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Abstract. In this paper we study axially symmetric solutions of Allen-Cahn
equation with finite Morse index. It is shown that there does not exist such a
solution in dimensions between 4 and 10. In dimension 3, we prove that these
solutions have finitely many ends. Furthermore, the solution has exactly two ends
if its Morse index equals 1.

1. Introduction

In this paper we study axially symmetric solutions of the Allen-Cahn equation

(1.1) ∆u = W ′(u), in Rn+1.

Here W (u) is a general double well potential, that is, W ∈ C4([−1, 1]) satisfying

• W > 0 in (−1, 1) and W (±1) = 0;
• W ′(±1) = 0 and W ′′(−1) = W ′′(1) = 2;
• W is even and 0 is the unique critical point of W in (−1, 1).

A typical model is given by W (u) = (1− u2)2/4.
For this class of double well potential, there exists a unique solution to the fol-

lowing one dimensional problem

(1.2) g′′(t) = W ′(g(t)), g(0) = 0 and lim
t→±∞

g(t) = ±1.

Moreover, as t→ ±∞, g(t) converges exponentially to ±1 and the following quantity
is well defined

σ0 :=

∫ +∞

−∞

[
1

2
g′(t)2 +W (g(t))

]
dt ∈ (0,+∞).
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In fact, as t→ ±∞, the following expansions hold: there exists a positive constant
A such that for all |t| large,

g(t) = (1− Ae−
√

2|t|)sgn(t) +O(e−2
√

2|t|),

g′(t) =
√

2Ae−
√

2|t| +O(e−2
√

2|t|),

g′′(t) = −2Ae−
√

2|t| +O(e−2
√

2|t|).

Denote points in Rn+1 by (x1, · · · , xn, z) and let r :=
√
x2

1 + · · ·+ x2
n.

Definition 1.1. • A function u is axially symmetric if u(x1, · · · , xn, z) =
u(r, z).
• A solution of (1.1) is stable in a domain Ω ⊂ Rn+1 if for any ϕ ∈ C∞0 (Ω),

QΩ(ϕ) :=

∫
Ω

[
|∇ϕ|2 +W ′′(u)ϕ2

]
≥ 0.

• A solution of (1.1) has finite Morse index in Rn+1 if

sup
R>0

dim
{
X ⊂ C∞0 (Bn+1

R (0)) : QbX< 0
}
< +∞.

It is well known that the finite Morse index condition is equivalent to the condition
of being stable outside a compact set, see [6].

Definition 1.2. An axially symmetric solution of (1.1) has finitely many ends if
for some R > 0,

• u 6= 0 in Bn
R(0)× {|z| > R};

• outside CR := Bn
R(0)×R, {u = 0} consists of finitely many graphs Γα, where

Γα = {z = fα(r)} , α = 1, · · · , Q,

and f1 < · · · < fQ.

Our first main result is

Theorem 1.3. If 3 ≤ n ≤ 9, any axially symmetric solution of (1.1), which is
stable outside a cylinder CR, depends only on z.

In other words, the solution has exactly one end or it is one dimensional, i. e. all
of its level sets are hyperplanes of the form {z = t}. Therefore for 3 ≤ n ≤ 9, there
does not exist axially symmetric solutions which is stable outside a cylinder, except
the trivial ones (i.e., constant solutions ±1 and g in (1.2)).

The dimension bound in this theorem is sharp. On one hand, if n ≥ 10, there
do exist stable, axially symmetric solutions of (1.1) in Rn+1 with two ends, see
Agudelo-Del Pino-Wei [1]. (The two-end solutions constructed in this paper for
3 ≤ n ≤ 9 are also shown to be unstable by a different argument. Our proof of
Theorem 1.3 will rely on an idea of Dancer and Farina [4].) On the other hand,
nontrivial axially symmetric solutions with finite Morse index in R3 also exist. (See
del Pino-Kowalczyk-Wei [5].) However we show that
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Theorem 1.4. If n = 2, an axially symmetric solution of (1.1) with finite Morse
index has finitely many ends. Moreover, there exists a constant C such that for any
x ∈ R3 and R > 0,

(1.3)

∫
B3
R(x)

[
1

2
|∇u|2 +W (u)

]
≤ CR2.

Concerning solutions with a low Morse index we first show that

Theorem 1.5. If n = 2, any axially symmetric, stable solution of (1.1) depends
only on z.

Next we prove that

Theorem 1.6. Any axially symmetric solution of (1.1) with Morse index 1 in R3

has exactly two ends.

Two end solutions in R3 have been studied in detail in Gui-Liu-Wei [9]. They
showed that for each k ∈ (

√
2,+∞) there exist two-ended axially symmetric so-

lutions whose zero level sets approximately look like {z = ±k log r}. Parallel to
Schoen’s result in minimal surfaces [11], one may ask the following natural question:

Conjecture: All two-ended solutions to Allen-Cahn equation in R3 must be axially
symmetric.

We introduce some notations used in the proof of Theorems 1.3-1.6. Taking (r, z)
as coordinates in the plane, after an even extension to {r < 0}, an axially symmetric
function u can be viewed as a smooth function defined on R2. Now (1.1) is written
as

(1.4) urr +
n− 1

r
ur + uzz = W ′(u).

We use subscripts to denote differentiation, e.g. uz := ∂u
∂z

. A nodal domain of uz is
a connected component of {uz 6= 0}. Sometimes we will identify various objects in
Rn+1 with the corresponding ones in the (r, z)-plane, if they have axial symmetry.

To prove Theorems 1.3-1.6 we follow from a strategy used by the second and the
third authors [18]. One of the main difficulties is the possibility of an infinite tree
of nodal domains of uz. Here we explore the decaying properties of the curvature to
exclude this scenario.

The remaining part of this paper is organized as follows. In Section 2 we give a
curvature decay estimate on level sets of u. This curvature estimate allows us to
determine the topology and geometry of ends in Section 3. In Section 4 we show
that interaction between different ends is modeled by a Toda system. The case
3 ≤ n ≤ 9 is analysed in Section 5, while Section 6 is devoted to the proof of the
n = 2 case. Finally, Theorem 1.5 and Theorem 1.6 are proved in Section 7.
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2. Curvature decay

In this section u denotes an axially symmetric solution in Rn+1, which is stable
outside a cylinder CR. We will establish a technical result on curvature decay of
level sets of u.

Let us first recall several results on stable solutions of (1.1). By [12], given a
domain Ω ⊂ Rn+1, the stability of u in Ω is equivalent to the following Sternberg-
Zumbrun inequality

(2.1)

∫
Ω

|∇ϕ|2|∇u|2 ≥
∫

Ω

ϕ2|B(u)|2|∇u|2, ∀ϕ ∈ C∞0 (Ω).

In the above,

(2.2) |B(u)|2 :=
|∇2u|2 − |∇|∇u||2

|∇u|2
= |A|2 + |∇T log |∇u||2,

where A is the second fundamental form of the level set of u and ∇T is the tangential
derivative along the level set.

The following Stable De Giorgi theorem in dimension 2 is well known, see [8].

Theorem 2.1. Suppose u is a stable solution of (1.1) in R2. Then u is one dimen-
sional. In particular, |B(u)|2 ≡ 0.

Using this theorem we show that away from the z-axis, u looks like an one dimen-
sional solution at O(1) scales.

Proposition 2.2. Suppose u is an axially symmetric solution of (1.4) in Rn+1,
which is stable outside a cylinder CR. Then for any ε > 0, there exists an R(ε) > R
such that for any r ≥ R(ε) and z ∈ R where u(r, z) = 0, we have

‖u− g‖C2(Bn+1
2 (r,z)) ≤ ε.

Here, by abusing notations, g denotes a one dimensional solution in the (r, z)-plane.

Proof. Take an arbitrary sequence Ri → +∞ and zi ∈ R with u(Ri, zi) = 0. We need
to show that, after passing to a subsequence, ui(r, z) := u(Ri + r, zi + z) converges
to a one dimensional solution of (1.1) in C2

loc(R2).
By standard elliptic estimates we may assume ui converge to u∞ in C2

loc(R2).
Passing to the limit in (1.4) we see u∞ is a solution of (1.1) in R2.

Because u is axially symmetric and stable outside CR, there exists an axially
symmetric function ϕ, which is positive outside CR, such that

ϕrr +
n− 1

r
ϕr + ϕzz = W ′′(u)ϕ, outside CR.

Define

ϕi(r, z) :=
1

ϕ(Ri, zi)
ϕ(Ri + r, zi + z).

For any R > 0, it satisfies

ϕirr +
n− 1

Ri + r
ϕir + ϕizz = W ′′(ui)ϕ

i, in B2
R(0).
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By definition, ϕi(0) = 1 and ϕi > 0. Then by Harnack inequality and standard
elliptic estimates, after passing to a subsequence we may take a limit ϕi → ϕ∞ in
C2
loc(R2). Here ϕ∞ satisfies

ϕ∞rr + ϕ∞zz = W ′′(u∞)ϕ∞, ϕ∞ > 0 in R2.

Hence u∞ is a stable solution of (1.1) in R2. By Theorem 2.1, u∞ is one dimensional.
�

Corollary 2.3. Suppose u is an axially symmetric solution of (1.4) in Rn+1, which
is stable outside a cylinder CR. For any b ∈ (0, 1), there exists an R(b) > 0 such
that |∇u| 6= 0 in {|u| < 1− b} \ CR(b). Moreover, if (r, z) ∈ {|u| < 1− b} \ CR(b) and
r → +∞,

|B(u)(r, z)| → 0.

The main technical tool we need in this paper is the following decay estimate on
|B(u)|2.

Theorem 2.4. Suppose u is an axially symmetric solution of (1.4) in Rn+1, which
is stable outside a cylinder CR. For any b ∈ (0, 1), there exists a constant C(b) such
that in {|u| < 1− b} \ CR(b),

|B(u)(r, z)|2 ≤ C(b)r−2

and
|H(u)(r, z)| ≤ C(b)r−2.

In the above H(u)(r, z) denotes the mean curvature of the level set {u = u(r, z)}
at the point (r, z). The proof of this theorem is similar to the two dimensional case
in [18]. By a blow up method, it is reduced to the second order estimate established
in [17]. Note that here no condition on the dimension n is needed, because as in
the proof of Proposition 2.2, the limiting problem after blow up is essentially a two
dimensional problem and then the estimate in [17] is applicable.

3. Geometry of ends

In this section u denotes an axially symmetric solution of (1.4) in Rn+1, n ≥ 2,
which is stable outside a cylinder CR. Here and henceforth, a small constant b ∈ (0, 1)
will be fixed. Notations introduced in the previous section will be kept, too. Take a
constant R1 > R(b) so that it satisfies

(3.1) C(b)R−2
1 < R−1

1 .

By Theorem 2.4, {u = 0} \ CR1 = ∪α∈AΓα for an index set A. For each α, Γα is a
connected smooth embedded hypersurface with or without boundary. Furthermore,
Γα ∩ Γβ = ∅ if α 6= β. Finally, since u is axially symmetric, for each α ∈ A, Γα is
also axially symmetric. As a consequence, Γα is identified with a smooth curve in
the (r, z) plane.

Viewing Γα as a smooth curve in the (r, z) plane and r as a function defined on
Γα, we have

Lemma 3.1. Every critical point of r in the interior of Γα is a strict local minima.
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Proof. Assume by the contrary, there exists a point (r∗, z∗) in the interior of one Γα,
which is a critical point of r but not a strict local minima. By Proposition 2.2 and
Corollary 2.3, in a neighborhood of (r∗, z∗), Γα = {r = fα(z)}. By our assumptions,
fα(z∗) = r∗, f

′
α(z∗) = 0 and f ′′α(z∗) ≤ 0. Hence

HΓα(r∗, z∗) ≥
1

r∗
.

In view of (3.1), this is a contradiction with Theorem 2.4. �

Since Γα is a connected smooth curve with end points (if there are) in ∂CR1 , by
this lemma we see there is no local maxima and at most one local minima of r in
the interior of Γα. There are two cases:

Type I. Γα is diffeomorphic to [0,+∞) and it has exactly one end point on ∂CR1 ;
Type II. Γα is diffeomorphic to (−∞,+∞) and its boundary is empty.

If Γα is of type I, r is a strictly increasing function with respect to a parametriza-
tion of Γα. Hence it can be represented by the graph {z = fα(r)}, where fα ∈
C4[R1,+∞). (Higher order regularity on fα follows by applying the implicit func-
tion theorem to u.)

If Γα is of type II, there exists a point (Rα, zα), which is the unique minima of r on
Γα. As in Type I case, Γα \ {(Rα, zα)} = Γ+

α ∪ Γ−α , where Γ±α can be represented by
two graphs {z = f±α (r)}. Here f+

α > f−α on (Rα,+∞) and f+
α (Rα) = f−α (Rα) = zα.

Proposition 3.2. There exists a constant R2 > R1 such that for any type II end
Γα, it holds that Rα < R2.

Proof. Assume by the contrary, there exists a sequence of type II ends Γk such that
Rk → +∞.

By Theorem 2.4, the rescalings Σk := R−1
k [Γk − (0, zk)] have uniformly bounded

curvatures and their mean curvatures converge to 0 uniformly. By standard elliptic
estimates, after passing to a subsequence of k, Σk converges smoothly to an axially
symmetric, smooth minimal hypersurface Σ∞. Moreover, there exist two functions
f±∞ ∈ C2((1,+∞)) such that

Σ∞ \ {(1, 0)} =
{

(r, z) : z = f±∞(r)
}
.

Hence Σ∞ is the standard catenoid. By [13], it is unstable. (Indeed, its Morse index
is exactly 1.)

On the other hand, we claim that Σ∞ inherits the stability from u, thus arriving
at a contradiction. To this end, let uk(r, z) := u(Rkr, Rk(zk + z)). It is a solution of
the singularly perturbed Allen-Cahn equation

∆uk = R2
kW

′(uk).

Since u is stable outside CR1 , uk is stable outside CR1/Rk . Note that Σk is a connected
component of {uk = 0} and it is totally located outside C1. Next we divide the
discussion into two cases.

• Suppose there exists another connected component of {uk = 0}, denoted

by Σ̃k, also converging to Σ∞ in a ball Br(p) for some r > 0 and p ∈ Σ∞.
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By Theorem 2.4, Σ̃k enjoys the same regularity as for Σk. Hence by the

axial symmetry of Σ̃k and the uniqueness of catenoid, Σ̃k converges to Σ∞
everywhere. In this case we can construct a positive Jacobi field on Σ∞ as
in [3, Theorem 4.1], which implies the stability of Σ∞
• Suppose there is only one such a component in a fixed neighborhood N of

Σ∞. Since Σ∞ ⊂ {r ≥ 1}, we can take N ⊂ {r > 1/2}. Hence uk is stable in
N . Then for any ball Br(p) with r > 0 and p ∈ Σ∞, there exists a constant
C > 0 such that∫

N∩Br(p)

[
1

2Rk

|∇uk|2 +RkW (uk)

]
≤ C.

Because uk is stable in N ∩ Br(p), the stability of Σ∞ follows by applying
the main result of [14].

The contradiction implies that Rα is bounded and the proposition is proven. �

Now {u = 0} \ CR2 = ∪αΓα, where each Γα is of Type I. Denote Γα ∩ {r = R2} =
{(R2, zα)}. After perhaps enlarging R2, by Proposition 2.2, there is a positive lower
bound for |zα−zβ|, ∀α 6= β. Hence we can take the index α to be integers and we will
relabel indices so that zα < zβ for any α < β. By continuity and the embeddedness
of Γα, it holds that fα < fβ in [R2,+∞) for any α < β.

Define the functions

f+
α (r) :=

fα(r) + fα+1(r)

2
, for r ∈ [R2,+∞),

f−α (r) :=
fα(r) + fα−1(r)

2
, for r ∈ [R2,+∞).

By definition, f+
α = f−α+1. In the above we take the convention that f+

α (r) = +∞
(or f−α (r) = −∞) if there does not exist any other end lying above (respectively
below) Γα. Let

Mα :=
{

(r, z) : f−α (r) < z < f+
α (r), r > R2

}
.

The following result describes the asymptotic behavior of fα as r → +∞.

Lemma 3.3. There exists a constant C such that for each α, in [R2,+∞) it holds
that

(3.2)


|fα(r)− fα(R2)| ≤ C log r,

|f ′α(r)| ≤ Cr−1,

|f ′′α(r)|+ |f (3)
α (r)| ≤ Cr−2.

Proof. By Proposition 2.2 and implicit function theorem, for t ∈ (−1 + b, 1 − b),
there exists a continuous family of curves {z = fα,t(r)} satisfying fα,0 = fα and
u(r, fα,t(r)) ≡ t on [R2,+∞). These curves will be denoted by Γα,t. Next we divide
the proof into four steps.

Step 1. Denote the second fundamental form of Γα,t by Aα,t, the mean curvature
by Hα,t. By the bound on Aα,t in Theorem 2.4 and the axial symmetry of Γα,t, there
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exists a constant C (independent of t ∈ [−1 + b, 1− b]) such that for any r ≥ R2,

(3.3) |f ′′α,t(r)| ≤
C

r
, |f ′α,t(r)| ≤ C.

Step 2. For any t ∈ [−1+ b, 1− b] and λ > 0, let Σt,λ := λΓα,t = {z = fλ,t(r), r ≥
λR2}, where fλ,t(r) := λfα,t(λ

−1r). By Theorem 2.4, as λ → 0, fλ,t are uniformly

bounded in C1,1
loc (0,+∞). Hence after passing to a subsequence of λ→ 0, fλ,t → f0,t

in C1
loc(0,+∞). Here f0,t satisfies the minimal surface equation in the weak sense on

Rn \ {0}. It is directly verified that f0,t ≡ 0. Since this is independent of the choice
of subsequences of λ→ 0, we obtain

(3.4) lim
r→+∞

f ′α,t(r) = 0, ∀t ∈ [−1 + b, 1− b].

Step 3. By the bound on mean curvature in Theorem 2.4, in (R2,+∞), fα,t
satisfies

(3.5)
f ′′α,t(r)(

1 + |f ′α,t(r)|2
)3/2

+
n− 1

r

f ′α,t(r)(
1 + |f ′α,t(r)|2

)1/2
= O

(
r−2
)
.

Combining this equation with (3.4), an ordinary differential equation analysis (e.g
by rewriting this ODE in the new variable s := log r) leads to the estimates for fα,t,
f ′α,t and f ′′α,t, where the constant C is independent of t ∈ [−1 + b, 1− b].

Step 4. Differentiating the relation u(r, fα,t(r)) ≡ t in r leads to

(3.6) ur + uzf
′
α,t = 0.

Combining this relation with the estimate on f ′α,t gives

(3.7) |ur(r, z)| ≤ Cr−1, in {|u| < 1− b} ∩ {r > R2}.
Differentiating (1.4) in r we get the elliptic equation satisfied by ur:

(3.8) ∆ur = W ′′(u)ur +
n− 1

r2
ur.

By standard interior gradient estimates we obtain

(3.9) |urz(r, z)| ≤ Cr−1, in {|u| < 1− 2b} ∩ {r > R2}.
Differentiating (3.6) in r again, we obtain

urr + 2urzf
′
α,t + uzz

∣∣f ′α,t∣∣2 + uzf
′′
α,t = 0.

Substituting (3.9) and the estimates on f ′′α,t and f ′α,t into this identity, we obtain

(3.10) |urr(r, z)| ≤ Cr−2, in {|u| < 1− 2b} ∩ {r > R2}.
Differentiating (3.8) in r once again, we obtain the equation for urr:

∆urr = W ′′(u)urr +W (3)(u)u2
r +

2(n− 1)

r2
urr +

2(n− 1)

r3
ur.

Applying standard interior gradient estimates we obtain

(3.11) |urrr(r, z)|+ |urrz(r, z)| ≤ Cr−2, in {|u| < 1− 3b} ∩ {r > R2}.
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Differentiating (3.6) twice in r and evaluating at t = 0, we get

urrr + 3urrzf
′
α + 3urzz|f ′α|2 + 2urzf

′′
α + uzzz|f ′α|3 + 3uzzf

′
αf
′′
α + uzf

(3)
α = 0.

Substituting (3.11) and estimates on f ′α, f ′′α into this equation, by noting that |uz|
has a definitive lower bound on Γα ∩ {r > R2} (by combining Corollary 2.3 with

(3.6)), we get the estimate on f
(3)
α . �

Two corollaries follow from this lemma. First the bound on f ′α implies an area
growth bound for Γα.

Corollary 3.4. There exists a constant C such that for each Γα, if R is large enough,

Area (Γα ∩ (CR \ CR2)) ≤ CRn.

Next, by this lemma and Proposition 2.2, we obtain

Corollary 3.5. For each Γα , there exists an Rα such that uz has a definite sign in
the open set {(r, z) : r > Rα, |z − fα(r)| < 1}.
Proof. By Proposition 2.2, there exists an Rα,1 such that for any r > Rα,1, u is very
close to a one dimensional solution g(er ·(x, z)−λ) in B2((r, fα(r))), where er is a unit
vector and λr is a constant. In particular, there is only one connected component
of {u = 0} in this ball, which of course is just Γα. By Lemma 3.3, there exists
another Rα,2 such that if r ≥ Rα,2, then {u = 0}∩B2((r, fα(r))) is very close to the
line {z = fα(r)}. Combining these two facts, we see if r > Rα := max{Rα,1, Rα,2},
then er is very close to the z direction or the minus z direction. Because g′ has
a definite positive lower bound in any compact set of R, uz has a definite sign in
B1((r, fα(r)). Since {(r, z) : r > Rα, |z − fα(r)| < 1} is a connected open set, the
conclusion follows. �

The following lemma gives a growth bound of the energy localized in the domain
around each end.

Lemma 3.6. For any α, there exists a constant Cα such that∫
Mα∩(Bn+1

R \CR2)

[
1

2
|∇u|2 +W (u)

]
≤ CαR

n, ∀R > R2.

Proof. This growth bound follows from the following two estimates.
Claim 1. For any L > 0 and R > 0,∫

{R2<r<R,fα(r)−L<z<fα(r)+L}

[
1

2
|∇u|2 +W (u)

]
≤ CαLR

n.

This follows by combining the trivial bound 1
2
|∇u|2 + W (u) ≤ C, co-area formula

and the area growth bound in Corollary 3.4.
Claim 2. If L is sufficiently large,∫

{R2<r<R, fα(r)+L<z<fα+1(r)−L}

[
1

2
|∇u|2 +W (u)

]
≤ CαR

n.

Note that here fα+1 could be +∞ everywhere, that is, there is no end lying above
Γα.
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Assume the constant b > 0 has been chosen so small that W ′′(u) ≥ c in {|u| >
1−2b} for a positive constant c. A direct calculation leads to the following differential
inequality in {|u| > 1− 2b},

(3.12) ∆

[
1

2
|∇u|2 +W (u)

]
≥ c

[
1

2
|∇u|2 +W (u)

]
.

Note that if we have chosen L large enough, then
{
R2 < r < R, fα(r) + L/2 < z <

fα+1(r) − L/2
}
⊂ {|u| > 1 − b}. Without loss of generality, assume u > 1 − b in{

R2 < r < R, fα(r) + L/2 < z < fα+1(r)− L/2
}

.
Take a smooth function ζ ∈ C∞(R) satisfying 0 ≤ ζ ≤ 1, ζ ≡ 1 in (1 − b,+∞),

ζ ≡ 0 in (−∞, 1− 2b) and |ζ ′|2 + |ζ ′′| ≤ 100b−2.
Multiplying (3.12) by ζ(u) and integrating in the domain D :=

{
fα(r) < z <

fα+1(r)
}
∩Bn+1

R (0) \ CR2 , we obtain

∫
{R2<r<R,fα(r)+L<z<fα+1(r)−L}∩Bn+1

R

[
1

2
|∇u|2 +W (u)

]
≤

∫
D

[
1

2
|∇u|2 +W (u)

]
ζ(u) (by our choice of ζ)

≤ C

∫
D

∆

[
1

2
|∇u|2 +W (u)

]
ζ(u) (by (3.12))

= C

∫
D

[
1

2
|∇u|2 +W (u)

] [
ζ ′(u)∆u+ ζ ′′(u)|∇u|2

]
(integration by parts)

+ boundary integrals on ∂CR2 ∩ D
+ boundary integrals on ∂Bn+1

R ∩ D

≤ C

∫
D

[
1

2
|∇u|2 +W (u)

]
(|ζ ′(u)|+ |ζ ′′(u)|)

+ boundary integrals on ∂CR2 ∩ D
+ boundary integrals on ∂Bn+1

R ∩ D.

In the right hand of this inequality, the following estimates hold.

• Because ζ ′(u) and ζ ′′(u) are nonzero only in {R2 < r < R, fα(r) < z < fα(r) + L}
and {R2 < r < R, fα+1(r)− L < z < fα+1(r)} (if this set is non-empty), es-
timate on the first integral follows by applying Claim 1.
• The boundary integral on ∂CR2 ∩ D is of the order O(R), because the area

of ∂CR2 ∩ D is of the order O(R) and the integrands are of the order O(1).
• Finally, the boundary integral on ∂Bn+1

R ∩D is of the order O(Rn), because
the area of ∂Bn+1

R ∩ D is of the order O(Rn) and the integrands are of the
order O(1).

This completes the proof of Claim 2. �
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4. A Toda system

In this section, keeping the notations used in the previous section, u denotes an
axially symmetric solution of (1.1) in Rn+1 satisfying for some R2 > 0, it is stable
outside the cylinder CR2 and

{u = 0} \ CR2 = ∪α∈ZΓα, Γα := {z = fα(r), r > R2},

where fα ∈ C4([R2,+∞)) and they are increasing in α ∈ Z.

4.1. Fermi coordinates. In this subsection we introduce Fermi coordinates with
respect to Γα.

Since Γα is the graph of fα, we will use ` 7→ (`, fα(`)) as a parametrization of Γα.
The upward unit normal vector of Γα at (`, fα(`)) is

Nα(`) :=
1√

1 + |f ′α(`)|2
(−f ′α(`)∂r + ∂z) .

The second fundamental form of Γα at (`, fα(`)) with respect to Nα(`) is denoted
by Aα(`). The principal curvatures are given by

(4.1)

 κα,i(`) = −1
`

f ′α(`)√
1+|f ′α(`)|2

, 1 ≤ i ≤ n− 1,

κα,n(`) = − f ′′α(`)

(1+|f ′α(`)|2)3/2
.

By Lemma 3.3, we have

(4.2) |Aα(`)|+
∣∣A′α(`)

∣∣ ≤ C`−3/2, ∀` ≥ R2.

Let (`, t) be the Fermi coordinates with respect to Γα, that is, for any point X
lying in a neighborhood of Γα, take (`, fα(`)) ∈ Γα to be the nearest point to X and
t be the signed distance of X to Γα (positive above Γα). By Theorem 2.4, these are
well defined in the open set {(`, t) : |t| < cF `, ` > R2} for a constant cF > 0.

For each t, let Γtα be the smooth hypersurface where the signed distance to Γα
equals t. The mean curvature of Γtα has the form

Hα(`, t) =
n∑
i=1

κα,i(`)

1− tκα,i(`)
= Hα(`) +O

(
|t||Aα(`)|2

)
(4.3)

= Hα(`) +O
(
|t|`−3

)
,

where in the last step we have used (4.2).
Denote by ∆α,t the Beltrami-Laplace operator with respect to the induced metric

on Γtα. In Fermi coordinates the Euclidean Laplace operator has the form

(4.4) ∆ = ∆α,t −Hα(`, t)∂t + ∂tt.

Concerning the error between ∆α,t and ∆α,0, we have (see for example [17, Lemma
3.3])

Lemma 4.1. Suppose ϕ is a C2 function of ` only, then

(4.5)
∣∣∆α,tϕ(`)−∆α,0ϕ(`)

∣∣ ≤ C`−3/2|t| (|ϕ′′(`)|+ |ϕ′(`)|) , ∀t ∈ (−cF `, cF `).
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Note that here, in order to get `−3/2 in the right hand side of (4.5), we have used
Lemma 3.3 and the estimate (4.2) again.

We introduce some notations.

• For ` > R, let D±α (`) be the distance of (`, fα(`)) to Γα±1, respectively.
• Denote Dα(`) := min {D+

α (`), D−α (`)}.
• M(`) := maxα maxs≥` e

−
√

2Dα(s).

By Lemma 3.3, Γα and Γα+1 are almost parallel. Proceeding as in the proof of [18,
Lemma 8.3] we get

Lemma 4.2. For any ` > R2,{
D+
α (`) = fα+1(`)− fα(`) +O

(
`−1/6

)
,

D−α (`) = fα(`)− fα−1(`) +O
(
`−1/6

)
.

4.2. Optimal approximation. Fix a function ζ ∈ C∞0 (−2, 2) with ζ ≡ 1 in
(−1, 1), |ζ ′| + |ζ ′′| ≤ 16. For all ` large, let (to ease notation, dependence on `
will not be written down)

ḡ(t) = ζ (8(log `)t) g(t) + [1− ζ (8(log `)t)] sgn(t), t ∈ (−∞,+∞).

In particular, ḡ ≡ 1 in (16 log `,+∞) and ḡ ≡ −1 in (−∞,−16 log `).
ḡ is an approximate solution to the one dimensional Allen-Cahn equation, that is,

(4.6) ḡ′′(t) = W ′ (ḡ(t)) + ξ̄(t),

where spt(ξ̄) ∈ {8 log ` < |t| < 16 log `}, and |ξ̄|+ |ξ̄′|+ |ξ̄′′| . `−4. Hereafter we use
the notation A . B for A ≤ CB if C is a universal constant.

In the following we assume u has the same sign as (−1)α between Γα and Γα+1.

Lemma 4.3. For any ` > R2 (perhaps after enlarging R2) and α ∈ Z, there exists
a unique hα(`) such that in the Fermi coordinates with respect to Γα,∫ +∞

−∞
[u(`, t)− g∗(`, t)] g′ (t− hα(`)) dt = 0,

where for each α, in Mα we define

g∗(`, t) := gα +
∑
β<α

[
gβ − (−1)β

]
+
∑
β>α

[
gβ + (−1)β

]
,

and in the Fermi coordinates (`, t) with respect to Γβ,

gβ(`, t) := ḡ
(
(−1)β (t− hβ(`))

)
.

Moreover, for any α ∈ Z,

lim
`→+∞

(
|hα(`)|+ |h′α(`)|+ |h′′α(`)|+ |h(3)

α (`)|
)

= 0.

The proof of this lemma is similar to the one for [17, Proposition 4.1], although
now there may be infinitely many components. Indeed, we can define a nonlinear
map on

⊕
αC(Γα) as

F (h) :=

(∫ +∞

−∞
[u(`, t)− g∗(`, t;h)] g′α (`, t;hα) dt

)
.
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The α component of its derivative depends only on finitely many β, i.e. DF (h) has
finite width with respect to the index set. Moreover, it is diagonally dominated and
hence invertible. This lemma then follows from the inverse function theorem.

Let gα and g∗ be as in this lemma. Define φ := u− g∗. In Fermi coordinates with
respect to Γα, the equation for φ reads as

∆α,tφ−Hα(`, t)∂tφ+ ∂ttφ

= W ′′(g∗)φ+N (φ) + I + (−1)αg′αRα,1 − g′′αRα,2(4.7)

+
∑
β 6=α

[
(−1)βg′βRβ,1 − g′′βRβ,2

]
−
∑
β

ξβ,

where

N (φ) = W ′(g∗ + φ)−W ′(g∗)−W ′′(g∗)φ = O
(
φ2
)
,

I = W ′(g∗)−
∑
β

W ′(gβ),

while for each β, in the Fermi coordinates with respect to Γβ,

ξβ(`, t) = ξ̄
(
(−1)β(t− hβ(`))

)
,

Rβ,1(`, t) := Hβ(`, t) + ∆β,thβ(`),

Rβ,2(`, t) := |∇β,thβ(`)|2.
As in [17, Lemma 4.6], because u = 0 on Γα, hα can be controlled by φ in the

following way.

Lemma 4.4. For each α and r > R2, we have

(4.8) ‖hα‖C2,1/2(`,+∞) . ‖φ‖C2,1/2(Cc` ) +M(`),

(4.9) ‖h′α‖C1,1/2(`,+∞) . ‖φ`‖C1,1/2(Cc` ) + `−1/6M(`).

4.3. Toda system. By [17, Section 5], we get the following Toda system

(4.10) Hα + ∆α,0hα =
2A2

σ0

(
e−
√

2D−α − e−
√

2D+
α

)
+ Eα,

where Eα is a higher order error term. More precisely, [17, Lemma 5.1] reads in our
specific setting as

Lemma 4.5. For any ` > 2R2,

|Eα(`)| . `−3 + `−
1
2M (`− 100 log `) +M (`− 100 log `)

7
6

+ max
β

∥∥Hβ + ∆β,0hβ
∥∥2

C1/2(`−100 log `,+∞)
+ ‖φ‖2

C2,1/2(`−100 log `,+∞).(4.11)

Here it is still useful to note that by (4.2), now we can take the upper bound on
the second fundamental form to be O

(
`−3/2

)
when using the derivation in [17].
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4.4. Estimates on φ. Arguing exactly in the same way as in [17, Section 6], we
have

Lemma 4.6. There exist two constants C such that for all ` large,

max
α
‖Hα + ∆α,0hα‖C1/2(`,+∞) + ‖φ‖C2,1/2(Cc` )

≤ 1

2

[
max
α
‖Hα + ∆α,0hα‖C1/2(`−100 log `,+∞) + ‖φ‖C2,1/2(Cc`−100 log `)

]
+ CM (`− 100 log `) + C`−3.

The constant 1/2 in the right hand side of this inequality allows us to repeat the
iteration argument used in the proof of [9, Lemma 11]. This results in the estimate

|Hα(`) + ∆α,0hα(`)|+ ‖φ‖C2,1/2(Cc` ) ≤ C
[
`−3 +M (`− 100 log `)

]
, ∀` ≥ R2.

By [17, Proposition 10.1]), M(`) . `−2. Hence

(4.12) |Hα(`) + ∆α,0hα(`)|+ ‖φ‖C2,1/2(Cc` ) ≤ C`−2.

Next by [17, Proposition 7.1], we have an improved estimate on the horizontal
derivative

(4.13) ‖φ`‖C1,1/2(Cc` ) ≤ C`−2−1/7.

In view of Lemma 4.4, (4.13) gives

(4.14) ‖h′α‖C1,1/2((`,+∞)) ≤ C`−2−1/7.

Substituting this into (4.10) and applying Lemma 3.3, we obtain
(4.15)

f ′′α(r) +
n− 1

r
f ′α(r) =

2A2

σ0

[
e−
√

2(fα(r)−fα−1(r)) − e−
√

2(fα+1(r)−fα(r))
]

+O
(
r−2− 1

7

)
.

Finally, the reduced stability condition (see [17, Proposition 8.1]) now reads as

Proposition 4.7. For any η ∈ C∞0 (R2,+∞), we have

4
√

2A2

σ0

∫ +∞

R2

e−
√

2(fα(r)−fα−1(r))η(r)2rn−1dr(4.16)

≤
[
1 + CR

− 1
6

2

] ∫ +∞

R2

|η′(r)|2rn−1dr + C

∫ +∞

R2

η(r)2rn−2− 1
8dr.

5. The case 3 ≤ n ≤ 9: Proof of Theorem 1.3

In this section we keep the same setting as in the previous section, with the
additional assumption that 3 ≤ n ≤ 9. In order to prove Theorem 1.3, we argue by
contradiction and assume there are at least two ends of u. We show this assumption
leads to a contradiction if 3 ≤ n ≤ 9.

Take two adjacent ends Γα−1 and Γα. Let vα := fα − fα−1 and Vα := e−
√

2vα . By
(4.15) we get a constant µ ∈ (0, 1/8) such that

(5.1) v′′α(r) +
n− 1

r
v′α(r) ≤ 4A2

σ0

e−
√

2vα(r) +O
(
r−2−µ) , in (R2,+∞).
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Consequently,

(5.2) − V ′′α −
n− 1

r
V ′α ≤

4
√

2A2

σ0

V 2
α − V −1

α

∣∣V ′α∣∣2 +O
(
r−2−µ)Vα, in (R2,+∞).

For any q > 0 and η ∈ C∞0 (R2,+∞), multiplying (5.2) by Vα(r)2q−1η(r)2rn−1 and
integrating by parts leads to

2q

∫ +∞

R2

Vα(r)2q−2
∣∣V ′α(r)

∣∣2η(r)2rn−1dr

≤ 4
√

2A2

σ0

∫ +∞

R2

Vα(r)2q+1η(r)2rn−1dr(5.3)

+ C

∫ +∞

R2

Vα(r)2q
[∣∣η′(r)∣∣2 + η(r)

∣∣η′′(r)∣∣+ η(r)2r−2−µ
]
rn−1dr.

On the other hand, substituting V q
αη as test function into (4.16) leads to

4
√

2A2

σ0

∫ +∞

R2

Vα(r)2q+1η(r)2rn−1dr

≤ q2
[
1 + CR

− 1
6

2

] ∫ +∞

R2

Vα(r)2q−2V ′α(r)2η(r)2rn−1dr(5.4)

+ C

∫ +∞

R2

Vα(r)2q
[∣∣η′(r)∣∣2 + η(r)

∣∣η′′(r)∣∣+ η(r)2r−2−µ
]
rn−1dr.

Combining (5.3) and (5.4), if q < 2 and R2 is sufficiently large, we get a constant
C(q) < +∞ such that∫ +∞

R2

Vα(r)2q+1η(r)2rn−1dr(5.5)

≤ C(q)

∫ +∞

R2

Vα(r)2q
[∣∣η′(r)∣∣2 + η(r)

∣∣η′′(r)∣∣+ η(r)2r−2−µ
]
rn−1dr.

If 0 ≤ η ≤ 1, following Farina [?], replacing η by ηm for some m � 1 and then
applying Hölder inequality to (5.5) we get
(5.6)∫ +∞

R2

Vα(r)2q+1η(r)2mrn−1dr ≤ C(q)

∫ +∞

R2

[∣∣η′(r)∣∣2 +
∣∣η′′(r)∣∣+ r−2−µ

]2q+1

rn−1dr.

For any R > 2R2, take ηR ∈ C∞0 (R2, 2R) such that 0 ≤ ηR ≤ 1, ηR ≡ 1 in
(2R2, R), |η′R|2 + |η′′R| ≤ 16R−2 in (R, 2R). Substituting ηR into (5.6), we get

(5.7)

∫ R

2R2

Vα(r)2q+1rn−1dr ≤ C + CRn−2(2q+1).

Since n ≤ 9, we can take 2q + 1 = n/2. After letting R→ +∞ in (5.7) we arrive at

(5.8)

∫ +∞

2R2

Vα(r)
n
2 rn−1dr ≤ C.
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As in Dancer-Farina [4], this implies that

lim
r→+∞

r2e−
√

2vα(r) = 0,

which then leads to a contradiction by applying (5.1) exactly in the same way as in
[4] (see also [16] for the corresponding result for Toda system), if n ≥ 3.

In other words, there is only one end of u. The one dimensional symmetry of u
follows, for example by applying the main results of [10] and [15], because now we
have the energy growth bound from Lemma 3.6.

6. The case n = 2: Proof of Theorem 1.4

In this section u denotes an axially symmetric solution of (1.1) in R3, which is
stable outside B2

R∗(0)×(−R∗, R∗). Hence there exists a positive function ϕ ∈ C2(R3)
such that

(6.1) ∆ϕ = W ′′(u)ϕ

outside B2
R∗(0)× (−R∗, R∗).

By a direct differentiation we see uz satisfies the linearized equation (6.1). We
will show

Lemma 6.1. Any nodal domain of uz is not disjoint from B2
R∗(0)× (−R∗, R∗).

Before proving this lemma, let us first present some technical results.
Keeping notations as in Section 3 and Section 4, we define for each α,

Nα :=

{
X : −3

4
D−α (Πα(X)) < dα(X) <

3

4
D+
α (Πα(X))

}
,

where Πα(X) is the nearest point to X on Γα and dα is the signed distance to Γα.
By Theorem 2.4 and Lemma 3.3, Πα is well defined and smooth in the open set
{(r, z) : |dα(r, z)| < cF r, r > R∗} after perhaps enlarging R∗.

Lemma 6.2. For each α, there exists an R∗α > R∗ so that the following holds.

(i) There is a connected component Ωα of {uz 6= 0} ∩ {r > R∗α}, which contains
Γα ∩ {r > R∗α} and is contained in Nα.

(ii) There exists a constant Cα such that

(6.2)

∫
Ωα∩CR

u2
z ≤ CαR

2, ∀R > R∗α.

Proof. (i) This follows by looking at the distance type function. Indeed, for any
(r∗, z∗) ∈ Γα where r∗ is large, let ε := max{D+

α (r∗)
−1, r−1

∗ } and

uε(r, z) := u
(
r∗ + ε−1r, z∗ + ε−1z

)
.

By Proposition 2.2,

(6.3) lim
r→+∞

D±α (r) = +∞.

Hence ε� 1 if r∗ � 1.
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As in [7], consider the signed distance type function Ψε, which is defined by the
relation

uε = g

(
Ψε

ε

)
.

By the vanishing viscosity method (see for example [15, Appendix A]) and the
convergence of {uε = 0} (by Lemma 3.3), as ε → 0, in any compact set of {−1 ≤
r ≤ 1,−1 ≤ z ≤ 1}, Ψε converges uniformly to

Ψ∞(r, z) :=


1− z, 1/2 ≤ z ≤ 1,

z, −1/2 ≤ z ≤ 1/2

−1− z, −1 ≤ z ≤ −1/2.

Moreover, because Ψ∞ is C1 in {−1 < r < 1,−1/2 < z < 1/2}, Ψε converges in
C1({−1 < r < 1,−1/2 < z < 1/2}). In particular, for all ε small,

∂uε
∂z

=
1

ε
g′
(

Ψε

ε

)
∂Ψε

∂z
< 0, in {|r| < 1/2,−1/4 < z < 1/4} .

Similarly, ∂uε
∂z

> 0 in {|r| < 1/2,−4/5 < z < −3/4} ∪ {|r| < 1/2, 3/4 < z < 4/5}.
Rescaling back we get the conclusion.

(ii) This follows by adding the estimates of Lemma 3.6 in α, α+ 1 and α− 1. �

Lemma 6.3. Suppose Ω is a nodal domain of uz, which is disjoint from B2
R∗(0) ×

(−R∗, R∗). Then

lim sup
r→+∞

1

r2

∫
Ω∩Br(0)

u2
z = +∞.

Proof. Assume by the contrary, there exists a constant C such that for all r large,∫
Ω∩Br(0)

u2
z ≤ Cr2.

Then the standard Liouville type theorem applies to the degenerate equation (see
[8, 2])

div

(
ϕ2∇uz

ϕ

)
= 0,

which implies that uz ≡ 0 in Ω. This is a contradiction. �

Proof of Lemma 6.1. Assume by the contrary, there is a nodal domain of uz disjoint
from B2

R∗(0) × (−R∗, R∗). Denote it by Ω and assume without loss of generality
uz > 0 in Ω. Since for any R, r > 0,

|CR ∩Br(0)| ≤ CR2r,

Lemma 6.3 implies that Ω cannot be totally contained in CR. In other words, Ω is
unbounded in the r direction.

Let Ωα be defined as in Lemma 6.2. Then we claim that
Claim. There exists at most one α such that Ωα ⊂ Ω.
To prove this claim, we assume by the contrary that there are α 6= β such that
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Ωα ∪ Ωβ ⊂ Ω. Since uz > 0 in Ωα ∪ Ωβ, |α − β| ≥ 2. In particular, there exists a γ
lying between α and β, and uz < 0 in Ωγ.

Let Ω̃ be the nodal domain of uz containing Ωγ. Viewing all of these domains as
open sets in the (r, z) plane, Ωα and Ωβ can be connected by a continuous curve
totally contained in Ω, which together with Γα and Γβ forms a simple unbounded

Jordan curve. This curve divides the plane into at least two domains, Ω̃ lying on
one side and B2

R∗(0)× (−R∗, R∗) on the other side.

Then there are only finite many of ends of u in Ω̃, and we can add the estimates
in Lemma 3.6 to arrive at∫

Ω̃∩BR(0)

|∇u|2 ≤ CαβR
2, ∀R large.

This is a contradiction with Lemma 6.3, which finishes the proof of the Claim.
By this Claim, there exists an R3 > 0 such that Ω ∩ {r > R3} ⊂ {fα−1(r) < z <

fα+1(r)}. Using Lemma 3.6 again, we get a constant C such that∫
Ω∩BR(0)

|∇u|2 ≤ CR2, ∀R large.

Since Ω is assumed to be disjoint from B2
R∗(0) × (−R∗, R∗), applying Lemma 6.3

again we get a contradiction. This completes the proof. �

Since u is smooth, the number of connected components of {uz 6= 0} ∩B2R∗(0) is
finite. Then by the above lemma we obtain

Corollary 6.4. There are only finitely many nodal domains of uz.

Now we come to the proof of Theorem 1.4.

Proof of Theorem 1.4. By the previous corollary, nodal domains of uz are denoted
by Ωm, m = 1, · · · , N for some N ∈ N.

Assume there are infinitely many ends, Γα. These ends are divided into N classes,
Im (1 ≤ m ≤ N), that is, Γα ∈ Im if Ωα ⊂ Ωm.

There is a class, say I1, containing infinitely many ends. Take two indicies α, β ∈
I1 which are adjacent in I1. Γα and Γβ are connected by a curve in Ω1, together
with Γα and Γβ which gives a simple unbounded Jordan curve γαβ in the plane. This
curve divides the (r, z) plane into at least two open domains. Since uz has the same
sign in Ωα and Ωβ, there exists a Γγ lying between Γα and Γβ. Assume Ωγ ⊂ ΩM(α).
This defines a map from I1 to {1, · · · , N}. Moreover, if α, β ∈ I1 and α 6= β, then
M(α) 6= M(β), in other words, ΩM(α) and ΩM(β) lie on two sides of a simple Jordan
curve totally contained in Ω1. This leads to a contradiction because I1 is an infinite
set.

Once we know that there are only finitely many ends, by Lemma 3.6 we obtain a
constant C such that∫

BR(0)\CR∗

[
1

2
|∇u|2 +W (u)

]
≤ CR2, ∀R > R∗.
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On the other hand,∫
BR(0)∩CR∗

[
1

2
|∇u|2 +W (u)

]
≤ C|BR(0) ∩ CR∗| ≤ CR2

∗R, ∀R > R∗.

Combining these two estimates we get (1.3).
Finally, since there are only finitely many ends, by Lemma 3.3, there exist two

constants C4, R4 > 0 such that {u = 0} \ CR4 ⊂ {|z| < C4r}. From this we see the
existence of R > 0 such that u does not change sign in CR ∩ {|z| > R}. �

7. Bound on number of ends: Proof of Theorems 1.5 and 1.6

In this section, by using the nodal domain information of direction derivatives
(translation Jacobi field), we deduce a relation between Morse index and the number
of ends. We mainly rely on information about uz (just as in the previous section),
which is almost along the normal direction of each end (by Lemma 3.3). For the
proof of Theorem 1.6, another condition on the sign of ur is needed. This sign
condition will follow by combining the nodal information of ux or uy and the fact
that ux = ur

r
x, a direct consequence of our axially symmetric assumption.

Since the quadratic energy growth bound has been established in Theorem 1.4,
the method in dimension 2 (see [18]) can be extended to our setting, which gives

Lemma 7.1. Suppose u is an axially symmetric solution of (1.1) with Morse index
N in R3. Then for any e ∈ R3, there are at most 2N nodal domains of ue := e ·∇u.

We first use this lemma to prove Theorem 1.5.

Proof of Theorem 1.5. If u is stable, by Lemma 7.1, uz does not change sign. Then
we can apply the main result in [2] to deduce the one dimensional symmetry of u.
Furthermore, by the axial symmetry, u(r, z) ≡ g(z − t) for some t ∈ R. �

Concerning solutions with Morse index 1, we first show

Lemma 7.2. An axially symmetric solution of (1.1) with Morse index 1 has at most
three ends.

Proof. If the Morse index of u is 1, by Lemma 7.1 and Theorem 1.5, there are exactly
two nodal domains of uz.

Assume there are at least 4 ends. Take 4 adjacent ones, Γα, α = 1, · · · , 4. Recall
the notation Ωα defined in Lemma 6.2. Assume uz > 0 in Ω1 and Ω3, uz < 0 in Ω2

and Ω4. Since {uz > 0} is a connected set, there is a continuous curve connecting
Γ1 and Γ3 in {uz > 0}, which gives a simple unbounded Jordan curve contained
in {uz > 0}. Clearly Ω2 and Ω4 lies on different sides of this curve, therefore
{uz < 0} cannot be a connected set. This gives at least three nodal domains of uz,
a contradiction. �

Lemma 7.3. Suppose u is an axially symmetric solution of (1.1) with Morse index
1. Then ur > 0 or ur < 0 strictly in {r 6= 0}.
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Proof. First note that {ur = 0} ⊂ {ux1 = 0}. Hence it cannot have interior points.
Assume by the contrary that there exist zero points of ur in {r 6= 0}. Then {ux1 =
0} ∩ {r 6= 0} 6= ∅. Because most part of {ux1 = 0} are smooth surfaces, {ux1 >
0} ∩ {r 6= 0} 6= ∅ and {ux1 < 0} ∩ {r 6= 0} 6= ∅. From this and the axial symmetry
we deduce the existence of two open domains Ω± in the (r, z) plane, where ur > 0
in Ω+ and ur < 0 in Ω−. Viewing them as open domains in R3, then Ω+ ∩ {x1 > 0}
and Ω−∩{x1 < 0} are two connected components of {ux1 > 0}, while Ω+∩{x1 < 0}
and Ω− ∩ {x1 > 0} are two connected components of {ux1 < 0}. Hence there are at
least four nodal domains of ux1 , a contradiction with Lemma 7.1. �

Proof of Theorem 1.6. In view of Lemma 7.2, we only need to exclude the possibility
of three ends.

By Lemma 7.3, we can assume ur > 0 in {r 6= 0}. Hence each connected compo-
nent Γα of {u = 0} is a graph in the r-direction. There are two cases:

Type I. Γα is not disjoint from the z axis, hence it has the form {r = fα(z)} where
fα is a function defined on an interval [z−α , z

+
α ) of the z axis and fα(z−α ) = 0;

Type II. Γα is disjoint from the z axis, hence it has the form {r = fα(z)} where fα is
a function defined on an open interval (z−α , z

+
α ) of the z axis.

For type I, we have limz→z+α fi(z) = +∞, thus Γα contributes one end. For Type
II, we must have limz→z±α fi(z) = +∞, thus Γα contributes two ends. Since u has
three ends, there are either three Type I components or one Type I plus one Type
II components. Therefore u can change sign one time or three times on the z-axis.

Case 1. u changes sign three times on the z-axis.
In this case, there is an interval (a−, a+) such that u(0, z) < 0 in (a−, a+) and

u(a−) = u(a+) = 0. Let {z = f±(r)} be the connected components of {u = 0}
emanating from (0, a±) respectively. Because ur > 0, f+(r) is decreasing in r and
f− is increasing. Hence

lim
r→+∞

(
f+(r)− f−(r)

)
≤ a+ − a−.

This is a contradiction with Proposition 2.2.
Case 2. u changes sign one time on the z-axis.
Without loss of generality, assume u(0, 0) = 0, u(0, z) > 0 for z > 0 and u(0, z) <

0 for z < 0. There exists a connected component of {u = 0} emanating from (0, 0),
in the form {z = f(r)}. As in Case 1, f is decreasing in r. In particular, u > 0
in {z > 0}. The other component of {u = 0} is Type II, which is represented by
the graphs {z = f±(r)} for two functions f+ > f− defined on [R∗,+∞) for some
R∗ > 0. Here f+ is still increasing in r. As in Case 1 we get

lim
r→+∞

(
f(r)− f+(r)

)
< +∞,

a contradiction with Proposition 2.2 again. �
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