1
2 m1+

1
4 m2

2+
1
2 m2−

1
2

1
4 m2

1+
1
2 m1+

1
4 m2

2−
1
2 m2−

1
2

1
2 m2

1−m1+
1
2 m2

2−m2+1

 .
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Proof. Let
ΓF(µ) =

{
σ | σt = Fµt where F admits F(ℓ), ℓ = 1, · · · ,8

}
.

Our aim is to show ΓF(µ) = ΓN(µ).
On one hand, for any σ ∈ ΓF(µ) with σt = F(ℓ)µt for some ℓ ∈ {1, · · · ,8}, one can directly check that σ

satisfies the Pohozaev identity (2.4) and f (ℓ)
i j are multiples of 4. Hence ΓF(µ) ⊆ ΓN(µ) by the definition of

ΓN(µ) in (3.11).
On the other hand, we can prove ΓN(µ) ⊆ ΓF(µ) by induction. For any σ ∈ ΓN(µ), σi = 4

∑3
j=1 ni jµ j,

ni j ∈ N∪{0}. Let N(σi) = 4
∑3

j=1 ni j and denote

(3.17)
1
4

(N(σ1)−N(σ3)) = m1,
1
4

(N(σ2)−N(σ3)) = m2.

Suppose σ is of type (m′1,m
′
2), where (m1,m2) ≡ (m′1,m

′
2) (mod 4). We recall the binary tree diagram given

in the proof of Proposition 3.3 and directly check that

0 = (0,0,0) is of type (0,0), 0t = F(1)µt for (m1,m2) = (0,0);

σ = (4µ1,0,0) is of type (1,0), σt = F(3)µt for (m1,m2) = (1,0);

σ = (0,4µ2,0) is of type (0,1), σt = F(2)µt for (m1,m2) = (0,1);

σ = (0,0,4µ3) is of type (3,3), σt = F(8)µt for (m1,m2) = (−1,−1);

σ = (4µ1,4µ2,0) is of type (1,1), σt = F(4)µt for (m1,m2) = (1,1);

σ = (4µ1,0,4µ1+4µ3) is of type (3,2), σt = F(7)µt for (m1,m2) = (−1,−2);

σ = (0,4µ2,4µ2+4µ3) is of type (2,3), σt = F(6)µt for (m1,m2) = (−2,−1);

σ = (4µ1+8µ3,0,4µ3) is of type (2,3), σt = F(6)µt for (m1,m2) = (2,−1);

σ = (0,4µ2+8µ3,4µ3) is of type (3,2), σt = F(7)µt for (m1,m2) = (−1,2);

σ = (4µ1,4µ2,4µ1+4µ2+4µ3) is of type (2,2), σt = F(5)µt for (m1,m2) = (−2,−2).

This implies that σ ∈ ΓF(µ) for those σ in the L-th level with σ ∈ ΓN(µ), 1 ≤ L ≤ 3. In particular, all
possibilities σt = F(ℓ)µt could happen, ℓ = 1, · · · ,8. Suppose that σ ∈ ΓF(µ) for those σ in the L-th level with
σ ∈ ΓN(µ), 1 ≤ L ≤ M. We need to verify Riσ ∈ ΓF(µ) for any σ ∈ ΓN(µ) in M-th level and any i = 1,2,3.

Now, suppose that σ is an element in the M-th level of ΓN(µ), by assumption we have σ ∈ ΓF(µ) with
σt = F(ℓ)µt for some ℓ ∈ {1, · · · ,8}. Denote

σi =

3∑
j=1

f (ℓ)
i j (m1,m2)µ j, where f (ℓ)

i j (m1,m2) is the element of F(ℓ).

Assume that σ is of type (m′1,m
′
2), where (m1,m2) ≡ (m′1,m

′
2) (mod 4), and Riσ is of type (n′1,n

′
2), where

(n1,n2) ≡ (n′1,n
′
2) (mod 4). Here (m1,m2) and (n1,n2) are defined as in (3.17) related to σ and Riσ, respec-

tively. The corresponding matrices F of type (m′1,m
′
2) and (n′1,n

′
2) are F(ℓ) and F(ℓ′) respectively. One can

directly check that

(3.18) (Riσ)t =


F(ℓ1)(1−m1,m2)µt, if i = 1,

F(ℓ2)(m1,1−m2)µt, if i = 2,

F(ℓ3)(−m2−1,−m1−1)µt, if i = 3,

for some indices ℓi ∈ {1, · · · ,8}, i = 1,2,3.
In the following, we just provide the details for the case l = 1. By straightforward computation we have

(R1σ)t = F(3)(1−m1,m2)µt, (R2σ)t = F(2)(m1,1−m2)µt, (R3σ)t = F(8)(−m2−1,−m1−1)µt.
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Denote σ = (σ1,σ2,σ3), where

σi =

3∑
j=1

f (1)
i j (m1,m2)µ j, where f (1)

i j (m1,m2) is the element of F(1).

Then R1σ, R2σ and R3σ is of type (1,0), (0,1) and (3,3) respectively by Remark 6, and hence ℓ1 = 3, ℓ2 = 2
and ℓ3 = 8. On one hand, direct computation shows (R1σ)t = Aµt with

A =

 1
4 (m1−4)2+ 1

4 m2
2

1
4 (m1−2)2+ 1

4 (m2−2)2−2 1
2 (m1−2)2+ 1

2 m2
2−2

1
4 (m1−2)2+ 1

4 (m2+2)2−2 1
4 m2

1+
1
4 m2

2
1
2 m2

1+
1
2 (m2+2)2−2

1
4 (m1−2)2+ 1

4 m2
1−1 1

4 m2
1+

1
4 (m2−2)2−1 1

2 m2
1+

1
2 m2

2

 .
On the other hand, we can rewrite F(3) as

F(3) =

 1
4 (m1+3)2+ 1

4 m2
2

1
4 (m1+1)2+ 1

4 (m2−2)2−2 1
2 (m1+1)2+ 1

2 m2
2−2

1
4 (m1+1)2+ 1

4 (m2+2)2−2 1
4 (m1−1)2+ 1

4 m2
2

1
2 (m1−1)2+ 1

2 (m2+2)2−2
1
4 (m1+1)2+ 1

4 m2
2−1 1

4 (m1−1)2+ 1
4 (m2−2)2−1 1

2 (m1−1)2+ 1
2 m2

2

 .
Comparing the above two matrices, it is easy to observe that

(R1σ)t = F(3)(1−m1,m2)µt.

Similarly, we obtain

(R2σ)t = F(2)(m1,1−m2)µt and (R3σ)t = F(8)(−m2−1,−m1−1)µt.

Then we finish the discussion for the case of ℓ = 1. For the other cases, by direct computation one can get:
(1). If ℓ = 1,

(R1σ)t = F(3)(1−m1,m2)µt, (R2σ)t = F(2)(m1,1−m2)µt, (R3σ)t = F(8)(−1−m2,−1−m1)µt;

(2). If ℓ = 2,

(R1σ)t = F(4)(1−m1,m2)µt, (R2σ)t = F(1)(m1,1−m2)µt, (R3σ)t = F(6)(−1−m2,−1−m1)µt;

(3). If ℓ = 3,

(R1σ)t = F(1)(1−m1,m2)µt, (R2σ)t = F(4)(m1,1−m2)µt, (R3σ)t = F(7)(−1−m2,−1−m1)µt;

(4). If ℓ = 4,

(R1σ)t = F(2)(1−m1,m2)µt, (R2σ)t = F(3)(m1,1−m2)µt, (R3σ)t = F(5)(−1−m2,−1−m1)µt;

(5). If ℓ = 5,

(R1σ)t = F(7)(1−m1,m2)µt, (R2σ)t = F(6)(m1,1−m2)µt, (R3σ)t = F(4)(−1−m2,−1−m1)µt;

(6). If ℓ = 6,

(R1σ)t = F(8)(1−m1,m2)µt, (R2σ)t = F(5)(m1,1−m2)µt, (R3σ)t = F(2)(−1−m2,−1−m1)µt;

(7). If ℓ = 7,

(R1σ)t = F(5)(1−m1,m2)µt, (R2σ)t = F(8)(m1,1−m2)µt, (R3σ)t = F(3)(−1−m2,−1−m1)µt;

(8). If ℓ = 8,

(R1σ)t = F(6)(1−m1,m2)µt, (R2σ)t = F(7)(m1,1−m2)µt, (R3σ)t = F(1)(−1−m2,−1−m1)µt.

Therefore (3.18) is proved. This implies that any element σ ∈ ΓN(µ) in the (M + 1)-level also belongs to
ΓF(µ). Thus, ΓN(µ) ⊆ ΓF(µ) and the proof of Theorem 3.7 is complete. □
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Remark 7. For the case of γ1 = γ2 = 0, one can easily verify that for any σ = (σ1,σ2,σ3) ∈ Γ(µ),
σ1 = m1(m1+3)+m2(m2−1),
σ2 = m1(m1−1)+m2(m2+3),
σ3 = m1(m1−1)+m2(m2−1),

where (m1,m2) ∈ Z2 and
{either m1,m2 ≡ 0,1 (mod 4),

or m1,m2 ≡ 2,3 (mod 4).

This expression coincides with that of [43, Theorem 1.1].

4. Some technical lemmas

In this section, we present some important results for preparation. Consider the following system

(4.1) ∆uk
i (x)+

3∑
j=1

ai je
uk

j(x)
= 4πγiδ0 in B1(0), i = 1,2,3,

where the coefficient matrix A := (ai j)3×3 is defined as in (1.2). By a little abuse of notations, in the sequel
we denote for any sequence (x,r) = {(xk,rk)},

σk
i (B(xk,rk)) :=

1
2π

∫
B(xk ,rk)

euk
i (x)dx, i = 1,2,3.

In Lemma 4.1, we assume that
(i) The Harnack-type inequality holds

(4.2) uk
i (x)+2log |x| ≤C for

1
2

lk ≤ |x| ≤ 2sk, i = 1,2,3.

(ii) All components of uk have fast decay on ∂B(0, lk) and

lim
r→0

lim
k→+∞

σk
i (B(0,rlk)) = lim

k→+∞
σk

i (B(0, lk)).

For simplicity, we denote σi := lim
k→+∞

σk
i (B(0, lk)) in Lemma 4.1.

Lemma 4.1. Let µi = 1+γi. Assume that (i) and (ii) hold.
(a) If uk

i has slow decay on ∂B(0, sk) for some i ∈ {1,2,3}, then

2µi−

3∑
j=1

ai jσ j > 0.

(b) At least one component of uk = (uk
1,u

k
2,u

k
3) has fast decay on ∂B(0, sk).

Proof. (a) Performing the following scaling for the system (4.1)

vk
i (y) = uk

i (sky)+2log sk for y ∈ B2(0), i = 1,2,3,

gives

∆vk
i (y)+

3∑
j=1

ai je
vk

j(y)
= 4πγiδ0 in B2(0), i = 1,2,3.

If there is at least one component of uk has slow decay on ∂B(0, sk), we denote J the set of consecutive
indices such that uk

i (i ∈ J) has slow decay on ∂B(0, sk), then vk
i (i ∈ J) converges to the solution vi (i ∈ J) of

a Toda system (or Liouville equation). Precisely, one of the following alternatives holds:

Case (1). If J = {i} for i ∈ {1,2,3}. Then vk
j(y)→−∞ in L∞loc(B2(0) \ {0}) for j ∈ {1,2,3} \ J, and vk

i (y)→ v(y)
in C2

loc(B2(0) \ {0}), where v(y) satisfies

−∆v = ev in B2(0) \ {0}.
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Case (2). If J = {1,2}. Then vk
3(y)→−∞ in L∞loc(B2(0)\{0}), and (vk

1,v
k
2)→ (v1,v2) in C2

loc(B2(0)\{0}), where
(v1,v2) satisfies {

∆v1+ ev1 = 0
∆v2+ ev2 = 0 in B2(0) \ {0}.

Case (3). If J = {i,3} for i = 1 or 2. Then vk
j(y)→−∞ in L∞loc(B2(0) \ {0}) for j ∈ {1,2,3} \ J, and (vk

i ,v
k
3)→

(vi,v3) in C2
loc(B2(0) \ {0}), where (vi,v3) satisfies{

∆vi+ evi − ev3 = 0
∆v3−

1
2 evi + ev3 = 0 in B2(0) \ {0}.

Case (4). If J = {1,2,3}. Then (vk
1,v

k
2,v

k
3)→ (v1,v2,v3) in C2

loc(B2(0) \ {0}), where (v1,v2,v3) satisfies

(4.3)


−∆v1 = ev1 − ev3

−∆v2 = ev2 − ev3

−∆v3 = −
1
2 ev1 − 1

2 ev2 + ev3

in B2(0) \ {0}.

We shall prove the point (a) by concerning the Case (4), the proofs for the other cases are similar and
simpler. The strength of the Dirac measure at 0 for (4.3) can be expressed by

lim
r→0

∫
∂B(0,r)

∂v1(y)
∂ν

dS = lim
r→0

lim
k→∞

(
4πγ1−

∫
B(0,r)

evk
1(y)dy+

∫
B(0,r)

evk
3(y)dy

)
= 4πγ1−2π(σ1−σ3) =: 4πβ1,

lim
r→0

∫
∂B(0,r)

∂v2(y)
∂ν

dS = lim
r→0

lim
k→∞

(
4πγ2−

∫
B(0,r)

evk
2(y)dy+

∫
B(0,r)

evk
3(y)dy

)
= 4πγ2−2π(σ2−σ3) =: 4πβ2,

and

lim
r→0

∫
∂B(0,r)

∂v3(y)
∂ν

dS = lim
r→0

lim
k→∞

(
4πγ3+

1
2

∫
B(0,r)

evk
1(y)dy+

1
2

∫
B(0,r)

evk
2(y)dy−

∫
B(0,r)

evk
3(y)dy

)
= 4πγ3−2π

(
−

1
2
σ1−

1
2
σ2+σ3

)
=: 4πβ3.

This implies that there is an extra term written as 4πβiδ0 on the R.H.S. of (4.3) for each i = 1,2,3. It is
known that if βi ≤ −1 for some i, then (4.3) has no solutions. Hence

β1 := γ1−
1
2

(σ1−σ3) > −1, β2 := γ2−
1
2

(σ2−σ3) > −1, β3 := γ3−
1
2

(
−

1
2
σ1−

1
2
σ2+σ3

)
> −1,

which implies that

(4.4) 2µi−

3∑
j=1

ai jσ j > 0, i = 1,2,3.

(b) Since uk has fast decay on ∂B(0, lk), σ satisfies the Pohozaev identity (2.4), i.e.,

(σ1−σ3)2+ (σ2−σ3)2 = 4(µ1σ1+µ2σ2+2µ3σ3),

which is equivalent to

σ1

 3∑
j=1

a1 jσ j−2µ1

+σ2

 3∑
j=1

a2 jσ j−2µ2

+2σ3

 3∑
j=1

a3 jσ j−2µ3

 = 2µ1σ1+2µ2σ2+4µ3σ3 ≥ 0.
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As a consequence, there exists i0 ∈ {1,2,3} such that
∑3

j=1 ai0 jσ j −2µi0 ≥ 0. However, if all components of
uk have slow decay on ∂B(0, sk), then by the (a)-th conclusion we obtain (4.4). Contradiction arises. Hence,
we conclude that at least one component of uk has fast decay on ∂B(0, sk). □

Lemma 4.2. Suppose that the Harnack-type inequality (4.2) holds for all components of uk over r ∈ [ lk
2 ,2sk].

If all components of uk have fast decay on all r ∈ [lk, sk], then

σk
i (B(0, sk)) = σk

i (B(0, lk))+o(1), i = 1,2,3.

Proof. The conclusion is trivial if sk/lk ≤ C. In the following we assume that sk/lk → +∞. We shall prove
the lemma by contradiction. Suppose there exists l ∈ {1,2,3} such that

(4.5) σk
l (B(0, sk)) > σk

l (B(0, lk))+δ1

for some δ1 > 0. We define
σ̂i = lim

k→+∞
σk

i (B(0, lk)), i = 1,2,3,

and

I1 (resp.2,3) =

i ∈ {1,2,3}
∣∣∣ 2µi−

3∑
j=1

ai jσ̂ j < (resp. >,=) 0

 .
Then we claim

(4.6) (4.5) is impossible for i ∈ I1∪ I2∪ I3.

In fact, we have I1∪ I2 is not empty. Otherwise, we have

σ̂1− σ̂3 = 2µ1, σ̂2− σ̂3 = 2µ2, −σ̂1− σ̂2+2σ̂3 = 4µ3.

Adding the above three equations we get that µ1 +µ2 +2µ3 = 0 and this is impossible due to that µi > 0 for
each i. Thus I1∪ I2 is not empty. We set

(4.7) δ2 =
1

10000
min

 min
i∈I1∪I2

∣∣∣2µi−

3∑
j=1

ai jσ̂ j

∣∣∣, δ1,1
 ,

and choose l̃k ∈ (lk, sk) such that

(4.8) max
i=1,2,3

{
σk

i (l̃k)−σk
i (lk)

}
= δ2.

Obviously, δ2 > 0. Using Harnack-type inequality (4.2) we have uk
i (x) = uk

i (|x|)+O(1) for 1
2 lk ≤ |x| ≤ 2sk, see

(2.2). By direct computations, we deduce from (4.1) that

(4.9)
d
dr

(
uk

i (r)+2logr
)
=

2µi−
∑3

j=1 ai jσ
k
j(r)

r
, lk ≤ r ≤ sk, i = 1,2,3,

where σk
i (r) = σk

i (B(0,r)), i = 1,2,3.
Concerning the indices of I1, we could get from (4.7) that

d
dr

(
uk

i (r)+2logr
)
≤ −
δ2
r
, for r ∈ [lk, l̃k], i ∈ I1.

By integrating the above equation from lk up to r ∈ [lk, l̃k], we have

uk
i (r)+2logr ≤ uk

i (lk)+2log lk +δ2 log
lk
r
, i ∈ I1,

which implies that for |x| = r,

(4.10) euk
i (x) ≤ O(1)euk

i (r) ≤Ce−Nk lδ2k r−2−δ2 , i ∈ I1,
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where we have used uk
i (lk)+ 2log lk ≤ −Nk by the assumption of fast-decay. By integrating (4.10) over

lk ≤ |x| ≤ l̃k, we conclude that∫
lk≤|x|≤l̃k

euk
i (x)dx ≤ 2Cπe−Nk lδ2k

∫ l̃k

lk
r−1−δ2dr ≤ 2Cπ

e−Nk

δ2
→ 0, i ∈ I1,

as k→ +∞. Hence

(4.11) σk
i (l̃k) = σk

i (lk)+o(1), i ∈ I1.

Similarly, for those i ∈ I2, we deduce from (4.7) that
d
dr

(
uk

i (r)+2logr
)
≥
δ2
r
, for r ∈ [lk, l̃k], i ∈ I2.

By integrating the above equation from r ∈ [lk, l̃k] up to l̃k, we get that

uk
i (r)+2logr ≤ uk

i (l̃k)+2log l̃k +δ2 log
r
l̃k
, for r ∈ [lk, l̃k], i ∈ I2.

This implies that for |x| = r ∈ [lk, l̃k], there holds

euk
i (x) ≤ O(1)euk

i (r) ≤Ce−Nk l̃−δ2k r−2+δ2 , i ∈ I2,

where we have used uk
i (l̃k)+2log l̃k ≤ −Nk by the assumption of fast-decay. Thus∫

lk≤|x|≤l̃k
euk

i (x)dx ≤ 2πCe−Nk l̃−δ2k

∫ l̃k

lk
r−1+δ2dr ≤ 2πC

e−Nk

δ2
→ 0, i ∈ I2,

as k→ +∞, which implies that

(4.12) σk
i (l̃k) = σk

i (lk)+o(1), i ∈ I2.

Hence, combining (4.11) with (4.12) we have

σk
i (l̃k) = σk

i (lk)+o(1), i ∈ I1∪ I2.

It remains to consider the indices i ∈ I3. We set εi = lim
k→+∞

σk
i (l̃k)− σ̂i. For i ∈ I1∪ I2, εi = 0. For i ∈ I3, we

have 2µi−
∑3

j=1 ai jσ̂ j = 0. Substituting σ̂i+εi, i = 1,2,3 into the Pohozaev identity (2.4) we derive that

ε2
1+ε

2
2+2ε2

3−2ε1ε3−2ε2ε3 = 0,

and it leads to
ε1 = ε2 = ε3 = 0.

Contradiction arises. Thus (4.8) does not hold for i ∈ I3 and it proves (4.6). □

To state the last lemma in this section, we introduce the following definition. Let the Harnack-type
inequality (4.2) hold for all components of uk over all r ∈ [ 1

2 lk,2τk]. For a sequence sk ≤ τk, we define

(4.13) σ̂i(B(x,s)) =

 lim
k→+∞

σk
i (B(xk, sk)), if uk

i has fast decay on ∂B(xk, sk),

lim
r→0

lim
k→+∞

σk
i (B(xk,rsk)), if uk

i has slow decay on ∂B(xk, sk),

where (x,s) stands for the sequence of the pair {(xk, sk)}. When xk = 0, we simply denote σ̂i(B(x,s)) by σ̂i(s).

Lemma 4.3. Let σ̂i(s) be defined as in (4.13). There is a sequence rk ∈ [lk, τk] satisfying the following
conditions
(1) uk has fast decay on ∂B(0,rk),
(2) ∃ i ∈ {1,2,3}, such that σ̂i(r) , σ̂i(τ) (r and τ stand for the sequence {rk} and {τk}).
Then there exists sk ∈ (rk, τk) such that

(i) sk/rk→ +∞, there is at least one component uk
i of uk such that uk

i has slow decay on ∂B(0, sk).
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(ii) σ̂i(s) = σ̂i(r), i = 1,2,3 (s stands for the sequence {sk}).

Proof. Since uk has fast decay on ∂B(0,rk), by Proposition 2.4, (σ̂1(r), σ̂2(r), σ̂3(r)) satisfies the Pohozaev
identity (2.4). Set δ = max

i=1,2,3
{σ̂i(τ)− σ̂i(r)}, then δ > 0 by the assumption (2). We decompose {1,2,3} :=

I1∪ I2∪ I3, where

I1 (resp.2,3) =

i ∈ {1,2,3}
∣∣∣ 2µi−

3∑
j=1

ai jσ̂ j(r) < (resp. >,=) 0

 .
Set

(4.14) δ0 =
1

10000
min

 min
i∈I1∪I2

∣∣∣2µi−

3∑
j=1

ai jσ̂ j(r)
∣∣∣, δ,1

 .
We choose ℓk ∈ [rk, τk] such that

(4.15) max
i=1,2,3

{σk
i (ℓk)−σk

i (rk)} = δ0.

Lemma 4.2 and (4.15) implies that uk can not have fast decay on [rk, ℓk]. So there is a sequence rk≪ sk≪ ℓk
such that some component of uk has slow decay on ∂B(0, sk). So it remains to show

(4.16) σ̂i(s) = σ̂i(r) for i = 1,2,3.

We prove (4.16) by contradiction. Suppose it is not true, then

(4.17) ε0 = max
i=1,2,3

{σ̂i(s)− σ̂i(r)} > 0.

By Lemma 4.2 we conclude that there exists a sequence rk ≪ ŝk ≪ sk such that

(i) some components of uk have slow decay on ∂B(0, ŝk),
(ii) max

i=1,2,3
{σ̂i(ŝ)− σ̂i(r)} ∈ [ 1

2δ0, δ0], where ŝ stands for the sequence {ŝk}.

We scale uk
i by

vk
i (y) = uk

i (ŝky)+2log ŝk.

Using (i), we have some components of vk converge and there is a sequence Rk→ +∞ such that

(i) Rk ŝk ≪ sk, uk has fast decay on ∂B(0,Rk ŝk),
(ii) Set σi = lim

k→+∞
σk

i (B(0,Rk ŝk)), then σ = (σ1,σ2,σ3) satisfies the Pohozaev identity (2.4).

Let εi = σi− σ̂i(r) and then max
i=1,2,3

εi ≥
1
2δ0. We claim that

(4.18) εi = 0 for i ∈ I1∪ I2.

First, by the same arguments of Lemma 4.2 we have I1∪ I2 , ∅. Next, we shall prove that uk
i has fast decay

on ∂B(0, ŝk) for i ∈ I1∪ I2. For i ∈ I1, using Lemma 4.1-(a) we can verify it. While for i ∈ I2, we shall prove
it by contradiction. Suppose it is not true then we could get some i0 ∈ I2∩ J, where J is the maximal set with
consecutive indices such that vk

i (i ∈ J) converges to a solution of a Toda system (or Liouville equation)

∆vi+
∑
j∈J

ai jev j = 4π

γi−
1
2

3∑
j=1

ai jσ̂ j(ŝ)

δ0 in R2, i ∈ J,
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where γi−
1
2

∑3
j=1 ai jσ̂ j(ŝ) > −1, i ∈ J. Applying the classification result of [49], we conclude that

σk
i0(Rk ŝk) = σ̂i0(ŝ)+

1
2π

∫
R2

evi0 +o(1)

≥ σ̂i0(ŝ)+µi0 −
1
2

3∑
j=1

ai0 jσ̂ j(ŝ)+o(1)

≥ σ̂i0(ŝ)+2δ0+o(1),

which contradicts to (4.14) and (4.15). Hence, each uk
i (i ∈ I2) has fast decay on ∂B(0, ŝk), as required. After

that, we can apply the same arguments (4.7)–(4.12) in the proof of Lemma 4.2 to obtain

σ̂i(Rŝ) = σ̂i(ŝ) = σ̂i(r), i ∈ I1∪ I2.

Thus (4.18) is proved.
Since both σ̂(r) and σ satisfy the Pohozaev identity (2.4), substituting σ̂i(r)+ εi, i = 1,2,3 into the Po-

hozaev identity (2.4) we derive that

ε2
1+ε

2
2+2ε2

3−2ε1ε3−2ε2ε3 = 0,

which implies that
ε1 = ε2 = ε3 = 0,

a contradiction to (4.17). This finishes the proof of Lemma 4.3. □

5. Local masses on blow-up areas away from the origin

5.1. Local masses on the bubbling disk centered at xk
j , 0. In this subsection, we study the local behavior

of uk in the ball B(xk
t , τ

k
t ) where xk

t , 0. Precisely, let xk
t ∈ Σk \ {0} and set

τkt =
1
2

dist(xk
t ,Σk \ {xk

t }).

By Proposition 2.1, lkt ≪ τ
k
t . Notice that the Harnack-type inequality (2.1) holds for B(xk

t , τ
k
t ) \ {xk

t }, i.e.,

uk
i (x)+2log |x− xk

t | ≤C, for x ∈ B(xk
t , τ

k
t ), i = 1,2,3.

The local mass of the i-th component is given by

σk
i,t(r) =

1
2π

∫
B(xk

t ,r)
euk

i (x)dx, i = 1,2,3.

Since xk
t , 0 and 0 < B(xk

t , τ
k
t ), the system (1.1) is reduced to

(5.1)


∆uk

i (x)+
3∑

j=1

ai je
uk

j(x)
= 0, i = 1,2,3,

uk
1+uk

2+2uk
3 = 0,

in B(xk
t , τ

k
t ), where the coefficient matrix A = (ai j)3×3 is defined as in (1.2).

For convenience, we fix t and simplify the notations by dropping the index t throughout this subsection.
Recall that all the components of uk have fast decay on ∂B(xk, lk). In (5.1), γi = 0, we have µi = 1. In
next proposition we shall assume µ = (µ1,µ2,µ3) = (1,1,1). For a sequence sk ≤ τ

k, we recall that σ̂(s) =
(σ̂1(s), σ̂2(s), σ̂3(s)) is defined as in (4.13).

Proposition 5.1. Let uk = (uk
1,u

k
2,u

k
3) be a sequence of solutions of (5.1) and σ̂(τ) be defined as in (4.13),

then there holds
(1) At least one component of uk has fast decay on ∂B(xk, τk).
(2) σ̂(τ) = (σ̂1(τ), σ̂2(τ), σ̂3(τ)) ∈ Γ(1,1,1), where τ stands for the sequence {τk}.
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Proof. (1) has been proved in Lemma 4.1. To prove (2), we divide the argument into several steps.

Step 1. We prove that (σ̂1(l), σ̂2(l), σ̂3(l)) ∈ Γ(1,1,1), where l stands for the sequence {lk}. Set

εk = e
− 1

2 max
i=1,2,3

uk
i (xk)
,

and let
vk

i (y) = uk
i (xk +εky)+2logεk, i = 1,2,3.

Suppose that there exists J ⫋ {1,2,3} such that uk
i has slow decay on ∂B(xk, τk) for i ∈ J, while the left ones

have fast decay on ∂B(xk, τk), i.e., vk
i (y)→−∞ in L∞loc(R2) for i ∈ {1,2,3} \ J and vk

i (y) converges to vi(y) in
C2

loc(R2) for i ∈ J, where vi(y) satisfies

∆vi(y)+
∑
j∈J

ai jev j(y) = 0 in R2, i ∈ J.

Furthermore, there exists a sequence Rk with Rk→ +∞ as k→ +∞ such that lk := Rkε
k ≤ τk and satisfies

(1).
∫

B(0,Rk) evidy =
∫
R2 evidy+o(1), i ∈ J,

(2). vk
i (y)+2log |y| ≤ −Nk for |y| = Rk, for some Nk→ +∞, i = 1,2,3,

(3). uk has fast decay on ∂B(xk, lk).
Then one of the following alternatives holds:
(a). If J = ∅, then (σ̂1(l), σ̂2(l), σ̂3(l)) = (0,0,0).
(b). If J = {i} for some i ∈ {1,2,3}, then (σ̂1(l), σ̂2(l), σ̂3(l)) = (4,0,0) or (0,4,0) or (0,0,4).
(c). If J = {1,2}, then (σ̂1(l), σ̂2(l), σ̂3(l)) = (4,4,0).
(d). If J = {1,3} or {2,3}, then by the classification result Theorem 8.1-(a), we get (σ̂1(l), σ̂2(l), σ̂3(l)) =

(16,0,12) or (0,16,12).
Therefore, in any case, we always have

(σ̂1(l), σ̂2(l), σ̂3(l)) ∈ Γ(1,1,1).

Step 2. If σ̂i(l) = σ̂i(τ) for i = 1,2,3, then Proposition 5.1 is proved. Otherwise, there exists j ∈ {1,2,3}
such that σ̂ j(l) , σ̂ j(τ), then we can apply Lemma 4.3 to find a sequence sk such that lk ≪ sk ≪ τ

k, some
components of uk have slow decay on ∂B(xk, sk) and

σ̂i(l) = σ̂i(s) for i = 1,2,3,

where s stands for the sequence {sk}. Let

vk
i (y) = uk

i (xk + sky)+2log sk.

Suppose that there exists J ⫋ {1,2,3} such that uk
i has slow decay on ∂B(xk, sk) for i ∈ J, while the left ones

have fast decay on ∂B(xk, sk), i.e., vk
i (y)→−∞ in L∞loc(R2) for i ∈ {1,2,3} \ J and vk

i (y) converges to vi(y) in
C2

loc(R2) for i ∈ J, where vi(y) satisfies

∆vi(y)+
∑
j∈J

ai jev j(y) = 4πγ∗i δ0 in R2, i ∈ J,

and γ∗i = −
1
2

∑3
j=1 ai jσ̂ j(l) > −1. Furthermore, there exists a sequence N∗k with N∗k → +∞ as k→ +∞ such

that N∗k sk ≤ τ
k and satisfies

(1).
∫

B(0,N∗k ) evidy =
∫
R2 evidy+o(1), i ∈ J,

(2). vk
i (y)+2log |y| ≤ −Nk for |y| = N∗k , for some Nk→ +∞, i = 1,2,3,

(3). uk has fast decay on ∂B(xk,N∗k sk).
25



Then one of the following alternatives holds:

Case (a). If J = {i0} for some i0 ∈ {1,2,3}. Notice that σ̂i(N∗s) = σ̂i(l) for i ∈ {1,2,3} \ J, where N∗s stands
for the sequence {N∗k sk}, and both σ̂(N∗s) and σ̂(l) satisfy the Pohozaev identity (2.4). Then σ̂i0(N∗s) and
σ̂i0(l) are two roots of a quadratic polynomial in σi0 . From which we can directly solve σ̂(N∗s) = Ri0(σ̂(l)).
We can also deduce this result in another way by applying classification result of singular Liouville equation
[49]:

σ̂i0(N∗s) =
1

2π

∫
R2

evi0 dx+ σ̂i0(l) = 4

1−
1
2

3∑
j=1

ai0 jσ̂ j(l)

+ σ̂i0(l) =
(
Ri0(σ̂(l))

)
i0
.

Then σ̂(N∗s) = Ri0(σ̂(l)) ∈ Γ(1,1,1) if σ̂(l) ∈ Γ(1,1,1).

Case (b). If J = {1,2}. From the view of the classification result of [49], we directly deduce that

σ̂m(N∗s) =
1

2π

∫
R2

evmdx+ σ̂m(l) = 4

1−
1
2

3∑
j=1

am jσ̂ j(l)

+ σ̂m(l) = (R12(σ̂(l)))m , for m = 1,2.

We also notice that σ̂3(N∗s) = σ̂3(l), hence σ̂(N∗s) = R12(σ̂(l)) ∈ Γ(1,1,1) provided σ̂(l) ∈ Γ(1,1,1).

Case (c). If J = {m,3} for m = 1 or 2. From the classification result Theorem 8.1-(a), we directly deduce that

σ̂m(N∗s) =
1

2π

∫
R2

evmdx+ σ̂m(l) = 8

1−
1
2

3∑
j=1

am jσ̂ j(l)

+8

1−
1
2

3∑
j=1

a3 jσ̂ j(l)

+ σ̂m(l)

= (Rm3 (σ̂(l)))m , for m = 1 or 2,

and

σ̂3(N∗s) =
1

2π

∫
R2

ev3dx+ σ̂3(l) = 4

1−
1
2

3∑
j=1

am jσ̂ j(l)

+8

1−
1
2

3∑
j=1

a3 jσ̂ j(l)

+ σ̂3(l)

= (Rm3 (σ̂(l)))3 , for m = 1 or 2.

We also notice that σ̂ j(N∗s) = σ̂ j(l) for j ∈ {1,2,3} \ J, then σ̂(N∗s) = Rm3(σ̂(l)) ∈ Γ(1,1,1) since σ̂(l) ∈
Γ(1,1,1).

Step 3. Let sk,1 = N∗k sk. If

σ̂i(s1) = σ̂i(τ) for i = 1,2,3,

then Proposition 5.1 is proved. Otherwise, we could repeat the argument of Step 2 to find sk,1≪ sk, j≪ sk, j+1
such that σ̂(s j+1) ∈ Γ(1,1,1), where s j+1 stands for the sequence {sk, j+1}. Since the energy is finite by (iii) of
(1.10) and the total gain for the local masses at each step has a lower bound

3∑
i=1

(
σ̂i(s j+1)− σ̂i(s j)

)
≥ 4 > 0,

then after finitely many steps we have σ̂i(s j) = σ̂i(τ) for i = 1,2,3. □

From the proof of Proposition 5.1, we can further deduce a more general result which will be used to
prove Theorem 1.1 in Section 6. Suppose that there is a subset J ⫋ {1,2,3} such that each uk

i (i ∈ J) has slow
decay on ∂B(xk, sk). Let

vk
i (y) = uk

i (xk + sky)+2log sk, i = 1,2,3.
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Then vk
i (y)→−∞ for i ∈ {1,2,3} \ J in L∞loc(R2) and vk

i (y) converges to vi(y) in C2
loc(R2) for i ∈ J, where vi(y)

satisfies

(5.2) ∆vi(y)+
∑
j∈J

ai jev j(y) = 4πγ∗i δ0+4π
N∑

l=1

milδql in R2, i ∈ J,

where 0 , ql ∈ R
2, mil ∈ N and γ∗i = γi−

1
2

∑3
j=1 ai jσ j > −1. Set

σ∗j =

{
σ j, if j ∈ {1,2,3} \ J,
σ j+

1
2π

∫
R2 ev jdx, if j ∈ J.

Then we have the following result

Proposition 5.2. If there is σ̂ ∈ Γ(µ) such that σi = σ̂i+4ni, ni ∈ Z. Then σ∗i = σ̂
∗
i +4n∗i with σ̂∗ ∈ Γ(µ) and

n∗i ∈ Z.

Proof. We shall consider the following three cases.

Case (a). If J = {l} for some l ∈ {1,2,3}. Then by the classification result of [49], we have

(5.3)
1

2π

∫
R2

evldx = 4(1+γ∗l )+4Nl = 4µ∗l +4Nl,

where

µ∗l = 1+γ∗l = 1+γl−
1
2

3∑
j=1

al jσ j = µl−
1
2

3∑
j=1

al jσ j,

and Nl ∈ Z. Since σi = σ̂i+4ni for some ni ∈ Z, we get

µ∗i = µi−
1
2

3∑
j=1

ai jσ j = µi−
1
2

3∑
j=1

ai jσ̂ j+ni, ni ∈ Z, i = 1,2,3.

Then (5.3) can be rewritten as

1
2π

∫
R2

evldx = 4µ∗l +4Nl = 4µl−

3∑
j=1

al jσ̂ j+4Ñl, Ñl ∈ Z.

Thus we have

σ∗l = σl+
1

2π

∫
R2

evldx = σ̂l+4nl+4µl−2
3∑

j=1

al jσ̂ j+4Ñl =: σ̂∗l +4n∗l , n∗l ∈ Z.

While for j , l, we set σ̂ j = σ̂
∗
j , then

σ∗j = σ j = σ̂ j+4n j =: σ̂∗j +4n j.

Therefore, we get
σ∗ = σ̂∗+4Z with σ̂∗ = Rl(σ̂) ∈ Γ(µ).

Case (b). If J = {1,2}. Then by the classification result of [49], we have

(5.4)
1

2π

∫
R2

evidx = 4(1+γ∗i )+4Ni = 4µ∗i +4Ni, Ni ∈ Z, i = 1,2,

where

µ∗i = 1+γ∗i = 1+γi−
1
2

3∑
j=1

ai jσ j = µi−
1
2

3∑
j=1

ai jσ j, i = 1,2.
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Since σi = σ̂i+4ni for some ni ∈ Z, i = 1,2,3, we get that

µ∗i = µi−
1
2

3∑
j=1

ai jσ j = µi−
1
2

3∑
j=1

ai jσ̂ j+ni, ni ∈ Z, i = 1,2,3.

Then (5.4) can be rewritten as

1
2π

∫
R2

evidx = 4µ∗i +4Ni = 4

µi−
1
2

3∑
j=1

ai jσ̂ j

+4N̂i, N̂i ∈ Z, i = 1,2.

Hence, for i = 1,2 we get that

σ∗i = σi+
1

2π

∫
R2

evidx = σ̂i+4µi−2
3∑

j=1

ai jσ̂ j++4ni+4Ñi =: σ̂∗i +4n∗i ,

with σ̂∗i = 4µi − 2
∑3

j=1 ai jσ̂ j + σ̂i = (R12(σ̂))i. While for the third component, we set σ̂∗3 = σ̂3. Then we
conclude that

σ∗ = σ̂∗+4Z with σ̂∗ = R12(σ̂) ∈ Γ(µ).

Case (c). If J = {i,3} for i = 1 or 2. Then by the classification result Theorem 8.1-(c), we have

1
2π

∫
R2

evidx = σ̄i+4Ni, i = 1 or 2,

and
1

2π

∫
R2

ev3dx = σ̄3+4N3,

where

(5.5)
(σ̄i, σ̄3) ∈

{
(0,0), (4µ∗i ,0), (0,4µ∗3), (4µ∗i ,4(µ∗i +µ

∗
3)), (4µ∗i +8µ∗3,4µ

∗
3),

(4µ∗i +8µ∗3,4µ
∗
i +8µ∗3), (8µ∗i +8µ∗3,4µ

∗
i +4µ∗3), (8µ∗i +8µ∗3,4µ

∗
i +8µ∗3)

}
,

and
µ∗i = γ

∗
i +1, i = 1 (or 2),3, Ni ∈ Z.

Then we get that

(5.6) σ∗i = σ̂i+ σ̄i+4N̄i, i = 1 or 2, and σ∗3 = σ̂3+ σ̄3+4N̄3,

where N̄i ∈ Z, i = 1 (or 2),3. We set

σ̂∗j = σ̂ j+ σ̄ j, j = i,3, and σ̂∗j = σ̂ j, j , i,3.

By (5.5) and (5.6), from direct computation we get that

σ̂∗ ∈
{
σ̂, Riσ̂, R3σ̂, RiR3σ̂, R3Riσ̂, RiR3Riσ̂, R3RiR3σ̂, Ri3σ̂

}
.

Since σ̂ ∈ Γ(µ) we get that σ̂∗ ∈ Γ(µ) as well by the definition of Γ(µ). Thus, we have

σ∗ = σ̂∗+4Z with σ̂∗ ∈ Γ(µ).

This finishes the whole proof. □
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5.2. Local mass in a group that does not contain 0. In this subsection, we shall collect together some of
the bubbling disks B(xk

i , l
k
i ) into a larger one. We present the procedure as follows. For any xk

i , 0 ∈ Σk, we
define the subset S k

1 of Σk by the following way. Let xk
2 , 0 ∈ Σk be the point of Σk such that

dist(xk
1, x

k
2) = dist

(
xk

1,Σk \ {0, xk
1}
)
,

where dist(·, ·) is the distance function. We set

S k
1 =

{x
k
1}, if dist(xk

1,x
k
2)

|xk
1 |

has a positive lower bound,{
xk

j | dist(xk
1, x

k
j) ≤Cdist(xk

1, x
k
2)
}
, if dist(xk

1,x
k
2)

|xk
1 |

→ 0.

Then we have

∀x,y ∈ S k
1, the ratio

dist(x,y)
|y|

→ 0 as k→ +∞.

Obviously, one can see that Σk can be decomposed into a disjoint union of S k
j :

Σk = {0}∪S k
1∪ · · ·∪S k

m0
, m0 ≤ m and m0 ∈ N.

Next, we shall use S k
1 as an example to illustrate the combination process for the points in S k

1. We may
assume

S k
1 = {x

k
1,1, · · · , x

k
1,m1
} ⊆ Σk.

Let τkS k
1

and τkl be defined as follows:

τkS k
1
=

1
2

dist(xk
1,1,Σk \S k

1) and τkl =
1
2

dist(xk
1,l,S

k
1 \ {x

k
1,l}) for l = 1, · · · ,m1.

Then it is not difficult to see that
m1⋃
l=1

B(xk
1,l, τ

k
l ) ⊆ B(xk

1, τ
k
S k

1
) and τkl /τ

k
S k

1
→ 0 for l = 1, · · · ,m1.

By Proposition 5.1, the local mass σ̂i(B(x1,l,τl)) = 4ml,i, i = 1,2,3, l = 1, · · · ,m1 satisfies

(4ml,1,4ml,2,4ml,3) ∈ Γ(1,1,1) for l = 1, · · · ,m1,

where (x1,l,τl) stands for the sequence of pairs {(xk
1,l, τ

k
l )}, ml,i ∈ N∪ {0}, 1 ≤ l ≤ m1. In the following

proposition we shall compute the possible values on the blow up mass in B(xk
1,1, τ

k
S k

1
)

Proposition 5.3. There holds:

(i) At least one component of uk has fast decay on ∂B(xk
1,1, τ

k
1).

(ii) Let σi = σ̂i(B(x1,1,τS k
1
)), then σi ∈ 4N∪{0}.

Proof. By Proposition 5.1, it is sufficient to consider the following two cases.

Case (1). uk has fast decay on ∂B(xk
1,1, τ

k
1). Let

lk(S k
1) = 2 max

1≤l≤m1
dist(xk

1,1, x
k
1,l).

29



Then uk has fast decay on ∂B(xk
1,l, τ

k
l ) for any l = 1, · · · ,m1. Therefore

(5.7)

σk
i (B(xk

1,1, l
k(S k

1))) =
1

2π

∫
B(xk

1,1,l
k(S k

1))
euk

i (x)dx

=
1

2π

∫
⋃m1

l=1 B(xk
1,l,τ

k
l )

euk
i (x)dx+

1
2π

∫
B(xk

1,1,l
k(S k

1))\
⋃m1

j=1 B(xk
1, j,τ

k
j)

euk
i (x)dx

=
1

2π

∫
⋃m1

l=1 B(xk
1,l,τ

k
l )

euk
i (x)dx+o(1)

=

m1∑
l=1

4ml,i+o(1),

where ml,i ∈N∪{0}, i = 1,2,3, 1 ≤ l ≤m1. Here we have used the fast-decay of uk outside of B(xk
1,l, τ

k
l ), and

then the second integral of (5.7) is o(1).
If it holds that

σ̂i(B(x1,1, l(S k
1))) = σ̂i(B(x1,1,τS k

1
)), ∀i = 1,2,3,

where (x1,1, l(S k
1)) and (x1,1,τS k

1
) stand for the sequences of pairs {(xk

1,1, l
k(S k

1))} and {(xk
1,1, τ

k
S k

1
)} respectively,

then Proposition 5.3 is proved. Otherwise,

σ̂i(B(x1,1,τS k
1
)) > σ̂i(B(x1,1, l(S k

1))) for some i ∈ {1,2,3}.

In this situation we can apply the same arguments of Step 2 and Step 3 in the proof of Proposition 5.1 to
obtain that

σ̂i(B(x1,1,τS k
1
)) = σ̂i(B(x1,1,sℓ)) ∈ 4N∪{0}, i = 1,2,3,

for some sℓ, where sℓ stands for the sequence {sk
ℓ} with lk(S k

1)≪ sk
ℓ ≪ τ

k
S 1

.

Case (2). Some components of uk have slow decay on ∂B(xk
1,1, τ

k
1). Since lk(S k

1) ∼ τkl for 1 ≤ l ≤ m1, some
components of uk have slow decay on ∂B(xk

1,1, l
k(S k

1)). Then one of the following alternatives (similar to that
of Step 2 in the proof of Proposition 5.1) holds:

(2-1). uk
1 and uk

2 have slow decay on ∂B(xk
1,1, l

k(S k
1)).

(2-2). uk
1 and uk

3 (or uk
2 and uk

3) have slow decay on ∂B(xk
1,1, l

k(S k
1)).

(2-3). One component of uk has slow decay on ∂B(xk
1,1, l

k(S k
1)).

We set J as the maximal set such that each uk
i (i ∈ J) has slow decay on ∂B(xk

1,1, l
k(S k

1)). Let

vk
i (y) = uk

i (xk
1,1+ lk(S k

1)y)+2log lk(S k
1), i = 1,2,3,

then vk
i (y)→−∞ in L∞loc(R2) for i ∈ {1,2,3} \ J and vk

i (y) converges to vi(y) in C2
loc(R2) for i ∈ J, where vi(y)

satisfies

∆vi(y)+
∑
j∈J

ai jev j(y) = 4π
m1∑
l=1

nl,iδql in R2, i ∈ J,

where nl,i = −2
∑3

j=1 ai jml, j ∈ N∪ {0}. Applying the classification result Theorem 8.1-(b), there exists a
sequence Rk with Rk→ +∞ as k→ +∞ such that Rklk(S k

1) ≤ τkS k
1

and

(a).
∫

B(0,Rk) evidy =
∫
R2 evidy+o(1) = 4m̃i+o(1), i ∈ J, where m̃i ∈ N,

(b). vk
i (y)+2log |y| ≤ −Nk for |y| = Rk, for some Nk→ +∞, i = 1,2,3,

(c). uk has fast decay on ∂B(xk
1,1,Rklk(S k

1)).
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Hence the local mass

σk
i (B(xk

1,1,Rklk(S k
1))) = 4

(
m1∑
l=1

ml,i+ m̃i

)
+o(1), i ∈ J,

and

σk
i (B(xk

1,1,Rklk(S k
1))) = 4

m1∑
l=1

ml,i+o(1), i ∈ {1,2,3} \ J.

Notice that the total gain of local masses at each step is at least 4. Following almost the same argument as
Step 3 of the proof to Proposition 5.1, we could get the conclusion 5.3 in finitely many steps. □

6. Proof of Theorem 1.1 and Theorem 1.3

In last section, we have decomposed

Σk = {0}∪S k
1∪ · · ·∪S k

m0
,

and completed the combination process for the points in each group S l with 1 ≤ l ≤ m0. In this section, we
shall regard S k

l as points and do the further collection. Precisely, we shall collect {0} and several closer sets
S k

l at first. Suppose xk
l ∈ S k

l . Without loss of generality, we may assume the sets S k
1, · · · ,S

k
l0 are the ones with

C−1|xk
1| ≤ |x

k
l | ≤C|xk

1|, for 1 ≤ l ≤ l0,

and
|xk

l | ≫ |x
k
1| for l > l0.

Setting τk = 1
2 if m0 = 0 and τk = 1

2 |x
k
1| if m0 > 0. Let σi = σ̂i(τ), where σ̂i(τ) is defined as in (4.13), then

σ ∈ Γ(µ). To start the second step of combination procedure, we compute the possible blow up mass in the
bubbling disk centered at origin.

Lemma 6.1. σ = (σ1,σ2,σ3) ∈ Γ(µ).

Proof. We select rk≪ τk such that max
i=1,2,3

σk
i (B(0,rk)) ≤ 1/k and uk has fast decay on ∂B(0,rk). We can apply

Lemma 4.3 to find a sequence sk such that at least one component of uk has slow decay on ∂B(0, sk) and
σ̂(s) = 0. If τk/sk ≤ C or σ = σ̂(s), then Lemma 6.1 is proved, i.e., σ = 0 ∈ Γ(µ). If τk/sk → +∞, we can
apply the same arguments of Step 2 and Step 3 in the proof of Proposition 5.1. In fact, let

vk
i (y) = uk

i (sky)+2log sk.

Suppose that there exists J ⫋ {1,2,3} such that uk
i has slow decay on ∂B(0, sk) for i ∈ J, while the left ones

have fast decay on ∂B(0, sk), i.e., vk
i (y)→ −∞ in L∞loc(R2) for i ∈ {1,2,3} \ J and vk

i (y) converges to vi(y) in
C2

loc(R2) for i ∈ J, where vi(y) satisfies

∆vi(y)+
∑
j∈J

ai jev j(y) = 4πγ∗i δ0 in R2, i ∈ J,

and γ∗i = γi−
1
2

∑3
j=1 ai jσ̂ j(s) = γi > −1. Furthermore, there exists a sequence N∗k with N∗k → +∞ as k→ +∞

such that N∗k sk ≤ τk and satisfies

(1).
∫

B(0,N∗k ) evidy =
∫
R2 evidy+o(1), i ∈ J,

(2). vk
i (y)+2log |y| ≤ −Nk for |y| = N∗k , for some Nk→ +∞, i = 1,2,3,

(3). uk has fast decay on ∂B(xk,N∗k sk).
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Then one of the following alternatives holds:

Case (a). If J only contains one element l for some l ∈ {1,2,3}. Applying the classification result of [49], we
have

σ̂l(N∗s) =
1

2π

∫
R2

evldx+ σ̂l(s) = 4(1+γl)+0 = 4µl = (Rl(0))l .

Notice that σ̂i(N∗s) = σ̂i(s) = 0 for i ∈ {1,2,3} \ {l}, hence σ̂(N∗s) = Rl(0) ∈ Γ(µ).

Case (b). If J = {1,2}. By the classification result of [49] again, we have

σ̂l(N∗s) =
1

2π

∫
R2

evldx+ σ̂l(s) = 4µl+0 = (R12(0))l , l = 1,2.

While σ̂3(N∗s) = σ̂3(s) = 0, therefore σ̂(N∗s) = R12(0) ∈ Γ(µ).

Case (c). If J = {l,3} for l = 1 or 2. Applying the classification result Theorem 8.1-(a), we have

σ̂l(N∗s) =
1

2π

∫
R2

evldx+ σ̂l(s) = 8µl+8µ3+0 = (Rl3(0))l , l = 1 or 2,

and

σ̂3(N∗s) =
1

2π

∫
R2

ev3dx+ σ̂3(s) = 4µl+8µ3+0 = (Rl3(0))3 , l = 1 or 2.

For the left component j ∈ {1,2,3} \ {l,3}, σ̂ j(N∗s) = σ̂ j(s) = 0, then σ̂(N∗s) = Rl3(0) ∈ Γ(µ), l = 1 or 2.

Next, let sk,1 = N∗k sk. If
σ̂i(s1) = σ̂i(τ) for i = 1,2,3,

then Lemma 6.1 is proved. Otherwise, we could repeat the above argument to find sk,1≪ sk, j≪ sk, j+1 such
that σ̂(sj+1) ∈ Γ(µ). Since the energy is finite and the total gain for the local masses at each step has a lower
bound

3∑
i=1

(
σ̂i(s j+1)− σ̂i(s j)

)
≥ min

i=1,2,3
4µi > 0,

the process will stop after finitely many j steps (by a little abuse of notations) and we have

σ̂i(s j) = σ̂i(τ) for i = 1,2,3.

Hence
(σ1,σ2,σ3) = (σ̂1(τ), σ̂2(τ), σ̂3(τ)) ∈ Γ(µ),

The statement of at least one component of uk has fast decay on ∂B(0, τk) follows by Lemma 4.1-(b). □

Now we are able to provide the proof of Theorem 1.1

Proof of Theorem 1.1. If m0 = 0, we prove it immediately by Lemma 6.1. So we assume that m0 , 0. We
select S k

1, · · · ,S
k
l0 as the beginning of this section and group together

S = {0}∪S k
1∪ · · ·∪S k

l0 .

In other words, we view {0} and S k
i (1 ≤ i ≤ l0) as points. Let

τ̂k(S ) =
1
2
∥S k

l0+1∥ ≫ lkl0(S ),

where
∥S k

l0+1∥ = min
xk∈Σk\S

dist(0, xk) and lkl0(S ) := 2 max
1≤l≤l0

max
xk∈S k

l

dist(0, xk).

Similar to the proof of Proposition 5.3, we shall encounter the following two cases.
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Case (1). uk has fast decay on ∂B(0, lkl0(S )). Similar to the argument of (5.7) in Proposition 5.3, we deduce
that the local mass

σ̂i(ll0(S )) = σ̂i(τ)+
l0∑

l=1

σ̂i
(
B
(
xl,τsl

))
= σ̂i(τ)+4mi, i = 1,2,3,

where mi ∈ N∪{0}, ll0(S ) and
(
xℓ,τS ℓ

)
stand for the sequence of {lkl0(S )} and the pair {(xk

l , τ
k
S l

)}, and σ̂(τ) ∈
Γ(µ) by Lemma 6.1. If

(6.1) σ̂i(τ̂(S )) = σ̂i(ll0(S )), i = 1,2,3,

then we complete the process of grouping {0} and S k
1, · · · ,S

k
l0 , and the proof of Theorem 1.1 is complete by

grouping till S k
m0

. If (6.1) does not hold, by Lemma 4.3 we can find a sequence sk with lkl0(S )≪ sk ≪ τ̂
k(S )

such that some components uk
i (i ∈ J) have slow decay on ∂B(0, sk) and

σ̂i(ll0(S )) = σ̂i(s), i = 1,2,3,

where s stands for the sequence {sk}. Let

vk
i (y) = uk

i (sky)+2log sk.

Then we can apply the same argument of Step 2 and Step 3 in the proof of Proposition 5.1 and the result of
Proposition 5.2 to get that

σ̂i(τ̂(S )) = σ̂i(sℓ) ∈ Γ(µ)+4Z, i = 1,2,3,
for some sℓ, where sℓ stands for the sequence {sk

ℓ} with lkl0(S )≪ sk
ℓ ≪ τ̂

k(S ). Indeed, we have vk
i (y)→−∞ in

L∞loc(R2) for i ∈ {1,2,3} \ J and vk
i (y) converges to vi(y) for i ∈ J in C2

loc(R2), where vi(y) satisfies (5.2). All
the possibilities have been discussed in Proposition 5.2. Then there is a sequence N∗k → +∞ as k→ +∞ such
that uk has fast decay on ∂B(0,N∗k sk). Using Proposition 5.2 we conclude that the new local mass

σ := lim
k→+∞

(
σk

1(N∗k sk),σk
2(N∗k sk),σk

3(N∗k sk)
)
∈ Γ(µ)+4Z.

We can repeat almost the same procedure as above to find sk,ℓ+1 ≫ sk,ℓ such that σ̂(sℓ+1) ∈ Γ(µ)+ 4Z if
necessary. Since the energy is finite and the total gain of local masses at each step has a lower bound, then
the process will stop after finitely many steps and

σ = (σ̂1(τ̂(S )), σ̂2(τ̂(S )), σ̂3(τ̂(S ))) ∈ Γ(µ)+4Z.

This ends the process of grouping {0} and S k
1, · · · ,S

k
l0 . One can continue the procedure until S m0 is included.

Then Theorem 1.1 is proved.

Case (2). Suppose that there is a subset J ⫋ {1,2,3} such that uk
i (i ∈ J) has slow decay on ∂B(0, lkl0(S )). Let

vk
i (y) = uk

i (lkl0(S )y)+2log lkl0(S ).

Then we go back to the proof of Case (1) by replacing sk by lkl0(S ). The rest proof is similar and we skip the
details. □

As a consequence, we are able to provide the proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose that ũk is a sequence of solutions to system (1.16). Let

ûk
i (x) = ũk

i (x)+ log
ρk

i∫
M hk

i euk
i dVg
, i = 1,2,3.

Then the system (1.16) can be rewritten as follows

(6.2) ∆ûk
i +

3∑
j=1

ai jh̃k
je

ûk
j −

3∑
j=1

ai jρ j

|M|
= 0, i = 1,2,3.
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We notice that

ûk
i ≤ ũk

i + logρk
i −

∫
M

uk
i dVg−C for some universal constant C,

where we have used the Jensen’s inequality and hk
i are smooth positive functions. Thus,

(6.3) ûk
1+ ûk

2+2ûk
3 =Ck, Ck is uniformly bounded above with respect to k.

Around each blow up p we take r such that B∩Br(p) = {p}, and set

ūk
i =

{
ûk

i , if p < S ,
ûk

i +4παp,iG(x, p), if p ∈ S .

Together with (1.15), (6.2) and (6.3) we see that ūk
i satisfies

(6.4)

∆ūk
i +

3∑
j=1

ai jh̄k
je

ūk
j −

3∑
j=1

ai jρ j
|M| +

4πβp,i
|M| = 4πβp,iδp, i = 1,2,3,

ūk
1+ ūk

2+2ūk
3 =Ck, Ck is uniformly bounded above with respect to k.

where h̄k
i = h̃k

i exp
(
−4πβp,iG(x, p)

)
, i = 1,2,3 and

βp,i =

{
0, if p < S
αp,i, if p ∈ S .

Then it is not difficult to see that h̄k
i , i = 1,2,3 are smooth and positive in Br(p). Though there are some

extra constant terms in (6.4) and ∆g contains some other terms than the Euclidean Laplace operator in the
local coordinate, they can be ignored when we perform the blow up analysis for (6.4) since we only need
the local information for computing the local mass. By Theorem 1.1 and the Remark 1 we have

1
2π

lim
r→0

lim
k→+∞

∫
B(p,r)

h̄k
je

ūk
j dVg = σ

∗
p, j+4mp, j, j = 1,2,3,

where (σ∗p,1,σ
∗
p,2,σ

∗
p,3) ∈ Γ(µp,1,µp,2,µp,3) and mp, j ∈ Z. This amounts to say that

1
2π

lim
r→0

lim
k→+∞

ρk
j

∫
B(p,r) hk

je
uk

j dVg∫
M hk

je
uk

j dVg

= σ∗p, j+4mp, j, j = 1,2,3.

Together with the fact there is at least one component which possesses the concentration property, without
loss of generality, we may assume the first component has such property. Then we get that

lim
k→+∞

ρk
1 = 2π

∑
p∈R

σ∗p,1+8πm1 for some m1 ∈ Z.

It obeys the choice of ρ1 < Γ1. Therefore, we must have ũk is uniformly bounded and it finishes the proof. □

7. Blow-up analysis for the sinh-Gordon equation

In this section, we consider the blow-up analysis for the sinh-Gordon equation

(7.1) ∆u+ eu− e−u = 0.

Let u1 = u, u2 = −u, then (7.1) can be written as the following equation with γ1 = γ2 = 0,

(7.2)


∆u1+ eu1 − eu2 = 4πγ1δ0,

∆u2− eu1 + eu2 = 4πγ2δ0,

u1+u2 = 0.
34



The local mass for the blow up solutions to equation (7.1) with γ1 = γ2 = 0 has been derived by Jost-Wang-
Ye-Zhou [30] and Jevnikar-Wei-Yang [24] by different methods. Now we shall consider a more general
situation, where

(7.3) γi > −1, i = 1,2, γ1 = −γ2 , 0.

Suppose that uk = (uk
1,u

k
2) is a sequence of blow-up solutions of system (7.2) in B1(0) satisfying

(7.4)



∫
B1(0)

euk
i (x)dx ≤C, i = 1,2,

|uk
i (x)−uk

i (y)| ≤C, i = 1,2, ∀x,y ∈ ∂B1(0), for some constant C > 0,

max
i=1,2

max
K⊂⊂B1(0)\{0}

uk
i (x) ≤C(K), max

i=1,2
max
B1(0)

(uk
i (x)+2γi log |x|)→ +∞.

Denote the local mass σ corresponding to the solutions uk by

σi :=
1

2π
lim
r→0

lim
k→∞

∫
Br(0)

euk
i (x)dx, i = 1,2.

Then applying the same arguments from Section 2 to Section 6 in the present article, we obtain the following
result.

Theorem 7.1. Suppose that uk = (uk
1,u

k
2) is a sequence of solutions of system (7.2) satisfying (7.3)–(7.4).

Let µi = 1+γi, i = 1,2. Then there exists 0 , σ̂ = (σ̂1, σ̂2) ∈ Γ(µ) such that

σi = σ̂i+4mi, mi ∈ Z, i = 1,2,

where

(7.5) Γ(µ) =
{

(σ1,σ2)
∣∣ σi = 4

2∑
j=1

ni jµ j, ni j ∈ N∪{0}, i = 1,2, (σ1−σ2)2 = 4(µ1σ1+µ2σ2)
}
.

Furthermore, one can easily check that (7.5) is equivalent to

Γ(µ) =
{

(σ1,σ2)
∣∣∣∣ σ1 = (m+1)2µ1+ (m2−1)µ2, σ2 = (m2−1)µ1+ (m−1)2µ2, m ≡ 1 (mod 2)

σ1 = m2µ1+
(
(m−1)2−1

)
µ2, σ2 =

(
(m+1)2−1

)
µ1+m2µ2, m ≡ 0 (mod 2)

}
.

Remark 8. For the case of γ1 = γ2 = 0, we obtain

Γ(µ) =
{

(σ1,σ2) = (2m(m+1),2m(m−1)) or (2m(m−1),2m(m+1))
}
.

This result coincides with [30, Corollary 1.2] and [24, Theorem 1.1].

8. Appendix: classification results

In this appendix, we provide a quantization result which has been used frequently in the grouping process.
We consider the following system

(8.1)


∆u+ eu− 1

2 ev = 4π
∑N
ℓ=1αℓ,1δpℓ , in R2,

∆v− eu+ ev = 4π
∑N
ℓ=1αℓ,2δpℓ , in R2,∫

R2 eudx,
∫
R2 evdx < +∞,

where pℓ are distinct points in R2 and αℓ,i > −1 for 1 ≤ ℓ ≤ N, i = 1,2.
Let

σu =
1

2π

∫
R2

eudx, σv =
1

2π

∫
R2

evdx.

The main result of this section is the following

Theorem 8.1. Suppose that (u,v) is a solution to system (8.1).
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(a). If N = 1, i.e., there is only one singular source on the right hand side of (8.1), then there holds

(σu,σv) = (8α1,1+4α1,2+12,8α1,1+8α1,2+16).

(b). If αℓ,i ∈N∪{0}, i = 1,2, 1 ≤ ℓ ≤ N, then there holds (σu,σv) = (4Ñ1,4Ñ2) for some positive integers Ñ1
and Ñ2.

(c). If α1,i > −1, i = 1,2 and αℓ,i ∈ N∪{0}, i = 1,2, 2 ≤ ℓ ≤ N, then there holds

(σu,σv) = (σ∗u+4N∗1 ,σ
∗
v +4N∗2),

where N∗i ∈ Z, i = 1,2 and

(σ∗u,σ
∗
v) ∈

{
(0,0), (4α1,1,0), (0,4α1,2), (4α1,1,8α1,1+4α1,2), (4α1,1+4α1,2,4α1,2),

(4α1,1+4α1,2,8α1,1+8α1,2), (8α1,1+4α1,2,8α1,1+4α1,2), (8α1,1+4α1,2,8α1,1+8α1,2)
}
.

Proof. Let
u = u1+ log2, v = u2+ log2.

Then we have

(8.2) (σu1 ,σu2) =
1
2

(σu,σv), where σui =
1

2π

∫
R2

euidx,

and (u1,u2) satisfies

(8.3)

{
∆u1+2eu1 − eu2 = 4π

∑N
ℓ=1αℓ,1δpℓ ,

∆u2−2eu1 +2eu2 = 4π
∑N
ℓ=1αℓ,2δpℓ ,

in R2.

We notice that equation (8.3) is exactly the standard C2 Toda system, which can be obtained from A3 Toda
system with some symmetry condition. Precisely, we consider the following system

(8.4)


∆ũ1+2eũ1 − eũ2 = 4π

∑N
ℓ=1αℓ,1δpℓ ,

∆ũ2− eũ1 +2eũ2 − eũ3 = 4π
∑N
ℓ=1αℓ,2δpℓ ,

∆ũ3− eũ2 +2eũ3 = 4π
∑N
ℓ=1αℓ,3δpℓ ,

in R2.

Setting

(8.5) ũ1 = ũ3 = u1, ũ2 = u2, αℓ,1 = αℓ,3, 1 ≤ ℓ ≤ N.

Then (8.4) can be reduced to (8.3).
When there is only one singularity on the right hand side of (8.4) we get from [37, Theorem 1.3] that

1
2π

∫
R2

eũ1dx = 4α1,1+2α1,2+6,
1

2π

∫
R2

eũ2dx = 4α1,1+4α1,2+8,

which together with (8.2) implies the conclusion (a).
It is easy to see that conclusion (b) is an easy consequence of (c). So in the following we shall focus on

the point (c). By [40, Theorem 8.1], we have

σu1 = 2
f (0)∑
l=1

α1,l+2N̄1, σu2 = 2
1∑

j=0

( f ( j)∑
l=1

α1,l−

j∑
l=1

α1,l

)
+2N̄2,

where N̄i ∈ Z, i = 1,2, α1,l, l = 1,2,3 are given as in (8.5) and f is a permutation map from {0,1,2,3} to itself
satisfying

f (l)+ f (3− l) = 3, l = 0,1,2,3.
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Exhausting all the possibilities of f , we have2
f (0)∑
l=1

α1,l,2
1∑

j=0

( f ( j)∑
l=1

α1,l−

j∑
l=1

α1,l

) ∈ {(0,0), (2α1,1,0), (0,2α1,2), (2α1,1,4α1,1+2α1,2),

(2α1,1+2α1,2,2α1,2), (2α1,1+2α1,2,4α1,1+4α1,2),

(4α1,1+2α1,2,4α1,1+2α1,2), (4α1,1+2α1,2,4α1,1+4α1,2)
}
.

Together with (8.2), we get the conclusion (c) and it finishes the proof. □
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