The Cauchy-Riemann Equations

Let $f(z)$ be defined in a neighbourhood of z_{0}. Recall that, by definition, f is differentiable at z_{0} with derivative $f^{\prime}\left(z_{0}\right)$ if

$$
\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=f^{\prime}\left(z_{0}\right)
$$

Whether or not a function of one real variable is differentiable at some x_{0} depends only on how smooth f is at x_{0}. The following example shows that this is no longer the case for the complex derivative.

Example 1 Let $f(z)=\bar{z}$. Then, writing Δz in its polar form $r e^{i \theta}$,

$$
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\frac{\overline{z_{0}+\Delta z}-\overline{z_{0}}}{\Delta z}=\frac{\overline{\Delta z}}{\Delta z}=\frac{r e^{-i \theta}}{r e^{i \theta}}=e^{-2 \theta i}
$$

So

- if we send Δz to zero along the real axis, so that $\theta=0$ or $\theta=\pi$ and hence $e^{-2 \theta i}=1$, $\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$ tends to 1 , and
- if we send Δz to 0 along the imaginary axis, so that $\theta=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$ and hence $e^{-2 \theta i}=-1$, $\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$ tends to -1 .
Thus $\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$ does not exist and $f(z)=\bar{z}$ is nowhere differentiable. Note that if we write $f(x+i y)=\overline{x+i y}=x-i y=u(x, y)+i v(x, y)$, then all partial derivatives of all orders of $u(x, y)=x$ and $v(x, y)=-y$ exist even though $f^{\prime}(z)$ does not exist.

This example shows that differentiablility of $u(x, y)$ and $v(x, y)$ does not imply the differentiablility of $f(x+i y)=u(x, y)+i v(x, y)$. These notes explore further the relationship between $f^{\prime}(z)$ and the partial derivatives of u and v. We shall first ask the question "Suppose that we know that $f^{\prime}\left(z_{0}\right)$ exists. What does that tell us about $u(x, y)$ and $v(x, y)$?" Here is the answer.

Theorem 2 Let $f(z)$ be defined in a neighbourhood of z_{0}. Assume that f is differentiable at z_{0}. Write $f(x+i y)=u(x, y)+i v(x, y)$. Then all of the partial derivatives $\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)$, $\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right), \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)$, and $\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)$ exist and

$$
\begin{equation*}
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \quad \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=-\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right) \tag{CR}
\end{equation*}
$$

and

$$
f^{\prime}\left(x_{0}+i y_{0}\right)=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)
$$

The equations (CR) are called the Cauchy-Riemann equations.

Proof: By assumption

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{\left[u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)\right]+i\left[v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right]}{\Delta z}
\end{aligned}
$$

In particular, by sending $\Delta z=\Delta x+i \Delta y$ to zero along the real axis (i.e. setting $\Delta y=0$ and sending $\Delta x \rightarrow 0$), we have

$$
f^{\prime}\left(x_{0}+i y_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\left[u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)\right]+i\left[v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{0}, y_{0}\right)\right]}{\Delta x}
$$

and hence

$$
\begin{aligned}
& \operatorname{Re} f^{\prime}\left(z_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x} \\
& \operatorname{Im} f^{\prime}\left(z_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{\Delta x}
\end{aligned}
$$

This tells us that the partial derivatives $\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)$ exist and

$$
\begin{equation*}
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right) \quad \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right) \tag{1}
\end{equation*}
$$

This gives the formula for $f^{\prime}\left(x_{0}+i y_{0}\right)$ in the statement of the theorem.
If, instead, we send $\Delta z=\Delta x+i \Delta y$ to zero along the imaginary axis (i.e. set $\Delta x=0$ and send $\Delta y \rightarrow 0$), we have

$$
\begin{aligned}
f^{\prime}\left(x_{0}+i y_{0}\right) & =\lim _{\Delta y \rightarrow 0} \frac{\left[u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)\right]+i\left[v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right]}{i \Delta y} \\
& =\lim _{\Delta y \rightarrow 0} \frac{\left[v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right]-i\left[u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)\right]}{\Delta y}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \operatorname{Re} f^{\prime}\left(z_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta y} \\
& \operatorname{Im} f^{\prime}\left(z_{0}\right)=-\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta y}
\end{aligned}
$$

This tells us that the partial derivatives $\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right), \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)$ exist and

$$
\begin{equation*}
\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)=\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right) \quad \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=-\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right) \tag{2}
\end{equation*}
$$

Comparing (1) and (2) gives (CR).

Theorem 2 says that it is necessary for $u(x, y)$ and $v(x, y)$ to obey the Cauchy-Riemann equations in order for $f(x+i y)=u(x+i y)+v(x+i y)$ to be differentiable. The following theorem says that, provided the first order partial derivatives of u and v are continuous, the converse is also true - if $u(x, y)$ and $v(x, y)$ obey the Cauchy-Riemann equations then $f(x+i y)=u(x+i y)+v(x+i y)$ is differentiable.

Theorem 3 Let $z_{0} \in \mathbb{C}$ and let G be an open subset of \mathbb{C} that contains z_{0}. If $f(x+i y)=$ $u(x, y)+i v(x, y)$ is defined on G and

- the first order partial derivatives of u and v exist in G and are continuous at (x_{0}, y_{0}) - u and v obey the Cauchy-Riemann equations at $\left(x_{0}, y_{0}\right)$,
then f is differentiable at $z_{0}=x_{0}+i y_{0}$ and $f^{\prime}\left(x_{0}+i y_{0}\right)=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)$.

Proof: Write

$$
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=U(\Delta z)+i V(\Delta z)
$$

where

$$
\begin{aligned}
& U(\Delta z)=\frac{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta z} \\
& V(\Delta z)=\frac{v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta z}
\end{aligned}
$$

Our goal is to prove that $\lim _{\Delta z \rightarrow 0}[U(\Delta z)+i V(\Delta z)]$ exists and equals $\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)$.
Concentrate on $U(\Delta z)$. The first step is to rewrite $U(\Delta z)$ in terms of expressions that will converge to partial derivatives of u and v. For example $\frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta y}$ converges to $u_{y}\left(x_{0}, y_{0}\right)$ when $\Delta y \rightarrow 0$. We can achieve this by adding and subtracting $u\left(x_{0}, y_{0}+\Delta y\right)$:

$$
\begin{aligned}
U(\Delta z) & =\frac{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta z} \\
& =\frac{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}+\Delta y\right)}{\Delta z}+\frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta z}
\end{aligned}
$$

To express $U(\Delta z)$ in terms of partial derivatives of u, we use the (ordinary first year Calculus) mean value theorem. Recall that it says that, if $F(x)$ is differentiable everywhere between x_{0} and $x_{0}+\Delta x$, then $F\left(x_{0}+\Delta x\right)-F\left(x_{0}\right)=F^{\prime}\left(x_{0}^{*}\right) \Delta x$ for some x_{0}^{*} between x_{0} and $x_{0}+\Delta x$. Applying the mean value theorem with $F(x)=u\left(x, y_{0}+\Delta y\right)$ to the first half of $U(\Delta z)$ and with $F(y)=u\left(x_{0}, y\right)$ to the second half gives

$$
U(\Delta z)=\frac{u_{x}\left(x_{0}^{*}, y_{0}+\Delta y\right) \Delta x}{\Delta z}+\frac{u_{y}\left(x_{0}, y_{0}^{*}\right) \Delta y}{\Delta z}
$$

for some x_{0}^{*} between x_{0} and $x_{0}+\Delta x$ and some y_{0}^{*} between y_{0} and $y_{0}+\Delta y$. Because u_{x} and u_{y} are continuous, $u_{x}\left(x_{0}^{*}, y_{0}+\Delta y\right)$ is almost $u_{x}\left(x_{0}, y_{0}\right)$ and $u_{y}\left(x_{0}, y_{0}^{*}\right)$ is almost $u_{y}\left(x_{0}, y_{0}\right)$
when Δz is small. So we write

$$
U(\Delta z)=\frac{u_{x}\left(x_{0}, y_{0}\right) \Delta x}{\Delta z}+\frac{u_{y}\left(x_{0}, y_{0}\right) \Delta y}{\Delta z}+E_{1}(\Delta z)+E_{2}(\Delta z)
$$

where the "error terms" are

$$
\begin{aligned}
& E_{1}(\Delta z)=\left[u_{x}\left(x_{0}^{*}, y_{0}+\Delta y\right)-u_{x}\left(x_{0}, y_{0}\right)\right] \frac{\Delta x}{\Delta z} \\
& E_{2}(\Delta z)=\left[u_{y}\left(x_{0}, y_{0}^{*}\right)-u_{y}\left(x_{0}, y_{0}\right)\right] \frac{\Delta y}{\Delta z}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
V(\Delta z) & =\frac{v_{x}\left(x_{0}^{* *}, y_{0}+\Delta y\right) \Delta x}{\Delta z}+\frac{v_{y}\left(x_{0}, y_{0}^{* *}\right) \Delta y}{\Delta z} \\
& =\frac{v_{x}\left(x_{0}, y_{0}\right) \Delta x}{\Delta z}+\frac{v_{y}\left(x_{0}, y_{0}\right) \Delta y}{\Delta z}+E_{3}(\Delta z)+E_{4}(\Delta z)
\end{aligned}
$$

for some $x_{0}^{* *}$ between x_{0} and $x_{0}+\Delta x$, and some $y_{0}^{* *}$ between y_{0} and $y_{0}+\Delta y$. The error terms are

$$
\begin{aligned}
& E_{3}(\Delta z)=\left[v_{x}\left(x_{0}^{* *}, y_{0}+\Delta y\right)-v_{x}\left(x_{0}, y_{0}\right)\right] \frac{\Delta x}{\Delta z} \\
& E_{4}(\Delta z)=\left[v_{y}\left(x_{0}, y_{0}^{* *}\right)-v_{y}\left(x_{0}, y_{0}\right)\right] \frac{\Delta y}{\Delta z}
\end{aligned}
$$

Now as $\Delta z \rightarrow 0$

- both x_{0}^{*} and $x_{0}^{* *}$ (both of which are between x_{0} and $x_{0}+\Delta x$) must approach x_{0} and - both y_{0}^{*} and $y_{0}^{* *}$ (both of which are between y_{0} and $y_{0}+\Delta y$) must approach y_{0} and - $\left|\frac{\Delta x}{\Delta z}\right| \leq 1$ and $\left|\frac{\Delta y}{\Delta z}\right| \leq 1$

Recalling that u_{x}, u_{y}, v_{x} and v_{y} are all assumed to be continuous at $\left(x_{0}, y_{0}\right)$, we conclude that

$$
\lim _{\Delta z \rightarrow 0} E_{1}(\Delta z)=\lim _{\Delta z \rightarrow 0} E_{2}(\Delta z)=\lim _{\Delta z \rightarrow 0} E_{3}(\Delta z)=\lim _{\Delta z \rightarrow 0} E_{4}(\Delta z)=0
$$

and, using the Cauchy-Riemann equations,

$$
\begin{aligned}
& \lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\lim _{\Delta z \rightarrow 0}[U(\Delta z)+i V(\Delta z)] \\
&=\lim _{\Delta z \rightarrow 0}\left[\frac{u_{x}\left(x_{0}, y_{0}\right) \Delta x}{\Delta z}+\frac{u_{y}\left(x_{0}, y_{0}\right) \Delta y}{\Delta z}+i \frac{v_{x}\left(x_{0}, y_{0}\right) \Delta x}{\Delta z}+i \frac{v_{y}\left(x_{0}, y_{0}\right) \Delta y}{\Delta z}\right] \\
&=\lim _{\Delta z \rightarrow 0}\left[\frac{u_{x}\left(x_{0}, y_{0}\right) \Delta x}{\Delta z}-\frac{v_{x}\left(x_{0}, y_{0}\right) \Delta y}{\Delta z}+i \frac{v_{x}\left(x_{0}, y_{0}\right) \Delta x}{\Delta z}+i \frac{u_{x}\left(x_{0}, y_{0}\right) \Delta y}{\Delta z}\right] \\
&=\lim _{\Delta z \rightarrow 0}\left[u_{x}\left(x_{0}, y_{0}\right) \frac{\Delta x+i \Delta y}{\Delta z}+i v_{x}\left(x_{0}, y_{0}\right) \frac{\Delta x+i \Delta y}{\Delta z}\right] \\
&=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

as desired.

Example 4 The function $f(z)=\bar{z}$ has $f(x+i y)=x-i y$ so that

$$
u(x, y)=x \text { and } v(x, y)=-y
$$

The first order partial derivatives of u and v are

$$
\begin{array}{ll}
u_{x}(x, y)=1 & v_{x}(x, y)=0 \\
u_{y}(x, y)=0 & v_{y}(x, y)=-1
\end{array}
$$

As the Cauchy-Riemann equation $u_{x}(x, y)=v_{y}(x, y)$ is satisfied nowhere, the function $f(z)=\bar{z}$ is differentiable nowhere. We have already seen this in Example 1.

Example 5 The function $f(z)=e^{z}$ has

$$
f(x+i y)=e^{x+i y}=e^{x}\{\cos y+i \sin y\}=u(x, y)+i v(x, y)
$$

with

$$
u(x, y)=e^{x} \cos y \text { and } v(x, y)=e^{x} \sin y
$$

The first order partial derivatives of u and v are

$$
\begin{array}{ll}
u_{x}(x, y)=e^{x} \cos y & v_{x}(x, y)=e^{x} \sin y \\
u_{y}(x, y)=-e^{x} \sin y & v_{y}(x, y)=e^{x} \cos y
\end{array}
$$

As the Cauchy-Riemann equations $u_{x}(x, y)=v_{y}(x, y), u_{y}(x, y)=-v_{x}(x, y)$ are satisfied for all (x, y), the function $f(z)=e^{z}$ is entire and its derivative is

$$
f^{\prime}(z)=f^{\prime}(x+i y)=u_{x}(x, y)+i v_{x}(x, y)=e^{x} \cos y+i e^{x} \sin y=e^{z}
$$

Example 6 The function $f(x+i y)=x^{2}+y+i\left(y^{2}-x\right)$ has

$$
u(x, y)=x^{2}+y \text { and } v(x, y)=y^{2}-x
$$

The first order partial derivatives of u and v are

$$
\begin{array}{ll}
u_{x}(x, y)=2 x & v_{x}(x, y)=-1 \\
u_{y}(x, y)=1 & v_{y}(x, y)=2 y
\end{array}
$$

As the Cauchy-Riemann equations $u_{x}(x, y)=v_{y}(x, y), u_{y}(x, y)=-v_{x}(x, y)$ are satisfied only on the line $y=x$, the function f is differentiable on the line $y=x$ and nowhere else. So it is nowhere analytic.

Example 7 The function $f(x+i y)=x^{2}-y^{2}+2 i x y$ has

$$
u(x, y)=x^{2}-y^{2} \text { and } v(x, y)=2 x y
$$

The first order partial derivatives of u and v are

$$
\begin{array}{ll}
u_{x}(x, y)=2 x & v_{x}(x, y)=2 y \\
u_{y}(x, y)=-2 y & v_{y}(x, y)=2 x
\end{array}
$$

As the Cauchy-Riemann equations $u_{x}(x, y)=v_{y}(x, y), u_{y}(x, y)=-v_{x}(x, y)$ are satisfied for all (x, y), this function is entire. There is another way to see this. It suffices to observe that $f(z)=z^{2}$, since $(x+i y)^{2}=x^{2}-y^{2}+2 i x y$. So f is a polynomial in z and we already know that all polynomials are differentiable everywhere.

Example 8 The function $f(x+i y)=x^{2}+y^{2}$ has

$$
u(x, y)=x^{2}+y^{2} \text { and } v(x, y)=0
$$

The first order partial derivatives of u and v are

$$
\begin{array}{ll}
u_{x}(x, y)=2 x & v_{x}(x, y)=0 \\
u_{y}(x, y)=2 y & v_{y}(x, y)=0
\end{array}
$$

As the Cauchy-Riemann equations $u_{x}(x, y)=v_{y}(x, y), u_{y}(x, y)=-v_{x}(x, y)$ are satisfied only at $x=y=0$, the function f is differentiable only at the point $z=0$. So it is nowhere analytic. There is another way to see that $f(z)$ cannot be differentiable at any $z \neq 0$. Just observe that $f(z)=z \bar{z}$. If $f(z)$ were differentiable at some $z_{0} \neq 0$, then $\bar{z}=\frac{f(z)}{z}$ would also be differentiable at z_{0} and we already know that this is not case.

