
ON A DYNAMICAL VERSION OF A THEOREM OF ROSENLICHT

J. P. BELL, D. GHIOCA, AND Z. REICHSTEIN

Abstract. Consider the action of an algebraic group G on an irreducible algebraic variety X
all defined over a field k. M. Rosenlicht showed that orbits in general position in X can be
separated by rational invariants. We prove a dynamical analogue of this theorem, where G is
replaced by a semigroup of dominant rational maps X 99K X. Our semigroup G is not required
to have the structure of an algebraic variety and can be of arbitrary cardinality. This generalizes
earlier work of E. Amerik and F. Campana, where k = C and the semigroup G is assumed to
be generated by a single endomorphism.

1. Introduction

Throughout this paper we will work over a base field k. By a k-variety we will mean a
separated reduced scheme of finite type over k, not necessarily irreducible. Our starting point
is the following classical theorem of M. Rosenlicht [Ros56, Theorem 2].

Theorem 1.1. Consider the action of an algebraic group G on an irreducible algebraic variety
X defined over a field k.

(a) There exists a G-invariant dense open subvariety X0 ⊂ X and a G-equivariant morphism
φ : X0 → Z (where G acts trivially on Z), with the following property. For any field extension
K/k and any K-point x ∈ X0(K), the orbit G · x equals the fiber φ−1(φ(x)).

(b) Moreover, the field of invariants k(X)G is a purely inseparable extension of φ∗k(Z), and
one can choose Z and φ so that φ∗k(Z) = k(X)G (in characteristic zero, this is automatic).

In short, for points x, y in general position in X, distinct G-orbits G · x and G · y can be
separated by rational G-invariant functions. In particular, G-orbits in X0 are closed in X0.
The rational map φ : X 99K Z, with k(Z) = k(X)G, is unique up to birational isomorphism.
It is called the rational quotient for the G-action on X. See [PV94, Chapter 2] for details on
this construction and its applications, [Kem07] for computational aspects, and [Pop14] for a
generalization to actions of infinite-dimensional algebraic groups.

The purpose of this note is to prove a dynamical version of this result, where the algebraic
group G is replaced by a semigroup of dominant rational maps X 99K X. Here the semigroup G
is not required to have the structure of an algebraic variety, and can be of arbitrary cardinality.
Our main result is Theorem 1.2 below.

Theorem 1.2. Let k be a field, X be an irreducible quasi-projective k-variety, and G be a
semigroup of dominant rational k-maps X 99K X.

Then there exists a dense open subvariety X0, a countable collection of closed G-invariant
subvarieties Y1, Y2, · · · ( X0 and a dominant morphism φ : X0 → Z with the following properties.
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(a) Let K/k be a field extension and x, y ∈ X0(K) be K-points which do not lie in the
indeterminacy locus of any g ∈ G, or on Yi for any i > 1. Then φ(x) = φ(y) if and only if
G · x = G · y in XK .

(b) φ ◦ g = φ, as rational maps X 99K Z.
(c) For any dense open subvariety X0 ⊂ X and a dominant morphism φ : X0 → Z satisfying

(a) and (b), the field of invariants k(X)G is a purely inseparable extension of φ∗k(Z). Moreover,
one can choose X0, Z and φ so that φ∗k(Z) = k(X)G (in characteristic zero, this is automatic).

(d) Each Yi is G-invariant in the following sense. Suppose K/k is a field extension and
x ∈ Yi(K) does not lie in the indeterminacy locus of any g ∈ G. Then σ(x) ∈ Yi(K) for each
σ ∈ G.

Furthermore, if G is a monoid (i.e., contains the identity morphism X → X) then
(e) X0 can be chosen to be g-invariant for every g ∈ G which is an automorphism of X (i.e.,

g−1 exists in G, and g, g−1 are both regular).

(f) If x ∈ X0(K) is as in part (a), then the fiber φ−1(φ(x)) of x in X0 equals (G · x) ∩X0.

In short, for points x, y in very general position in X, distinct orbit closures G · x and G · y
can be separated by rational G-invariant functions. Here, as usual, “very general position” means
“away from a countable union of proper subvarieties”.

Note that the G-orbit of x ∈ X(K) in the setting of Theorem 1.1 is a K-subvariety of X; it
is defined as the image of the orbit map G→ X, taking g ∈ G to g ·x. In the dynamical setting
of Theorem 1.2 the orbit G · x is just a collection of K-points g · x, as g ranges over G. The
closure G · x is a K-subvariety of X in both cases. Several remarks are in order.

(1) In the case where k = C and the semigroup G is generated by a single dominant rational
map X 99K X, Theorem 1.2 was proved by E. Amerik and F. Campana. Their result, [AC08,
Theorem 4.1], is stated more generally, in the setting of Kähler manifolds. Theorem 1.2 was
motivated by our attempt to find a purely algebraic characteristic-free proof of this result.

(2) The idea behind our construction of the map φ in Theorem 1.2 is as follows. Assuming
X ⊂ Pn, we set φ(x) to be to the class of the orbit closure G · x ⊂ Pn in the Hilbert scheme
Hilb(n) of subschemes of Pn. The challenge is to show that this defines a rational map φ : X 99K
Hilb(n). The “quotient variety” Z will then be defined as the closure of the image of this map
in Hilb(n). This argument is in the same spirit as the proofs of Theorem 1.1 in [Ros56] and
of [AC08, Theorem 4.1], with Hilbert schemes replacing Chow varieties or Barlet spaces used in
these earlier proofs. To further illustrate our approach, we give a short proof of Theorem 1.1
using the Hilbert scheme in the last section.

(3) A conjecture of A. Medvedev and T. Scanlon [MS14, Conjecture 7.14] asserts that in
the case where k is algebraically closed of characteristic 0, G is generated by a single regular
endomorphism X → X and k(X)G = k (i.e., Z is a point), X has a k-point with a dense
G-orbit. (See also [Ame14, Conjecture 7].) Over C the Medvedev-Scanlon conjecture follows
from the above-mentioned [AC08, Theorem 4.1]. In the case where k is an algebraically closed
uncountable field of arbitrary characteristic, it was proved by the first author, D. Rogalski and S.
Sierra [BRS10, Theorem 1.2]. Corollary 6.1 below may be viewed as a strengthening of [BRS10,
Theorem 1.2].

Over a countable field, the Medvedev-Scanlon conjecture (which was, in turn, motivated by
an earlier related conjecture of S.-W. Zhang [Zha06, Conjecture 4.1.6]) remains largely open.
It has been established only in a small number of special instances (see, in particular, [MS14,
Theorem 7.16] and [BGT, Theorem 1.3]), and no counterexamples are known.
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(4) If the semigroup G is not assumed to be countable, then the points x, y ∈ X0(K) in part (a)
are not truly in very general position, since they are required to lie away from the indeterminacy
loci of (possibly uncountably many) elements g ∈ G. This requirement is imposed to make
sure that the orbits G · x and G · y are well defined. In Section 5 we will prove a variant of
Theorem 1.2, where the orbit G · x is defined more generally, as

(1.1) G · x := {g(x) | g ∈ G is defined at x}.

With this definition, we will show that rational G-invariant functions on X separate orbit clo-
sures in very general position, even if G is uncountable; see Proposition 5.1. Our proof is based
on replacing G a suitable countable subsemigroup H. Note that the new “exceptional subva-
rieties” of X0, resulting from replacing G by H (which we denote by Wi in the statement of
Proposition 5.1) are generally bigger than the subvarieties Yi in the statement of Theorem 1.2
and are only H-invariant, not necessarily G-invariant.

(5) In the case, where X is not quasi-projective, Theorem 1.2 and Proposition 5.1 can be
applied to a quasi-projective dense open subvariety X ′ ⊂ X. Note however, that replacing X
by X ′ and thus viewing elements of G as dominant rational maps X ′ 99K X ′, may make the
condition on x, y ∈ X0(K) in part (a) more stringent by enlarging the indeterminacy loci of
these rational maps.

(6) Examples 6.4 and 6.5 show that if we replace the countable collection of {Yi, i ≥ 1} of
proper subvarieties of X by a finite collection, Theorem 1.2 will fail, even in the simplest case,
where the semigroup G is generated by a single dominant morphism σ : X → X. Note that in
Example 6.4, σ is an automorphism.

2. A dense collection of rational sections

In this section we will consider the following situation. Let X be an irreducible k-variety, V be
closed subvariety of X×Pn, and π : V → X be projection to the first factor, and sλ : X 99K V be
a collection of rational sectionsX 99K V , indexed by a set Λ. We will denote the scheme-theoretic
fiber π−1(x) of a point x ∈ X by Vx.
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Note that we do not assume that V is irreducible and do not impose any restrictions on the
cardinality of Λ.

For notational simplicity, we will sometimes identify {x} × Pn with Pn and thus think of Vx
as a closed subscheme of Pn. Similarly, since each sλ is of the form x 7→ (x, s′λ(x)) for some
rational map s′λ : X → Pn, we will sometimes, by a slight abuse of notation, identify sλ with s′λ
and view sλ as a rational map X 99K Pn.

If K/k is a field extension, we will denote by X(K)′ the collection of K-points of X lying
away from the indeterminacy locus of sλ, for every λ ∈ Λ. In other words, for x ∈ X(K)′,
sλ(x) is defined for every λ ∈ Λ. Note that if Λ is large enough, X(K)′ may be empty for some
fields K/k, even if K is algebraically closed. On the other hand, the generic point η of X lies in
X(Kgen)′, where Kgen = k(X) is the function field of X.
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Proposition 2.1. Assume that the union of sλ(X) over all λ ∈ Λ is dense in V . Then there
exists a countable collection {Yi, i > 1} of proper subvarieties of X with the following property:
For any field extension K/k and x ∈ X(K)′ away from

⋃∞
i=1 Yi, the set

{sλ(x) |λ ∈ Λ}

is Zariski dense in the fiber Vx := π−1(x).

Proof. By generic flatness (see, e.g., [Eis95, Theorem 14.4]), after replacing X by a dense open
subvariety, we may assume that π is flat. Let us denote the Hilbert polynomial of the fiber Vx
by pVx . Since π is flat, pVx is independent of the choice of x ∈ X. In particular, if η is the
generic point of X, then

(2.1) pVx = pVη

Note that if I(Vx) ⊂ K[t0, . . . , tn] is the homogeneous ideal of Vx in Pn, and I(Vx)[d] is the
K-vector space of homogeneous polynomials of degree d in I(Vx), then

pVx(d) :=
(
n+ d

d

)
− dimK(I(Vx)[d]) for d� 0.

Thus for d � 0, dimK(I(Vx)[d]) depends only on d and not on the choice of a field extension
K/k or a point x ∈ X(K).

Let K/k be a field and x ∈ X(K)′. Denote by Wx the closure of {sλ(x) |λ ∈ Λ} in Vx. Clearly
Wx ⊂ Vx ⊂ PnK and thus I(Vx) ⊂ I(Wx). We want to show that for x ∈ X(K)′ in very general
position, Wx = Vx. Our first step towards this goal is the following simple lemma.

Lemma 2.2. Let A and B be closed subschemes of the projective space Pn. If B ⊂ A and A
and B have the same Hilbert polynomial, then A = B.

Proof. Assume the contrary. Then there exists a homogeneous polynomial r(t0, ..., tn) such that
r is identically 0 on B but not on A. Let d := deg(r). Choose a linear form l(t0, . . . , tn) such
that no power of l is identically 0 on A \ Z, where Z is the hypersurface in Pn cut out by r.
(Note that we can always choose l = ti for some i = 0, . . . , n.) Then lir lies in I(B)[d + i] but
not in I(A)[d + i] for every i > 0. Hence dim(I(B)[d + i]) > dim(I(A)[d + i]) for every i > 0,
contradicting our assumption that A and B have the same Hilbert polynomial. �

Proposition 2.1 now reduces to the following:

Claim 2.3. For every d > 1 there exists a proper closed subvariety Yd ⊂ X such that
dim(I(Wx)[d]) = dim(I(Vη))[d] for any field K/k and any x ∈ X(K)′ away from Yd.

Indeed, Claim 2.3 tells us that for x ∈ X(K)′ away from Y1 ∪ Y2 ∪ . . . , we have pWx = pVη .
Combining this with (2.1), we obtain pWx = pVx . Since Wx ⊂ Vx, Lemma 2.2 now tells us that
Wx = Vx, as desired.

The rest of the proof will be devoted to establishing Claim 2.3. We begin by observing that it
suffices to prove this claim for d = 1. Indeed, if we can settle this case, we can deduce Claim 2.3
for any d > 1, after replacing V by its image under

(id,Verd) : X × Pn → X × PN ,

where N :=
(
n+d
d

)
and Verd is the d-fold Veronese embedding.

In the case where d = 1, set r := pVη(1) = n+ 1− dim(I(Vη)[1]). Claim 2.3 now reduces to
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Claim 2.4. Let η ∈ X(k(X)) be the generic point of X. Suppose the linear span of the k(X)-
points {sλ(η) |λ ∈ Λ} in Pnk(X) is of dimension r. Then there exists a closed subvariety Y1 ⊂ X

such that for any field extension K/k and any x ∈ X(K)′ away from Y1, the linear span of the
K-points {sλ(x) |λ ∈ Λ} is of dimension r.

To prove Claim 2.4, write Pn as P(V), where V is the underlying (n + 1)-dimensional vector
space and let

∆ := {([v1], . . . , [vr]) ∈ (Pn)r | v1 ∧ · · · ∧ vr = 0 in ∧r(V)}.
For each (λ1, . . . , λr) ∈ Λr, let sλ1,...,λr : X 99K (Pn)r be given by x 7→ (sλ1(x), . . . , sλr(x)).

Let Zλ1,...,λr ⊂ X be the union of the indeterminacy loci of sλ1 , . . . , sλr and

Uλ1,...,λr := X \ Zλ1,...,λr .

Then sλ1,...,λr : Uλ1,...,λr → (Pn)r is a regular map, and s−1
λ1,...,λr

(∆) is a closed subvariety of
Uλ1,...,λr . Note that in some cases s−1

λ1,...,λr
(∆) = Uλ1,...,λr . This will happen if and only if

sλ1,...,λr(η) ∈ ∆. For example, s−1
λ1,...,λr

(∆) = Uλ1,...,λr whenever λi = λj for some i 6= j.
By our assumption there exist α1, . . . , αr ∈ Λ such that sα1,...,αr(η) 6∈ ∆. Then

Y1 := Zα1,...,αr ∪ s−1
α1,...,αr

(∆)

is a proper closed subvariety of X with the desired property. This completes the proof of
Claim 2.4 and thus of Claim 2.3 and Proposition 2.1. �

Remark 2.5. In the sequel it will be convenient for us to define Y1 more symmetrically as
follows:

Y1 :=
⋂

(λ1,...,λr)∈Λr

(Zλ1,...,λr ∪ s−1
λ1,...,λr

(∆)) .

Note also that since Claim 2.4 concerns only field-valued points of Y1, the scheme structure of
s−1
λ1,...,λr

(∆) does not make a difference in this context; we are only interested in the underlying
variety.

3. The Hilbert scheme and proof of Theorem 1.2(a), (b), (d), (e), (f)

The Hilbert scheme Hilb(n), constructed by A. Grothendieck [Gro95], classifies closed sub-
schemes of Pn in the following sense. A family of subschemes of Pn parametrized by a scheme
X is, by definition, a closed subscheme

V ⊂ X × Pn

such that the projection π : V → X to the first factor is flat. As we mentioned in the previous
section, if X is irreducible, then every fiber of π has the same Hilbert polynomial. Families of
subschemes of Pn parametrized by X are in a natural (functorial in X) bijective correspondence
with morphisms X → Hilb(n). Note that Hilb(n) is not a Noetherian scheme; it is a disjoint
union of (infinitely many) schemes of the form Hilb(n, p), where p is a fixed Hilbert polynomial.
Each Hilb(n, p) is a projective variety defined over Z; it parametrizes families of subschemes of
Pn with Hilbert polynomial p.

We are now ready to proceed with the proof of Theorem 1.2. In this section we will construct
a dense open subset X0 ⊂ X, a dominant morphism φ : X0 → Z, and a countable collection of
proper k-subvarieties Yd ⊂ X0. We will prove parts (a), (b), (d), (e) and (f) of Theorem 1.2 and
defer the proof of part (c) to the next section.
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By our assumption X is a quasi-projective variety. In other words, X is a locally closed
subvariety of some projective space Pnk . Let V ⊂ X × Pn be the Zariski closure of the union of
the graphs of g : X 99K X ⊂ Pn, as g ranges over G. Let π : V → X be the projection

(3.1) V := {(x, g(x)) |x ∈ X , g ∈ G}
π

��

⊂ X × Pn

X

to the first factor and X0 ⊂ X be the flat locus of π, i.e. the largest dense open subset of X
over which π is flat, and V0 := π−1(X0). (Recall that X0 is dense in X by generic flatness.) We
now view V0 ⊂ X0 × Pn as a family of subschemes of Pn parametrized by X0. By the universal
property of the Hilbert scheme this family induces a morphism φ : X0 → Hilb(n). Denote the
closure of the image of this morphism by Z. If K/k is a field extension and x, y ∈ X0(K) then
by our construction

(3.2) φ(x) = φ(y) if and only if Vx = Vy.

Here we identify {x} × PnK and {y} × PnK with PnK .
We may view each g ∈ G as a rational section X0 → V0 given by x 7→ (x, g(x)), as in the

previous section. By the definition of V , the union of the images of these sections is dense in V0.
Thus by Proposition 2.1 there exists a countable collection of proper k-subvarieties Yi ⊂ X0, such
that for any field extension K/k and any x ∈ X0(K) away from the union of these subvarieties,

(3.3) Vx = G · x in PnK .

Choose Y1, Y2, . . . using the formula in Remark 2.5.
(a) By (3.2), φ(x) = φ(y) if and only if Vx = Vy in PnK . By (3.3), Vx = G · x, Vy = G · y, where

the closure is taken in PnK . This shows that φ(x) = φ(y) if and only if G ·x and G · y ⊂ XK have
the same closure in PnK . On the other hand, G · x and G · y have the same closure in PnK if and
only if they have the same closure in XK .

(b) It suffices to show that the rational maps φ ◦ g and φ : X 99K Hilb(n) agree on the generic
point η of X for every g ∈ G. Choose g ∈ G and fix it for the rest of the proof. Then η and
µ := g(η) are Kgen-points of X, where Kgen := k(X). Since G is dominant, neither η nor µ lie
on any proper subvariety of X defined over k. In particular, they do not lie in the indeterminacy
locus of any h ∈ G or on Yi for any i > 1. By (3.2), proving that φ(η) = φ(µ) is equivalent to
showing that

(3.4) Vη = Vµ in PnKgen
,

where Vη, Vµ ∈ PnKgen
are the fibers of η and µ, respectively, under φ : V → X in PnKgen

.
Since η, µ ∈ X0(Kgen) do not lie on Yi for any i > 1, part (a) tells us that Vη = G · η and

Vµ = G · µ. Now recall that µ = g(η). Thus G · µ ⊂ G · η and consequently, Vµ ⊂ Vη. Since
π : V → X is flat over X0, Vη and Vµ have the same Hilbert polynomial, and (3.4) follows from
Lemma 2.2.

(d) Once again, after replacing X by its image under the Veronese embedding Verd, we
may assume without loss of generality that d = 1, as in the proof of Proposition 2.1. By
our assumption g is regular at x ∈ Y1(K) for every g ∈ G. Thus the condition that x ∈ Y1

is equivalent to (g1(x), . . . , gr(x)) ∈ ∆ for every g1, . . . , gr ∈ G; see the formula for Y1 in
Remark 2.5. We want to show that σ(x) ∈ Y1, i.e.,

σ(x) ∈ Zg1,...,gr ∪ s−1
g1,...,gr

(∆)
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for every g1, . . . , gr ∈ G (once again, see the formula in Remark 2.5).
Choose a particular r-tuple g1, . . . , gr ∈ G. If one of the endomorphisms g1, . . . , gr is undefined

at σ(x) then σ(x) ∈ Zg1,...,gr , and we are done. On the other hand, if σ(x) lies in the domain of
every gi, then gi(σ(x)) = (gi◦σ)(x) for i = 1, . . . , r. Since x ∈ Y1, we have (g1◦σ, . . . , gr◦σ)(x) ∈
∆. In other words, σ(x) ∈ s−1

g1,...,gr
(∆), as desired.

(e) If g is an automorphism of X, then the variety V ⊂ X×Pn defined in (3.1), is g-invariant,
where g acts on X × Pn via the first factor. Consequently, the projection π : V → X is g-
equivariant, and the flat locus X0 ⊂ X of π is invariant under g.

(f) By part (b), φ((G · x) ∩X0) = φ(x) and thus

(3.5) (G · x) ∩X0 ⊂ φ−1(φ(x)),

where the closure is taken in X0. If y ∈ X0 and φ(y) = φ(x), then by (3.2), Vy = Vx. Since G is
a monoid, y ∈ Vy and thus y ∈ Vx. In other words, φ−1(φ(x)) ∩X0 ⊂ Vx ∩X0. Combining this
with (3.5), we obtain

(3.6) (G · x) ∩X0 ⊂ φ−1(φ(x)) ⊂ Vx ∩X0 .

On the other hand, by (3.3), G · x is dense in Vx. Thus (G · x) ∩X0 is dense in Vx ∩X0, i.e.,

(G · x) ∩X0 = Vx ∩X0 .

We conclude that both containments in (3.6) are equalities. In particular, (G · x) ∩X0 =
φ−1(φ(x)), as desired.

4. Proof of Theorem 1.2(c)

By part (b), φ∗(k(Z)) ⊂ k(X)G. Let Y be a k-variety whose function field k(Y ) is k(X)G.

The inclusions k(Z)
i∗
↪→ k(Y ) = k(X)G

ψ∗

↪→ k(X) = k(X0) induce dominant rational maps

X0

ψ

��
φ

��

Y

i
��
Z.

After replacing X0, Z, and Y by suitable dense open subvarieties, we may assume that all three
maps in the above diagram are regular.

Let K/k be a field and x, y ∈ X0(K) be as in Theorem 1.2(a). We claim that if φ(x) = φ(y)
then ψ(x) = ψ(y). Indeed, by Theorem 1.2(a), φ(x) = φ(y) implies that G · x = G · y in XK .
Then

(4.1) (G · x) ∩X0 = (G · y) ∩X0 in X0.

By our construction, ψ is G-equivariant, where G acts trivially on Y . Thus ψ sends all of
(G · x) ∩X0 to the point ψ(x) and all of (G · y) ∩X0 to the point ψ(y) in Y . By (4.1), ψ(x) =
ψ(y), as claimed.

In particular, if K/k is field extension and x, y : Spec(K) → X are dominant points, then x
and y satisfy the conditions of Theorem 1.2(a) and thus

φ(x) = φ(y) if and only if ψ(x) = ψ(y).
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By Lemma 4.1 below, i is purely inseparable. This proves the first assertion of Theorem 1.2(c).
To prove the second assertion of part (c), we simply replace Z by Y and φ by ψ.

It remains to prove

Lemma 4.1. Let φ : X
ψ→ Y

i→ Z be dominant maps of irreducible k-varieties. Suppose that
for any pair of dominant points x, x′ : Spec(K) → X, where K/k is a field extension,

(4.2) φ(x) = φ(x′) if and only if ψ(x) = ψ(x′).

Then the field extension k(Y )/i∗(k(Z)) is purely inseparable.

Proof. Let F be the algebraic closure of k(X) and x : Spec(F ) → X be the dominant F -point
of X obtained by composing the natural projection Spec(F ) → Spec(k(X)) with the generic
point Spec(k(X)) → X. Set z := φ(x). The fiber φ−1(z) is an F -subvariety of XF . Denote its
irreducible components by X1, . . . , Xn.

By the fiber dimension theorem, the generic point xi : Spec(F (Xi)) → Xi ↪→ X is dominant
for every i = 1, . . . , n. If K/F is a compositum of F (X1), . . . , F (Xn) over F and (xi)K is the
composition of the projection Spec(K) → Spec(F (Xi)) with xi, then

φ((x1)K) = · · · = φ((xn)K) = zK = φ(xK) .

Our assumption (4.2) now tells us that ψ((x1)K) = · · · = ψ((xn)K) = ψ(xK). Since x is, by
definition, an F -point of X, we see that ψ((x1)K) = · · · = ψ((xn)K) = ψ(x) descends to a
dominant F -point y : Spec(F ) → Y , where i(y) = z. In other words ψ maps each Xi to the
single point y ∈ Y (F ), as depicted in the following diagram:

X

ψ

��
φ

��

X1

!!CC
CC

CC
CC

. . . Xn

}}{{
{{

{{
{{

Y

i
��

y

��
Z z .

Thus ψ(φ−1(z)) = y. Equivalently, ψ(ψ−1(i−1(z))) = y or i−1(z) = y. Applying the fiber
dimension theorem one more time, we obtain dim(Y ) = dim(Z). Since z : Spec(F ) → Z is
dominant, and F is algebraically closed, the number of preimages of z in Y equals the separability
degree of k(Y ) over i∗(k(Z)). In our case the preimage of z a single point y ∈ Y (F ); hence,
k(Y ) is purely inseparable over i∗k(Z). This completes the proof of Lemma 4.1 and thus of
Theorem 1.2. �

Remark 4.2. We do not know whether or not φ∗k(Z) always coincides with k(X)G, where Z is
the closure of the image of the rational map φ : X 99K Hilb(n) we constructed. As we have just
seen, this is always the case in characteristic zero, so the question is only of interest in prime
characteristic. An analogous question in the context of Theorem 1.1 was left open in [Ros56]
and was subsequently settled in the positive by A. Seidenberg in [Sei79].

5. Passing to a countable subsemigroup

The purpose of this section is to prove a refinement of Theorem 1.2, which shows that φ
will separate orbit closures in very general position, even if G is uncountable; see remark (3) in
the Introduction. The price we will pay for this strengthening of Theorem 1.2 is that the new
“exceptional subvarieties”Wi ( X0 may no longer be G-invariant in the sense of Theorem 1.2(d).
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Note also that Proposition 5.1 below, is only of interest if G is uncountable. Otherwise, we can
take H = G, and Proposition 5.1 will be subsumed by Theorem 1.2.

Proposition 5.1. Let X be a quasi-projective irreducible k-variety, and G be a semigroup of
dominant rational maps X 99K X. Under the assumptions of Theorem 1.2, with k(Z) = k(X)G,
there exists a countable subsemigroup H of G with the following properties. There exists a
countable collection {Wi | i > 1} of subvarieties of X0, such that each Wi ( X0 is H-invariant
in the sense of Theorem 1.2(d), and

(a) k(X)G = k(X)H .

(b) For any field extension F/k and any x, y ∈ X0(F ) away from the (countably many)
indeterminacy loci of elements of H and away from ∪i>1Wi, φ(x) = φ(y) if and only if H · x =
H · y in XF .

(c) Moreover, if x ∈ X0(F ) as in part (b), G · x = H · x, where G · x is defined as in (1.1).

Our proof will rely on the following elementary lemma.

Lemma 5.2. Let W be an algebraic variety (not necessarily irreducible), and S be a dense
collection of points in W . Then there exists a countable subcollection S′ ⊂ S which is dense in
W .

Proof. After replacing W by a dense open subset, and removing the points of S that do not lie
in this dense open subset, we may assume without loss of generality that W ⊂ An is affine. Let
I(W ) be the ideal of W in k[x1, . . . , xn] and I(W )[d] be the finite-dimensional vector space of
polynomials of degree ≤ d vanishing on W . It is easy to see that for each d there is a finite
subset Sd ⊂ S such that I(Sd)[d] = I(W )[d]. Taking S′ = ∪∞d=1Sd, obtain I(S′)[d] = I(W )[d]
for every d > 1. Thus I(S′) = I(W ) and S′ is dense in W . �

Proof of Proposition 5.1. We will assume that X ⊂ Pn is a locally closed subvariety of Pn for
some n ≥ 1. Let V ⊂ X × Pn be the closure of the union of the images of

sg : X 99K X × Pn ,

over all g ∈ G, as in (3.1). Applying Lemma 5.2 to the generic points of the closures of the images
of sg, as g ∈ G, we see that there exists a countable collection of elements {hi | i > 1} such that
the images of shi

are dense in V . Let H be the countable subsemigroup of G generated by these
hi. Denote the flat locus of the projection π : V → X by X0 ⊂ X and the morphism associated
to π, viewed as a family of subschemes over X0, by φ : X0 → Hilb(n), as before. Arguing as
in Section 3, we see that there exists a countable collection {Wi | i > 1} of H-invariant closed
subvarieties of X0 such that for any field extension K/k and any point x ∈ X0(K) away from
∪i>1Wi and from the indeterminacy locus of every h ∈ H, Vx = H · x in X; cf. (3.3). Now
φ(x) = φ(y) if and only if Vx = Vy if and only if H · x = H · y. This proves part (b).

(c) Since H · x ⊂ G · x ⊂ Vx, we have H · x = G · x = Vx.
(a) By our construction, φ∗ k(Z) ⊂ k(X)G ⊂ k(X)H , and by Theorem 1.2(c), k(X)H is purely

inseparable over φ∗ k(Z). Thus k(X)H is purely inseparable over k(X)G.
It remains to show that, in fact, k(X)H = k(X)G. Choose a ∈ k(X)H . Then a satisfies some

purely inseparable polynomial p(t) ∈ k(X)G[t]. For any g ∈ G, g(a) also satisfies p(t). Since a
is the only root of p(t) in k(X), we conclude that g(a) = a. In other words, a ∈ k(X)G, i.e.,
k(X)H = k(X)G, as desired. �
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6. A variant of the Medvedev-Scanlon conjecture and examples

The following corollary of Proposition 5.1 is a generalization of the Medvedev-Scanlon con-
jecture [MS14, Conjecture 7.14] in the case, where the base field k is uncountable; cf. Remark
(3) in the Introduction.

Corollary 6.1. Let k be an uncountable algebraically closed field, X be an irreducible k-variety,
and G be a semigroup of dominant rational maps X 99K X. If k(X)G = k then G ·x is dense in
X for some x ∈ X(k).

Here G · x := {g(x) | g ∈ G is defined at x}, as in (1.1).

Proof. After replacing X by a dense open subvariety, we may assume that X is quasi-projective.
Let X0 ⊂ X be a dense open subvariety, and φ : X0 → Z be a morphism such that φ∗k(Z) =
k(X)G, and H be countable subsemigroup of G such that k(X)H = k(X)G, as in Proposition 5.1.

Since k(X)H = k(X)G = k, the variety Z is a single point. Let S ⊂ X0(k) be the set of
k-points of X0 away from the exceptional subvarieties Wi for every i > 1, and away from the
indeterminacy locus of every h ∈ H. Since k is algebraically closed and uncountable, S is Zariski
dense in X0. By Proposition 5.1(b),

(6.1) Y = H · x is independent of the choice of x ∈ S.

Since h : X 99K X is dominant for every h ∈ H, we see that the union
⋃
x∈S H · x is dense in

X. On the other hand, by (6.1), this union equals Y , which is closed in X. We conclude that
Y = X, i.e., H · x = X and consequently, G · x = X for every x ∈ S. �

The following example shows that if we don’t assume that k is uncountable, then the Medvedev-
Scanlon’s conjecture [MS14, Conjecture 7.14] can fail in prime characteristic.

Example 6.2. Let p be a prime number, and X = Am be an m-dimensional affine space defined
over an algebraically closed field k of characteristic p, and G be the semigroup generated by the
Frobenius endomorphism σ : X → X. Then k(X)<σ> = k. On the other hand, there exists a
point x ∈ Am(k) with a Zariski dense orbit under σ if and only if trdegFp

(k) ≥ m.

The following example shows that Proposition 5.1 will fail if we require H to be finitely
generated, rather than just countable.

Example 6.3. Let X be a complex abelian variety of dimension > 1, and G be the group of
translations on X by torsion points of X(C). Then G is countable and C(X)G = C. On the
other hand, any finitely generated subgroup H of G is finite, and C(X)H is a finite subextension
of C(X). Hence, C(C)G ( C(X)H for any finitely generated H. �

The following examples show that the countable collection {Yi, i ≥ 1} of proper “exceptional”
subvarieties of X cannot be replaced by a finite collection in the statement of Theorem 1.2.

Example 6.4. Let E be an elliptic curve over k, X = E × E, σ be an automorphism of X
given by σ(x, y) := (x, x + y), and G

∼→ N (or G ∼→ Z) is generated by σ as a semigroup (or
as a group). In this case Z and φ are unique (up to birational isomorphism), and it is easy to
see that φ is just projection to the first factor, φ : X → Z := E. The fiber Xz = {z} × E is
the closure of a single orbit if and only if z is of infinite order in E. Thus the “exceptional set”
Y1 ∪ Y2 ∪ . . . has to contain countably many “vertical” curves {z} × E, as z ranges over the
torsion points of E.

Example 6.5. Let X = Pn and G ∼→ N be the cyclic semigroup generated by a single dominant
morphism σ : X → X of degree ≥ 2. Assume that k is algebraically closed. Then the exceptional
collection Y1, Y2, . . . is dense in X; in particular, it cannot be finite.
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Proof. We claim that trdegk k(X)G < n. Indeed, assume the contrary. Then the field ex-
tension k(X)/k(X)G is algebraic and finitely generated; hence, it is finite. Now we can view
σ∗ : k(X) → k(X) as a k(X)G-linear transformation of a finite-dimensional k(X)G-vector space
k(X). Since σ∗ is injective, we conclude that it is also surjective, and thus σ : X → X has degree
1, contradicting our choice of σ.

The claim tells us that the general fiber (and hence, every non-empty fiber) of the map
σ : X → Z has dimension > 1. Suppose x ∈ X(k) is a periodic point of X, i.e., σn(x) = x for
some n > 1. Then G · x is finite, and thus G · x is 0-dimensional. Consequently, G · x cannot be
dense in the fiber φ−1(φ(x)), so x has to lie in the exceptional locus Y1 ∪ Y2 ∪ . . . . On the other
hand, by a result of N. Fakhruddin [Fak03, Corollary 5.3] periodic k-points for σ are dense in
X = Pn. �

7. Rosenlicht’s theorem revisited

In this section we give a short proof of Theorem 1.1 under the assumption that X ⊂ Pn is
an irreducible quasi-projective k-variety. The idea is to modify Rosenlicht’s original proof, by
replacing the Chow variety with the Hilbert scheme, in the spirit of the arguments in this paper.

An action of an algebraic group G on X given by a k-morphism

ψ : G×X → X ×X ⊂ X × Pn
(g, x) 7→ (x, g(x)).

We define V ⊂ X×Pn to be the closure of the image of ψ, π : V → X to be projection to the first
factor, and Vx := π−1(x) to be the fiber of x ∈ X, as in (3.1). The role of Proposition 2.1 will now
be played by Lemma 7.1 below. Note that the countable collection of exceptional subvarieties
Yi ⊂ X from Proposition 2.1 does not come up, and the proof is considerably simpler in this
setting.

Lemma 7.1. There exists a G-invariant dense open subvariety U ⊂ X with the following
property: for any field K/k and any x ∈ U(K), G · x is dense in Vx.

Proof. First we will prove the lemma under the assumption that G is irreducible. In this case
V = ψ(G×X) is also irreducible. By Chevalley’s theorem, ψ(G × X) contains a dense open
subvariety W of V . After replacing W by the union of its g-translates, as g ranges over G, we
may assume that W is G-invariant. Here G acts on V via the second factor. In particular,
W ∩ Vx = {x} × (G · x). Set C := V−W . Since dim(C) < dim(V ), there exists a G-invariant
dense open subvariety U ⊂ X such that dim(Cx) < dim(V ) − dim(X) for any x ∈ U . Here
Cx := Vx ∩ C. Since every irreducible component of Vx has dimension > dim(V ) − dim(X),
we see that C does not contain an irreducible component of Vx for every x ∈ U . Thus G · x is
dense in Vx, as desired. This completes the proof of the lemma under the assumption that G is
irreducible.

In general denote the irreducible components of G by G0, G1, . . . , Gr, where G0 is the identity
component. Let V 0 be the closure of the image of the action map G0 ×X → X ×X in X ×Pn.
Then V = V 0 ∪ (G1 · V 0) ∪ · · · ∪ (Gr · V 0). As we have just shown, there exists a G0-invariant
dense open subvariety U ⊂ X such that G0 · x is dense in V 0

x for any x ∈ U . Then clearly G · x
is dense in Vx. A priori U is only G0-invariant, but we can make it G-invariant by replacing it
with the dense open subvariety U0 ∩ (G1 · U0) ∩ · · · ∩ (Gr · U0). �

From now on we will replace X by U , and thus assume that G · x is dense in Vx for every
x ∈ X. Let X0 ⊂ X be the flat locus of the projection π : V → X. The same argument as in the
proof of Theorem 1.2(e) shows that X0 is G-invariant. Let φ : X0 → Hilb(n) as the morphism
associated to π−1(X0) ⊂ X×Pn, which we view as a family of subschemes of Pn parametrized by
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X0. By construction φ separates the fibers of π; these fibers are G-orbit closures by Lemma 7.1.
To complete the proof of Theorem 1.1 it remains to show that φ actually separates the orbits
in X0, and not just their closures. Note that since separating orbit closures is the most we can
do in the dynamical setting, Lemma 7.2 has no counterpart in our proof of Theorem 1.2.

Lemma 7.2. Let K/k be a field extension and x ∈ X0(K) be a K-point. Then the orbit G · x
is closed in (X0)K .

Proof. After base-changing to the algebraic closure K, we may assume that K = k is alge-
braically closed. Since the morphism π : V → X is flat over X0, dim(Vx) does not depend on the
choice of x in X0(k). Thus the dense open subvariety G · x of Vx also has the same dimension
for every x ∈ X0(k).

Assume the contrary: G · x is not closed in X0 for some x ∈ X0(k). Then the complement
to G · x in G · x has a k-point y ∈ X0(k). Since G · x is open and dense in G · x, we have
dim(G · y) < dim(G · x), a contradiction. �

This completes the proof of Theorem 1.1(a). Part (b) is proved in the same way as Theo-
rem 1.2(c) in Section 4.

Acknowledgements. The authors are grateful to E. Amerik, B. Poonen, T. Scanlon, and
T. Tucker for helpful correspondence.
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