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CHAPTER 6
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1. Introduction

It is a common belief that diffusion is a smoothing and trivializing process. Indeed, this is
the case for a single diffusion equation. Consider the heat equation

⎧⎨
⎩

ut = �u in Ω × (0,+∞),

u(x,0) = u0(x) � 0 in Ω,
∂u
∂ν

= 0 on ∂Ω × (0,+∞).
(1.1)

Assume that u0(x) is continuous. It is known that u(x, t) is smooth for t > 0 (smooth-
ing), and u(x, t) → 1

|Ω|
∫
Ω

u0(x) dx as t → +∞ (trivializing). A similar result holds when
a source/sink term (or a reaction term) is present. Namely, for the problem

⎧⎨
⎩

ut = �u + f (u) in Ω × (0,+∞),

u(x,0) = u0(x) � 0 in Ω ,
∂u
∂ν

= 0 on ∂Ω × (0,+∞),
(1.2)

it is known that when Ω is convex, the only stable solutions are constants [5,46]. Thus
there are only trivial patterns (constant solutions) for single reaction–diffusion equations
(on convex domains).

On the other hand, it is important to be able to use diffusion (and reaction) to model
pattern formations in various branches of science (e.g., biology and chemistry). One im-
portant question is: can we get non-trivial patterns (stable non-trivial solutions) for systems
of reaction–diffusion equations?

Let us consider the following system of reaction–diffusion equations:

⎧⎪⎪⎨
⎪⎪⎩

ut = Du�u + f (u, v) in Ω × (0,+∞),

vt = Dv�v + g(u, v) in Ω × (0,+∞),

u(x,0) = u0(x), v(x,0) = v0(x) in Ω ,
∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω × (0,+∞).

(1.3)

In 1957, Turing [68] proposed a mathematical model for morphogenesis, which de-
scribes the development of complex organisms from a single shell. He speculated that lo-
calized peaks in concentration of a chemical substance, known as an inducer or morphogen,
could be responsible for a group of cells developing differently from the surrounding cells.
He then demonstrated, with linear analysis, how a non-linear reaction diffusion system
like (1.3) could possibly generate such isolated peaks. Later in 1972, Gierer and Meinhardt
[21] demonstrated the existence of such solution numerically for the following (so-called
Gierer–Meinhardt system)

(GM)

⎧⎪⎨
⎪⎩

∂a
∂t

= ε2�a − a + ap

hq , x ∈ Ω, t > 0,

τ ∂h
∂t

= D�h − h + ar

hs , x ∈ Ω, t > 0,
∂a
∂ν

= ∂h
∂ν

= 0, x ∈ ∂Ω .
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Here, the unknowns a = a(x, t) and h = h(x, t) represent the respective concentrations at
point x ∈ Ω ⊂ R

N and at time t of the biochemical called an activator and an inhibitor;

ε > 0, D > 0, τ > 0 are all positive constants; � =∑N
j=1

∂2

∂x2
j

is the Laplace operator in

R
N ; Ω is a smooth bounded domain in R

N ; ν(x) is the unit outer normal at x ∈ ∂Ω . The
exponents (p, q, r, s) are assumed to satisfy the condition

p > 1, q > 0, r > 0, s � 0, and γ := qr

(p − 1)(s + 1)
> 1.

Gierer–Meinhardt system was used in [21] to model head formation in the hydra. Hy-
dra, an animal of a few millimeters in length, is made up of approximately 100,000 cells
of about fifteen different types. It consists of a “head” region located at one end along
its length. Typical experiments on hydra involve removing part of the “head” region and
transplanting it to other parts of the body column. Then, a new “head” will form if and only
if the transplanted area is sufficiently far from the (old) head. These observations have led
to the assumption of the existence of two chemical substances—a slowly diffusing (i.e.,
ε � 1) activator a and a fast diffusing (i.e., D � ε) inhibitor h.

To understand the dynamics of (GM), it is helpful to consider first its corresponding
“kinetic system”

{
at = −a + ap/hq,

τht = −h + ar/hs.
(1.4)

This system has a unique constant steady state a ≡ 1, h ≡ 1. For 0 < τ <
qr

(p−1)(s+1)
it

is easy to see that the constant solution a ≡ 1, h ≡ 1 is stable as a steady state of (ODE).
However, if ε√

D
is small, it is not hard to see that the constant steady state a ≡ 1, h ≡

1 of (GM) becomes unstable and bifurcation may occur. This phenomenon is generally
referred to as Turing’s diffusion-driven instability. (A general criteria for this can be found
in Murray’s book [47].)

There are many other reaction–diffusion systems which exhibit Turing’s diffusion-
driven instability: they include Gray–Scott model from chemical reactor theory, Schnaken-
berg model, Sel’kov model, Lengyl–Epstein model, Thomas model, Keener–Tyson model,
Brusselator, Oregonator, etc. For introduction and discussion on these general Turing mod-
els, we refer to the book [47]. A survey of mathematical modeling of biological and chem-
ical phenomena using reaction–diffusion systems is given in [38]. Mathematical modeling
of patterns in biological morphogenesis using extensions of GM model are discussed in
[36] and [48].

Several common characteristics of Turing type reaction–diffusion systems include: first,
they are non-variational, i.e., they do not have Lyapunov or energy functional so standard
variational (or energy) method cannot be applied; second, they are non-cooperative, i.e.,
they do not have Maximum Principles so sub-super-solution method cannot be applied;
third, they support finite-amplitude spatial-temporal patterns of remarkable diversity and
complexity, such as stable spikes, layers, stripes, spot-splitting, traveling waves, etc. (See
[63].) The study of these RD systems not only increases our knowledge on Turing patterns,
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but also induces new tools and techniques to deal with other problems which may share
similar characteristics.

The most interesting phenomena associated with (GM) is the existence of stable spikes
and stripes. The numerical studies of [21] and more recent those of [31] have revealed
that in the limit ε → 0, the (GM) system seems to have stable stationary solutions with
the property that the activator concentration is localized around a finite number of points
in Ω̄ . Moreover, as ε → 0, the pattern exhibits a “spike layer phenomenon” by which we
mean that the activator concentration is localized in narrower and narrower regions around
some points and eventually shrinks to a certain number of points as ε → 0, whereas the
maximum value of the activator concentration diverges to +∞.

Such kind of point-condensation phenomena has generated a lot of interests both math-
ematically and biologically in recent years. The purpose of this paper is to report on the
current trend and status of such studies (up to June, 2006). We shall not give most of proofs.
For more details, please see the references and therein.

In the study of spiky patterns (or concentration phenomena), two fundamental methods
emerge. The first one is the so-called “Localized Energy Method”, or LEM in short. LEM
is a combination of traditional Lyapunov–Schmidt reduction method with variational tech-
niques. This is a very useful tool to construct solutions with various concentration behavior,
such as spikes, layers, or vortices. The second method is the so-called “Nonlocal Eigen-
value Problem Method”, or NLEP in short. This deals with eigenvalue problems which
are non-selfadjoint. It plays fundamental role in the study of stability of spike patterns. In
this survey, I shall illustrate these two methods in details in the hope that they may find
applications in other problems.

Throughout this paper, unless otherwise stated, we always assume that

ε � 1, D is finite, τ � 0. (1.5)

2. Steady states in shadow system case

2.1. Reduction to single equation

In general, the full (GM) system is very difficult to study. A very useful idea, which goes
back to Keener and Nishiura, is to consider the so-called shadow system. Namely, we let
D → +∞ first. Suppose that the quantity −h + ap/hq remains bounded, then we obtain

�h → 0,
∂h

∂ν
= 0 on ∂Ω. (2.1)

Thus h(x, t) → ξ(t), a constant. To derive the equation for ξ(t), we integrate both sides
of the equation for h over Ω and then we obtain the following so-called shadow system

⎧⎪⎨
⎪⎩

at = ε2�a − a + ap/ξq in Ω,

τξt = −ξ + 1
|Ω|
∫
Ω

ar dx/ξs,

a > 0 in Ω and ∂a
∂ν

= 0 on ∂Ω.

(2.2)

chipot5 v.2007/07/10 Prn:17/08/2007; 15:55 F:chipot506.tex; VTEX/Rita p. 5
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The advantage of shadow system is that by a simple scaling,

a = ξ
q

p−1 u, ξ =
(

1

|Ω|
∫

Ω

ur

) p−1
(p−1)(s+1)−qr

, (2.3)

the stationary shadow system can be reduced to a single equation

{
ε2�u − u + up = 0 in Ω,

u > 0 in Ω and ∂u
∂ν

= 0 on ∂Ω
(2.4)

whose energy functional is given by

Jε[u] :=
∫

Ω

(
ε2

2
|∇u|2 + 1

2
u2 − 1

p + 1
u

p+1
+

)
dx,

where u+ = max(u,0), (2.5)

for u ∈ H 1(Ω).
First we give some definitions on solutions to (2.4). A family of solutions {uε} to (2.4)

are called concentrated solutions if there exists a subset Γ ⊂ Ω̄ such that uε → 0 in
C0

loc(Ω̄\Γ ) and maxx∈Γ uε(x) � c0 > 0. If Γ consists of only points in Ω̄ , these kind
solutions are called point condensations. Among point condensations, there are two kinds:
spikes and bubbles. Spikes are those concentrated solutions such that maxx∈Ω̄ uε � C,
while bubbles are those with maxx∈Ω̄ uε → +∞. If the dimension of Γ is positive, concen-
trated solutions are also called layers. (Similar definitions can also be given for solutions
of the full Gierer–Meinhardt system by considering the activator a only.)

In the following, we discuss the existence of all kinds of concentrated solutions to (2.4).

2.2. Subcritical case: spikes to (2.4)

Let us assume first that 1 < p < (N+2
N−2 )+ (= N+2

N−2 if N � 3; = +∞ when N = 1,2).
In this case, problem (2.4) can be studied by traditional variational methods, for example,
Mountain-Pass method, or Nehari’s solution manifold method. For Mountain-Pass method,
by taking a function e(x) ≡ k for some constant k in Ω , and choosing k large enough, we
have Jε(e) < 0, for all ε ∈ (0,1). Then for each ε ∈ (0,1), we can define the so-called
mountain-pass value

cε = inf
h∈Γ

max
0�t�1

Jε

[
h(t)

]
(2.6)

where Γ = {h: [0,1] → H 1(Ω) | |h(t) is continuous, h(0) = 0, h(1) = e}.
It is easy to see that (Lemma 2.1 of [57]), cε can be characterized by

cε = inf
u �≡0, u∈H 1(Ω)

sup
t>0

Jε[tu], (2.7)

chipot5 v.2007/07/10 Prn:17/08/2007; 15:55 F:chipot506.tex; VTEX/Rita p. 6
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which can be shown to be the least among all non-zero critical values of Jε . (This formu-
lation (2.7) is sometimes referred to as the Nehari manifold technique.) Moreover, cε is
attained by some function uε which is then called a least-energy solution.

In a series of papers [57] and [58], Ni and Takagi studied the so-called least energy
solutions and proved the following theorem

THEOREM 2.1. (See [57,58].) For ε sufficiently small, there exists a mountain-pass solu-
tion uε which is also least-energy solution such that uε has only one local maximum point
Pε ∈ ∂Ω and uε → 0 in C2

loc(Ω̄\{Pε}). Moreover, as ε → 0,

H(Pε) → max
P∈∂Ω

H(P ),

where H(P ) is the mean curvature function for P ∈ ∂Ω , and uε(Pε + εy) → w(y) uni-
formly in Ωε,Pε = {y | Pε + εy ∈ Ω}, where w(y) is the unique solution of the following

{
�w − w + wp = 0, w > 0 in R

N ,

w(0) = maxy∈RN w(y), w → 0 at ∞.
(2.8)

REMARK 2.2.1. The existence of ground state to (2.8) is well known. The radial symmetry
of w follows from the famous Gidas–Ni–Nirenberg theorem [22]. The uniqueness of w is
proved in [39].

REMARK 2.2.2. The proof of Theorem 2.1 is by expansion of energy:

cε = εN

[
1

2
I [w] − c1εH(Pε) + o(ε)

]
(2.9)

where

I [w] =
∫

RN

(
1

2

(|∇w|2 + w2)− 1

p + 1
wp+1

)

is the energy of the ground state. A further expansion of cε up to the ε2 order is given by
[90]

cε = εN

[
1

2
I [w] − c1εH(Pε) + ε2[c2

(
H(Pε)

)2 + c3R(Pε)
]+ o

(
ε2)] (2.10)

where c1, c2, c3 are generic constants and R(Pε) is the scalar curvature at Pε . In particular
c1, c3 > 0. (When N = 2, a further expansion to the order of ε3 is also given in [91].) Some
applications of the formula (2.10) are given in [90].

Since then there has been a lot of studies on problem (2.4). A general principle is
that boundary spike solutions are related to the boundary mean-curvature H(P ),P ∈ ∂Ω ,
while interior spike solutions are related to the distance function d(P, ∂Ω). Note also that

chipot5 v.2007/07/10 Prn:17/08/2007; 15:55 F:chipot506.tex; VTEX/Rita p. 7
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for boundary spike the order is usually O(ε) while for interior spikes the order is O(e− d
ε )

for some d > 0.
Let me mention some results on multiple boundary and interior peaked solutions.
For single and multiple boundary spikes, Gui [26] first constructed multiple boundary

spike solutions at multiple local maximum points of H(P ), using variational method. Wei
[73], Wei and Winter [82,83] (independently by Bates, Dancer and Shi [4]) constructed
single and multiple boundary spike solutions at multiple non-degenerate critical points of
H(P ), using Lyapunov–Schmidt reduction method. Y.Y. Li [41], del Pino, Felmer and
Wei [16] constructed single and multiple boundary spikes in the degeneracy case. Using
Localized Energy method (LEM), a clustered solution is also constructed by Gui, Wei and
Winter [29] (independently by Dancer and Yan [9]).

THEOREM 2.2. (See [9,29].) Let Γ be a subset of ∂Ω , where it holds

min
∂Γ

H(P ) > min
Γ

H(P ). (2.11)

Then for any fixed positive integer k, there exists εk such that for ε < εk , problem (2.4) has
a solution uε with k boundary local maximum points Pj,ε ∈ Γ . Furthermore, H(Pj,ε) →
minΓ H(P ).

The energy expansion for K-boundary spikes is

Jε[uε] = εN

[
K

2
I [w] − c1ε

K∑
j=1

H(Pj,ε)

−
∑
i �=j

(
γ0 + o(1)

)
w

( |Pi,ε − Pj,ε |
ε

)]
. (2.12)

For single and multiple interior peaked solutions, the situation is quite different, as the
errors are exponentially small. Wei [79,74] first constructed single interior peak solution at
a strictly local maximum point of d(P, ∂Ω). Gui and Wei [27] proved the following

THEOREM 2.3. (See [27].) For any fixed positive integer k, there exists εk such that for
ε < εk , problem (2.4) has a solution uε with k interior local maximum points Pj,ε ∈ Ω .
Moreover, (P1,ε , . . . ,Pk,ε) approaches a limiting sphere-packing position, i.e.,

ϕk(P1,ε, . . . ,Pk,ε) → max
(P1,...,Pk)∈Ωk

ϕk(P1, . . . ,Pk) (2.13)

where

ϕk(P1, . . . ,Pk) = min
i,j,l,i �=j

(|Pi − Pj |,2d(Pl, ∂Ω)
)
. (2.14)
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The energy expansion for K-interior spikes is

Jε[uε] = εN

[
KI [w] − γ0

K∑
j=1

e− 2d(Pj,ε ,∂Ω)

ε

− γ1

∑
i �=j

w

( |Pi,ε − Pj,ε |
ε

)]
. (2.15)

Grossi, Pistoia and Wei [30] further showed that there is an one-to-one correspondence
between the (sub-differential) critical points of ϕk and k-interior peaked solutions.

Concerning the existence of mixed-boundary-interior-spikes, the following theorem
gives a complete answer.

THEOREM 2.4. (See [28].) For any two fixed positive integers k, l, there exists εk,l such
that for ε < εk,l , problem (2.4) has a solution uε with k interior local maximum points and
l boundary maximum points.

Theorems 2.2, 2.3 and 2.4 imply that the number of solutions to (2.4) goes to infinity as
ε → 0. Recently, the following lower bound on number of solutions is obtained:

THEOREM 2.5. (See [44].) There exists an ε0 > 0 such that for 0 < ε < ε0 and for each
integer K bounded by

1 � K � αN,Ω,f

εN(| ln ε|)N

where αN,Ω,p is a constant depending on N,Ω and p only, there exists a solution with K

interior peaks. (An explicit formula for αN,Ω,p is also given.) As a consequence, we obtain
that for ε sufficiently small, there exists at least [ αN,Ω,p

εN (| ln ε|)N ] number of solutions. Moreover,

for each β ∈ (0,N) there exists solution with energy in the order of εN−β .

Theorems 2.2, 2.3, 2.4 and 2.5 can all be proved by the powerful method—Localized
Energy Method—which was first introduced in [27]. We shall discuss it next.

2.3. Localized energy method (LEM)

We illustrate a general method in finding solutions with concentrating behavior—the so-
called Localized Energy Method, or LEM in short. The advantage of such method is that
it can be applied to subcritical, critical or supercritical problems, as long as the limiting
solution is well analyzed. This method was introduced in Gui and Wei [27] in dealing with
spikes.

In the following, we show how to prove Theorem 2.5 by LEM. We need to introduce
some notation first.
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Theorem 2.5 actually holds for a slightly more general equation than (2.4), namely,

⎧⎪⎨
⎪⎩

ε2�u − u + f (u) = 0 in Ω ,

u > 0 in Ω ,
∂u
∂ν

= 0 on ∂Ω .

(2.16)

We will always assume that f : R → R is of class C1+σ for some 0 < σ � 1 and satisfies
the following conditions (f1)–(f2):

(f1) f (u) ≡ 0 for u � 0, f (0) = f ′(0) = 0.
(f2) The following equation

{
�w − w + f (w) = 0, w > 0 in R

N ,

w(0) = maxy∈RN w(y), w → 0 at ∞,
(2.17)

has a unique solution w(y) and w is non-degenerate, i.e.,

Kernel
(
� − 1 + f ′(w)

)= span

{
∂w

∂y1
, . . . ,

∂w

∂yN

}
. (2.18)

One typical example of f is: f (u) = up − auq , where a � 0, 1 < q < p < (N+2
N−2 )+. For

the uniqueness of w, see [39] and [40]. The proof of non-degeneracy is given in [58].
Without loss of generality, we may assume that 0 ∈ Ω . By the following rescaling:

x = εz, z ∈ Ωε := {z | |εz ∈ Ω}, (2.19)

equation (2.16) becomes

{
�u − u + f (u) = 0 in Ωε,

u > 0 in Ωε, and ∂u
∂ν

= 0 in ∂Ωε.
(2.20)

For u ∈ H 2(Ωε), we put

Sε[u] = �u − u + f (u). (2.21)

Then (2.20) is equivalent to

Sε[u] = 0, u ∈ H 2(Ωε), u > 0 in Ωε,
∂u

∂ν
= 0 on ∂Ωε. (2.22)

Associated with problem (2.20) is the following energy functional

J̃ε[u] = 1

2

∫
Ωε

(|∇u|2 + u2)−
∫

Ωε

F (u), u ∈ H 1(Ωε). (2.23)
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We define two inner products:

〈u,v〉ε =
∫

Ωε

uv, for u,v ∈ L2(Ωε); (2.24)

(u, v)ε =
∫

Ωε

(∇u∇v + uv), for u,v ∈ H 1(Ωε). (2.25)

Let σ be the Hölder exponent of f ′ and

M >
6 + 2σ

σ
K (2.26)

be a fixed positive constant. Now we define a configuration space:

Λ := {
(Q1, . . . ,QK) ∈ ΩK

∣∣ ϕK(Q1, . . . ,QK) � Mε| ln ε|} (2.27)

where ϕK is defined at (2.14).
Let w be the unique solution of (2.17). By the well-known result of Gidas, Ni and Niren-

berg [22], w is radially symmetric: w(y) = w(|y|) and strictly decreasing: w′(r) < 0 for
r > 0, r = |y|. Moreover, we have the following asymptotic behavior of w:

w(r) = ANr− N−1
2 e−r

(
1 + O

(
1

r

))
,

w′(r) = −ANr− N−1
2 e−r

(
1 + O

(
1

r

))
, (2.28)

for r large, where AN > 0 is a constant. Let K(r) be the fundamental solution of −� + 1
centered at 0. Then we have

w(r) =
(

A0 + O

(
1

r

))
K(r),

w′(r) =
(

−A0 + O

(
1

r

))
K(r), for r � 1, (2.29)

where A0 is a positive constant.
The idea of LEM is to look for solutions of (2.16) of the following type:

u =
K∑

j=1

w

(
z − Qj

ε

)
+ φ (2.30)

where φ is solved first by Lyapunov–Schmidt reduction process, and (Q1, . . . ,QK) are
adjusted so as to achieve a solution. LEM is a method of reducing the infinite-dimensional
problem of finding a critical point of J̃ε to a finite-dimensional problem of (Q1, . . . ,QK).
In general, it consists of the following five steps:
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STEP 1. Find out good approximate functions.

This step contains most of the important computations. The idea is to choose good ap-
proximate functions such that the error Sε is small.

For Q ∈ Ω , we define wε,Q to be the unique solution of

�v − v + f

(
w

(
· − Q

ε

))
= 0 in Ωε,

∂v

∂ν
= 0 on ∂Ωε. (2.31)

Let Q = (Q1, . . . ,QK) ∈ Λ. We then define the approximate solution as

wε,Q =
K∑

j=1

wε,Qj
. (2.32)

We first analyze wε,Q. To this end, set

ϕε,Q(x) = w

( |x − Q|
ε

)
− wε,Q

(
x

ε

)
.

We state the following useful lemmas on the properties of ϕε,Q, whose proof can be
found in [44].

LEMMA 2.6. Assume that M
2 ε| ln ε| � d(Q,∂Ω) � δ where δ is sufficiently small. We

have

ϕε,Q = −(A0 + o(1)
)
K

( |x − Q∗|
ε

)
+ O

(
ε
√

2M+N+1) (2.33)

where K(r) is the (radially symmetric) fundamental solution of −� + 1 in R
N , Q∗ =

Q + 2d(Q,∂Ω)νQ̄, νQ̄ denotes the unit outer normal at Q̄ ∈ ∂Ω and Q̄ is the unique

point on ∂Ω such that d(Q̄,Q) = d(Q,∂Ω).

The next lemma analyze wε,Q in Ωε . To this end, we divide Ωε into K + 1-parts:

Ωε,j =
{∣∣∣∣z − Qj

ε

∣∣∣∣� 1

2ε
ϕK(Q)

}
, j = 1, . . . ,K,

Ωε,K+1 = Ωε

∖ K⋃
j=1

Ωε,j . (2.34)

LEMMA 2.7. For z ∈ Ωε,j , j = 1, . . . ,K , we have

wε,Q = wε,Qj
+ O

(
Kε

M
2
)= w

(
z − Qj

ε

)
+ O

(
Kε

M
2
)
. (2.35)
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For z ∈ Ωε,K+1, we have

wε,Q = O
(
Kε

M
2
)
. (2.36)

PROOF. For k �= j and z ∈ Ωε,j , we have

wε,Qk
= w

(
z − Qk

ε

)
− ϕε,Qk

(εz)

= O
(
e−|z− Qk

ε
| + e−|z− Q∗

k
ε

| + εM+N+1)= O
(
ε

M
2
)

and so ∑
k �=j

wε,Qk
= O

(
Kε

M
2
)

which proves (2.35). The proof of (2.36) is similar. �

Next we state a useful lemma about the interactions of two w’s.

LEMMA 2.8. For |Q1−Q2|
ε

large, it holds

∫
RN

f

(
w

(
z − Q1

ε

))
w

(
z − Q2

ε

)
= (

γ0 + o(1)
)
w

( |Q1 − Q2|
ε

)
(2.37)

where

γ0 =
∫

RN

f
(
w(y)

)
e−y1 dy. (2.38)

REMARK. Note that γ0 > 0. See Lemma 4.7 of [61].

PROOF. By (2.28), we have for |εy| � |Q1 − Q2|,

w

(
y + Q1 − Q2

ε

)
= (

AN + o(1)
)( ε

|εy + Q1 − Q2|
)N−1

2

e−|y+ Q1−Q2
ε

|

= w

( |Q1 − Q2|
ε

)
e
−〈y,

Q1−Q2|Q1−Q2| 〉+o(|y|)
.

Thus by Lebesgue’s Dominated Convergence Theorem

∫
RN

f

(
w

(
z − Q1

ε

))
w

(
z − Q2

ε

)
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=
∫

RN

f
(
w(y)

)
w

(
y + Q1 − Q2

ε

)

= (
1 + o(1)

)
w

( |Q1 − Q2|
ε

)∫
RN

f
(
w(y)

)
e
−〈y,

Q1−Q2|Q1−Q2| 〉 dy

= (
γ0 + o(1)

)
w

( |Q1 − Q2|
ε

)
. �

Let us define several quantities for later use:

Bε(Qj ) = −
∫

Ωε

f (wj )ϕε,Qj
,Bε(Qi,Qj ) =

∫
Ωε

f (wi)wj . (2.39)

Then we have

LEMMA 2.9. For Q = (Q1, . . . ,QK) ∈ Λ, it holds

Bε(Qj ) = (
γ0 + o(1)

)
w

(
2d(Qj , ∂Ω)

ε

)
+ o

(
w
(
M| ln ε|)), (2.40)

Bε(Qi,Qj ) = (
γ0 + o(1)

)
w

( |Qi − Qj |
ε

)
+ o

(
w
(
M| ln ε|)). (2.41)

PROOF. Note that

A0K

( |x − Q∗|
ε

)
= (

1 + o(1)
)
w

( |x − Q∗|
ε

)

and by Lemma 2.6

Bε(Qj ) = (
1 + o(1)

)∫
Ωε

f (wj )w

(
z − Q∗

j − Qj

ε

)
+ O

(
ε
√

2M+N+1)

= (
γ + o(1)

)
w

( |Qj − Q∗
j |

ε

)
+ o

(
w(M| ln ε|))

= (
γ + o(1)

)
w

(
2d(Qj , ∂Ω)

ε

)
+ o

(
w
(
M| ln ε|)).

(2.40) follows from Lemma 2.6. To prove (2.41), we note that

Bε(Qi,Qj ) =
∫

RN

f (w)w

(
y − Qi − Qj

ε

)

−
∫

RN\Ωε,Qi

f (w)w

(
y − Qi − Qj

ε

)
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= (
γ + o(1)

)
w

( |Qi − Qj |
ε

)
+ O

(
e−(1+ σ

2 )
d(Qi ,∂Ω)

ε e− d(Qj ,∂Ω)

ε
)

= (
γ + o(1)

)
w

( |Qi − Qj |
ε

)
+ o

(
w
(
M| ln ε|)). �

We then have the following which provides the key estimates on the energy expansion
and error estimates.

LEMMA 2.10. For any Q = (Q1, . . . ,QK) ∈ Λ and ε sufficiently small we have

J̃ε

[
K∑

i=1

wε,Qj

]
= KI [w] − 1

2

K∑
i=1

Bε(Qi)

− 1

2

∑
i,j=1,...,K, i �=j

Bε(Qi,Qj ) + o
(
w
(
M| ln ε|)), (2.42)

and

∥∥∥∥∥Sε

[
K∑

j=1

wε,Qj

]∥∥∥∥∥
Lq(Ωε)

� CK
q+1
q

+σ
ε

M(1+σ)
2 (2.43)

for any q > N
2 .

The proof of Lemma 2.10 is technical and tedious. We refer to [44] for the computations.

STEP 2. Obtain a priori estimates for a linear problem.

This is the fundamental step in reducing an infinite-dimensional problem to finite-
dimensional one. The key result we need here is the non-degeneracy assumption (f2).

Fix Q ∈ Λ. We define the following functions

Zi,j = (� − 1)

[
∂wi

∂zj

χi(z)

]
, where χi(z) = χ

(
2|εz − Qi |

(M − 1)ε| ln ε|
)

,

i = 1, . . . ,K, j = 1, . . . ,N, (2.44)

where χ(t) is a smooth cut-off function such that χ(t) = 1 for |t | < 1 and χ(t) = 0 for
|t | > M2

M2−1
. Note that the support of Zi,j belongs to BM2−1

2M
| ln ε|(

Qi

ε
).
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In this step, we consider the following linear problem: Given h ∈ L2(Ωε), find a function
φ satisfying⎧⎪⎨

⎪⎩
Lε[φ] := �φ − φ + f ′(wε,Q)φ = h +∑

k,l ck,lZk,l;
〈φ,Zi,j 〉ε = 0, i = 1, . . . ,K, j = 1, . . . ,N, and
∂φ
∂ν

= 0 on ∂Ωε,

(2.45)

for some constants ck,l , k = 1, . . . ,K , l = 1, . . . ,N .
To this purpose, we define two norms

‖φ‖∗ = ‖φ‖W 2,q (Ωε)
, ‖f ‖∗∗ = ‖f ‖Lq(Ωε), (2.46)

where q > N
2 is a fixed number.

We have the following result:

PROPOSITION 2.11. Let φ satisfy (2.45). Then for ε sufficiently small and Q ∈ Λ, we have

‖φ‖∗ � C‖h‖∗∗ (2.47)

where C is a positive constant independent of ε,K and Q ∈ Λ.

PROOF. Arguing by contradiction, assume that

‖φ‖∗ = 1; ‖h‖∗∗ = o(1). (2.48)

We multiply (2.45) by ∂wi

∂zj
χi(z) and integrate over Ωε to obtain

∑
k,l

ck,l

〈
Zk,l,

∂wi

∂zj

χi(z)

〉
ε

= −
〈
h,

∂wi

∂zj

χi(z)

〉
ε

+
〈
�φ − φ + f ′(wε,Q)φ,

∂wi

∂zj

χi(z)

〉
ε

. (2.49)

From the exponential decay of w one finds〈
h,

∂wi

∂zj

χi(z)

〉
ε

= o(1).

Observe that ∂wi

∂zj
χi(z) satisfies

�

(
∂wi

∂zj

χi(z)

)
−
(

∂wi

∂zj

χi(z)

)
+ f ′(wi)

(
∂wi

∂zj

χi(z)

)

= 2∇z

∂wi

∂zj

∇zχi + (�χi)
∂wi

∂zj

. (2.50)
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Integrating by parts and using Lemma 2.7, we deduce

〈
�φ − φ + f ′(wε,Q)φ,

∂wi

∂zj

χi(z)

〉
ε

=
〈(

f ′(wε,Q) − f ′(wi)

)
∂wi

∂zj

χi(z),φ

〉
ε

+ O
(
ε

M−1
2 ‖φ‖∗

)
= O

(
Kσ ε

Mσ
2 ‖φ‖∗

)= o
(‖φ‖∗

)= o(1)

where we have used the fact that M > 6+2σ
σ

N and that

∥∥∥∥
(

f ′(wε,Q) − f ′(wi)

)
∂wi

∂zj

χi

∥∥∥∥∗∗
� C

∥∥∥∥|wε,Q − wi |σ
∣∣∣∣∂wi

∂zj

χi

∣∣∣∣
∥∥∥∥∗

� Kσ ε
Mσ

2 .

It is easy to see that

〈
Zi,j ,

∂wi

∂zj

χi(z)

〉
ε

= −
∫

RN

f ′(w)

(
∂w

∂yj

)2

dy + o(1). (2.51)

On the other hand, for k �= i we have

〈
Zk,l,

∂wi

∂zj

χi(z)

〉
ε

= 0 (2.52)

and for k = i and l �= j , we have

〈
Zi,l,

∂wi

∂zj

χi(z)

〉
ε

= O
(
εM
)
. (2.53)

The left hand side of (2.49) becomes

ci,j +
∑
l �=j

O
(
εMci,l

)= o(1)

and hence

ci,j = o(1), i = 1, . . . ,K, j = 1, . . . ,N. (2.54)

To obtain a contradiction, we define the following cut-off functions:

φi = φχ ′
i , where χ ′

i = χ

(
2|εz − Qi |

(M − M−1)ε| ln ε|
)

, i = 1, . . . ,K. (2.55)

Note that χ ′
i = 1 for z ∈ BM2−1

2M
| ln ε|(

Qi

ε
) and the support of φ belongs to BM

2 | ln ε|(
Qi

ε
).
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Then the conditions 〈φ,Zi,j 〉ε = 0 is equivalent to

〈φi,Zi,j 〉ε = 0. (2.56)

The equation for φi becomes

�φi − φi + f ′(wε,Q)φi =
∑
j

ci,jZi,j + hχ ′
i + 2∇φ∇χ ′

i + (
�χ ′

i

)
φ. (2.57)

Lemma 2.7 yields

f ′(wε,Q)φi = (
f (wi) + o

(
εM/2−N

))
φi. (2.58)

Using (2.56) and (2.58), a contradiction argument similar to that of Proposition 3.2 of
[27] gives

‖φi‖q

W 2,q (Ωε)
� C

∥∥hχ ′
i

∥∥q

Lq(Ωε)
+ C

∥∥2∇φ∇χ ′
i + (

�χ ′
i

)
φ
∥∥q

Lq(Ωε)
. (2.59)

Next, we decompose

φ =
K∑

i=1

φi + Φ (2.60)

where Φ = φ(1 −∑K
i=1 χ ′

i ). Then the equation for Φ becomes

�Φ − Φ + f ′(wε,Q)Φ

= h

(
1 −

K∑
i=1

χ ′
i

)
− 2

K∑
i=1

∇φ∇χ ′
i −

K∑
i=1

(
�χ ′

i

)
φ. (2.61)

By Lemma 2.7, f ′(wε,Q)Φ = o(1)Φ . Standard regularity theorem gives

‖Φ‖q

W 2,q (Ωε)
� C

∥∥∥∥∥h
(

1 −
K∑

i=1

χ ′
i

)∥∥∥∥∥
q

Lq(Ωε)

+ C

∥∥∥∥∥2
K∑

i=1

∇φ∇χ ′
i +

K∑
i=1

(�χ ′
i )φ

∥∥∥∥∥
q

Lq
(
Ωε

). (2.62)

(Observe that the constant C in the Lp-regularity is independent of ε < 1. The case of
Dirichlet boundary condition has been proved in Lemma 6.4 of [61]. The case of Neumann
boundary condition can be proved similarly.)
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Combining (2.60), (2.59) and (2.62), we obtain

‖φ‖q

W 2,q (Ωε)
� C

∥∥∥∥∥
K∑

i=1

φi

∥∥∥∥∥
q

W 2,q (Ωε)

+ C‖Φ‖q

W 2,q (Ωε)

� C

K∑
i=1

‖φi‖q

W 2,q (Ωε)
+ C‖Φ‖q

W 2,q (Ωε)

� C

(
K∑

i=1

∥∥hχ ′
i

∥∥q

Lq(Ωε)
+
∥∥∥∥∥h
(

1 −
K∑

i=1

χ ′
i

)∥∥∥∥∥
q

Lq(Ωε)

)

+ C

K∑
i=1

∥∥2∇φ∇χ ′
i + (�χ ′

i )φ
∥∥q

Lq(Ωε)

� C‖h‖q

Lq(Ωε)
+ O

(| ln ε|−1)‖φ‖q

W 2,q (Ωε)

since

K∑
i=1

(
χ ′

i

)q +
(

1 −
K∑

i=1

χ ′
i

)q

� 2, |∇χ ′| + |�χ ′| � C
(| ln ε|)−1

. (2.63)

This gives

‖φ‖W 2,q (Ωε)
= o(1). (2.64)

A contradiction to (2.48). �

From Proposition 2.11, we derive the following existence result:

PROPOSITION 2.12. There exists ε0 > 0 such that for any 0 < ε < ε0 the follow-
ing property holds true. Given h ∈ W 2,q (Ωε), there exist s a unique pair (φ, c) =
(φ, {ci,j }i=1,...,K,j=1,...,N ) such that

Lε[φ] = h +
∑
i,j

ci,jZi,j , (2.65)

〈φ,Zi,j 〉ε = 0, i = 1, . . . ,K, j = 1, . . . ,N,
∂φ

∂ν
= 0 on ∂Ωε. (2.66)

Moreover, we have

‖φ‖∗ � C‖h‖∗∗ (2.67)

for some positive constant C.
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PROOF. The bound in (2.67) follows from Proposition 2.11 and (2.54). Let us now prove
the existence part. Set

H = {
u ∈ H 1(Ωε)

∣∣ (u, (� − 1)−1Zi,j

)
ε
= 0

}
where we define the inner product on H 1(Ωε) as

(u, v)ε =
∫

Ωε

(∇u∇v + uv).

Note that, integrating by parts, one has

ψ ∈H if and only if 〈ψ,Zi,j 〉ε = 0, i = 1, . . . ,K, j = 1, . . . ,N.

Observe that φ solves (2.65) and (2.66) if and only if φ ∈ H satisfies

∫
Ωε

(∇φ∇ψ + φψ) − 〈
f ′(wε,Q)φ,ψ

〉
ε
= 〈h,ψ〉ε, ∀ψ ∈ H.

This equation can be rewritten as

φ + S(φ) = h̄ in H, (2.68)

where h̄ is defined by duality and S :H → H is a linear compact operator.
Using Fredholm’s alternative, showing that equation (2.68) has a unique solution for

each h̄, is equivalent to showing that the equation has a unique solution for h̄ = 0, which
in turn follows from Proposition 2.11 and our proof is complete. �

In the following, if φ is the unique solution given in Proposition 2.12, we set

φ = Aε(h). (2.69)

Note that (2.67) implies

∥∥Aε(h)
∥∥∗ � C‖h‖∗∗. (2.70)

STEP 3. A non-linear Lyapunov–Schmidt reduction.

For ε small and for Q ∈ Λ, we are going to find a function φε,Q such that for some
constants ci,j , j = 1, . . . ,N , the following equation holds true

{
�(wε,Q + φ) − (wε,Q + φ) + f (wε,Q + φ) =∑

k,l ck,lZk,l in Ωε,

〈φ,Zi,j 〉ε = 0, j = 1, . . . ,N,
∂φ
∂ν

= 0 on ∂Ωε.
(2.71)
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The first equation in (2.71) can be written as

�φ − φ + f ′(wε,Q)φ = (−Sε[wε,Q])+ Nε[φ] +
∑
i,j

ci,jZi,j ,

where

Nε[φ] = −[f (wε,Q + φ) − f (wε,Q) − f ′(wε,Q)φ
]
. (2.72)

LEMMA 2.13. For Q ∈ Λ and ε sufficiently small, we have for ‖φ‖∗ +‖φ1‖∗ +‖φ2‖∗ � 1,

∥∥Nε[φ]∥∥∗∗ � C‖φ‖1+σ∗ ; (2.73)

∥∥Nε[φ1] − Nε[φ2]
∥∥∗∗ � C

(‖φ1‖σ∗ + ‖φ2‖σ∗
)‖φ1 − φ2‖∗. (2.74)

PROOF. Inequality (2.73) follows from the mean-value theorem. In fact, for all z ∈ Ωε

there holds

f (wε,Q + φ) − f (wε,Q) = f ′(wε,Q + θφ)φ.

Since f ′ is Hölder continuous with exponent σ , we deduce∣∣f (wε,Q + φ) − f (wε,Q) − f ′(wε,Q)φ| � C
∣∣φ|1+σ ,

which implies (2.73). The proof of (2.74) goes along the same way. �

PROPOSITION 2.14. For Q ∈ Λ and ε sufficiently small, there exists a unique φ = φε,Q
such that (2.71) holds. Moreover, Q �→ φε,Q is of class C1 as a map into W 2,q (Ωε) ∩ H,
and we have

‖φε,Q‖∗ � rK
q+1
q

+σ
ε

M(1+σ)
2 (2.75)

for some constant r > 0.

PROOF. Let Aε be as defined in (2.69). Then (2.71) can be written as

φ = Aε

[(−Sε[wε,Q])+ Nε[φ]]. (2.76)

Let r be a positive (large) number, and set

Fr = {
φ ∈ H ∩ W 2,q(Ωε): ‖φ‖∗ < rK

q+1
q

+σ
ε

M(1+σ)
2

}
.

Define now the map Gε : Fr →H ∩ W 2,q (Ωε) as

Gε[φ] = Aε

[(−Sε[wε,Q])+ Nε[φ]].
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Solving (2.71) is equivalent to finding a fixed point for Gε . By Lemmas 2.10 and 2.13, for
ε sufficiently small and r large we have

∥∥Gε[φ]∥∥∗ � C
∥∥Sε[wε,Q]∥∥∗∗ + C

∥∥Nε[φ]∥∥∗∗ < rK
q+1
q

+σ
ε

M(1+σ)
2 ,

∥∥Gε[φ1] −Bε[φ2]
∥∥∗ � C

∥∥Nε[φ1] − Nε[φ2]
∥∥∗ <

1

2
‖φ1 − φ2‖∗,

which shows that Gε is a contraction mapping on Fr . Hence there exists a unique φ =
φε,Q ∈Fr such that (2.71) holds.

Now we come to the differentiability of φε,Q. Consider the following map Hε : Λ×H∩
W 2,q (Ωε) × RNK → H ∩ W 2,q(Ωε) × RNK of class C1

Hε(Q, φ, c) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(� − 1)−1(Sε[wε,Q + φ]) −∑
i,j ci,j (� − 1)−1Zi,j

(φ, (� − 1)−1Z1,1)ε

...

(φ, (� − 1)−1ZK,N)ε

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(2.77)

Equation (2.71) is equivalent to Hε(Q, φ, c) = 0. We know that, given Q ∈ Λ, there is
a unique local solution φε,Q, cε,Q obtained with the above procedure. We prove that the
linear operator

∂Hε(Q, φ, c)
∂(φ, c)

∣∣∣∣
(Q,φε,Q,cε,Q)

: H ∩ W 2,q (Ωε) × RNK → H ∩ W 2,q (Ωε) × RNK

is invertible for ε small. Then the C1-regularity of Q �→ (φε,Q, cε,Q) follows from the
Implicit Function Theorem. Indeed we have

∂Hε(Q, φ, c)
∂(φ, c)

∣∣∣∣
(Q,φε,Q,cε,Q)

[ψ,d]

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(� − 1)−1(S′[wε,Q + φε,Q](ψ)) −∑
i,j dij (� − 1)−1Zi,j

(ψ, (� − 1)−1Z1,1)ε

...

(ψ, (� − 1)−1ZK,N)ε

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since ‖φε,Q‖∗ is small, the same proof as in that of Proposition 2.11 shows that

∂Hε(Q, φ, c)
∂(φ, c)

∣∣∣∣
(Q,φε,Q,cε,Q)
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is invertible for ε small.
This concludes the proof of Proposition 2.14. �

In some cases (e.g., critical or nearly critical exponent problems), we need to obtain
further differentiability of φε,Q (e.g., C2 in Q). This will be achieved by further reduction.
See [13,65] and [66] for such arguments.

STEP 4. A reduction lemma.

Fix Q ∈ Λ. Let φε,Q be the solution given by Proposition 2.14. We define a new func-
tional

Mε(Q) = J̃ε[wε,Q + φε,Q] : Λ → R. (2.78)

Then we have the following reduction lemma

LEMMA 2.15. If Qε is critical point of Mε(Q) in Λ, then uε = wε,Qε
+φε,Qε

is a critical
point of J̃ε[u].

PROOF. By Proposition 2.14, there exists ε0 such that for 0 < ε < ε0 we have a C1 map
which, to any Q ∈ Λ, associates φε,Q such that

Sε[wε,Q + φε,Q] =
∑

k=1,...,K; l=1,...,N

cklZk,l,

〈φε,Q,Zi,j 〉ε = 0 (2.79)

for some constants ckl ∈ RKN .
Let Qε ∈ Λ be a critical point of Mε . Set uε = wε,Qε + φε,Qε . Then we have

DQi,j
|Qi=Qε

i
Mε(Qε) = 0, i = 1, . . . ,K, j = 1, . . . ,N.

Hence we have∫
Ωε

[
∇uε∇ ∂(wε,Q + φε,Q)

∂Qi,j

∣∣∣∣
Qi=Qε

i

+uε

∂(wε,Q + φε,Q)

∂Qi,j

∣∣∣∣
Qi=Qε

i

− f (uε)
∂(wε,Q + φε,Q)

∂Qi,j

∣∣∣∣
Qi=Qε

i

]
= 0,

which gives

∑
k=1,...,K; l=1,...,N

ckl

∫
Ωε

Zk,l

∂(wε,Q + φε,Q)

∂Qi,j

∣∣∣∣
Qi=Qε

i

= 0. (2.80)
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We claim that (2.80) is a diagonally dominant system. In fact, since 〈φε,Q,Zi,j 〉ε = 0,
we have that∫

Ωε

Zk,l

∂φε,Qε

∂Qε
i,j

= −
∫

Ωε

φε,Qε
∂Zk,l

∂Qε
i,j

= 0 if k �= i.

If k = i, we have

∫
Ωε

Zk,l

∂φε,Qε

∂Qε
k,j

= −
∫

Ωε

∂Zk,l

∂Qε
k,j

φε,Qε =
∥∥∥∥ ∂Zk,l

∂Qε
k,j

∥∥∥∥∗∗
‖φε,Qε ‖∗∗

= O
(
K

q+1
q

+σ
ε

M(1+σ)
2 −1)= O

(
ε

M(1+σ)
2 −(

q+1
q

+σ)N−1)
= O

(
ε

M
2
)
.

For k �= i, we have

∫
Ωε

Zk,l

∂wε,Qε
i

∂Qε
i,j

=
∫

Ωε∩B M
2 | ln ε|(

Qε
k

ε
)

Zk,l

∂wε,Qε
i

∂Qε
i,j

= O
(
εM
)
.

For k = i, we have

∫
Ωε

Zk,l

∂wε,Qε
k

∂Qε
k,j

=
∫

Ωε∩B M
2 | ln ε|(

Qε
k

ε
)

Zk,l

∂wε,Qε
k

∂Qε
k,j

= −ε−1δlj

∫
RN

f ′(w)

(
∂w

∂yj

)2

+ O(1).

For each (k, l), the off-diagonal term gives

O
(
ε

M
2
)+

∑
k �=i

εM +
∑

k=i,l �=j

O(ε) = O
(
ε

M
2 + KεM + ε

)= o(1)

by our choice of M > 6+2σ
σ

N .
Thus equation (2.80) becomes a system of homogeneous equations for ckl and the matrix

of the system is non-singular. So ckl ≡ 0, k = 1, . . . ,K, l = 1, . . . ,N .
Hence uε =∑K

i=1 wε,Qε
i
+ φε,Qε

1,...,Q
ε
K

is a solution of (2.20). �

STEP 5. Using variational arguments to find critical points for the finite-dimensional re-
duced problem.

By Lemma 2.15, we just need to find a critical point for the reduced energy func-
tional Mε(Q). Depending on the asymptotic behavior of the reduced energy functional,

chipot5 v.2007/07/10 Prn:17/08/2007; 15:55 F:chipot506.tex; VTEX/Rita p. 24



Existence and stability of spikes 511

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

one can use either local minimization, or local maximization [29], or saddle point tech-
niques [66]. Here there is no compactness problem since the reduced problem is already
finite-dimensional.

We first obtain an asymptotic formula for Mε(Q). In fact for any Q ∈ Λ, we have

Mε(Q) = J̃ε[wε,Q] +
∫

Ωε

(∇wε,Q∇φε,Q + wε,Qφε,Q)

−
∫

Ωε

f (wε,Q)φε,Q + O
(‖φε,Q‖2∗

)

= J̃ε[wε,Q] +
∫

Ωε

(−Sε[wε,Q])φε,Q + O
(‖φε,Q‖2∗

)
= J̃ε[wε,Q] + O

(∥∥Sε[wε,Q]∥∥∗∗‖φε,Q‖∗
)+ O

(‖φε,Q‖2∗
)

= J̃ε[wε,Q] + O
(
K

2+ 2
q
+2σ

εM(1+σ)
)= J̃ε[wε,Q] + o

(
w
(
M| ln ε|))

by Lemma 2.10, Proposition 2.14 and the choice of M at (2.26).
By Lemma 2.10, we obtain

Mε(Q) = KI [w] − 1

2

(
γ0 + o(1)

) K∑
i=1

w

(
2d(Qi, ∂Ω)

ε

)

− 1

2

(
γ0 + o(1)

)∑
i �=j

w

( |Qi − Qj |
ε

)
+ o

(
w
(
M| ln ε|)). (2.81)

We shall prove

PROPOSITION 2.16. For ε small, the following maximization problem

max{Mε(Q): Q ∈ Λ} (2.82)

has a solution Qε ∈ Λ◦—the interior of Λ.

PROOF. First, we obtain a lower bound for Mε : Recall that KΩ(r) is the maximum num-
ber of non-overlapping balls with equal radius r packed in Ω . Now we choose K such
that

1 � K � KΩ

(
M + 2N

2
ε| ln ε|

)
. (2.83)

Let Q0 = (Q0
1, . . . ,Q

0
K) be the centers of arbitrary K balls among those KΩ(M+2N

2 ×
ε| ln ε|) balls. Certainly Q0 ∈ Λ. Then we have

w

(
2d(Q0

i , ∂Ω)

ε

)
� e− 2d(Q0

i
,∂Ω)

ε � εM+2N, w

( |Q0
i − Q0

j |
ε

)
� εM+2N

chipot5 v.2007/07/10 Prn:17/08/2007; 15:55 F:chipot506.tex; VTEX/Rita p. 25



512 J. Wei

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

and hence

Mε

(
Qε
)
� Mε

(
Q0)� KI [w] − K

2

(
γ0 + o(1)

)
εM+2N

− K2

2

(
γ0 + o(1)

)
εM+2N + o

(
w(M| ln ε|))

� KI [w] − K2(γ0 + o(1)
)
εM+2N + o

(
w
(
M| ln ε|)). (2.84)

On the other hand, if Qε ∈ ∂Λ, then either there exists (i, j) such that |Qε
i − Qε

j | =
Mε| ln ε|, or there exists a k such that d(Qε

k, ∂Ω) = M
2 ε| ln ε|. In both cases we have

Mε

(
Qε
)
� KI [w] − 1

2

(
γ0 + o(1)

)
w
(
M| ln ε|)+ o

(
w
(
M| ln ε|)). (2.85)

Combining (2.85) and (2.84), we obtain

w
(
M| ln ε|)� 2K2εM+2N � CεM

(| ln ε|)−2N (2.86)

which is impossible.
We conclude that Qε ∈ Λ. This completes the proof of Proposition 2.16. �

COMPLETION OF PROOF OF THEOREM 2.5. Theorem 2.5 follows from Proposition 2.16
and the reduction Lemma 2.15. �

2.4. Bubbles to (2.4): the critical case

Let p = N+2
N−2 . By suitable scaling, (2.4) becomes the following problem

{
�u − μu + u

N+2
N−2 = 0 in Ω,

u > 0 in Ω and ∂u
∂ν

= 0 on ∂Ω
(2.87)

where μ = 1
ε2 is large.

It is well known that the solutions to

�U + U
N+2
N−2 = 0 (2.88)

are given by the following

UΛ,ξ = cN

(
1

Λ2 + |x − ξ |2
)N−2

2

, where Λ > 0, ξ ∈ R
N. (2.89)
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A notable difference here is that the linearized operator � + (N+2
N−2 )U

4
N−2
Λ,ξ has (N + 1)-

dimensional kernels. Namely,

Kernel

(
� + N + 2

N − 2
U

4
N−2
Λ,ξ

)
= span

{
∂Uλ,ξ

∂Λ
,
∂UΛ,ξ

∂ξ1
, . . . ,

∂Uλ,ξ

∂ξN

}
. (2.90)

Thus when we apply LEM, we need also to take care of the scaling parameters. See
[13,43,65,66] and the references therein.

Concerning boundary bubbles, the existence of mountain-pass solutions was first proved
in Wang [69] and Adimurthi and Mancini [1]. Ni, Takagi and Pan [55] showed the least
energy solutions develop a bubble at the maximum point of the mean curvature (thereby
establishing results similar to Theorem 2.1). Local mountain-pass solutions concentrating
on one or separated boundary points are established in [23]. At non-degenerate critical
points of the positive mean curvature, single boundary bubbles exist [2]. Lin, Wang and Wei
[43] established results similar to Theorem 2.2 for dimension N � 7, at a non-degenerate
local minimum point of the mean curvature with positive value:

THEOREM 2.17. Suppose the following two assumptions hold:

(H1) N � 7,

(H2) Q0 = 0 is a non-degenerate minimum point of H(Q) and H(Q0) > 0.

Let K � 2 be a fixed integer. Then there exists a μK > 0 such that for μ > μK , problem
(2.87) has a non-trivial solution uμ with the following properties

(1)

u(x) =
K∑

j=1

U
1
μ

Λj ,Q0+μ
3−N
N Q̂

μ
j

+ O
(
μ

N−4
2
)
,

where Λj → Λ0 := A0H(Q0) > 0, j = 1, . . . ,K , and

(2) Q̂μ := (Q̂
μ
1 , . . . , Q̂

μ
K) approach an optimal configuration in the following problem:

(∗) Find out the optimal configuration (Q̂1, . . . , Q̂K) that minimizes the functional
R[Q̂1, . . . , Q̂K ].

Here for Q̂ = (Q̂1, . . . , Q̂K) ∈ R(N−1)K , Q̂i �= Q̂j , we define

R[Q̂1, . . . , Q̂K ] := c1

K∑
j=1

ϕ(Q̂j ) + c2

∑
i �=j

1

|Q̂i − Q̂j |N−2
(2.91)

where ϕ(Q) =∑
k,l ∂k∂lH(Q0)QkQl , c1 and c2 are two generic constants.

Theorem 2.17 is proved by LEM. Here the computation is more complicated, since the
interaction between bubbles is very involved.
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Concerning interior bubbles, under some assumptions, it is proved in [24] and [64] that
there are no interior bubble solutions. However interior bubble solutions can be recovered if
one add the boundary layers. (The boundary layer solution has been constructed in [50] (see
Section 2.6).) The following result establishes the existence of multiple interior bubbles in
dimension N = 3,4,5.

THEOREM 2.18. (See [71,92].) Let N = 3,4,5. For any fixed integer k, then problem
(2.87) has a solution (at least along a subsequence εk → 0) with k interior bubbles and
one boundary layer.

2.5. Bubbles to (2.4): slightly supercritical case

In the slightly supercritical case, we let p = N+2
N−2 + δ where δ > 0. Consider

{
�u − μu + up = 0 in Ω,

u > 0 in Ω and ∂u
∂ν

= 0 on ∂Ω.
(2.92)

The following result was proved by [66] and [14] through the use of LEM.

THEOREM 2.19. Let N � 3. Then δ > 0 sufficiently small, problem (2.92) admits a bound-
ary bubble solution.

In fact, in the slightly supercritical case, there is also the phenomena of bubble-towers.
A bubble-tower is a sum of bubbles centered at the same point

K∑
j=1

UΛj ,ξ , where Λ1,
Λj+1

Λj

→ +∞, j = 1, . . . ,K − 1. (2.93)

This has been discussed in [15] and [25].
It is completely open whether or not point condensation solutions exist for (2.92) when

p > N+2
N−2 + δ. In fact, let Ω be the unit ball. Using Pohozaev’s identity, it is not difficult to

show that there exists a positive constant c0, independent of ε � 1, such that

inf
Ω

u � c0 (2.94)

for all radial solution u of (2.4). This marks a basic difference between the behavior of
solutions of these two cases p � N+2

N−2 and p > N+2
N−2 . It eliminates the possibility of the

existence of a radial spiky solution which approaches zero in measure as ε approaches
zero in the supercritical case p > N+2

N−2 .

2.6. Concentration on higher-dimensional sets

The following conjecture has been made by Ni [53,54].
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Fig. 1. Lines intersecting with ∂Ω orthogonally.

CONJECTURE. Given any integer 0 � k � n − 1, there exists pk ∈ (1,∞) such that for
1 < p < pk , (2.4) possesses a solution with k-dimensional concentration set, provided that
ε is sufficiently small.

Progress in this direction has only been made very recently. In [49] and [50], Malchiodi
and Montenegro proved that for N � 2, there exists a sequence of numbers εk → 0 such
that problem (2.4) has a solution uεk

which concentrates at boundary of ∂Ω (or any com-
ponent of ∂Ω). Such a solution has the following energy bound

Jεk
[uεk

] ∼ εN−1
k . (2.95)

In [48], Malchiodi showed the concentration phenomena for (2.4) along a closed non-
degenerate geodesic of ∂Ω in three-dimensional smooth bounded domain Ω . F. Mah-
moudi and A. Malchiodi in [51] prove a full general concentration of solutions along
k-dimensional (1 � k � n − 1) non-degenerate minimal sub-manifolds of the boundary
for n � 3 and 1 < p < n−k+2

n−k−2 . When Ω = B1(0), there are also multiple (radially symmet-
ric) clustered interfaces near the boundary [52].

For concentrations on lines intersecting with the boundary, Wei and Yang [93] made
the first attempt in the two-dimensional case. Let Γ ⊂ Ω ⊂ R

2 be a curve satisfying the
following assumptions: The curvature of Γ is zero and Γ intersects ∂Ω at exactly two
points, saying, γ1, γ0 and at these points Γ ⊥∂Ω . Let −k1 and k0 are the curvatures of the
boundary ∂Ω at the points γ1 and γ0 respectively. A picture of Γ and Ω is as follows:

We define a geometric eigenvalue problem

−f ′′(θ) = λf (θ), 0 < θ < 1,

f ′(1) + k1f (1) = 0,

f ′(0) + k0f (0) = 0. (2.96)

We say that Γ is non-degenerate if (2.96) does not have a zero eigenvalue. This is equiva-
lent to the following condition:

k0 − k1 + k0k1|Γ | �= 0, (2.97)
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where |Γ | denotes the length of Γ .
Moreover, we set up the gap condition that there exists a small constant c > 0

∣∣∣∣λ0 − k2π2

|Γ |2 ε2
∣∣∣∣� cε, ∀k ∈ N. (2.98)

In [93], the following result was proved

THEOREM 2.20. We assume that the line segment Γ satisfies the non-degenerate condi-
tion (2.97). Given a small constant c, there exists ε0 such that for all ε < ε0 satisfying the
gap condition (2.98), problem (2.4) has a positive solution uε concentrating along a curve
Γε near Γ . Moreover, there exists some number c0 such that uε satisfies globally,

uε(x) � exp
[−c0ε

−1 dist(x,Γε)
]

and the curve Γε will collapse to Γ as ε → 0.

REMARK 2.6.1. The geometric eigenvalue problem (2.96) was first introduced by M.
Kowalczyk in [37] where he constructed layered solution concentrating on a line for the
Allen–Cahn equation.

REMARK 2.6.2. Theorem 2.20 is proved using the infinite-dimensional Lyapunov–
Schmidt reduction technique introduced in [18].

REMARK 2.6.3. One can also constructed multiple clustered line concentrating solutions,
using the Toda system. See [94]. This follows from earlier work in [19], where multiple
clustered interfaces are constructed at non-minimizing lines for the Allen–Cahn equation.
It is quite interesting to see the connection between Toda system

q ′′
j + eqj −qj+1 − eqj−1−qj = 0 (2.99)

and clustered interfaces.

REMARK 2.6.4. It will be interesting to construct solutions concentrating on surfaces
which intersect with ∂Ω orthogonally.

2.7. Robin boundary condition

Robin boundary conditions are particularly interesting in biological models where they
often arise. We refer the reader to [10] for this aspect.

In [3], Berestycki and Wei discussed the existence and asymptotic behavior of least en-
ergy solution for following singularly perturbed problem with Robin boundary condition:

{
ε2�u − u + up = 0, u > 0 in Ω ,

ε ∂u
∂ν

+ λu = 0 on ∂Ω ,
(2.100)
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where λ > 0. Similar to [57], we can define the following energy functional associated with
(2.100):

Jε[u] := ε2

2

∫
Ω

|∇u|2 + 1

2

∫
Ω

u2 −
∫

Ω

F(u) + ελ

2

∫
∂Ω

u2, (2.101)

where F(u) = ∫ u

0 f (s) ds, f (s) = sp,u ∈ H 1(Ω).
Similarly, for ε ∈ (0,1), we can define the so-called mountain-pass value

cε,λ = inf
h∈Γ

max
0�t�1

Jε

[
h(t)

]
(2.102)

where Γ = {h: [0,1] → H 1(Ω) | h(t) is continuous, h(0) = 0, h(1) = e}.
For fixed ε small, as λ moves from 0 (which is Neumann BC) to +∞ (which is Dirichlet

BC), by the results of [57,58] and [61], the asymptotic behavior of uε,λ changes dramat-
ically: a boundary spike is displaced to become an interior spike. The question we shall
answer is: where is the borderline of λ for spikes to move inwards?

Note that when N = 1, by ODE analysis, it is easy to see that the borderline is exactly
at λ = 1. In fact, we may assume that Ω = (0,1), and a s ε → 0, the least energy solution
converges to a homoclinic solution of the following ODE:

w′′ − w + wp = 0 in R
1, w(y) → 0 as |y| → +∞. (2.103)

Then it follows that

(w′)2 = w2 − 2

p + 1
wp+1, |w′| < w. (2.104)

As ε → 0, the limiting boundary condition (2.100) becomes w′(0) − λw(0) = 0. We see
from (2.104) that this is possible if and only if λ < 1.

When N = 2, the situation changes dramatically. To understand the location of the spikes
at the boundary, an essential role is played by the analogous problem in a half space with
Robin boundary condition on the boundary. Thus we first consider{

�u − u + f (u) = 0, u > 0 in R
N+ ,

u ∈ H 1(RN+), ∂u
∂ν

+ λu = 0 on ∂R
N+

(2.105)

where R
N+ = {(y′, yN) | yN > 0} and ν is the outer normal on ∂R

N+ .
Let

Iλ[u] =
∫

R
+
N

(
1

2
|∇u|2 + 1

2
u2
)

−
∫

R
+
N

F (u) + λ

2

∫
∂R

+
N

u2. (2.106)

As before, we define a mountain-pass vale for Iλ:

cλ = inf
v �≡0, v∈H 1(R+

N)

sup
t>0

Iλ[tv]. (2.107)
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Our first result deals with the half space problem:

THEOREM 2.21.
(1) For λ � 1, cλ is achieved by some function wλ, which is a solution of (2.105).
(2) For λ large enough, cλ is never achieved.
(3) Set

λ∗ = inf{λ | cλ is achieved}. (2.108)

Then λ∗ > 1 and for λ � λ∗, cλ is achieved, and for λ > λ∗, cλ is not achieved.

The proof of Theorem 2.21 is by the method of concentration-compactness, and the
method of vanishing viscosity.

Now consider the problem in a bounded domain.

THEOREM 2.22. Let λ � λ∗ and uε,λ be a least energy solution of (2.100). Let xε ∈ Ω

be a point where uε,λ reaches its maximum value. Then after passing to a subsequence,
xε → x0 ∈ ∂Ω and

(1) d(xε, ∂Ω)/ε → d0, for some d0 > 0,
(2) vε,λ(y) = uε,λ(xε +εy) → wλ(y) in C1 locally, where wλ attains cλ of (2.107) (and

thus is a solution of (2.105)),
(3) the associated critical value can be estimated as follows:

cε,λ = εN
{
cλ − εH̄ (x0) + o(ε)

}
(2.109)

where cλ is given by (2.107), and H̄ (x0) is given by the following

H̄ (x0) = max
wλ∈Sλ

[
−
∫

R
+
N

y′ · ∇′wλ

∂wλ

∂yN

H(x0)

]
(2.110)

where Sλ is the set of all solutions of (2.105) attaining cλ, and y′ = (y1, . . . , yN−1),
∇′ = ( ∂

∂y1
, . . . , ∂

∂yN−1
),

(4) H̄ (x0) = maxx∈∂Ω H̄ (x).

On the other hand, when λ > λ∗, a different asymptotic behavior appears.

THEOREM 2.23. Let λ > λ∗ and uε,λ be a least energy solution of (2.100). Let xε ∈ Ω

be a point where uε,λ reaches its maximum value. Then after passing a subsequence, we
have

(1) d(xε, ∂Ω) → maxx∈Ω d(x, ∂Ω),
(2) vε,λ(y) := uε,λ(xε + εy) → w(y) in C1 locally, where w is the unique solution of

(2.8),
(3) the associated critical value can be estimated as follows:

cε,λ = εN

[
I [w] + exp

(
−2d(xε, ∂Ω)

ε

(
1 + o(1)

))]
. (2.111)
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3. Stability and instability in the shadow system case

As we have already seen in Section 2 that there are many single and multiple spike solutions
for the shadow system (2.2). The question is: are they all stable with respect to the shadow
system (2.2)? Unfortunately, as we will show below, only one of them is stable.

Let uε be a (boundary or interior) spike solution. Then it is easy to see that (aε, ξε)

defined by the following

aε = ξq/(p−1)
ε uε, ξε =

(
1

|Ω|
∫

Ω

ur
ε dx

)−(p−1)/(qr−(p−1)(s+1))

(3.1)

is a solution pair of the stationary problem to the shadow system (2.2).
In this section, we analyze the following linearized eigenvalue problem⎧⎪⎨

⎪⎩
ε2�φε − φε + p

a
p−1
ε

ξ
q
ε

φε − q
a

p
ε

ξ
q+1
ε

η = αεφε,
∂φε

∂ν
= 0 on ∂Ω,

r
τ |Ω|

∫
Ω

ar−1
ε φε

ξ s
ε

dx − 1+s
τ

η = αεη.

(3.2)

By using (3.1), it is easy to see that the eigenvalues of problem (3.2) in H 2(Ω)×L∞(Ω)

are the same as the eigenvalues of the following eigenvalue problem

ε2�φ − φ + pup−1
ε φ − qr

s + 1 + ταε

∫
Ω

ur−1
ε φ∫

Ω
ur

ε

up
ε = αεφ,

φ ∈ H 2(Ω). (3.3)

A simple argument [8] shows that

THEOREM 3.1. Any multiple-spike solution is linearly unstable for the shadow system
(2.2).

Let

Lε(φ) = ε2�φ − φ + pup−1
ε φ,

Lε(φ) = Lε(φ) − qr

s + 1 + τλ

∫
Ω

ur−1
ε φ∫

Ω
ur

ε

up
ε . (3.4)

Thus we can only concentrate on the study of stability for single-spike solutions. The
study of stability and instability of single spike solutions can be divided into two parts:
small eigenvalues and large eigenvalues.

3.1. Small eigenvalues for Lε

In [73], it was proved that single boundary spike must concentrate at a critical point of
the mean curvature function H(P ). On the other hand, at a non-degenerate critical point of
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H(P ), there is also a single boundary spike. Furthermore, in [76], it is proved that the single
boundary spike at a non-degenerate critical point of H(P ) is actually non-degenerate.

Next we study the eigenvalue estimates associated with the linearized operator at uε :
Lε = ε2� − 1 + pu

p−1
ε . (Here the domain of Lε is H 2(Ω).) We first note the following

result.

LEMMA 3.2. The following eigenvalue problem

�φ − φ + pwp−1φ = μφ in R
N, φ ∈ H 1(

R
N
)

(3.5)

admits the following set of eigenvalues:

μ1 > 0, μ2 = · · · = μN+1 = 0, μN+2 < 0, . . . . (3.6)

Moreover, the eigenfunction corresponding to μ1 is radial and of constant sign.

PROOF. This follows from Theorem 2.12 of [42] and Lemma 4.2 of [58]. �

The small eigenvalues for Lε were characterized completely in [76].

THEOREM 3.3. (See [76].) For ε sufficiently small, the following eigenvalue problem{
ε2�φε − φε + pu

p−1
ε φε = τεφε in Ω ,

∂φε

∂ν
= 0 on ∂Ω

(3.7)

admits exactly (N −1) eigenvalues τ 1
ε � τ 2

ε � · · · � τN−1
ε in the interval [μN+1

2 ,
μ1
2 ], where

μ1 and μN+1 are given by Lemma 3.2.
Moreover, we have the following asymptotic behavior of τ

j
ε :

τ
j
ε

ε2
→ η0λj , j = 1, . . . ,N − 1, (3.8)

where λ1 � λ2 � · · · � λN−1 are the eigenvalues of the matrix Gb(P0) := (∂i∂jH(P0)),
and

η0 = N − 1

N + 1

∫
RN+ (w′(|z|))2zN dz∫

RN+ ( ∂w
∂z1

)2 dz
> 0. (3.9)

(Here w′(|z|) denotes the radial derivative of w with respect to |z|.)
Furthermore the eigenfunction corresponding to τ

j
ε , j = 1, . . . ,N − 1, is given by the

following:

φε
j =

N−1∑
i=1

(
aij + o(1)

) ∂wε,Pε

∂τi(Pε)
(3.10)
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where Pε is the local maximum point of uε , �aj = (a1j , . . . , a(N−1)j )
T is the eigenvector

corresponding to λj , namely

Gb(P0)�aj = λj �aj , j = 1, . . . ,N − 1. (3.11)

For single interior spikes, we obtain similar results. But it becomes more involved since
now the error is exponentially small.

The existence of interior spike solutions depends highly on the geometry of the domain.
In [74] and [75], the author first constructed a single interior spike solution. To state the
result, we need to introduce some notations. Let

dμP0(z) = lim
ε→0

e− 2|z−P0|
ε dz∫

∂Ω
e− 2|z−P0|

ε dz

. (3.12)

It is easy to see that the support of dμP0(z) is contained in B̄d(P0,∂Ω)(P0) ∩ ∂Ω .
A point P0 is called “non-degenerate peak point” if the followings hold: there exists

a ∈ R
N such that∫

∂Ω

e〈z−P0,a〉(z − P0) dμP0(z) = 0 (H1)

and (∫
∂Ω

e〈z−P0,a〉(z − P0)i(z − P0)j dμP0(z)

)
:= Gi(P0) is non-singular. (H2)

Such a vector a is unique. Moreover, Gi(P0) is a positive definite matrix. A geometric
characterization of a non-degenerate peak point P0 is the following:

P0 ∈ interior (convex hull of support
(
dμP0(z)

)
.

For a proof of the above facts, see Theorem 5.1 of [74].
In [75] and [74], the author proved the following theorem.

THEOREM 3.4. Suppose that P0 is a non-degenerate peak point. Then for ε � 1, there
exists a single interior spike solution uε concentrating at P0. Furthermore, uε is locally
unique. Namely, if there are two families of single interior spike solutions uε,1 and uε,2 of
(2.4) such that P 1

ε → P0,P
2
ε → P0 where

uε,1
(
P 1

ε

)= max
P∈Ω̄

uε(P ), uε,2
(
P 2

ε

)= max
P∈Ω̄

uε,2(P ),

then P 1
ε = P 2

ε , uε,1 = uε,2. Moreover,

P 1
ε = P 2

ε = P0 + ε

(
1

2
d(P0, ∂Ω)a + o(1)

)
as ε → 0.
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Let wε,P and ϕε,P be defined as in Section 2.3. (It was proved in [75] and [74] that
−ε log[−ϕε,P (P )] → 2d(P, ∂Ω) as ε → 0.)

Similarly, we obtain the following eigenvalue estimates for uε

THEOREM 3.5. The following eigenvalue problem

ε2�φ − φ + pup−1
ε φ = τ εφ in Ω,

∂φ

∂ν
= 0 on ∂Ω (3.13)

admits the following set of eigenvalues:

τ ε
1 = μ1 + o(1), τ ε

j = (
c0 + o(1)

)
ϕε,P0(P0)λj−1, j = 2, . . . ,N + 1,

τ ε
l = μl + o(1), l � N + 2,

where λj , j = 1, . . . ,N , are the eigenvalues of Gi(P0) and

c0 = 2d−2(P0, ∂Ω)

∫
RN pwp−1w′u′∗(r)∫

RN ( ∂w
∂y1

)2 dy
< 0, (3.14)

where u∗(r) is the unique radial solution of the following problem

�u − u = 0, u(0) = 1, u = u(r) in R
N. (3.15)

Furthermore, the eigenfunction (suitably normalized) corresponding to τ ε
j , j = 2, . . . ,

N + 1, is given by the following:

φε
j =

N∑
l=1

(
aj−1,l + o(1)

)
ε
∂wε,P

∂Pl

∣∣∣∣
P=Pε

, (3.16)

where �aj = (aj,1, . . . , aj,N )t is the eigenvector corresponding to λj , namely

Gi(P0)�aj = λj �aj , j = 1, . . . ,N.

3.2. A reduction lemma

Let αε be an eigenvalue of (3.3). Then the following holds. (The proof of it is routine. See
Appendix of [77].)

LEMMA A.
(1) αε = o(1) if and only if αε = (1 + o(1))τ ε

j for some j = 2, . . . ,N + 1, where τ ε
j is

given by Theorem 3.3 or Theorem 3.5.
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(2) If αε → α0 �= 0. Then α0 is an eigenvalue of the following eigenvalue problem

�φ − φ + pwp−1φ − qr

s + 1 + τα0

∫
RN wr−1φ∫

RN wr
wp = α0φ,

φ ∈ H 2(
R

N
)
. (3.17)

A direct application of Theorem 3.5 is the following corollary.

COROLLARY 3.6. For ε � 1, (aε, ξε) is unstable with respect to the shadow system (2.2).

3.3. Large eigenvalues: NLEP method

This section is devoted to the study of the non-local eigenvalue problem (3.17). By [77]
and [78], if problem (3.17) admits an eigenvalue λ with positive real part, then all sin-
gle point-condensation solutions are unstable, while if all eigenvalues of problem (3.17)
have negative real part, then all single point-condensation solutions are either stable or
metastable. (Here we say that a solution is metastable if the eigenvalues of the associ-
ated linearized operator either are exponentially small or have strictly negative real parts.)
Therefore it is vital to study problem (3.17).

We first consider the simple case when τ = 0. Namely, we study the following NLEP:

�φ − φ + pwp−1φ − γ (p − 1)

∫
RN wr−1φ∫

RN wr
wp = λφ, φ ∈ H 2(

R
N
)
, (3.18)

where

γ := qr

(s + 1)(p − 1)
,

λ ∈ C, λ �= 0, φ(x) = φ
(|x|). (3.19)

For problem (3.18), it is known that when γ = 0, there exists an eigenvalue λ = μ1 > 0
(Lemma 3.2). An important property of (3.18) is that non-local term can push the eigenval-
ues of problem (3.18) to become negative so that the point-condensation solutions of the
Gierer–Meinhardt system become stable or metastable.

A major difficulty in studying problem (3.18) is that the left-hand side operator is not
self-adjoint if r �= p + 1. (In the classical Gierer–Meinhardt system, r = 2,p = 2.) There-
fore it may have complex eigenvalues or Hopf bifurcations. Many traditional techniques
do not work here.

In [78] and [77], the eigenvalues of problem (3.18) in the following two cases

r = 2, or r = p + 1

are studied and the following results are proved.
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THEOREM 3.7.
(1) If (p, q, r, s) satisfies

(A) γ = qr

(s + 1)(p − 1)
> 1,

and

(B) r = 2, 1 < p � 1 + 4

N
or r = p + 1, 1 < p <

(
N + 2

N − 2

)
+
,

where (N+2
N−2 )+ = N+2

N−2 when N � 3 and (N+2
N−2 )+ = +∞ when N = 1,2.

Then Re(λ) < −c1 < 0 for some c1 > 0, where λ �= 0 is an eigenvalue of problem
(3.18).

(2) If γ < 1, problem (3.18) has an eigenvalue λ1 > 0.
(3) If

(C) r = 2, p > 1 + 4

N
and 1 < γ < 1 + c0,

for some c0 > 0. Then problem (3.18) has an eigenvalue λ1 > 0.

We give a complete proof of Theorem 3.7 since this is the key element in all the stability
result later on.

The proof of Theorem 3.7 is based on the following important inequalities which are
new and interesting.

LEMMA 3.8. Let w be the unique solution to (2.8).
(1) If 1 < p < 1 + 4

N
, then there exists a positive constant a1 > 0 such that

∫
RN

(|∇φ|2 + φ2 − pwp−1φ2)+ 2(p − 1)
∫

RN wφ
∫

RN wpφ∫
RN w2

−(p − 1)

∫
RN wp+1

(
∫

RN w2)2

(∫
RN

wφ

)2

� a1d
2
L2(RN)

(φ,X1), (3.20)

for all φ ∈ H 1(RN), where X1 := span{w, ∂w
∂yj

, j = 1, . . . ,N}.
(2) If p = 1 + 4

N
, then there exists a positive constant a2 > 0 such that

∫
RN

(|∇φ|2 + φ2 − pwp−1φ2)+ 2(p − 1)
∫

RN wφ
∫

RN wpφ∫
RN w2

− (p − 1)

∫
RN wp+1

(
∫

RN w2)2

(∫
RN

wφ

)2
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� a2d
2
L2(RN)

(φ,X2), (3.21)

for all φ ∈ H 1(RN), where X2 := span{w, 1
p−1w+ 1

2y∇w(y), ∂w
∂yj

, j = 1, . . . ,N}.
(3) There exists a positive constant a3 > 0 such that

∫
RN

(|∇φ|2 + φ2 − pwp−1φ2)+ (p − 1)(
∫

RN wpφ)2∫
RN wp+1

� a3d
2
L2(RN)

(φ,X1), ∀φ ∈ H 1(
R

N
)
. (3.22)

PROOF OF LEMMA 3.8. To this end, we first introduce some notations and make some
preparations. Set

Lφ := L0φ − γ (p − 1)

∫
RN wr−1φ∫

RN wr
wp, φ ∈ H 2(

R
N
)

where γ = qr
(p−1)(s+1)

and L0 := �−1+pwp−1. Note that L is not selfadjoint if r �= p+1.
Let

X0 := kernel(L0) = span

{
∂w

∂yj

∣∣∣ j = 1, . . . ,N

}
.

Then

L0w = (p − 1)wp, L0

(
1

p − 1
w + 1

2
x∇w

)
= w (3.23)

and

∫
RN

(
L−1

0 w
)
w =

∫
RN

w

(
1

p − 1
w + 1

2
x∇w

)
=
(

1

p − 1
− N

4

)∫
RN

w2,

(3.24)

∫
RN

(
L−1

0 w
)
wp =

∫
RN

wp

(
1

p − 1
w + 1

2
x∇w

)

=
∫

RN

(
L−1

0 w
) 1

p − 1
L0w = 1

p − 1

∫
RN

w2. (3.25)

Since L is not selfadjoint, we introduce a new operator as follows:

L1φ := L0φ − (p − 1)

∫
RN wφ∫
RN w2

wp − (p − 1)

∫
RN wpφ∫
RN w2

w

+ (p − 1)

∫
RN wp+1

∫
RN wφ

(
∫

RN w2)2
w. (3.26)
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By (3.26), L1 is selfadjoint. Next we compute the kernel of L1. It is easy to see that
w, ∂w

∂yj
, j = 1, . . . ,N,∈ kernel(L1). On the other hand, if φ ∈ kernel(L1), then by (3.23)

L0φ = c1(φ)w + c2(φ)wp

= c1(φ)L0

(
1

p − 1
w + 1

2
x∇w

)
+ c2(φ)L0

(
w

p − 1

)

where

c1(φ) = (p − 1)

∫
RN wpφ∫
RN w2

− (p − 1)

∫
RN wp+1

∫
RN wφ

(
∫
RN w2)2

,

c2(φ) = (p − 1)

∫
RN wφ∫
RN w2

.

Hence

φ − c1(φ)

(
1

p − 1
w + 1

2
x∇w

)
− c2(φ)

1

p − 1
w ∈ kernel(L0). (3.27)

Note that

c1(φ) = (p − 1)c1(φ)

∫
RN wp( 1

p−1w + 1
2x∇w)∫

RN w2

− (p − 1)c1(φ)

∫
RN wp+1

∫
RN w( 1

p−1w + 1
2x∇w)

(
∫

RN w2)2

= c1(φ) − c1(φ)

(
1

p − 1
− N

4

)∫
RN wp+1∫

RN w2

by (3.24) and (3.25). This implies that c1(φ) = 0. By (3.27) and Lemma 3.2, this shows
that the kernel of L1 is exactly X1.

Now we prove (3.20). Suppose (3.20) is not true, then there exists (α,φ) such that (i) α

is real and positive, (ii) φ ⊥ w, φ ⊥ ∂w
∂yj

, j = 1, . . . ,N , and (iii) L1φ = αφ.
We show that this is impossible. From (ii) and (iii), we have

(L0 − α)φ = (p − 1)

∫
RN wpφ∫
RN w2

w. (3.28)

We first claim that
∫

RN wpφ �= 0. In fact if
∫

RN wpφ = 0, then α > 0 is an eigenvalue of
L0. By Lemma 3.2, α = μ1 and φ has constant sign. This contradicts with the fact that
φ ⊥ w. Therefore α �= μ1,0, and hence L0 − α is invertible in X⊥

0 . So (3.28) implies

φ = (p − 1)

∫
RN wpφ∫
RN w2

(L0 − α)−1w.
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Thus ∫
RN

wpφ = (p − 1)

∫
RN wpφ∫
RN w2

∫
RN

(
(L0 − α)−1w

)
wp,

∫
RN

w2 = (p − 1)

∫
RN

(
(L0 − α)−1w

)
wp,

∫
RN

w2 =
∫

RN

(
(L0 − α)−1w

)(
(L0 − α)w + αw

)
,

0 =
∫

RN

(
(L0 − α)−1w

)
w. (3.29)

Let h1(α) = ∫
RN ((L0 − α)−1w)w, then

h1(0) =
∫

RN

(
L−1

0 w
)
w =

∫
RN

(
1

p − 1
w + 1

2
x · ∇w

)
w

=
(

1

p − 1
− N

4

)∫
RN

w2 > 0

since 1 < p < 1 + 4
N

. Moreover

h′
1(α) =

∫
RN

((
L0 − α

)−2
w
)
w =

∫
RN

(
(L0 − α)−1w

)2
> 0.

This implies h1(α) > 0 for all α ∈ (0,μ1). Clearly, also h1(α) < 0 for α ∈ (μ1,∞) (since
limα→+∞ h1(α) = 0). This is a contradiction to (3.29)!

This proves the inequality (3.20).
The proof of (3.21) is similar. In this case we have∫

RN

(
L−1

0 w
)
w =

∫
RN

w

(
1

p − 1
w + 1

2
x∇w

)
= 0. (3.30)

Thus the kernel of L1 is X2. The rest of the proof is exactly the same as before.
To prove (3.22), we introduce

L3φ := L0φ − (p − 1)

∫
RN wpφ∫
RN wp+1

wp. (3.31)

Similar as before, the kernel of L3 is exactly X1.
Suppose (3.22) is not true, then there exists (α,φ) such that (a) α is real and positive,

(b) φ ⊥ w,φ ⊥ ∂w
∂yj

, j = 1, . . . ,N , and (c) L3φ = αφ.
We show that this is impossible. From (a) and (c), we have

(L0 − α)φ = (p − 1)
∫

RN wpφ∫
RN wp+1

wp. (3.32)
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Similar to the proof of (3.20), we have that
∫

RN wpφ �= 0, α �= μ1,0, and hence L0 − α is
invertible in X⊥

0 . So (3.32) implies

φ = (p − 1)
∫

RN wpφ∫
RN wp+1

(L0 − α)−1wp.

Thus

∫
RN

wpφ = (p − 1)

∫
RN wpφ∫
RN wp+1

∫
RN

(
(L0 − α)−1wp

)
wp,

∫
RN

wp+1 = (p − 1)

∫
RN

(
(L0 − α)−1wp

)
wp. (3.33)

Let

h3(α) = (p − 1)

∫
RN

(
(L0 − α)−1wp

)
wp −

∫
RN

wp+1,

then

h3(0) = (p − 1)

∫
RN

(L−1
0 wp)wp −

∫
RN

wp+1 = 0.

Moreover

h′
3(α) = (p − 1)

∫
RN

(
(L0 − α)−2wp

)
wp = (p − 1)

∫
RN

(
(L0 − α)−1wp

)2
> 0.

This implies h3(α) > 0 for all α ∈ (0,μ1). Clearly, also h3(α) < 0 for α ∈ (μ1,∞). A con-
tradiction to (3.33)! �

Using Lemma 3.8, we can prove Theorem 3.7(i).

PROOF OF THEOREM 3.7(I). We divide the proof into three cases.

CASE 1. r = 2, 1 < p < 1 + 4
N

.

Let α0 = αR + iαI and φ = φR + iφI . Since α0 �= 0, we can choose φ ⊥ kernel(L0).
Then we obtain two equations

L0φR − (p − 1)γ

∫
RN wφR∫
RN w2

wp = αRφR − αIφI , (3.34)

L0φI − (p − 1)γ

∫
RN wφI∫
RN w2

wp = αRφI + αIφR. (3.35)
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Multiplying (3.34) by φR and (3.35) by φI and adding them together, we obtain

−αR

∫
RN

(
φ2

R + φ2
I

)
= L1(φR,φR) + L1(φI ,φI )

+ (p − 1)(γ − 2)

∫
RN wφR

∫
RN wpφR + ∫

RN wφI

∫
RN wpφI∫

RN w2

+ (p − 1)

∫
RN wp+1

(
∫

RN w2)2

[(∫
RN

wφR

)2

+
(∫

RN

wφI

)2]
.

Multiplying (3.34) by w and (3.35) by w we obtain

(p − 1)

∫
RN

wpφR − γ (p − 1)

∫
RN wφR∫
RN w2

∫
RN

wp+1

= αR

∫
RN

wφR − αI

∫
RN

wφI , (3.36)

(p − 1)

∫
RN

wpφI − γ (p − 1)

∫
RN wφI∫
RN w2

∫
RN

wp+1

= αR

∫
RN

wφI + αI

∫
RN

wφR. (3.37)

Multiplying (3.36) by
∫

RN wφR and (3.37) by
∫

RN wφI and adding them together, we ob-
tain

(p − 1)

∫
RN

wφR

∫
RN

wpφR + (p − 1)

∫
RN

wφI

∫
RN

wpφI

=
(

αR + γ (p − 1)

∫
RN wp+1∫

RN w2

)((∫
RN

wφR

)2

+
(∫

RN

wφI

)2)
.

Therefore we have

−αR

∫
RN

(
φ2

R + φ2
I

)
= L1(φR,φR) + L1(φI ,φI )

+ (p − 1)(γ − 2)

(
1

p − 1
αR + γ

∫
RN wp+1∫

RN w2

)
(
∫

RN wφR)2 + (
∫

RN wφI )
2∫

RN w2

+ (p − 1)

∫
RN wp+1

(
∫

RN w2)2

[(∫
RN

wφR

)2

+
(∫

RN

wφI

)2]
.
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Set

φR = cRw + φ⊥
R ,φ⊥

R ⊥ X1, φI = cIw + φ⊥
I , φ⊥

I ⊥ X1.

Then ∫
RN

wφR = cR

∫
RN

w2,

∫
RN

wφI = cI

∫
RN

w2,

d2
L2(RN)

(φR,X1) = ∥∥φ⊥
R

∥∥2
L2 , d2

L2(RN)
(φI ,X1) = ∥∥φ⊥

I

∥∥2
L2 .

By some simple computations we have

L1(φR,φR) + L1(φI ,φI )

+ (γ − 1)αR

(
c2
R + c2

I

)∫
RN

w2 + (p − 1)(γ − 1)2(c2
R + c2

I

)∫
RN

wp+1

+ αR

(∥∥φ⊥
R

∥∥2
L2 + ∥∥φ⊥

I

∥∥2
L2

)= 0.

By Lemma 3.8 (1)

(γ − 1)αR

(
c2
R + c2

I

)∫
RN

w2

+ (p − 1)(γ − 1)2(c2
R + c2

I

)∫
RN

wp+1

+ (αR + a1)
(∥∥φ⊥

R

∥∥2
L2 + ∥∥φ⊥

I

∥∥2
L2

)
� 0.

Since γ > 1, we must have αR < 0, which proves Theorem 3.7 in Case 1.

CASE 2. r = 2, p = 1 + 4
N

.

Set

w0 = 1

p − 1
w + 1

2
x∇w. (3.38)

We just need to take care of w0.
Suppose that α0 �= 0 is an eigenvalue of L. Let α0 = αR + iαI and φ = φR + iφI . Since

α0 �= 0, we can choose φ ⊥ kernel(L0). Then similar to Case 1, we obtain two equations
(3.34) and (3.35). We now decompose

φR = cRw + bRw0 + φ⊥
R , φ⊥

R ⊥ X1,

φI = cIw + bIw0 + φ⊥
I , φ⊥

I ⊥ X1.
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Similar to Case 1, we obtain

L1(φR,φR) + L1(φI ,φI )

+ (γ − 1)αR

(
c2
R + c2

I

)∫
RN

w2 + (p − 1)(γ − 1)2(c2
R + c2

I

)∫
RN

wp+1

+ αR

(
b2
R

(∫
RN

w2
0

)2

+ b2
I

(∫
RN

w2
0

)2

+ ∥∥φ⊥
R

∥∥2
L2 + ∥∥φ⊥

I

∥∥2
L2

)
� 0

By Lemma 3.8(2)

(γ − 1)αR

(
c2
R + c2

I

)∫
RN

w2 + (p − 1)(γ − 1)2(c2
R + c2

I

)∫
RN

wp+1

+ αR

(
b2
R

(∫
RN

w2
0

)2

+ b2
I

(∫
RN

w2
0

)2)
+ (αR + a2)

(∥∥φ⊥
R

∥∥2
L2 + ∥∥φ⊥

I

∥∥2
L2

)
� 0.

If αR � 0, then necessarily we have

cR = cI = 0, φ⊥
R = 0, φ⊥

I = 0.

Hence φR = bRw0, φI = bIw0. This implies that

bRL0w0 = (bR − bI )w0, bIL0w0 = (bR + bI )w0,

which is impossible unless bR = bI = 0. A contradiction!

CASE 3. r = p + 1, 1 < p < (N+2
N−2 )+.

Let r = p + 1. L becomes

L = L0 − qr

s + 1

∫
RN wp·∫

RN wp+1
wp.

We will follow the proof of Case 1.
Let α0 = αR + iαI and φ = φR + iφI . Since α0 �= 0, we can choose φ ⊥ kernel(L0).

Then similarly we obtain two equations

L0φR − (p − 1)γ

∫
RN wpφR∫
RN wp+1

wp = αRφR − αIφI , (3.39)

L0φI − (p − 1)γ

∫
RN wpφI∫
RN wp+1

wp = αRφI + αIφR. (3.40)
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Multiplying (3.39) by φR and (3.40) by φI and adding them together, we obtain

−αR

∫
RN

(
φ2

R + φ2
I

) = L3(φR,φR) + L3(φI ,φI )

+ (p − 1)(γ − 1)
(
∫

RN wpφR)2 + (
∫

RN wpφI )
2∫

RN wp+1
.

By Lemma 3.8(3)

αR

∫
RN

(
φ2

R + φ2
I

)+ a3d
2
L2(φ,X1)

+ (p − 1)(γ − 1)
(
∫

RN wpφR)2 + (
∫

RN wpφI )
2∫

RN wp+1
� 0

which implies αR < 0 since γ > 1.
Theorem 3.7(i) in Case 3 is thus proved. �

PROOF OF THEOREM 3.7(II). Assume that γ < 1. To prove Theorem 3.7(ii), we introduce
the following function:

h4(λ) :=
∫

RN

wr − γ (p − 1)

∫
RN

(
(L0 − λ)−1wp

)
wr−1. (3.41)

Note that h4(λ) is well defined in (0,μ1), where μ1 is the unique positive eigenvalue of
L0. Let us denote the corresponding eigenfunction by Φ0. Since μ1 is a principal eigen-
value, we may assume that Φ0 > 0.

It is easy to see that to prove Theorem 3.7(ii), it is enough to find a positive zero of
h4(λ).

First we have

h4(0) =
∫

RN

wr − γ (p − 1)

∫
RN

L−1
0 wpwr−1 = (1 − γ )

∫
RN

wr > 0. (3.42)

Set Φλ = (L0 − λ)−1wp . Then Φλ satisfies

(L0 − λ)Φλ = wp. (3.43)

Multiplying (3.43) by Φ0 and integrating by parts, we have

(μ1 − λ)

∫
RN

ΦλΦ0 =
∫

RN

Φ0w
p,

which implies that∫
RN

ΦλΦ0 = 1

μ1 − λ

∫
RN

Φ0w
p.
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Let

Φλ =
(

1

(μ1 − λ)
∫

RN Φ2
0

∫
RN

Φ0w
p

)
Φ0 + Φ⊥

λ , Φ⊥
λ ⊥ Φ0. (3.44)

Then as λ → μ1, λ < μ1, we have that ‖Φ⊥
λ ‖L2(RN) is uniformly bounded and by (3.44)

∫
RN

Φλw
r−1 → +∞,

which implies that

h4(λ) → −∞ as λ → μ1, λ < μ1. (3.45)

By (3.42) and (3.45), there is a λ0 ∈ (0,μ1) such that h4(λ0) = 0.
This proves (ii) of Theorem 3.7. �

PROOF OF THEOREM 3.7(III). Similarly, we just need to find a zero of

h5(λ) :=
∫

RN

w2 − γ (p − 1)

∫
RN

w(L0 − λ)−1wp. (3.46)

We write it as

h5(λ) = (1 − γ )

∫
RN

w2 − γ (p − 1)λ

∫
RN

w
[
(L0 − λ)−1(w)

]

= (1 − γ )

∫
RN

w2 − γ (p − 1)λ

∫
RN

wL−1
0 (w) + O

(
λ2).

Since
∫

RN wL−1
0 (w) < 0, we see that for 0 < γ − 1 small, there is a small λ0 > 0 such

that h5(λ0) > 0. �

For general r , the author in [80] proved the following:

THEOREM 3.9.
(1) If

D(r) := (p − 1)
∫

RN L−1
0 wr−1wr−1

∫
RN w2

(
∫

RN wr)2
> 0 (3.47)

where L0 = � − 1 + pwp−1 (L−1
0 exists in H 2

r (RN) = {u ∈ H 2(RN) | u(x) =
u(|x|)}) and

1 + 1√
1 + ρ0

< γ < 1 + 1√
1 − ρ0

, (3.48)
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where ρ0 > 0 is given by

ρ0 :=
∫

RN wp+1√∫
RN w2p

∫
RN w2

< 1. (3.49)

Then for any non-zero eigenvalue λ of problem (3.18), we have Re(λ) < −c1 < 0
for some c1 > 0.

(2) If (p, q, r, s) satisfies

1 + 2r

N
< p <

(
N + 2

N − 2

)
+

and γ < 1 + c0, (3.50)

for some c0 > 0. Then problem (3.18) has a real eigenvalue λ1 > 0.

Generally speaking, D(r) is very difficult to compute. A recent result of the author and
L. Zhang partially solved this problem and moreover we obtained more general and explicit
result. For example the following result are proved [81].

THEOREM 3.10. Let

F(r) = 1 − p − 1

2r
N.

Suppose 2 < r < p + 1, 1 < p < 1 + 2r
N

and

F(r) � γ − 2

γ
F(p + 1) + |γ − 2|

γ

√
F(p + 1)(F (p + 1) − F(2)), (3.51)

then for any non-zero eigenvalue λ of problem (3.18), we have Re(λ) < −c1 < 0 for some
c1 > 0.

REMARK. Condition (3.51) holds if 2 < r < p + 1, F(r) � 0 (i.e., 1 < p � 1 + 2r
N

) and
1 < γ � 2. Thus in this case we obtain the stability of the non-zero eigenvalues of (3.18).
This is the first explicit result for the case when r /∈ {2,p + 1}. For γ > 2, we need

F(r) � γ − 2

γ

[
F(p + 1) −√

F(p + 1)(F (p + 1) − F(2))
]
.

Going back to the shadow system case, the following result was proved in [77].

THEOREM 3.11. Assume that ε � 1 and τ is small. If (p, q, r, s) satisfy (A) and (B) in
Theorem 3.7, then

(1) single boundary spike solution at a non-degenerate local maximum point of mean
curvature is stable, and

(2) single interior spike solution is metastable.

Related work can also be found in [59] and [60].
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3.4. Uniqueness of Hopf bifurcations

In Section 3.3, we have discussed the NLEP (3.17) when τ = 0. It is easy to see that when
τ small, results in Theorem 3.7 still hold. On the other hand, for τ large, it is easy to see
that there is an unstable eigenvalue [8] to (3.17). (In fact, as τ → +∞, there is a positive
eigenvalue near μ1 > 0.) Therefore, as τ varies from 0 to ∞, Hopf bifurcation may occur.
In this section, we show that in some special cases, Hopf bifurcation is actually unique.

We consider the following non-local eigenvalue problem (putting r = p = 2, s = 0 in
(3.17))

Lφ := �φ − φ + 2wφ − γ

1 + τλ0

∫
RN wφ∫
R2 w2

w2 = λ0φ, φ ∈ H 2(
R

N
)
. (3.52)

THEOREM 3.12. Let L be defined by (3.52). Assume that N � 3 and γ > 1. Then there
exists a unique τ = τ1 > 0 such that for τ < τ1, (3.52) admits a positive eigenvalue, and
for τ > τ1, all non-zero eigenvalues of problem (3.52) satisfy Re(λ) < 0. At τ = τ1, L has
a Hopf bifurcation.

PROOF OF THEOREM 3.12. Let γ > 1. As in [8], we may consider radially symmetric
functions only. By Theorem 1.4 of [77], for τ = 0 (and by perturbation, for τ small), all
eigenvalues lie on the left half plane. By [8], for τ large, there exist unstable eigenvalues.

Note that the eigenvalues will not cross through zero: in fact, if λ0 = 0, then we have

L0φ − γ

∫
RN wφ∫
RN w2

w2 = 0

which implies that

L0

(
φ − γ

∫
RN wφ∫
RN w2

w

)
= 0

and hence by Lemma 3.2

φ − γ

∫
RN wφ∫
RN w2

w ∈ X0.

This is impossible since φ is radially symmetric and φ �= cw for all c ∈ R.
Thus there must be a point τ1 at which L has a Hopf bifurcation, i.e., L has a purely

imaginary eigenvalue α = √−1αI . To prove Theorem 3.12, all we need to show is that τ1

is unique. That is

LEMMA 3.13. Let γ > 1. Then there exists a unique τ1 > 0 such that L has a Hopf bifur-
cation.
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PROOF. Let λ0 = √−1αI be an eigenvalue of L. Without loss of generality, we may
assume that αI > 0. (Note that −√−1αI is also an eigenvalue of L.) Let φ0 = (L0 −√−1αI )

−1w2. Then (3.52) becomes∫
RN wφ0∫
RN w2

= 1 + τ
√−1αI

γ
. (3.53)

Let φ0 = φR
0 + √−1φI

0 . Then from (3.53), we obtain the two equations

∫
RN wφR

0∫
R2 wN

= 1

γ
, (3.54)

∫
RN wφI

0∫
R2 wN

= ταI

γ
. (3.55)

Note that (3.54) is independent of τ .
Let us now compute

∫
RN wφR

0 . Observe that (φR
0 , φI

0 ) satisfies

L0φ
R
0 = w2 − αIφ

I
0 , L0φ

I
0 = αIφ

R
0 .

So φR
0 = α−1

I L0φ
I
0 and

φI
0 = αI

(
L2

0 + α2
I

)−1
w2, φR

0 = L0
(
L2

0 + α2
I

)−1
w2. (3.56)

Substituting (3.56) into (3.54) and (3.55), we obtain∫
RN [wL0(L

2
0 + α2

I )
−1w2]∫

RN w2
= 1

γ
, (3.57)

∫
RN [w(L2

0 + α2
I )

−1w2]∫
R2 w2

= τ

γ
. (3.58)

Let

h6(αI ) =
∫

RN wL0(L
2
0 + α2

I )
−1w2∫

R2 w2
.

Then integration by parts gives

h6(αI ) =
∫

RN w2(L2
0 + α2

I )
−1w2∫

RN w2
.

Note that

h′
6(αI ) = −2αI

∫
RN w2(L2

0 + α2
I )

−2w2∫
RN w2

< 0.
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So since

h6(0) =
∫

RN w(L−1
0 w2)∫

RN w2
> 0,

h6(αI ) → 0 as αI → ∞, and γ > 1, there exists a unique αI > 0 such that (3.57) holds.
Substituting this unique αI into (3.58), we obtain a unique τ = τ1 > 0.

Lemma 3.13 is thus proved. �

Theorem 3.12 now follows from Lemma 3.13. �

3.5. Finite ε case

In all the previous sections, it is always assumed that ε is small. However, in practical ap-
plications, it is vital to know how small ε should be. The finite ε case has been completely
characterized in one-dimensional case by Wei and Winter [89]. We summarize the results
here.

Without loss of generality, we may assume that Ω = (0,1). That is, we consider

⎧⎪⎨
⎪⎩

at = ε2axx − a + ap

ξq , 0 < x < 1, t > 0,

τξt = −ξ + ξ−s
∫ 1

0 ar dx,

a > 0, ax(0, t) = ax(1, t) = 0.

(3.59)

The steady-state problem of (3.59) is equivalent to the following problem for the trans-

formed function uε given by uε(x) = ξ
− q

p−1 a(x):

ξ
1+s− qr

p−1 =
∫ 1

0
ur(x) dx

and

ε2uxx − u + up = 0,

ux(x) < 0, 0 < x < 1, ux(0) = ux(1) = 0. (3.60)

Letting

L := 1

ε
(3.61)

and rescaling u(x) = wL(y), where y = Lx, we see that wL satisfies the following ODE:

w′′
L − wL + w

p
L = 0,

w′
L(y) < 0, 0 < y < L, w′

L(0) = w′
L(L) = 0. (3.62)
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Since (3.62) is an autonomous ODE, it is easy to see that a non-trivial solution exists if
and only if

ε <

√
p − 1

π

(
or L >

π√
p − 1

)
. (3.63)

The stability of steady-state solutions to (3.59) has been a subject of study in the last few
years. A recent result of [56] (see Theorem 1.1 of [56]) says that a stable solution to (3.59)
must be asymptotically monotone. More precisely, if (A(x, t), ξ(t)), t � 0 is a solution to
(3.59) that is linearly neutrally stable, then there is a t0 > 0 such that

ax(x, t0) �= 0 for all (x, t) ∈ (0,1) × [t0,+∞). (3.64)

Thus all non-monotone steady-state solutions are linearly unstable. Therefore we focus
our attention on monotone solutions. There are two monotone solutions—the monotone
increasing one and the monotone decreasing one. Since these two solutions differ by re-
flection, we consider the monotone decreasing function only. This solution is then called
uε and it has the least energy among all positive solutions of (3.60), see [60]. If L � π√

p−1
,

then wL = 1. We also denote the corresponding solutions to (3.59) by

aL(x) = ξ

q
p−1
L wL(Lx), ξ

1+s− qr
p−1

L =
∫ 1

0
wr

L(Lx)dx. (3.65)

Before stating our results, we first introduce some notation. Let I = (0,L) and φ ∈
H 2(I ). We define the following operator:

L[φ] = φ′′ − φ + pw
p−1
L φ. (3.66)

It is proved [89] that L has the spectrum

λ1 > 0, λj < 0, j = 2,3, . . . . (3.67)

Hence for the map L from H 2(I ) to L2(I ) we know that L−1 exists, where L−1 is the
inverse of L. This implies that L−1wL is well defined.

Then we have the following theorem

THEOREM 3.14. Assume that L > π√
p−1

and either

r = 2,

∫ L

0
wLL−1wL dy > 0 (3.68)

or

r = p + 1. (3.69)

Then (aL, ξL) (given by (3.65)) is a linearly stable steady state to (3.59) for τ small.
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This theorem reduces the issue of stability to the computation of the integral

∫ L

0
wLL−1wL dy.

This integral is quite difficult to compute for general L.
For τ finite, we have the following theorem.

THEOREM 3.15. Let (3.68) be true and L > π√
p−1

. Then there exists a unique τc > 0

such that for τ < τc, (aL, ξL) is stable and for τ > τc, (aL, ξL) is unstable. At τ = τc, there
exists a unique Hopf bifurcation. Furthermore, the Hopf bifurcation is transversal, namely,
we have

dλR

dτ

∣∣∣∣
τ=τc

> 0, (3.70)

where λR is the real part of the eigenvalue.

Using Weierstrass p(z) functions and Jacobi elliptic integrals, one can show that∫ L

0 wLL−1wL dy > 0 for all L > π in the cases r = 2, p = 2,3. The original Gierer–
Meinhardt system ((p, q, r, s) = (2,1,2,0)) falls into this class. Thus for the shadow sys-
tem of the original Gierer–Meinhardt system, we have a complete picture of the stability
of (aL, ξL) for any τ > 0 and any L > 0, by the following theorem

THEOREM 3.16. Assume that L > π√
p−1

and r = 2, p = 2 or 3. Then there exists a unique

τc > 0 such that for τ < τc, (aL, ξL) is stable and for τ > τc, (AL, ξL) is unstable. At
τ = τc, there exists a Hopf bifurcation. Furthermore, the Hopf bifurcation is transversal.

Theorem 3.16 gives a complete picture of the stability of non-trivial monotone solutions
in terms of L since for L � π√

p−1
we necessarily have wL ≡ 1. Combining this with the

results of [56], we have completely classified stability and instability of all steady-state
solutions for all ε > 0 for the shadow system of the original Gierer–Meinhardt system.

We do not know if the Hopf bifurcation in Theorem 3.15 is subcritical or super-
critical. This is related to another interesting question: is there time-periodic solution
(a(x, t), ξ(x, t)) to (3.59) at the Hopf bifurcation point τ = τc? If so, is it stable or un-
stable?

We can also extend this idea to general domains in R
N,N � 2. Namely we consider

⎧⎪⎪⎨
⎪⎪⎩

at = �a − a + ap

ξq , x ∈ ΩL, t > 0,

τξt = −ξ + ξ−s 1
|ΩL|

∫
ΩL

ar ,

a > 0, ∂a
∂ν

= 0 on ∂ΩL,

(3.71)
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where we have scaled the ε into the domain through ΩL = 1
ε
Ω . In this case, let us assume

that ΩL ⊂ R
N is a smooth and bounded domain, and the exponents (p, q, r, s) satisfy the

following condition

p > 1, q > 0, r > 0, s � 0, γ := qr

(p − 1)(s + 1)
> 1,

and p is subcritical:

1 < p <
N + 2

N − 2
if N � 3; 1 < p < +∞ if N = 2.

The steady state solution of (3.71) is given by

a = ξ
q

p−1 u, ξ
1+s− qr

p−1 = 1

|ΩL|
∫

ΩL

ur (3.72)

where u is a solution of the following problem:

{
�u − u + up = 0, u > 0 in ΩL,
∂u
∂ν

= 0 on ∂ΩL.
(3.73)

We again consider the minimizer solution wL(x) which satisfies (3.73) and

E[wL] = inf
u∈H 1(ΩL), u �≡0

E[u] (3.74)

where

E[u] =
∫
ΩL

(|∇u|2 + u2)

(
∫
ΩL

up+1)
2

p+1

.

The corresponding steady-state solution to the shadow system (3.71) is denoted by

aL = ξ

q
p−1
L wL, ξ

1+s− qr
p−1

L = 1

|ΩL|
∫

ΩL

wr
L. (3.75)

Let

L[φ] = �φ − φ + pw
p−1
L φ.

Then we have the following lemma whose proof is similar to Lemma 3.2.

LEMMA 3.17. Consider the following eigenvalue problem{Lφ = λφ, in ΩL,
∂φ
∂ν

= 0 on ∂ΩL.
(3.76)
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Then λ1 > 0 and λ2 � 0.

We now put two important assumptions:
We first assume that

(A1) L−1 exists.

Under (A1), we assume that

(A2)

∫
ΩL

wL

(
L−1wL

)
> 0.

We can now state the following theorem

THEOREM 3.18. Assume that either

r = p + 1, and (A1) holds,

or

r = 2, and (A1) and (A2) hold.

Then (aL, ξL) is linearly stable for τ small.
In the case of r = 2, there exists a unique τ = τc such that (aL, ξL) is stable for τ < τc,

unstable for τ > τc, and there is a Hopf bifurcation at τ = τc. Furthermore, the Hopf
bifurcation is transversal.

The proof of Theorem (3.18) is similar to the one-dimensional case.
It remains an interesting and difficult question as to verify (A1) and (A2) analytically. If

L is large, the assumption (A1) is verified in [76] and assumption (A2) holds true if

1 < p < 1 + 4

N
. (3.77)

This recovers the results of [77].
It is difficult to verify (A1) and (A2) in general domains. One may ask: does (A1) hold

true for generic domains?

3.6. The stability of boundary spikes for the Robin boundary condition

The stability of least energy solution in the Robin boundary condition case is quite com-
plicated. We state the following result which deals with one-dimensional case only:
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THEOREM 3.19. (See [45].) Consider the following

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

at = ε2axx − a + ap

ξq , 0 < x < 1, t > 0,

τξt = −ξ + ξ−s
∫ 1

0 ar dx,

a > 0, εax(0, t) + λa(0, t) = εax(1, t) + λa(1, t) = 0,

hx(0, t) = hx(1, t) = 0.

(3.78)

Assume that r = 2,1 < p � 3 or r = p + 1,1 < p < +∞. Then for each λ ∈ (0,1) the
least energy solution is stable for τ < τ1 and unstable for τ > τ1. At τ1, there is a Hopf
bifurcation.

The main idea of the proof is similar to that of Theorem 3.14. Here we have to study an
NLEP on a half line with Robin boundary condition:

⎧⎨
⎩φ′′ − φ + pw

p−1
x0 φ − γ (p − 1)

∫∞
0 wx0 φ∫∞
0 w2

x0

w
p
x0 = αφ, 0 < y < +∞,

φ′(0) − λφ(0) = 0
(3.79)

where wx0 = w(y −x0) with w′(−x0) = λw(−x0). Let Lx0(φ) = φ′′ −φ +pw
p−1
x0 φ. Then

we need to show that

∫ ∞

0
wx0

[
L−1

x0
(wx0)

]
> 0. (3.80)

By some lengthy computations, we can show that the function
∫∞

0 wx0[L−1
x0

(wx0)] is an
increasing function in x0 when p < 3, and a constant when p = 3, and an decreasing
function when p > 3.

REMARK 3.6.1. An interesting phenomena is the case of 3 < p < 5. In this case, one
can show that there exists a a0 ∈ (0,1) such that the boundary spike is stable when a ∈
(0, a0) and unstable when a ∈ (a0,1). It is quite interesting to see that the Robin boundary
condition can also introduce some instability.

4. Full Gierer–Meinhardt system: One-dimensional case

In this section, we study the full Gierer–Meinhardt system in the one-dimensional case.
Unlike the shadow system case, where one can reduce the existence of solutions to a vari-
ational elliptic problem, there is no variational structure for the full Gierer–Meinhardt sys-
tem. This is the major problem, which is also the source of all interesting new phenomena.

We begin with the steady-state problem in the full space case.
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4.1. Bound states: the case of Ω = R
1

Let Ω = R
1. By a change of variables the steady-state problem for (GM) can be conve-

niently written as follows⎧⎪⎨
⎪⎩

�a − a + ap

hq = 0, a > 0 in R
1,

�h − σ 2h + ar

hs = 0, h > 0 in R
1,

a(x), h(x) → 0 as |x| → +∞
(4.1)

where

σ 2 = ε2

D
� 1.

The existence of multiple spikes solutions to (4.1) is referred to as “symmetry-breaking”
phenomena. This was proved in [12] (by dynamical system techniques) and [7] (by PDE
methods). We will sketch the PDE methods in Section 5.1.

THEOREM 4.1. (See [7,12].) For each fixed positive integer k, there exists σk > 0 such
that problem (4.1) has a solution (aε, hε) with the following properties

aε(x) ∼ ck

σ

(
k∑

j=1

w
(
x − ξσ

j

))
(4.2)

where ck > 0 is a generic constant and

ξσ
j =

(
j − k + 1

2

)
log

1

σ
+ O

(
log log

1

σ

)
, j = 1, . . . , k. (4.3)

4.2. The bounded domain case: Existence of symmetric K-spikes

Without loss of generality, we may assume that Ω = (−1,1). We consider the following
elliptic system⎧⎪⎨

⎪⎩
ε2a′′ − a + ap

hq = 0, −1 < x < 1,

Dh′′ − h + ar

hs = 0, −1 < x < 1,

a′(±1) = h′(±1) = 0.

(4.4)

In this case, the existence of multiple-peaked solutions was first obtained by I. Takagi in
[67].

THEOREM 4.2. (See [67].) Fix any positive integer K . If ε√
D

sufficiently small, there ex-

ists a K-peaked solution (aε,K,hεK) to (4.4) such that (aε,K,hε,K) has exactly K local
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maximum points −1 < x1 < x2 < · · · < xK < 1 which are equally distributed. In fact, we
have

xj = −1 + 2j − 1

K
, j = 1, . . . ,K.

Takagi’s proof uses the symmetry of the problems: by reflection, one can reduce the
existence of multiple symmetric spikes solutions to studying the existence of one boundary
spike solution. Namely, we just need to study the following system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2a′′ − a + ap

hq = 0, 0 < x < 1
2K

,

Dh′′ − h + ar

hs = 0, 0 < x < 1
2K

,

a(x) ∼ ξ
q

p−1 w(x
ε
), h(0) = ξ,

a′(0) = a′( 1
2K

) = h′(0) = h′( 1
2K

) = 0.

(4.5)

For the one boundary spike solution, one can use the Implicit Function Theorem,
since the linearized operator is invertible in the space of functions with Neumann bound-
ary conditions. (The last statement follows from the fact that the kernel of the operator
� − 1 + pwp−1 consists exactly those of partial derivatives of w. See Lemma 3.2.)

4.3. The bounded domain case: existence of asymmetric K-spikes

In the bounded domain case, as D is getting smaller, more and more new solutions appear.
By using the same matched asymptotic analysis in [34], M. Ward and Wei in [70] discov-
ered that for D < DK , where DK is given by (4.67) below, problem (4.4) has asymmetric
K-peaked steady-state solutions. Such asymmetric solutions are generated by two types
of peaks-called type A and type B, respectively. Type A and type B peaks have different
heights. They can be arranged in any given order

ABAABBB...ABBBA...B

to form an K-peaked solution. The existence of such solutions is surprising. It shows that
the solution structure of (4.4) is much more complicated than one would expect. The sta-
bility of such asymmetric K-peaked solutions is also studied in [70], through a formal ap-
proach. We remark that asymmetric patterns can also be obtained for the Gierer–Meinhardt
system on the real line, see [12].

In this and next section, we present a rigorous and unified theoretic foundation for the
existence and stability of general K-peaked (symmetric or asymmetric) solutions. In par-
ticular, the results of [34] and [70] are rigorously established. Moreover, we show that if
the K peaks are separated, then they are generated by peaks of type A and type B, re-
spectively. This implies that there are only two kinds of K-peaked patterns: symmetric
K-peaked solutions constructed in [67] and asymmetric K-peaked patterns constructed in
[70].

chipot5 v.2007/07/10 Prn:17/08/2007; 15:55 F:chipot506.tex; VTEX/Rita p. 58



Existence and stability of spikes 545

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

The existence proof is based on Lyapunov–Schmidt reduction. Stability is proved by first
separating the problem into the case of large eigenvalues which tend to a non-zero limit
and the case of small eigenvalues which tend to zero in the limit ε → 0. Large eigenvalues
are then explored by studying non-local eigenvalue problems using results in Section 3.3
and employing an idea of Dancer [8]. Small eigenvalues are calculated explicitly by an
asymptotic analysis with rigorous error estimates.

In this section, we present the existence part.
Before we state our main results, we introduce some notation. Let GD(x, z) be the Green

function of{
DG′′

D(x, z) − GD(x, z) + δzi(x) = 0 in (−1,1),

G′
D(−1, z) = G′

D(1, z) = 0.
(4.6)

We can calculate explicitly

GD(x, z) =
{

θ
sinh(2θ)

cosh[θ(1 + x)] cosh[θ(1 − z)], −1 < x < z,
θ

sinh(2θ)
cosh[θ(1 − x)] cosh[θ(1 + z)], z < x < 1

(4.7)

where

θ = D−1/2.

We set

KD

(|x − z|)= 1

2
√

D
e
− 1√

D
|x−z|

, (4.8)

to be the singular part of GD(x, z) and by GD = KD − HD we define the regular part HD

of GD . Note that HD is C∞ in both x and z.
Let −1 < t0

1 < · · · < t0
j < · · · < t0

K < 1 be K points in (−1,1) and w be the unique
solution of (2.8).

Put

ξε :=
(

ε

∫
R

wr(z) dz

) p−1
(p−1)(s+1)−qr

. (4.9)

We introduce several matrices for later use: For t = (t1, . . . , tK) ∈ (−1,1)K, let

GD(t) = (
GD(ti, tj )

)
. (4.10)

Let us denote ∂
∂ti

as ∇ti . When i �= j , we can define ∇ti G(ti , tj ) in the classical way.

When i = j , KD(|ti − tj |) = KD(0) = 1
2
√

D
is a constant and we define

∇ti GD(ti , ti) := − ∂

∂x

∣∣∣∣
x=ti

H (x, ti).
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Similarly, we define

∇ti ∇tj GD(ti , tj ) =
{

∂
∂x

∣∣
x=ti

∂
∂y

∣∣
y=ti

HD(x, y) if i = j ,

∇ti ∇tj GD(ti , tj ) if i �= j .
(4.11)

Now the derivatives of G are defined as follows:

∇GD(t) = (∇ti GD(ti , tj )
)
, (4.12)

∇2GD(t) = (∇ti ∇tj GD(ti , tj )
)
. (4.13)

We now have our first assumption:
(H1) There exists a solution (ξ̂0

1 , . . . , ξ̂0
N) of the following equation

N∑
j=1

GD

(
t0
i , t0

j

)(
ξ̂0
j

) qr
p−1 −s = ξ̂0

i , i = 1, . . . ,N. (4.14)

Next we introduce the following matrix

bij = GD

(
t0
i , t0

j

)(
ξ̂0
j

) qr
p−1 −s−1

, B = (bij ). (4.15)

Our second assumption is the following:
(H2) It holds that

p − 1

qr − s(p − 1)
/∈ σ(B), (4.16)

where σ(B) is the set of eigenvalues of B.

REMARK 4.3.1. Since the matrix B is of the form GDD, where GD is symmetric and D is
a diagonal matrix, it is easy to see that the eigenvalues of B are real.

By the assumption (H2) and the implicit function theorem, for t = (t1, . . . , tK) near
t0 = (t0

1 , . . . , t0
K), there exists a unique solution ξ̂ (t) = (ξ̂1(t), . . . , ξ̂K(t)) for the following

equation

K∑
j=1

GD(ti, tj )ξ̂j

qr
p−1 −s = ξ̂i , i = 1, . . . ,K. (4.17)

Set

H(t) = (
ξ̂i (t)δij

)
. (4.18)
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We define the following vector field:

F(t) = (
F1(t), . . . ,FK(t)

)
,

where

Fi(t) =
K∑

l=1

∇ti GD(ti , tl)ξ̂

qr
p−1 −s

l

= −∇ti HD(ti, ti )ξ̂

qr
p−1 −s

i +
∑
l �=i

∇ti GD(ti, tl)ξ̂

qr
p−1 −s

l ,

i = 1, . . . ,K. (4.19)

Set

M(t) = (
ξ̂−1
i ∇tj Fi(t)

)
. (4.20)

Our final assumption concerns the vector field F(t).
(H3) We assume that at t0 = (t0

1 , . . . , t0
K):

F(t0) = 0, (4.21)

det
(
M(t0)

) �= 0. (4.22)

Let us now calculate M(t0): Therefore we first compute the derivatives of ξ̂ . It is easy to
see that ξ̂ (t) is C1 in t. We can calculate:

∇tj ξ̂i =
(

qr

p − 1
− s

) K∑
l=1

GD(ti, tl)ξ̂

qr
p−1 −s−1

l ∇tj ξ̂l

+
K∑

l=1

∂

∂tj

(
GD(ti, tl)

)
ξ̂

qr
p−1 −s

l .

For i �= j , we have

∇tj ξ̂i =
(

qr

p − 1
− s

) N∑
l=1

GD(ti, tl)ξ̂

qr
p−1 −s−1

l ∇tj ξ̂l + ∇tj GD(ti , tj )ξ̂

qr
p−1 −s

j .

For i = j , we have

∇tj ξ̂i =
(

qr

p − 1
− s

) K∑
l=1

GD(ti, tl)ξ̂

qr
p−1 −s−1

l ∇ti ξ̂l +
K∑

l=1

∂

∂ti

(
GD(ti, tl)

)
ξ̂

qr
p−1 −s

l
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=
(

qr

p − 1
− s

) K∑
l=1

GD(ti, tl)ξ̂

qr
p−1 −s−1

l ∇ti ξ̂l + ∇ti GD(ti, ti )ξ̂

qr
p−1 −s

i

+
K∑

l=1

∇ti GD(ti , tl)ξ̂

qr
p−1 −s

l ,

since ∂
∂ti

GD(ti, ti ) = 2∇ti GD(ti , ti).
Note that(∇tj GD(ti , tj )

)= (∇GD)T .

Therefore if we denote the matrix

∇ξ = (∇tj ξ̂i ) (4.23)

then we have

∇ξ(t) =
(

I −
(

qr

p − 1
− s

)
GDH

qr
p−1 −s−1

)−1

(∇GD)T H
qr

p−1 −s

+ O

(
K∑

j=1

∣∣Fj (t)
∣∣). (4.24)

We can compute M(t0) by using (4.24):

M
(
t0) = H−1∇2GDH

qr
p−1 −s

+H−1
(

qr

p − 1
− s

)
∇GDH

qr
p−1 −s−1

×
(

I −
(

qr

p − 1
− s

)
GDH

qr
p−1 −s−1

)−1

(∇GD)T H
qr

p−1 −s
. (4.25)

The existence result is as follows

THEOREM 4.3. (See [84].) Assume that assumptions (H1), (H2) and (H3) are satisfied.
Then for ε � 1, problem (4.4) has an K-peaked solution which concentrates at tε1 , . . . , tεK ,
or more precisely:

aε(x) ∼
K∑

j=1

ξ

q
p−1
ε

(
ξ̂0
j

) q
p−1 w

(
x − tεj

ε

)
, (4.26)

hε

(
tεi
)∼ ξε ξ̂

0
i , i = 1, . . . ,K, (4.27)

tεi → t0
i , i = 1, . . . ,K. (4.28)
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REMARK 4.3.2. In the case of symmetric K-peaked solutions, conditions (H2) and (H3)
are not needed, as in the construction of solutions one can restrict the function space to the
class of symmetric functions (see for example [67]). Note that for small ε (and not only in
the limit ε → 0) the peaks are placed equidistantly.

REMARK 4.3.3. Our results here can be applied to give a rigorous proof for the existence
and stability of K-peaked solutions consisting of peaks with different heights.

In [70], by using matched asymptotic analysis, Ward and the first author constructed
such solutions and studied their stability. We now summarize their main ideas. First (4.4)
is solved in a small interval (−l, l):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ε2a′′ − a + ap

hq = 0 in (−l, l),

Dh′′ − h + ar

hs = 0 in (−l, l),

a(x) > 0, h(x) > 0 in (−l, l),

a′(−l) = a′(l) = h′(−l) = h′(l) = 0.

(4.29)

Then the single interior symmetric spike solution is considered which was constructed by
I. Takagi [67]. By some simple computations based on (4.6), we have that

h(l) ∼ c(D)b

(
l√
D

)
, (4.30)

where c(D) is some positive constant depending on D only and the function b(z) is given
by

b(z) := tanhα(z)

cosh(z)
, α := (p − 1)

qr − (s + 1)(p − 1)
. (4.31)

The idea now is that we fix l and try to find another l̄ �= l such that the following holds

b

(
l√
D

)
= b

(
l̄√
D

)
, 0 < l < l̄ < 1, (4.32)

which will imply that h(l) = h(l̄). This shows that if there exists a solution to (4.32), we
may match up h(l) and h(l̄). In other words, we may match up solutions of (4.29) in
different intervals.

It turns out that for D small, (4.32) is always solvable. Now (4.32) has to be solved along
with the following interval constraint:

K1l + K2 l̄ = 1, K1 + K2 = K. (4.33)

For a solution l of (4.60) and (4.33) and j = 1, . . . ,K we define

lj = l or lj = l̄ (4.34)
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where the number of j ’s such that lj = l is K1 (and consequently the number of j ’s such
that lj = l̄ is K2). We call the small spike with lj = l type A and the large spike with lj = l̄

type B.
Then we choose t0

j such that

∣∣t0
j − t0

j+1

∣∣= lj + lj−1, j = 0, . . . ,K,

where t0
0 = −1, t0

K+1 = 1.
By using matched asymptotics, we now have K1 type A and K2 type B peaks. This ends

the short review of the ideas in [70]. Let us now use Theorem 4.3 to give a rigorous proof
of results of [70]. In order to apply Theorem 4.3, we have to check the three assumptions
(H1), (H2) and (H3).

To this end, let us set

ξ̂0
j = (2

√
D) tanh(θj ), j = 1, . . . ,K, (4.35)

where

θj = lj√
D

. (4.36)

It is difficult to check (H1) directly. Instead we note that G−1
D is a tridiagonal matrix.

(See [34] and [70].) More precisely, we calculate

G−1
D = (aij ) = 2

√
D

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 β1 0
. . .

. . . 0

β1 γ2 β2
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . βj−1 γj βj 0

. . .
. . .

. . .
. . .

. . .
. . .

0
. . .

. . . 0 βN−1 γN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

γ1 = coth(θ1 + θ2) + tanh(θ1),

γj = coth(θj−1 + θj ) + coth(θj + θj+1), j = 2, . . . ,K − 1,

γK = coth(θK−1 + θK) + tanh(θK),

βj = − csch(θj + θj+1), j = 1, . . . ,N − 1

and θj was defined in (4.36). Note that

aij = 2
√

D(βj δi(j−1) + γj δij + βj+1δi(j+1)). (4.37)
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Verifying (4.14) amounts to checking the following identity

N∑
j=1

aij ξ̂
0
j = (

ξ̂0
i

) qr
p−1 −s

, (4.38)

which is an easy exercise.
It remains to verify (H2) and (H3).
To this end, we need to know the eigenvalues of B and M. In the same way as for the

matrix GD , one can show that B−1 is a tridiagonal matrix. However, it is almost impossible
to obtain an explicit formula for the eigenvalues. Numerical software for solving eigen-
value problems of large matrices is indispensable. Then (H2) has to be checked explicitly.
Numerical computations in [70] do suggest that assumption (H3) is always satisfied.

4.4. Classification of asymmetric patterns

A natural question is the following: Are all K-peaked solution generated by two types of
peaks as the solutions which were constructed in [70]?

Our next theorem gives an affirmative answer. It completely classifies all K-peaked
solutions, provided that the K peaks are separated.

THEOREM 4.4. (See [84].) Suppose that for ε sufficiently small, there are solutions
(aε, hε) of (4.4) such that

aε(x) ∼
K∑

j=1

ξ

q
p−1
ε

(
ξ̂ ε
j

) q
p−1 w

(
x − tεj

ε

)
, (4.39)

and

hε

(
tεi
)∼ ξε ξ̂

ε
i , i = 1, . . . ,K, (4.40)

where ξε is given by (4.9),

ξ̂ ε
i → ξ̂0

i > 0, tεi → t0
i , t0

i �= t0
j , i �= j, i, j = 1, . . . ,K. (4.41)

Then necessarily, we have

li := t0
i − t0

i−1 ∈ {l, l̄}, i = 1, . . . ,K, (4.42)

where t0
0 = −1, l and l̄ satisfy (4.32) and (4.33) with K1 being the number of i’s for which

li = l and K2 being the number of i’s for which li = l̄ (hence K1 + K2 = K).

Theorem 4.4 shows that an K-peaked solution must be generated by exactly two types
of peaks—type A with shorter length l and type B with larger length l̄. This shows that the
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solutions constructed in [70] (through a formal approach) exhaust all possible separated
K-peaked solutions. In particular, it shows that there are at most 2K K-peaked solutions.
If the assumptions (H1)–(H3) are met, then there are exactly 2K K-peaked solutions.

PROOF OF THEOREM 4.4. First we make the following scaling

aε = ξ

q
p−1
ε âε, hε = ξεĥε

where ξε is defined at (4.9). Hence (âε, ĥε) satisfies

⎧⎨
⎩

ε2�âε − âε + â
p
ε

ĥ
q
ε

= 0, −1 < x < 1,

D�ĥε − ĥε + cε
âr
ε

ĥs
ε

= 0, −1 < x < 1,
(4.43)

where cε is defined as cε = (ε
∫
R

wr)−1.
Now (4.39) and (4.40) imply that

âε ∼
K∑

j=1

(
ξ̂ ε
j

) q
p−1 w

(
x − tεj

ε

)
, ĥε

(
tεj
)= ξ̂ ε

j . (4.44)

Letting ε → 0, we assume that

ξ̂ ε
j → ξ̂0

j , tεj → t0
j , j = 1, . . . ,K.

We see that ĥε → h0(x) where h0(x) satisfies

{
D�h0 − h0 +∑K

j=1(ξ̂
0
j )

qr
p−1 −s

δ(x − t0
j ) = 0, −1 < x < 1,

h′
0(−1) = h′

0(1) = 0.
(4.45)

In other words, we have

h0(x) =
K∑

j=1

(
ξ̂0
j

) qr
p−1 −s

GD

(
x, t0

j

)
. (4.46)

Since h0(t
0
j ) = ξ̂0

j , j = 1, . . . ,K , we have from (4.46) that (ξ̂0
1 , . . . , ξ̂0

K) must satisfy the
following identity:

K∑
j=1

GD

(
t0
i , t0

j

)(
ξ̂0
j

) qr
p−1 −s = ξ̂0

i , i = 1, . . . ,K. (4.47)

This is the same as (4.14).
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Define

ãε,j = âεχ

(
x − t0

j

r̃0

)

where r̃0 is a very small number. Then ãε,j is supported in the interval I ε
j = (−r̃0 + tεj , r̃0 +

tεj ). We may choose r̃0 so small that I ε
i ∩ I ε

j = ∅ for i �= j . Then

âε =
K∑

j=1

ãε,j + e.s.t.

Now we multiply the first equation in (4.43) by ã′
ε,j and integrate over (−1,1). We

obtain

0 =
∫ 1

−1

[(
âε

p

ĥε
q

)
ã′
ε,j −

(
â

p
ε

ĥ
q
ε

)′
ãε,j

]

= −2
∫

I ε
j

(
â

p
ε

ĥ
q
ε

)′
âε + e.s.t.

= −2
∫

I ε
j

[
pâ

p
ε â′

ε

ĥ
q
ε

− qâ
p+1
ε ĥ′

ε

ĥ
q+1
ε

]
+ e.s.t.

= q(p + 2)

p + 1

∫
I ε
j

â
p+1
ε

ĥ
q+1
ε

ĥ′
ε + e.s.t. (4.48)

By the equation for ĥε , we have that

ĥε(x) = cε

∫ 1

−1
GD(x, z)

âr
ε

ĥs
ε

and thus for x ∈ I ε
j ,

ĥε(x) =
K∑

k=1

GD

(
x, tεk

)(
ξ̂ ε
k

) qr
p−1 −s + O(ε)

and

Ĥ ′
ε

(
tεj
)=

K∑
k=1

∇tεj
GD

(
tεj , tεk

)(
ξ̂ ε
k

) qr
p−1 −s + O(ε). (4.49)
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Substituting (4.49) into (4.48) and using (4.44), we obtain the following identity

K∑
k=1

∇tεj
GD

(
tεj , tεk

)(
ξ̂ ε
k

) qr
p−1 −s = o(1) (4.50)

and hence

K∑
k=1

∇t0
j
GD

(
t0
j , t0

k

)(
ξ̂0
k

) qr
p−1 −s = 0, j = 1, . . . ,K, (4.51)

which is the same as (4.21).
Note that by the expression for h0 in (4.46), (4.51) is equivalent to the following

h′
0

(
t0
j +)+ h′

0

(
t0
j −)= 0, j = 1, . . . ,K, (4.52)

where h′
0(t

0
j +) is the right-hand derivative of h0 at t0

j and h′
0(t

0
j −) is the left-hand deriva-

tive of h0 at t0
j . On the other hand, from the equation for h0, we have that

D
(
h′

0

(
t0
j +)− h′

0

(
t0
j −))= −(ξ̂0

j

) qr
p−1 −s

, j = 1, . . . ,K. (4.53)

Solving (4.52) and (4.53), we have that

h′
0

(
t0
j +)= −h′

0

(
t0
j −)= − 1

2D

(
ξ̂0
j

) qr
p−1 −s

< 0, j = 1, . . . ,K. (4.54)

Since h0 satisfies Dh′′
0 = h0 > 0 in each interval (t0

j−1, t
0
j ), j = 2, . . . ,K , we see that

there exists a unique point sj−1 ∈ (t0
j−1, t

0
j ) such that h′

0(sj−1) = 0. Since h′
0(−1) = 0, by

using symmetry, we see that

sj−1 + sj

2
= t0

j , j = 1, . . . ,K, (4.55)

where we take s0 = −1, sK = 1. Let 2lj = sj − sj−1, j = 1, . . . ,K .
Note that on each interval (−lj + t0

j , lj + t0
j ), h0 satisfies

D�h0 − h0 + (
ξ̂0
j

) qr
p−1 −s

δ
(
t − t0

j

)= 0

with Neumann boundary conditions at both ends. Thus from (4.6) it is easy to see that

(
ξ̂0
j

) qr
p−1 −s−1 = 2

√
D tanh

(
lj√
D

)
, j = 1, . . . ,K, (4.56)

h0(lj ) = ξ̂0
j

cosh(
lj√
D

)
. (4.57)
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Since h0 is continuous on (−1,1), we have

h0(l1) = h0(l2) = · · · = h0(lK). (4.58)

Using (4.56) and (4.57), we see that (4.58) is equivalent to

b

(
l1√
D

)
= b

(
l2√
D

)
= · · · = b

(
lK√
D

)
, (4.59)

where the function b was defined in (4.31). Suppose without loss of generality that l1 � l2,
then we take l1 = l and (4.59) implies that l2 ∈ {l, l̄} and that lj ∈ {l, l̄} for j = 2, . . . ,K .
Thus l must satisfy (4.60) and (4.33).

This finishes the proof of Theorem 4.4. �

4.5. The stability of symmetric and asymmetric K-spikes

In this section, we present the stability of the K-peaked solutions constructed in Theorem
4.3.

To this end, we need to study the following linearized eigenvalue problem

Lε

(
φε

ψε

)
=
(

ε2�φε − φε + p
a

p−1
ε

H
q
ε

φε − q
a

p
ε

h
q+1
ε

ψε,

1
τ

(
D�ψε − ψε + r

ar−1
ε

hs
ε

φε − s
ar
ε

hs+1
ε

ψε

)
)

= λε

(
φε

ψε

)
, (4.60)

where (aε, hε) is the solution constructed in Theorem 4.3 and λε ∈ C—the set of complex
numbers.

We say that (aε, hε) is linearly stable if the spectrum σ(Lε) of Lε lies in the left half
plane {λ ∈ C: Re(λ) < 0}. (aε, hε) is called linearly unstable if there exists an eigenvalue
λε of Lε with Re(λε) > 0. (From now on, we use the notations linearly stable and linearly
unstable as defined above.)

THEOREM 4.5. Let (aε, hε) be the solutions constructed in Theorem 4.3. Assume that
ε � 1.

(1) (Stability) If

r = 2, < p < 5 or r = p + 1, < p < +∞ (4.61)

and furthermore(
qr

p − 1
− s

)
min

σ∈σ(B)
σ > 1 (4.62)

and

σ(M) ⊆ {
σ
∣∣ Re(σ ) > 0

}
, (4.63)
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there exists τ0 > 0 such that (aε, hε) is linearly stable for 0 � τ < τ0.
(2) (Instability) If

(
qr

p − 1
− s

)
min

σ∈σ(B)
σ < 1, (4.64)

there exists τ0 > 0 such that (aε, hε) is linearly unstable for 0 � τ < τ0.
(3) (Instability) If there exists

σ ∈ σ(M), Re(σ ) < 0, (4.65)

then (aε, hε) is linearly unstable for all τ > 0.

REMARK 4.5.1. In the original Gierer–Meinhardt model, (p, q, r, s) = (2,1,2,0) or
(p, q, r, s) = (2,4,2,0). This means that condition (4.61) is satisfied.

REMARK 4.5.2. By Theorems 4.3 and 4.5, the existence and stability of K-peaked so-
lutions are completely determined by the two matrices B and M. They are related to the
asymptotic behavior of large eigenvalues which tend to a non-zero limit and small eigen-
values which tend to zero as ε → 0, respectively. The computations of these two matrices
are by no means easy. We refer to [34] and [70] for exact computations and numerics. Com-
bining the results here and the computations in [34], the stability of symmetric K-peaked
solutions is completely characterized and the following result is established rigorously.

THEOREM 4.6. (See [34,84].) Let (aε,K,hε,K) be the symmetric K-peaked solutions con-
structed in [67]. Assume that ε � 1.

(a) (Stability) Assume that 0 < τ < τ0 for some τ0 small and that

r = 2, 1 < p < 5 or r = p + 1, 1 < p < +∞ (4.66)

and

D < DK := 1

K2(log(
√

α + √
α + 1))2

, (4.67)

where α is given by (4.31), then the symmetric K-peaked solution is linearly stable.
(b) (Instability) If

D > DK, (4.68)

where DK is given by (4.67), then the symmetric K-peaked solution is linearly un-
stable for all τ > 0.
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The proof of Theorem 4.5 consists of two parts: we have to compute both small and
large eigenvalues. For large eigenvalues, we will arrive at the following system of non-
local eigenvalue problems (NLEPs)

Φ ′′ − Φ + pwp−1Φ

− qr(I + sB)−1B
(∫

R

wr−1Φ

)(∫
R

wr

)−1

wp = λΦ (4.69)

where B is given by (4.15) and

Φ =

⎛
⎜⎜⎜⎝

φ1
φ2
...

φK

⎞
⎟⎟⎟⎠ ∈ (H 2(R)

)K
.

By diagonalization, we may reduce it to K NLEPs of the form (3.17). Using the results
of Theorem 3.7, we obtain the stability (or instability) of large eigenvalues.

For the study of small eigenvalues, we need to expand the eigenfunction up to the order
O(ε2) term. This computation is quite involved. In the end, the matrix B and M will
appear.

A similar stability analysis for the Schnakenberg model has been carried out in [35].

5. The full Gierer–Meinhardt system: Two-dimensional case

Let us now consider the Gierer–Meinhardt system in a two-dimensional domain. The re-
sults are more complicated. To reduce the complexity and grasp the essential difficulties,
we assume that (p, q, r, s) = (2,1,2,0) in this section.

We start with the bound states.

5.1. Bound states: spikes on polygons

We first consider the case when Ω = R
2:⎧⎪⎨

⎪⎩
�a − a + a2

h
= 0, a > 0 in R

2,

�h − σ 2h + a2 = 0, h > 0 in R
2,

a(x),h(x) → 0 as |x| → +∞.

(5.1)

As we will see, a notable feature of this ground-state problem in the plane is the pres-
ence of solutions with any prescribed number of bumps in the activator as the parameter σ

gets smaller. These bumps are separated from each other at a distance O(| log logσ |) and
approach a single universal profile given by the unique radial solution of (2.8). The multi-
bump solutions correspond respectively to bumps arranged at the vertices of a k-regular
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polygon and at those of two concentric regular polygons. These arrangements with one ex-
tra bump at the origin are also considered. This unveils a new side of the rich and complex
structure of the solution set of the Gierer–Meinhardt system in the plane and gives rise to
a number of questions.

Let us set

τσ =
(

k

2π
log

1

σ

∫
R2

w2(y) dy

)−1

. (5.2)

THEOREM 5.1. (See [17].) Let k � 1 be a fixed positive integer. There exists σk > 0 such
that, for each 0 < σ < σk , problem (5.1) admits a solution (a,h) with the following prop-
erty:

lim
σ→0

∣∣∣∣∣τσ aσ (x) −
k∑

i=1

w(x − ξi)

∣∣∣∣∣= 0, (5.3)

uniformly in x ∈ R
2. Here the points ξi correspond to the vertices of a regular polygon

centered at the origin, with sides of equal length lσ satisfying

lσ = log log
1

σ
+ O

(
log log log

1

σ

)
. (5.4)

Finally, for each 1 � j � k we have

lim
σ→0

∣∣τσ hσ (ξj + y) − 1
∣∣= 0,

uniformly on compact sets in y.

Our second result gives existence of a solution with bumps at vertices of two concentric
polygons.

THEOREM 5.2. (See [17].) Let k � 1 be a fixed positive integer. There exists σk > 0 such
that, for each 0 < σ < σk , problem (5.1) admits a solution (a,h) with the following prop-
erty:

lim
σ→0

∣∣∣∣∣τσ aσ (x) −
k∑

i=1

[
w(x − ξi) + w(x − ξ∗

i )
]∣∣∣∣∣= 0, (5.5)

uniformly in x ∈ R
2. Here the points ξi and ξ∗

i are the vertices of two concentric regular
polygons. They satisfy

ξj = ρσ e
2jπ
k

i , ξ∗
j = ρ∗

σ e
2πj
k

i , j = 1, . . . , k,
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where

ρσ = 1

|1 − e
2πi
k |

log log
1

σ
+ O

(
log log log

1

σ

)
,

and

ρ∗
σ =

(
1 + 1

|1 − e
2πi
k |

)
log log

1

σ
+ O

(
log log log

1

σ

)
.

A similar assertion to (5.4) holds for hσ , around each of the ξi and the ξ∗
i ’s.

THEOREM 5.3. (See [17].) Let k � 1 be given. Then there exists solutions which are ex-
actly as those in Theorems 5.1 and 5.2 but with an additional bump at the origin. More
precisely, with w(x) added to

∑k
i=1 w(x − ξi) in (5.3) and added to

∑k
i=1[w(x − ξi) +

w(x − ξ∗
i )] in (5.5).

The method employed in the proof of the above results consists of a Lyapunov–Schmidt
type reduction. The basic idea of solving the second equation in (5.1) for h first and then
working with a non-local elliptic PDE rather than directly with the system. Let T (a2) be
the unique solution of the equation

�h − σ 2h + a2 = 0 in R
2,

h(x) → 0 as |x| → +∞,
(5.6)

for a2 ∈ L2(R2). Equation (5.3) can be solved via sub-super-solution method. Solving the
second equation for h in (5.1) we get h = T (a2), which leads to the non-local PDE for a

�a − a + a2

T (a2)
= 0. (5.7)

Fixing m points which satisfy the constraints

2

3
log log

1

σ
� |ξj − ξi | � 2 log log

1

σ
, for all i �= j.

We look for solutions to (5.7) of the form

a(x) = 1

τσ

(W + φ), where W =
K∑

j=1

w(x − ξj ). (5.8)

By using finite-dimensional reduction method, we first solve an auxiliary problem⎧⎨
⎩

�(W + φ) − (W + φ) + (W+φ)2

T ( 1
τσ

(W+φ)2)
=∑

i,α ciα
∂W
∂ξi,α∫

R2 φ ∂W
∂ξi,α

= 0, i = 1, . . . ,m, α = 1,2.
(5.9)
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Solutions satisfying the required conditions in Theorems 5.1–5.3 will be precisely those
satisfying a non-linear system of equations of the form

ciα(ξ1, ξ2, . . . , ξm) = 0, i = 1, . . . ,m, α = 1,2,

where for such a class of points the functions ciα satisfy

ciα(ξ1, . . . , ξk) = ∂

∂ξiα

[∑
i �=j

F
(|ξj − ξi |

)]+ εiα, (5.10)

function F : R+ → R is of the form

F(r) = c7 log r

log 1
σ

+ c8w(r),

c7 and c8 are universal constants and

εiα = O

(
1

(log 1
σ
)1+γ

)
,

for some γ > 0. Although (5.10) does not have a variational structure, solutions of the
problem ciα = 0 are close to critical points of the functional

∑
i �=j F (|ξj − ξi |). In spite

of the simple form of this functional, its critical points are highly degenerate because of
the invariance under rotations and translations of the problem. Thus, to get solutions using
degree theoretical arguments, we need to restrict ourselves to classes of points enjoying
symmetry constraints. This is how Theorems 5.1–5.3 are established. On the other hand,
we believe strongly that finer analysis may yield existence of more complex patterns, such
as honey-comb patterns, or lattice patterns.

REMARK 5.1.1. Similar method can also be used to prove Theorem 4.1. In that case, we
have

ci(ξ1, . . . , ξk) = ∂

∂ξi

[∑
i �=j

F1
(|ξj − ξi |

)]+ O
(
σ 1+γ

)
, (5.11)

function F1 : R+ → R is of the form

F1(r) = c9σr + c10w(r),

c9 and c10 are universal constants. It is easy to see that the critical points of
∑

i �=j F1(|ξi −
ξj |) is non-degenerate (in the class of points with

∑K
j=1 ξj = 0).
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5.2. Existence of symmetric K-spots

We look for solutions to the stationary GM on a two-dimensional domain with the follow-
ing form

aε(x) ∼
K∑

j=1

ξε,jw

(
x − Pj

ε

)
(5.12)

where Pj are the locations of the K-spikes and ξε,j is the height of the spike at Pj .
If all the heights are asymptotically equal, i.e.

lim
ε→0

ξε,i

ξε,j

= 1, for i �= j, (5.13)

such solutions are called symmetric K-spots. Otherwise, they are called asymmetric K-
spots.

In this section, we discuss the existence of symmetric K-spots. It turns out in two-
dimensional case, we have to discuss two cases: the strong coupling case, D ∼ O(1), and
the weak coupling case, D � 1.

We first have the following existence result in the strong coupling case

THEOREM 5.4. (See [86].) Let Ω ⊂ R2 be a bounded smooth domain and D be a
fixed positive constant. Let GD(x,y) be the Green function of −D� + 1 in Ω (with
Neumann boundary condition). Let HD(x, y) be the regular part of GD(x,y) and set
hD(P ) = HD(P,P ).

Set

FD(P1, . . . ,PK) =
K∑

i=1

HD(Pi,Pi) −
∑
j �=l

GD(Pj ,Pl).

Assume that (P1, . . . ,PK) ∈ ΩK is a non-degenerate critical point of FD(P1, . . . ,PK).
Then for ε sufficiently small, problem (GM) has a steady state solution (aε, hε) with the
following properties:

(1) aε(x) = ξε(
∑K

j=1 w(
x−P ε

j

ε
) + o(1)) uniformly for x ∈ Ω̄ , P ε

j → P 0
j , j = 1, . . . ,K ,

as ε → 0, and w is the unique solution of the problem (2.8).
(2) hε(x) = ξε(1 + O( 1

| log ε| )) uniformly for x ∈ Ω̄ , where

(3) ξ−1
ε = ( 1

2π
+ o(1))ε2 log 1

ε

∫
R2 w2.

REMARK 5.2.1. Theorem 5.4 shows that interior peaks solutions are related to the Green
function (contrast to shadow system case). Thus in the strong coupling case, the peaks are
produced by a different mechanism. It seems that the equation for h controls everything.

REMARK 5.2.2. In a general domain, the function FD(P) always has a global maximum
point P0 in Ω × · · · × Ω . (A proof of this fact can be found in the Appendix of [86].)
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The proof of Theorem 5.4 depends on fine estimates in the finite-dimensional reduction:
the major problem is to sum up the errors of powers in terms of 1

log 1
ε

.

Next, we discuss the weak coupling case. We assume that limε→0 D = +∞. We first
introduce a Green function G0 which we need to formulate our main results.

Let G0(x, ξ) be the Green function given by

⎧⎪⎨
⎪⎩

�G0(x, ξ) − 1
|Ω| + δξ (x) = 0 in Ω ,∫

Ω
G0(x, ξ) dx = 0,

∂G0(x,ξ)
∂ν

= 0 on ∂Ω

(5.14)

and let

H0(x, ξ) = 1

2π
log

1

|x − ξ | − G0(x, ξ) (5.15)

be the regular part of G0(x, ξ).
Denote P ∈ ΩK , where P is arranged such that

P = (P1,P2, . . . ,PK)

with

Pi = (Pi,1,Pi,2) for i = 1,2, . . . ,K.

For P ∈ ΩK we define

F0(P) =
K∑

k=1

H0(Pk,Pk) −
∑

i,j=1,...,K, i �=j

G0(Pi,Pj ) (5.16)

and

M0(P) = (∇2
PF0(P)

)
. (5.17)

Here M0(P) is a (2K)× (2K) matrix with components ∂2F(P)
∂Pi,j ∂Pk,l

, i, k = 1, . . . ,K , j, l =
1,2 (recall that Pi,j is the j th component of Pi ).

Set

D = 1

β2
, ηε := β2|Ω|

2π
log

1

ε
. (5.18)

Then D → +∞ is equivalent to β → 0.
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The stationary system for (GM) is the following system of elliptic equations:

⎧⎪⎨
⎪⎩

ε2�a − a + a2

h
= 0, a > 0 in Ω ,

�h − β2h + β2a2 = 0, h > 0 in Ω ,
∂a
∂ν

= ∂h
∂ν

= 0 on ∂Ω .

(5.19)

The following concerns the existence of symmetric K-peaked solutions in a two-
dimensional domain which generalizes the one-dimensional result Theorem 4.2.

THEOREM 5.5. (See [87].) Let P0 = (P 0
1 ,P 0

2 , . . . ,P 0
K) be a non-degenerate critical point

of F0(P) (defined by (5.16)). Moreover, we assume that the following technical condition
holds

if K > 1, then lim
ε→0

ηε �= K, (5.20)

where ηε is defined by (5.18).
Then for ε sufficiently small and D = 1

β2 sufficiently large, problem (5.19) has a solution

(aε, hε) with the following properties:

(1) aε(x) = ξε(
∑K

j=1 w(
x−P ε

j

ε
) + O(k(ε,β))) uniformly for x ∈ Ω̄ . Here w is the

unique solution of (2.8) and

ξε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
K

|Ω|
ε2
∫
R2 w2(y) dy

if ηε → 0,

1
ηε

|Ω|
ε2
∫
R2 w2(y) dy

if ηε → ∞,

1
K+η0

|Ω|
ε2
∫
R2 w2(y) dy

if ηε → η0,

(5.21)

and

k(ε,β) := ε2ξεβ
2. (5.22)

(By (5.21), k(ε,β) = O(min{ 1
log 1

ε

, β2}).)
Furthermore, P ε

j → P 0
j as ε → 0 for j = 1, . . . ,K .

(2) hε(x) = ξε(1 + O(k(ε,β))) uniformly for x ∈ Ω̄ .

5.3. Existence of multiple asymmetric spots

Similar to the on dimensional case, there are also multiple asymmetric spots in a two-
dimensional domain. But the existence of such patterns is only restricted when

lim
ε→0

D

log 1
ε

< +∞. (5.23)
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We first derive the algebraic equations for the heights (ξε,1, . . . , ξε,K).
For β > 0 let Gβ(x, ξ) be the Green function given by

{
�Gβ − β2Gβ + δξ = 0 in Ω ,
∂Gβ

∂ν
= 0 on ∂Ω .

(5.24)

Recall that β2 = 1
D

and therefore β ∼ 1√
log 1

ε

. Let G0(x, ξ) be the Green function defined

in (5.14).
In Section 2 of [87] a relation between G0 and Gβ is derived as follows

Gβ(x, ξ) = β−2

|Ω| + G0(x, ξ) + O
(
β2) (5.25)

in the operator norm of L2Ω) → H 2(Ω). (Note that the embedding of H 2(Ω) into L∞(Ω)

is compact.)
We define cut-off functions as follows: Let P ∈ ΩK . Introduce

χε,Pj
(x) = χ

(
x − Pj

δ

)
, x ∈ Ω, j = 1, . . . ,Km, (5.26)

where χ is a smooth cut-off function which is equal to 1 in B1(0) and equal to 0 in R2 \
B2(0).

Let us assume the following ansatz for a multiple-spike solution (aε, hε) of (GM):

{
aε ∼∑K

i=1 ξε,iw(
x−P ε

i

ε
)χε,Pi

(x),

hε(P
ε
i ) ∼ ξε,i ,

(5.27)

where w is the unique solution of (2.8), ξε,i , i = 1, . . . ,K , are the heights of the peaks, to
be determined later, and Pε = (P ε

1 , . . . ,P ε
K) are the locations of K peaks.

Then we can make the following calculations, which can be made rigorous with error
terms of the order O( 1

log 1
ε

) in H 2(Ω).

From the equation for hε ,

�hε − β2hε + β2a2
ε = 0,

we get, using (5.25),

hε

(
P ε

i

) =
∫

Ω

Gβ

(
P ε

i , ξ
)
β2a2

ε (ξ) dξ

=
∫

Ω

(
β−2

|Ω| + G0
(
P ε

i , ξ
)+ O

(
β2))β2
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×
(

K∑
j=1

ξ2
ε,jw

2
(

ξ − P ε
j

ε

)
χε,Pj

(ξ)

)
dξ

=
∫

Ω

(
1

|Ω| + β2G0
(
P ε

i , ξ
)+ O

(
β4))

×
(

K∑
j=1

ξ2
ε,jw

2
(

ξ − P ε
j

ε

)
χε,Pj

(ξ)

)
dξ.

Thus

ξε,i = ξ2
ε,i

ε2

|Ω|
∫

R2
w2(y) dy + ξ2

ε,iβ
2
∫

Ω

G0
(
P ε

i , ξ
)
w2
(

ξ − P ε
i

ε

)
χε,Pi

(ξ) dξ

+
∑
j �=i

(
1

|Ω| + β2G0
(
P ε

i ,P ε
j

))
ξ2
ε,j ε

2
∫

R2
w2(y) dy

+
K∑

j=1

ξ2
ε,j

(
O
(
β2ε4)+ O

(
β4ε2)). (5.28)

Here we have used that for j �= i

∫
Ω

G0
(
P ε

i , ξ
)
w2
(

ξ − P ε
j

ε

)
χε,Pj

(ξ) dξ

= ε2
∫

R2
G0
(
P ε

i , εy + P ε
j

)
w2(y) dy + e.s.t.

= ε2G0
(
P ε

i ,P ε
j

)∫
R2

w2(y) dy

+ ε3
K∑

l=1

∂G0(P
ε
i ,P ε

j )

∂P ε
j,l

∫
R2

w2(y)yl dy + O
(
ε4)

= ε2G0
(
P ε

i ,P ε
j

)∫
R2

w2(y) dy + O
(
ε4).

(Note that we have set y = ξ−P ε
j

ε
and we have used the relation

∫
R2

w2(y)yl dy = 0

which holds since w is radially symmetric.)
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Using (5.15) in (5.28) gives

ξε,i = ξ2
ε,i

ε2

|Ω|
∫

R2
w2(y) dy

+ ξ2
ε,iβ

2
∫

Ω

(
1

2π
log

1

|P ε
i − ξ | − H0

(
P ε

i , ξ
))

w2
(

ξ − P ε
i

ε

)
χε,P ε

i
(ξ) dξ

+
∑
j �=i

(
1

|Ω| + β2G0
(
P ε

i ,P ε
j

))
ξ2
ε,j ε

2
∫

R2
w2(y) dy

+
K∑

j=1

ξ2
ε,j

(
O
(
β2ε4)+ O

(
β4ε2))

= ξ2
ε,i

ε2

|Ω|
∫

R2
w2(y) dy + ξ2

ε,i

β2

2π
ε2 log

1

ε

∫
R2

w2(y) dy

+ ξ2
ε,i

β2

2π

(
ε2
∫

R2
w2(y) log

1

|y| dy − ε2H0
(
P ε

i ,P ε
i

)∫
R2

w2(y) dy

)

+
∑
j �=i

(
1

|Ω| + β2G0
(
P ε

i ,P ε
j

))
ξ2
ε,j ε

2
∫

R2
w2(y) dy

+
K∑

j=1

ξ2
ε,j

(
O
(
β2ε4)+ O

(
β4ε2)). (5.29)

Recall that H0 ∈ C2(Ω̄ × Ω).
Considering only the leading terms in (5.29) we get following

ξε,i =
K∑

j=1

ξ2
ε,j

ε2

|Ω|
∫

R2
w2(y) dy + ξ2

ε,i

β2

2π
ε2 log

1

ε

∫
R2

w2(y) dy

+
K∑

j=1

ξ2
ε,jO

(
β2ε2). (5.30)

Let us rescale

ξε,i = ξε ξ̂ε,i , where ξε = |Ω|
ε2
∫

R2 w2
. (5.31)

Then from (5.30) we get

ξε,i =
(

1

|Ω| + ηε

|Ω|
)

ξ2
ε,iε

2
∫

R2
w2(y) dy
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+
∑
j �=i

ξ2
ε,j

ε2

|Ω|
∫

R2
w2(y) dy +

K∑
j=1

ξ2
ε,jO

(
β2ε2),

where ηε was introduced in (5.18). Assuming that

ξ̂ε,i → ξ̂i , ηε → η0, (5.32)

we obtain the following system of algebraic equations

ξ̂ε,i =
K∑

j=1

ξ̂2
ε,j + ξ̂2

ε,iη0, i = 1, . . . ,K, (5.33)

which can be determined completely.
In fact, let

ρ(t) = t − η0t
2. (5.34)

Then (5.33) is equivalent to

ρ(ξ̂i) =
K∑

j=1

ξ̂2
j , i = 1, . . . ,K, (5.35)

which implies that

ρ(ξ̂i) = ρ(ξ̂j ) for i �= j. (5.36)

That is

(ξ̂i − ξ̂j )
(
1 − η0(ξ̂i + ξ̂j )

)= 0. (5.37)

Hence for i �= j we have

ξ̂i − ξ̂j = 0 or ξ̂i + ξ̂j = 1

η0
. (5.38)

The case of symmetric solutions (ξ̂i = ξ̂1, i = 2, . . . ,N) has been studied in [86] and
[87]. Let us now consider asymmetric solutions, i.e., we assume that there exists an
i ∈ {2, . . . ,N} such that ξ̂i �= ξ̂1. Without loss of generality, let us assume that

ξ̂2 �= ξ̂1,

which implies that

ξ̂1 + ξ̂2 = 1

η0
. (5.39)
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Let us calculate ξ̂j , j = 3, . . . ,K . If ξ̂j �= ξ̂1, then by (5.38), ξ̂j + ξ̂1 = 1
η0

, which implies

that ξ̂j = ξ̂2.
Thus for j � 3, we have either ξ̂j = ξ̂1 or ξ̂j = ξ̂2.
Let k1 be the number of ξ̂1’s in {ξ̂1, . . . , ξ̂K} and k2 be the number of ξ̂2’s in {ξ̂1, . . . , ξ̂K}.

Then we have k1 � 1, k2 � 1, k1 + k2 = K .
This gives

ξ̂1 − η0ξ̂
2
1 =

K∑
j=1

ξ̂2
j = k1ξ̂

2
1 + k2ξ̂

2
2 , (5.40)

ξ̂2 = 1

η0
− ξ̂1. (5.41)

Substituting (5.41) into (5.40), we obtain

ξ̂1 − η0ξ̂
2
1 = k1ξ̂

2
1 + k2

(
1

η0
− ξ̂1

)2

and therefore

(k1 + k2 + η0)ξ̂
2
1 − 2k2 + η0

η0
ξ̂1 + k2

η2
0

= 0. (5.42)

Equation (5.42) has a solution if and only if

(2k2 + η0)
2

η2
0

� 4
k2

η2
0

(k1 + k2 + η0). (5.43)

The strict inequality of (5.43) is equivalent to

η0 > 2
√

k1k2. (5.44)

It is easy to see that if (5.44) holds, then there are two different solutions to (5.42) which
are given by (ρ±, η±).

Therefore we arrive at the following conclusion.

LEMMA 5.6. Let η0 � 2
√

k1k2. Then the solutions of (5.33) are given by (ξ̂1, . . . , ξ̂N ) ∈
({ρ±, η±})K where the number of ρ±’s is k1 and the number of η±’s is k2.

If η0 > 2
√

k1k2, there exist two solutions (ρ±, η±).
If η0 = 2

√
k1k2, there exists one solution (ρ±, ρ±).

If η0 < 2
√

k1k2, there are no solutions (ρ±, ρ±).
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Let η0 > 2
√

k1k2 where k1 + k2 = K,k1, k2 � 1. By Lemma 5.6, there are two solutions
to (5.33). In fact, we can solve

ρ+ =
2k2 + η0 +

√
η2

0 − 4k1k2

2η0(η0 + K)
, ρ− =

2k2 + η0 −
√

η2
0 − 4k1k2

2η0(η0 + K)
, (5.45)

η+ =
2k1 + η0 −

√
η2

0 − 4k1k2

2η0(η0 + K)
, η− =

2k1 + η0 +
√

η2
0 − 4k1k2

2η0(η0 + K)
. (5.46)

Note that

ρ+ + η+ = 1

η0
, ρ− + η− = 1

η0
. (5.47)

Let (ρ, η) = (ρ+, η+) or (ρ, η) = (ρ−, η−). We drop “±” if there is no confusion.
Let (ξ̂1, . . . , ξ̂K) ∈ RK+ be such that

ξ̂j ∈ {ρ,η}, and the number of ρ’s in (ξ̂1, . . . , ξ̂K) is k1. (5.48)

Then there are k2 η’s in (ξ̂1, . . . , ξ̂K).
Let P = (P1, . . . ,PK) ∈ ΩK , where P is arranged such that

P = (P1,P2, . . . ,PK)

with

Pi = (Pi,1,Pi,2) for i = 1,2, . . . ,K.

For P ∈ ΩK we define

F̂0(P) =
K∑

k=1

H0(Pk,Pk)ξ̂
4
k −

∑
i,j,=1,...,K, i �=j

G0(Pi,Pj )ξ̂
2
i ξ̂2

j (5.49)

and

M̂0(P) = ∇2
PF̃0(P). (5.50)

Then we have the following theorem, which is on the existence of asymmetric K-peaked
solutions.

THEOREM 5.7. (See [88].) Let K � 2 be a positive integer. Let k1, k2 � 1 be two integers
such that k1 + k2 = K . Let

β2 = 1

D
, ηε = β2|Ω|

2π
log

√|Ω|
ε

,
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where |Ω| denotes the area of Ω , Assume that η0 = limε→0 ηε > 2
√

k1k2,

(T1) η0 �= K

and that

(T2) P0 = (
P 0

1 ,P 0
2 , . . . ,P 0

K

)
is a non-degenerate critical point of F̂0(P)

(defined by (5.49)).
Then for ε sufficiently small the stationary (GM) has a solution (aε, hε) with the follow-

ing properties:

(1) aε(x) =∑K
j=1 ξε,j (w(

x−P ε
j

ε
) + O( 1

D
)) uniformly for x ∈ Ω̄ , where w is the unique

solution of (2.8) and

ξε,j = ξε ξ̂ε,j , ξε = |Ω|
ε2
∫

R2 w2
. (5.51)

Further, (ξ̂ε,1, . . . , ξ̂ε,K) → (ξ̂1, . . . , ξ̂K) which is given by (5.48).
(2) hε(P

ε
j ) = ξε,j (1 + 1

D
) in H 2(Ω), j = 1, . . . ,K .

(3) P ε
j → P 0

j as ε → 0 for j = 1, . . . ,K .

5.4. Stability of symmetric K-spots

Next we study the stability and instability of the symmetric K-peaked solutions constructed
in Theorems 5.4 and 5.5.

In the strong coupling case, it turns out all solutions are stable:

THEOREM 5.8. (See [86].) Suppose D = O(1). Let P0 and (aε, hε) be defined as in Theo-
rem 5.4. Then for ε and τ sufficiently small (aε, hε) is stable if all eigenvalues of the matrix
MD(P0) = (∇2

P0
FD(P0)) are negative. (aε, hε) is unstable if one of the eigenvalues of the

matrix MD(P0) is positive.

In the weak coupling case, the stability of symmetric K-peaked solutions in a bounded
two-dimensional domain can be summarized as follows.

THEOREM 5.9. (See [87].) Let P0 be a non-degenerate critical point of F0(P) and for
ε sufficiently small and D = 1

β2 sufficiently large let (aε, hε) be the K-peaked solutions

constructed in Theorem 5.5 whose peaks approach P0.
Assume (5.20) holds and further that

(∗) P0 is a non-degenerate local maximum point of F0(P).

Then we have
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Table 1

Case 1 Case 2 Case 3 (η0 < K) Case 3 (η0 > K)

K = 1, τ small stable stable stable stable
K = 1, τ finite ? stable ? ?
K = 1, τ large unstable stable unstable stable
K > 1, τ small unstable stable unstable stable
K > 1, τ finite unstable stable unstable ?
K > 1, τ large unstable stable unstable stable

CASE 1. ηε → 0 (i.e., 2πD
|Ω| � log 1

ε
).

If K = 1 then there exists a unique τ1 > 0 such that for τ < τ1, (aε, hε) is linearly stable,
while for τ > τ1, (aε, hε) is linearly unstable.

If K > 1, (aε, hε) is linearly unstable for any τ � 0.

CASE 2. ηε → +∞ (i.e., 2πD
|Ω| � log 1

ε
).

(aε, hε) is linearly stable for any τ > 0.

CASE 3. ηε → η0 ∈ (0,+∞) (i.e., 2πD
|Ω| ∼ 1

η0
log 1

ε
).

If K > 1 and η0 < K , then (aε, hε) is linearly unstable for any τ > 0.
If η0 > K , then there exist 0 < τ2 � τ3 such that (aε, hε) is linearly stable for τ < τ2

and τ > τ3.
If K = 1, η0 < 1, then there exist 0 < τ4 � τ5 such that (aε, hε) is linearly stable for

τ < τ4 and linearly unstable for τ > τ5.

The statement of Theorem 5.9 is rather long. Let us therefore explain the results by the
following remarks.

REMARK 5.4.1. Assuming that condition (∗) holds, then for ε small the stability behavior
of (aε, hε) can be summarized in the following table:

REMARK 5.4.2. The condition (∗) on the locations P0 arises in the study of small (o(1))
eigenvalues. For any bounded smooth domain Ω , the functional F0(P), defined by (5.16),
always admits a global maximum at some P0 ∈ ΩK . The proof of this fact is similar to the
Appendix in [87]. We believe that in generic domains, this global maximum point P0 is
non-degenerate.

It is an interesting open question to numerically compute the critical points of F0(P) and
link them explicitly to the geometry of the domain Ω .

We believe that for other types of critical points of F0(P), such as saddle points, the
solution constructed in Theorem 5.5 should be linearly unstable. We are not able to prove
this at the moment, since the operator Lε is not self-adjoint.
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REMARK 5.4.3. Case 1 and Case 3 with η0 < K resemble the shadow system and Case 2
and Case 3 with η0 > K are similar to the strong coupling case.

From Case 2 and Case 3 of Theorem 5.9, we see that for multiple spikes (K > 1 ) large τ

may increase stability, provided that η0 > K . This is a new phenomenon in R2. It is known
that in R1, large τ implies linear instability for multiple spikes [8,34,59,60].

REMARK 5.4.4. We conjecture that in Case 3, τ2 = τ3. This will imply that for any τ � 0
and η0 > K , multiple spikes are stable, provided condition (∗) is satisfied. (It is possible
to obtain explicit values for τ2 and τ3.)

REMARK 5.4.5. Roughly speaking, assuming that condition (∗) holds and that τ is small,
then for ε � 1, DK(ε) = |Ω|

2πK
log 1

ε
is the critical threshold for the asymptotic behavior

of the diffusion coefficient of the inhibitor which determines the stability of K-peaked
solutions.

The proof of Theorem 5.9 is again divided by two parts: large eigenvalues and small eigen-
values. For small eigenvalues, we relate them to the functional F(P). For large eigenvalues,
we obtain a system of NLEPs:

�φi − φi + 2wφi

− 2[(1 + η0(1 + τλ0))
∫

R2 wφi +∑
j �=i

∫
R2 wφj ]

(K + η0)(1 + τλ0)
∫

R2 w2
w2 = λ0φi,

i = 1, . . . ,K. (5.52)

By diagonalization, we obtain two NELPs:

�φ − φ + 2wφ − 2η0

(K + η0)
∫

R2 w2

[∫
R2

w(y)φ(y)dy

]
w2 = λφ, (5.53)

and

�φ − φ + 2wφ − 2(K + η0(1 + τλ0))

(K + η0)(1 + τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ,

φ ∈ H 2(
R

2), (5.54)

where 0 < η0 < +∞ and 0 � τ < +∞.
Problem (5.53) is the same as (3.7). For problem (5.54), we have the following result

THEOREM 5.10.
(1) If η0 < K , then for τ small problem (5.54) is stable while for τ large it is unstable.
(2) If η0 > K , then there exists 0 < τ2 � τ3 such that problem (5.54) is stable for τ < τ2

or τ > τ3.
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PROOF. Let us set

f (τλ) = 2(K + η0(1 + τλ))

(K + η0)(1 + τλ)
. (5.55)

We note that

lim
τλ→+∞f (τλ) = 2η0

K + η0
=: f∞.

If η0 < K , then by Theorem 3.12(2), problem (3.52) with μ = f∞ has a positive eigenvalue
α1. Now by perturbation arguments (similar to those in [8]), for τ large, problem (5.54)
has an eigenvalue near α1 > 0. This implies that for τ large, problem (5.54) is unstable.

Now we show that problem (5.54) has no non-zero eigenvalues with non-negative real
part, provided that either τ is small or η0 > K and τ is large. (It is immediately seen that
f (τλ) → 2 as τλ → 0 and f (τλ) → 2η0

η0+K
> 1 as τλ → +∞ if η0 > K . Then Theorem

3.12 should apply. The problem is that we do not have control on τλ. Here we provide a
rigorous proof.)

We apply the following inequality (Lemma 3.8(1)): for any (real-valued function) φ ∈
H 2

r (R2), we have

∫
R2

(|∇φ|2 + φ2 − 2wφ2)+ 2

∫
R2 wφ

∫
R2 w2φ∫

R2 w2

−
∫

R2 w3

(
∫

R2 w2)2

(∫
R2

wφ

)2

� 0, (5.56)

where equality holds if and only if φ is a multiple of w.
Now let λ0 = λR + √−1λI , φ = φR + √−1φI satisfy (5.54). Then we have

L0φ − f (τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ. (5.57)

Multiplying (5.57) by φ̄—the conjugate function of φ—and integrating over R2, we obtain
that ∫

R2

(|∇φ|2 + |φ|2 − 2w|φ|2)

= −λ0

∫
R2

|φ|2 − f (τλ0)

∫
R2 wφ∫
R2 w2

∫
R2

w2φ̄. (5.58)

Multiplying (5.57) by w and integrating over R
2, we obtain that

∫
R2

w2φ =
(

λ0 + f (τλ0)

∫
R2 w3∫
R2 w2

)∫
R2

wφ. (5.59)
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Taking the conjugate of (5.59) we have

∫
R2

w2φ̄ =
(

λ̄0 + f (τ λ̄0)

∫
R2 w3∫
R2 w2

)∫
R2

wφ̄. (5.60)

Substituting (5.60) into (5.58), we have that∫
R2

(|∇φ|2 + |φ|2 − 2w|φ|2)

= −λ0

∫
R2

|φ|2 − f (τλ0)

(
λ̄0 + f (τ λ̄0)

∫
R2 w3∫
R2 w2

) | ∫
R2 wφ|2∫
R2 w2

. (5.61)

We just need to consider the real part of (5.61). Now applying the inequality (5.56) and
using (5.60) we arrive at

−λR � Re

(
f (τλ0)

(
λ̄0 + f (τ λ̄0)

∫
R2 w3∫
R2 w2

))

− 2 Re

(
λ̄0 + f (τ λ̄0)

∫
R2 w3∫
R2 w2

)
+
∫

R2 w3∫
R2 w2

,

where we recall λ0 = λR + √−1λI with λR, λI ∈ R.
Assuming that λR � 0, then we have∫

R2 w3∫
R2 w2

∣∣f (τλ0) − 1
∣∣2 + Re

(
λ̄0
(
f (τλ0) − 1

))
� 0. (5.62)

By the usual Pohozaev’s identity for (2.8) (multiplying (2.8) by y ·∇w(y) and integrating
by parts), we obtain that∫

R2
w3 = 3

2

∫
R2

w2. (5.63)

Substituting (5.63) and the expression (5.55) for f (τλ) into (5.62), we have

3

2

∣∣η0 + K + (η0 − K)τλ
∣∣2 + Re

(
(η0 + K)(1 + τ λ̄0)

(
(η0 + K)λ̄0

+ (η0 − K)τ |λ0|2
))

� 0

which is equivalent to

3

2
(1 + μ0τλR)2 + λR + (

μ0τ + τ + μ0τ
2|λ0|2

)
λR

+
(

3

2
μ2

0τ
2 + μ0τ − τ

)
λ2

I � 0 (5.64)
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where we have introduced μ0 := η0−K
η0+K

.
If η0 > K (i.e., μ0 > 0) and τ is large, then

3

2
μ2

0τ
2 + μ0τ − τ � 0. (5.65)

So (5.64) does not hold for λR � 0.
To consider the case when τ is small, we have to obtain an upper bound for λI .
From (5.58), we have

λI

∫
R2

|φ|2 = Im

(
−f (τλ0)

∫
R2 wφ∫
R2 w2

∫
R2

w2φ̄

)
.

Hence

|λI | �
∣∣f (τλ0)

∣∣
√∫

R2 w4∫
R2 w2

� C (5.66)

where C is independent of λ0.
Substituting (5.66) into (5.64), we see that (5.64) cannot hold for λR � 0, if τ is small. �

5.5. Stability of asymmetric K-spots

Finally we study the stability or instability of the asymmetric K-peaked solutions con-
structed in Theorem 5.7.

THEOREM 5.11. Let (aε, hε) be the K-peaked solutions constructed in Theorem 5.7 for ε

sufficiently small, whose peaks are located near P0. Further assume that

(∗) P0 is a non-degenerate local maximum point of F̂ (P).

Then we have:
(a) (Stability)

Assume that

2
√

k1k2 < η0 < K (5.67)

and

k1 > k2, (ρ, η) = (ρ+, η+).

Then, for τ small enough, (aε, hε) is stable.
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(b) (Instability)
Assume that either

η0 > K

or

τ is large enough.

Then (aε, hε) is linearly unstable.

A consequence of Theorem 5.11 is stable asymmetric patterns can exist in a two-
dimensional domain for a very narrow range of D, namely for

1

2πK
log

√|Ω|
ε

<
D

|Ω| <
1

4π
√

k1k2
log

√|Ω|
ε

(5.68)

and ε small enough, where k1 and k2 are two integers satisfying k1 + k2 = K,k1 � 1, k2 �
1. In most cases, asymmetric patterns are unstable.

6. High-dimensional case: N � 3

When N � 3, there are very few results on the full Gierer–Meinhardt system. The differ-
ence between N � 3 and N � 2 lies on the behavior of the Green function: when N � 2,
the Green function is locally constant (when N = 2, it is locally ∞). The limiting problem
is still a single equation (2.8). But when N � 3, the Green function is like 1

|x−y|N−2 . The
limiting problem when N � 3 becomes

⎧⎪⎨
⎪⎩

�a − a + ap

hq = 0 in R
N ,

�h + ar

hs = 0 in R
N ,

a,h > 0, a,h → 0 as |y| → +∞.

(6.1)

Problem (6.1) seems out of reach at this moment. We believe that there should a radially
symmetric solution to (6.1) which is also stable.

As far as the author knows, the only result in higher-dimensional case is the existence of
radially symmetric layer solutions [62].

Let Ω = BR be a ball of radius R in R
N . By scaling, we may take D = 1 and obtain

formally the following elliptic system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2�a − a + ap

hq = 0 in BR ,

�h − h + am

hs = 0 in BR

vsa > 0, h > 0 in BR ,
∂a
∂ν

= ∂a
∂ν

= 0 on BR ,

(6.2)
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where (p, q,m, s) satisfies

p > 1, q > 0, m > 0, s � 0,
qm

(p − 1)(s + 1)
> 1. (6.3)

(The case of the whole R
N is also included here, by taking R = +∞.)

Note that in (6.2), we have replaced ar by am since we will use r = |x| to denote the
radial variable.

We first define two functions, to be used later: let J1(r) be the radially symmetric solu-
tions of the following problem

J ′′
1 + N − 1

r
J ′

1 − J1 = 0, J ′(0) = 0, J1(0) = 1, J1 > 0. (6.4)

The second function, called J2(r), satisfies

J ′′
2 + N − 1

r
J ′

2 − J2 + δ0 = 0, J2 > 0, J2(+∞) = 0, (6.5)

where δ0 is the Dirac measure at 0.
The functions J1(r) and J2(r) can be written in terms of modified Bessel’s functions. In

fact

J1(r) = c1r
2−N

2 Iν(r), J2(r) = c2r
2−N

2 Kν(r), ν = N − 2

2
(6.6)

where c1, c2 are two positive constants and Iν,Kν are modified Bessel functions of order ν.
In the case of N = 3, J1, J2 can be computed explicitly:

J1 = sinh r

r
, J2(r) = e−r

4πr
. (6.7)

Let w(y) be the unique solution for ODE 2.103. Let R > 0 be a fixed constant. We define

J2,R(r) = J2(r) − J ′
2(R)

J ′
1(R)

J1(r) (6.8)

and a Green function GR(r; r ′)

G′′
R + N − 1

r
G′

R − GR + δr ′ = 0, G′
R(0; r ′) = 0, G′

R(R; r ′) = 0. (6.9)

Note that

J ′
2,R(R) = 0, lim

R→+∞J2,R(r) = J2(r). (6.10)
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For t ∈ (0,R), set

MR(t) := (N − 1)(p − 1)

qt
+ J ′

1(t)

J1(t)
+ J ′

2,R(t)

J2,R(t)
. (6.11)

When R = +∞, J2,+∞(r) = J2(r). We denote G+∞(r; r ′) as G(r; r ′) and M+∞(t) as
M(t). That is,

G(r; r ′) = c0(r
′)N−1

{
J2(r

′)J1(r), for r < r ′,
J1(r

′)J2(r), for r > r ′,
(6.12)

M(t) := (N − 1)(p − 1)

qt
+ J ′

1(t)

J1(t)
+ J ′

2(t)

J2(t)
. (6.13)

Then we have the following existence result on layered solutions.

THEOREM 6.1. (See [62].) Let N � 2. Assume that there exist two radii 0 < r1 < r2 < R

such that

MR(r1)MR(r2) < 0. (6.14)

Then for ε sufficiently small, problem (6.2) has a solution (aε,R,hε,R) with the following
properties:

(1) aε,R,hε,R are radially symmetric,

(2) aε,R(r) = ξ

q
p−1
ε,R w( r−tε

ε
)(1 + o(1)),

(3) aε,R(r) = ξε,R(GR(tε; tε))−1GR(r; tε)(1 + o(1)), where GR(r; tε) satisfies (6.9),
ξε,R is defined by the following

ξε,R =
(

ε

(∫
R

wm

)
GR(tε; tε)

) (1+s)(p−1)−qm
qm

(6.15)

and tε ∈ (r1, r2) satisfies limε→0 MR(tε) = 0.

It remains to check condition (6.14), which can be verified numerically. Under some
conditions on p,q , we can obtain the following corollary.

COROLLARY 6.2. Assume that the following condition holds:

(N − 2)q

N − 1
+ 1 < p < q + 1. (6.16)

Then there exists an R0 > 0 such that for R > R0 and ε sufficiently small, problem (6.2)
has two radially symmetric solutions (ai

ε,R,hi
ε,R) concentrating on sphere {r = ti} with

MR(ti) = 0, i = 1,2, and 0 < t1 < t2 < R, i = 1,2.
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We remark that Corollary 6.2 is the first rigorous result on the existence to (6.2) of
positive solutions in dimension N � 3. Next we consider the existence of bound states.
That is, we consider the following elliptic system in R

N :

⎧⎪⎨
⎪⎩

ε2�a − a + ap

hq = 0 in R
N ,

�h − h + am

hs = 0 in R
N ,

a,h > 0, a,h → 0 as |x| → +∞.

(6.17)

We have the following result.

THEOREM 6.3. (See [62].) Let N � 2. Assume that there exist two radii 0 < r1 < r2 <

+∞ such that

M(r1)M(r2) < 0. (6.18)

Then for ε sufficiently small, problem (6.17) has a solution (aε, hε) with the following
properties:

(1) aε,hε are radially symmetric,

(2) aε(r) = ξ

q
p−1
ε w( r−rε

ε
)(1 + o(1)),

(3) hε(r) = ξε(G(rε; rε))−1G(r; rε)(1 + o(1)), where ξε is defined at the following

ξε =
(

ε

(∫
R

wm

)
G(rε; rε)

) (1+s)(p−1)−qm
qm

(6.19)

and rε ∈ (r1, r2) satisfying limε→0 M(rε) = 0.

Similarly we have the following corollary.

COROLLARY 6.4. Assume that N � 2 and that the condition (6.16) holds. Then for ε

sufficiently small, problem (6.2) has a radially symmetric bound state solution (aε, hε)

which concentrates on a sphere {r = t0} where M(t0) = 0.

By using the same method, it is not difficult to generalize the results of Theorem 6.1 to
other symmetric domains, such as annulus or the exterior of a ball. We omit the details.

Several interesting questions are left open. First, can multiple layered solutions to (6.2)
exist? Second, it would be an interesting question to study the stability of these “ring-like”
solutions. Numerical computations in two dimension indicate that the “ring-like” solutions
constructed in Theorem 6.1 are unstable and will break into several spots due to angular
fluctuations. Third, if we vary R from 0 to +∞, what is the relation between the layered
solution constructed in [52] for the single equation (2.4) and the solutions in Theorem 6.1?
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7. Conclusions and remarks

In this chapter, I have surveyed the most recent results on the study of Gierer–Meinhardt
system.

First, we consider the case D = +∞. In this case, the state-state problem becomes a sin-
gularly perturbed elliptic Neumann problem (2.4). Using the LEM, we established various
existence results on concentrating solutions. In particular, Theorem 2.5 gives a lower bound
on the number of solutions to (2.4). Several interesting questions are associated with (2.4).
First, is there a lower bound on the number of boundary spikes? What is the optimal bound
on the number of solutions to (2.4)? The followings are just some related conjectures

CONJECTURE 1. Suppose the mean curvature function H(P ) has l local minimum points.
Then there is at least

C

εl(N−1)

number of boundary spikes to (2.4).

CONJECTURE 2. Suppose the distance function d(P, ∂Ω) has l local maximum points.
Then there is at least

C

εNl

number of interior spikes to (2.4).

CONJECTURE 3. Suppose we have the energy bound Jε[uε] � Cεm for some m � N .
Assume that the concentration set Γε = {uε > 1

2 } is connected. Then the limiting set Γ =
limε→0 Γε has Hausdorff dimension N − m.

Second, we consider the stability of spike solutions to the shadow system (2.2). By
studying both small and large eigenvalues, we have completely characterized the stability
(or instability) in the case of r = 2,1 < p < 1 + 4

N
or r = p + 1. The study of the NLEP

(3.52) is not complete yet. Many interesting questions are still open: the case of general r ,
the case of large τ , the uniqueness of Hopf bifurcation, etc. The non-linear metastability of
interior spike solutions is studied in [6]. The stability of boundary spikes is studied in [32],
through a formal approach. It can be proved that when D > D0(ε) � 1, the full Gierer–
Meinhardt system converges to the shadow system [59,60,77,78]. However, the critical
threshold D0(ε) seems unknown.

Third, we consider the one- and two-dimensional Gierer–Meinhardt systems. For steady
states, we established the existence of symmetric and asymmetric K-peaked spikes. In 1D,
the bifurcation of asymmetric K-spikes occur when D < DK . In 2D, the bifurcation of
asymmetric K-spikes occur when D ∼ log 1

ε
. We also obtain critical thresholds for the

stability of K-peaked solutions: If ε � 1 there are stability thresholds

D1(ε) > D2(ε) > D3(ε) > · · · > DK(ε) > · · ·
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such that if

lim
ε→0

DK(ε)

D
> 1

then the K-peaked solution is stable, and if

lim
ε→0

DK(ε)

D
< 1

then the K-peaked solution is unstable. In 1D, the critical threshold is DK ∼ 1
K2 . In 2D,

the critical threshold is
log

√|Ω|
ε

2πK
. In 1D, the small eigenvalues determine the critical thresh-

olds, while in 2D, the large eigenvalues give the critical thresholds. An interesting ques-
tion is to obtain the next order term in the critical threshold for 2D (which should be
O(1) and location-dependent). The dynamics of multiple spikes in 1D and 2D is com-
pletely open. In 1D, the dynamical equation for the positions of the spikes is a system of
algebraic-differential-equations (ADE). A matched asymptotic analysis is given in [33]. In
2D, the dynamics of two well-separated spots is studied in [20] and it is shown that the two
spots will repel each other, provided that the initial distance between the two spots is large
enough. In a general two-dimensional domain, the dynamics of multiple spots should be
governed by ∇FD(P) or ∇F0(P).

Finally, it is almost completely open as regards to three-dimensional Gierer–Meinhardt
system. The main difficulty is the study of the coupled system (6.1) which requires some
new insights. A layered bound state is constructed, but most likely it is unstable. An inter-
esting question is to generalize Theorem 6.1 to general domains.

Although the analysis in this paper was carried out for the Gierer–Meinhardt system, the
results can certainly be generalized to a much wide class of non-local reaction diffusion
systems that have localized spike solutions.
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