The Cauchy–Riemann Equations

Let f(z) be defined in a neighbourhood of z_0 . Recall that, by definition, f is differentiable at z_0 with derivative $f'(z_0)$ if

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = f'(z_0)$$

Whether or not a function of one real variable is differentiable at some x_0 depends only on how smooth f is at x_0 . The following example shows that this is no longer the case for the complex derivative.

Example 1 Let $f(z) = \overline{z}$. Then, writing Δz in its polar form $re^{i\theta}$,

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{\overline{z_0 + \Delta z} - \overline{z_0}}{\Delta z} = \frac{\overline{\Delta z}}{\Delta z} = \frac{re^{-i\theta}}{re^{i\theta}} = e^{-2\theta i}$$

So

- if we send Δz to zero along the real axis, so that $\theta = 0$ or $\theta = \pi$ and hence $e^{-2\theta i} = 1$, $\frac{f(z_0+\Delta z)-f(z_0)}{\Delta z}$ tends to 1, and
- if we send Δz to 0 along the imaginary axis, so that $\theta = \frac{\pi}{2}$ or $\frac{3\pi}{2}$ and hence $e^{-2\theta i} = -1$,

 $\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \text{ tends to } -1.$ Thus $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$ does not exist and $f(z) = \overline{z}$ is nowhere differentiable. Note that if we write $f(x+iy) = \overline{x+iy} = x-iy = u(x,y)+iv(x,y)$, then all partial derivatives of all orders of u(x,y) = x and v(x,y) = -y exist even though f'(z) does not exist.

This example shows that differentiablility of u(x, y) and v(x, y) does not imply the differentiablicity of f(x+iy) = u(x,y) + iv(x,y). These notes explore further the relationship between f'(z) and the partial derivatives of u and v. We shall first ask the question "Suppose that we know that $f'(z_0)$ exists. What does that tell us about u(x, y) and v(x, y)?" Here is the answer.

Theorem 2 Let f(z) be defined in a neighbourhood of z_0 . Assume that f is differentiable at z_0 . Write f(x + iy) = u(x, y) + iv(x, y). Then all of the partial derivatives $\frac{\partial u}{\partial x}(x_0, y_0)$, $\frac{\partial u}{\partial y}(x_0, y_0), \ \frac{\partial v}{\partial x}(x_0, y_0), \ and \ \frac{\partial v}{\partial y}(x_0, y_0) \ exist \ and$

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \qquad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0) \tag{CR}$$

and

$$f'(x_0 + iy_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0)$$

The equations (CR) are called the Cauchy–Riemann equations.

(c) Joel Feldman. 2012. All rights reserved. 1 January 19, 2012 The Cauchy–Riemann Equations

Proof: By assumption

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

=
$$\lim_{\Delta z \to 0} \frac{[u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)] + i[v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)]}{\Delta z}$$

In particular, by sending $\Delta z = \Delta x + i\Delta y$ to zero along the real axis (i.e. setting $\Delta y = 0$ and sending $\Delta x \to 0$), we have

$$f'(x_0 + iy_0) = \lim_{\Delta x \to 0} \frac{[u(x_0 + \Delta x, y_0) - u(x_0, y_0)] + i[v(x_0 + \Delta x, y_0) - v(x_0, y_0)]}{\Delta x}$$

and hence

Re
$$f'(z_0) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x}$$

Im $f'(z_0) = \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}$

This tells us that the partial derivatives $\frac{\partial u}{\partial x}(x_0, y_0)$, $\frac{\partial v}{\partial x}(x_0, y_0)$ exist and

$$\frac{\partial u}{\partial x}(x_0, y_0) = \operatorname{Re} f'(x_0 + iy_0) \qquad \frac{\partial v}{\partial x}(x_0, y_0) = \operatorname{Im} f'(x_0 + iy_0) \tag{1}$$

This gives the formula for $f'(x_0 + iy_0)$ in the statement of the theorem.

If, instead, we send $\Delta z = \Delta x + i\Delta y$ to zero along the imaginary axis (i.e. set $\Delta x = 0$ and send $\Delta y \to 0$), we have

$$f'(x_0 + iy_0) = \lim_{\Delta y \to 0} \frac{[u(x_0, y_0 + \Delta y) - u(x_0, y_0)] + i[v(x_0, y_0 + \Delta y) - v(x_0, y_0)]}{i\Delta y}$$
$$= \lim_{\Delta y \to 0} \frac{[v(x_0, y_0 + \Delta y) - v(x_0, y_0)] - i[u(x_0, y_0 + \Delta y) - u(x_0, y_0)]}{\Delta y}$$

and hence

$$\operatorname{Re} f'(z_0) = \lim_{\Delta x \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y}$$
$$\operatorname{Im} f'(z_0) = -\lim_{\Delta x \to 0} \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y}$$

This tells us that the partial derivatives $\frac{\partial v}{\partial y}(x_0, y_0)$, $\frac{\partial u}{\partial y}(x_0, y_0)$ exist and

$$\frac{\partial v}{\partial y}(x_0, y_0) = \operatorname{Re} f'(x_0 + iy_0) \qquad \frac{\partial u}{\partial y}(x_0, y_0) = -\operatorname{Im} f'(x_0 + iy_0) \tag{2}$$

Comparing (1) and (2) gives (CR).

C Joel Feldman. 2012. All rights reserved. Janu

January 19, 2012

Theorem 2 says that it is necessary for u(x, y) and v(x, y) to obey the Cauchy–Riemann equations in order for f(x+iy) = u(x+iy) + v(x+iy) to be differentiable. The following theorem says that, provided the first order partial derivatives of u and v are continuous, the converse is also true — if u(x, y) and v(x, y) obey the Cauchy–Riemann equations then f(x+iy) = u(x+iy) + v(x+iy) is differentiable.

Theorem 3 Let $z_0 \in \mathbb{C}$ and let G be an open subset of \mathbb{C} that contains z_0 . If f(x+iy) = u(x,y) + iv(x,y) is defined on G and

 \circ the first order partial derivatives of u and v exist in G and are continuous at (x_0, y_0)

• u and v obey the Cauchy-Riemann equations at (x_0, y_0) , then f is differentiable at $z_0 = x_0 + iy_0$ and $f'(x_0 + iy_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0)$.

Proof: Write

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = U(\Delta z) + iV(\Delta z)$$

where

$$U(\Delta z) = \frac{u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)}{\Delta z}$$
$$V(\Delta z) = \frac{v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)}{\Delta z}$$

Our goal is to prove that $\lim_{\Delta z \to 0} [U(\Delta z) + iV(\Delta z)]$ exists and equals $\frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0)$.

Concentrate on $U(\Delta z)$. The first step is to rewrite $U(\Delta z)$ in terms of expressions that will converge to partial derivatives of u and v. For example $\frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y}$ converges to $u_y(x_0, y_0)$ when $\Delta y \to 0$. We can achieve this by adding and subtracting $u(x_0, y_0 + \Delta y)$:

$$U(\Delta z) = \frac{u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)}{\Delta z}$$

= $\frac{u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0 + \Delta y)}{\Delta z} + \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta z}$

To express $U(\Delta z)$ in terms of partial derivatives of u, we use the (ordinary first year Calculus) mean value theorem. Recall that it says that, if F(x) is differentiable everywhere between x_0 and $x_0 + \Delta x$, then $F(x_0 + \Delta x) - F(x_0) = F'(x_0^*) \Delta x$ for some x_0^* between x_0 and $x_0 + \Delta x$. Applying the mean value theorem with $F(x) = u(x, y_0 + \Delta y)$ to the first half of $U(\Delta z)$ and with $F(y) = u(x_0, y)$ to the second half gives

$$U(\Delta z) = \frac{u_x(x_0^*, y_0 + \Delta y)\Delta x}{\Delta z} + \frac{u_y(x_0, y_0^*)\Delta y}{\Delta z}$$

for some x_0^* between x_0 and $x_0 + \Delta x$ and some y_0^* between y_0 and $y_0 + \Delta y$. Because u_x and u_y are continuous, $u_x(x_0^*, y_0 + \Delta y)$ is almost $u_x(x_0, y_0)$ and $u_y(x_0, y_0^*)$ is almost $u_y(x_0, y_0)$

when Δz is small. So we write

$$U(\Delta z) = \frac{u_x(x_0, y_0)\Delta x}{\Delta z} + \frac{u_y(x_0, y_0)\Delta y}{\Delta z} + E_1(\Delta z) + E_2(\Delta z)$$

where the "error terms" are

$$E_1(\Delta z) = [u_x(x_0^*, y_0 + \Delta y) - u_x(x_0, y_0)] \frac{\Delta x}{\Delta z}$$
$$E_2(\Delta z) = [u_y(x_0, y_0^*) - u_y(x_0, y_0)] \frac{\Delta y}{\Delta z}$$

Similarly

$$V(\Delta z) = \frac{v_x(x_0^{**}, y_0 + \Delta y)\Delta x}{\Delta z} + \frac{v_y(x_0, y_0^{**})\Delta y}{\Delta z}$$
$$= \frac{v_x(x_0, y_0)\Delta x}{\Delta z} + \frac{v_y(x_0, y_0)\Delta y}{\Delta z} + E_3(\Delta z) + E_4(\Delta z)$$

for some x_0^{**} between x_0 and $x_0 + \Delta x$, and some y_0^{**} between y_0 and $y_0 + \Delta y$. The error terms are

$$E_3(\Delta z) = [v_x(x_0^{**}, y_0 + \Delta y) - v_x(x_0, y_0)] \frac{\Delta x}{\Delta z}$$
$$E_4(\Delta z) = [v_y(x_0, y_0^{**}) - v_y(x_0, y_0)] \frac{\Delta y}{\Delta z}$$

Now as $\Delta z \to 0$

- both x_0^* and x_0^{**} (both of which are between x_0 and $x_0 + \Delta x$) must approach x_0 and
- both y_0^* and y_0^{**} (both of which are between y_0 and $y_0 + \Delta y$) must approach y_0 and • $\left|\frac{\Delta x}{\Delta z}\right| \leq 1$ and $\left|\frac{\Delta y}{\Delta z}\right| \leq 1$

Recalling that u_x , u_y , v_x and v_y are all assumed to be continuous at (x_0, y_0) , we conclude that

$$\lim_{\Delta z \to 0} E_1(\Delta z) = \lim_{\Delta z \to 0} E_2(\Delta z) = \lim_{\Delta z \to 0} E_3(\Delta z) = \lim_{\Delta z \to 0} E_4(\Delta z) = 0$$

and, using the Cauchy-Riemann equations,

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \left[U(\Delta z) + iV(\Delta z) \right]$$
$$= \lim_{\Delta z \to 0} \left[\frac{u_x(x_0, y_0)\Delta x}{\Delta z} + \frac{u_y(x_0, y_0)\Delta y}{\Delta z} + i\frac{v_x(x_0, y_0)\Delta x}{\Delta z} + i\frac{v_y(x_0, y_0)\Delta y}{\Delta z} \right]$$
$$= \lim_{\Delta z \to 0} \left[\frac{u_x(x_0, y_0)\Delta x}{\Delta z} - \frac{v_x(x_0, y_0)\Delta y}{\Delta z} + i\frac{v_x(x_0, y_0)\Delta x}{\Delta z} + i\frac{u_x(x_0, y_0)\Delta y}{\Delta z} \right]$$
$$= \lim_{\Delta z \to 0} \left[u_x(x_0, y_0)\frac{\Delta x + i\Delta y}{\Delta z} + iv_x(x_0, y_0)\frac{\Delta x + i\Delta y}{\Delta z} \right]$$
$$= u_x(x_0, y_0) + iv_x(x_0, y_0)$$

as desired.

© Joel Feldman. 2012. All rights reserved. January 19, 2012 The Cauchy–Riemann Equations

4

Example 4 The function $f(z) = \overline{z}$ has f(x + iy) = x - iy so that

$$u(x, y) = x$$
 and $v(x, y) = -y$

The first order partial derivatives of u and v are

$$u_x(x,y) = 1 \quad v_x(x,y) = 0$$
$$u_y(x,y) = 0 \quad v_y(x,y) = -1$$

As the Cauchy–Riemann equation $u_x(x,y) = v_y(x,y)$ is satisfied nowhere, the function $f(z) = \overline{z}$ is differentiable nowhere. We have already seen this in Example 1.

Example 5 The function $f(z) = e^z$ has

$$f(x+iy) = e^{x+iy} = e^x \{\cos y + i\sin y\} = u(x,y) + iv(x,y)$$

with

$$u(x, y) = e^x \cos y$$
 and $v(x, y) = e^x \sin y$

The first order partial derivatives of u and v are

$$u_x(x,y) = e^x \cos y \qquad v_x(x,y) = e^x \sin y$$
$$u_y(x,y) = -e^x \sin y \qquad v_y(x,y) = e^x \cos y$$

As the Cauchy–Riemann equations $u_x(x,y) = v_y(x,y)$, $u_y(x,y) = -v_x(x,y)$ are satisfied for all (x,y), the function $f(z) = e^z$ is entire and its derivative is

$$f'(z) = f'(x + iy) = u_x(x, y) + iv_x(x, y) = e^x \cos y + ie^x \sin y = e^z$$

Example 6 The function $f(x + iy) = x^2 + y + i(y^2 - x)$ has

$$u(x, y) = x^{2} + y$$
 and $v(x, y) = y^{2} - x$

The first order partial derivatives of u and v are

$$u_x(x,y) = 2x \quad v_x(x,y) = -1$$
$$u_y(x,y) = 1 \quad v_y(x,y) = 2y$$

As the Cauchy–Riemann equations $u_x(x, y) = v_y(x, y)$, $u_y(x, y) = -v_x(x, y)$ are satisfied only on the line y = x, the function f is differentiable on the line y = x and nowhere else. So it is nowhere analytic. **Example 7** The function $f(x+iy) = x^2 - y^2 + 2ixy$ has

$$u(x,y) = x^2 - y^2$$
 and $v(x,y) = 2xy$

The first order partial derivatives of u and v are

$$u_x(x,y) = 2x \qquad v_x(x,y) = 2y$$
$$u_y(x,y) = -2y \qquad v_y(x,y) = 2x$$

As the Cauchy-Riemann equations $u_x(x, y) = v_y(x, y)$, $u_y(x, y) = -v_x(x, y)$ are satisfied for all (x, y), this function is entire. There is another way to see this. It suffices to observe that $f(z) = z^2$, since $(x + iy)^2 = x^2 - y^2 + 2ixy$. So f is a polynomial in z and we already know that all polynomials are differentiable everywhere.

Example 8 The function $f(x+iy) = x^2 + y^2$ has

$$u(x, y) = x^2 + y^2$$
 and $v(x, y) = 0$

The first order partial derivatives of u and v are

$$u_x(x,y) = 2x \quad v_x(x,y) = 0$$
$$u_y(x,y) = 2y \quad v_y(x,y) = 0$$

As the Cauchy-Riemann equations $u_x(x, y) = v_y(x, y)$, $u_y(x, y) = -v_x(x, y)$ are satisfied only at x = y = 0, the function f is differentiable only at the point z = 0. So it is nowhere analytic. There is another way to see that f(z) cannot be differentiable at any $z \neq 0$. Just observe that $f(z) = z\bar{z}$. If f(z) were differentiable at some $z_0 \neq 0$, then $\bar{z} = \frac{f(z)}{z}$ would also be differentiable at z_0 and we already know that this is not case.