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UNLIKELY INTERSECTION FOR TWO-PARAMETER

FAMILIES OF POLYNOMIALS

D. GHIOCA, L.-C. HSIA, AND T. J. TUCKER

Abstract. Let c1, c2, c3 be distinct complex numbers, and let d ≥ 3 be
an integer. We show that the set of all pairs (a, b) ∈ C × C such that
each ci is preperiodic for the action of the polynomial xd + ax+ b is not
Zariski dense in the affine plane.

1. Introduction

The results of this paper are in the context of the unlikely intersections
problem in arithmetic dynamics, and more generally in arithmetic geometry.
The philosophy of the unlikely intersections principle in arithmetic geometry
says that an event that is unlikely to occur in a geometric setting must
be explained by a (rigid) arithmetic property. Roughly speaking, in this
context, an event is said to be “unlikely” when the number of conditions it
satisfies is very large relative to the number of parameters of the underlying
space. For more details, see the Pink-Zilber Conjecture [Pin], the various
results (such as [BMZ99]) in this direction, and also the beautiful book of
Zannier [Zan12].

At the suggestion of Zannier (whose question was motivated by [MZ08,
MZ10, MZ13]), Baker-DeMarco proved a first result [BD11] for the unlikely
intersection principle this time in arithmetic dynamics. Baker and DeMarco
[BD11] proved that given complex numbers a and b, and an integer d ≥ 2,
if there exist infinitely many t ∈ C such that both a and b are preperiodic
under the action of z 7→ zd + t, then ad = bd. Several results followed (see
[BD13, GHT13, GHT15, DWYa, DWYb, GKN, GKNY, GNY]), each time
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the setting being the following: given two starting points for two families
of (one-parameter) algebraic dynamical systems, there exist infinitely many
parameters (or more generally, a Zariski dense set of parameters, as consid-
ered in [GHT15]) for which both points are preperiodic at the same time if
and only if there is a (precise, global) relation between the two families of
dynamical systems and the two starting points.

We note that all results known so far regarding dynamical unlikely in-
tersection problems are in the context of simultaneous preperiodicity of two
points in a one-parameter families of dynamical systems, except for [GHT15,
Theorem 1.4] which is the first instance regarding dynamical systems under
the action of a family of endomorphisms of P2 parameterized by points of
a higher dimensional variety. One might ask more generally for dynamical
unlikely intersection problems involving the simultaneous preperiodicity of
n+ 1 points in an n-parameter family of dynamical systems, where n is any
positive integer. In this paper, we consider the general family of polyno-
mial maps on P1 of degree d ≥ 3 in normal form (i.e., polynomials of the
form zd + ad−2z

d−2 + · · · + a0 with parameters ad−2, . . . , a0). The dimen-
sion of the space of such maps is d − 1. We pose the following question
about simultaneous preperiodicity of d constant points for polynomials in
this family.

Question 1.1. Let d ≥ 3 be an integer, let c1, . . . , cd be distinct complex
numbers, and let fa(z) = zd + ad−2z

d−2 + · · · + a0 be a family of degree d
polynomials in normal form parametrized by a = (ad−2, . . . , a0) ∈ Ad−1(C).
Is it true that the set of parameters a such that each ci is preperiodic under
the action of the polynomial fa is not Zariski dense in Ad−1?

Remark 1.2. In the case where d = 2, it follows from the main result
of [BD11] that the set of complex numbers t such that c1, c2 are preperi-
odic under the action of the polynomial ft(z) = z2 + t is Zariski dense in A1

if and only if c2
1 = c2

2. Hence, in this case the set of parameters t such that
both c,−c (which are distinct if c 6= 0) are preperiodic under the action of
ft is Zariski dense in the complex affine line.

Remark 1.3. We note that Question 1.1 is indeed meaningful when we deal
with d starting points ci since when dealing with at most d−1 starting points,
then there is a Zariski dense set of parameters (ad−2, . . . , a0) ∈ Ad−1(C)
such that each starting point is preperiodic under the action of fa(z). This
assertion follows from the main result of [GNT] (see also Remark 5.2 which
provides more explanation in the special case d = 3). On the other hand, if
we were to consider more than d starting points, then obviously we expect
to have very few parameters a such that all starting points are preperiodic
under the action of fa. It would be interesting to determine the smallest
number ` such that for any ` starting points there are only finitely many
parameters (ad−2, . . . , a0) with the property that each of the ` starting points
is preperiodic under the action of fa.
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In this paper we are able to answer positively Question 1.1 when d = 3;
actually, we can prove a stronger result, as follows.

Theorem 1.4. Let c1, c2, c3 ∈ C be distinct complex numbers, and let d ≥ 3
be an integer. Then the set of all pairs (a1, a0) ∈ C×C such that each ci is
preperiodic for the action of z 7→ zd + a1z + a0 is not Zariski dense in A2.

Theorem 1.4 implies that there are at most finitely many plane curves
containing all pairs of parameters a = (a1, a0) ∈ C2 such that all ci (for
i = 1, 2, 3) are preperiodic under the action of the polynomial fa(z) = zd +
a1z + a0. The result is best possible as shown by the following example: if
c ∈ C is a nonzero number, and ζ ∈ C is a (d − 1)-st root of unity, then
there exist infinitely many a1 ∈ C such that 0, c and ζ · c are preperiodic
for the polynomial zd + a1z. The idea is that c is preperiodic for zd + a1z if
and only if ζ · c is preperiodic for zd + a1z, and there exist infinitely many
a1 ∈ C such that c is preperiodic under the action of zd + a1z (by [GHT13,
Proposition 9.1] applied to the family of polynomials gt(z) := zd+tz and the
starting point gt(c) = ct+ cd). There are other more complicated examples
showing that the locus of a = (a1, a0) ∈ A2 where all the ci’s are preperiodic
for fa can be 1-dimensional. For example, if d = 3 and c1 + c2 + c3 = 0, then
letting

−a1 := c2
1 + c1c2 + c2

2 = c2
1 + c1c3 + c2

3 = c2
2 + c2c3 + c2

3,

we see that fa(c1) = fa(c2) = fa(c3) and thus there are infinitely many
a0 ∈ C such that each ci is preperiodic under the action of fa (for a = (a1, a0)
with a1 as above). It is conceivable that all special curves for parameters
a = (a1, a0) ∈ A2(C) such that each ci for 1 ≤ i ≤ 3 is preperiodic for fa(z)
is given by orbit relations as in the examples described above; however this
is a separate and more delicate question.

Also, one cannot expect that Theorem 1.4 can be extended to any 2-
parameter family of polynomials and three starting points. Indeed, for any
nonzero c1 ∈ C and any c2 ∈ C, there exists a Zariski dense set of points
(a1, a0) ∈ A2(C) such that the points c1, −c1 and c2 are preperiodic under
the action of the polynomial z4 + a1z

2 + a0. We view the 2-parameter
family of polynomials fa1,a0(z) := zd + a1z + a0 as the natural extension of
the family of cubic polynomials in normals form, thus explaining why the
conclusion of Theorem 1.4 holds for this 2-parameter family of polynomials,
while it fails for other 2-parameter families of polynomials. Also, the family
of polynomials from Theorem 1.4 is the generalization of the 1-parameter
family of polynomials gt(z) := zd + t considered by Baker and DeMarco in
[BD11].

Even though we believe Question 1.1 should be true in general, we were
not able to fully extend our method to the general case. As we will explain in
the next section, there are significant arithmetic complications arising in the
last step of our strategy of proof when we deal with families of polynomials
depending on more than 2 parameters. On the other hand, the last step in
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our proof is inductive in that it reduces to applying one-dimensional results
of Baker and DeMarco [BD13] to a line in our two-dimensional parameter
space. Thus, we are hopeful that there is a more general inductive argument
that will allow one to obtain a full result in arbitrary dimension.

We describe briefly the contents of our paper. In Section 2 we discuss the
strategy of our proof and also state in Theorem 2.1 a by-product of our proof
regarding the variation of the canonical height in an m-parameter family of
endomorphisms of Pm for any m ≥ 2. In Section 3 we introduce our notation
and state the necessary background results used in our proof. In Section 4
we prove Theorem 2.1, and based on our result in Section 5 we prove a
general unlikely intersection statement for the dynamics of polynomials in
normal form of arbitrary degree (see Theorem 5.1). We conclude in Section 6
by proving Theorem 1.4 using Theorem 5.1.

Acknowledgments. We thank both referees for their many useful com-
ments.

2. Our method of proof

In the section, we give a sketch of the method used in the proof of our
main result. We first prove that if there exist a Zariski dense set of points
a = (a1, a0) ∈ A2(C) such that c1, c2, c3 are simultaneously preperiodic
under the action of

fa(z) := zd + a1z + a0,

then for each point a ∈ A2(C), if any two of the points ci are preperiodic
under the action of fa, then also the third point ci is preperiodic. We prove
this statement using the powerful equidistribution theorem of Yuan [Yua08]
for generic sequences of points of small height on projective varieties X en-
dowed with a metrized line bundle (we also use the function field version of
this equidistribution theorem proven by Gubler [Gub08]). Such equidistri-
bution statements were previously obtained when X is P1 by Baker-Rumely
[BR06] and Favre-Rivera-Letelier [FRL06, FRL04], and when X is an arbi-
trary curve by Chambert-Loir [CL06] and Thuillier [Thu]. Our method is
similar to the one employed in [GHT15] and it extends to polynomials in
normal form of arbitrarily degree d ≥ 3; i.e., by the same technique we prove
(see Theorem 5.1) that given d distinct numbers c1, . . . , cd ∈ C, if there exist
a Zariski dense set of points a = (ad−2, . . . , a0) ∈ Ad−1(C) such that each
ci is preperiodic under the action of fa(z), then for each a ∈ Ad−1(C) such
that d − 1 of the points ci are preperiodic under the action of fa, then all
the d points ci are preperiodic.

Now, for the 2-parameter family of polynomials fa(z) := zd + a1z + a0,
assuming there exists a Zariski dense set of points a ∈ A2(C) such that each
ci (for i = 1, 2, 3) is preperiodic under the action of fa, we consider the line L
contained in the parameter space A2 along which c1 is fixed by fa(z) for each
a ∈ L(C). Then we have a 1-parameter family of polynomials gt (which is
fa with a moving along the line L), and moreover, for each parameter t, the
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point c2 is preperiodic for gt if and only if c3 is preperiodic for gt. Applying
[BD13, Theorem 1.3] (combined with [Ngu15, Proposition 2.3]), we obtain
that gmt (c2) = gmt (c3) for some positive integer m. This yields that the
starting points ci are not all distinct, giving a contradiction.

The above argument becomes much more complicated for families of poly-
nomials in normal form parametrized by arbitrary many variables. One
could still employ the same strategy and work along the line L ⊂ Ad−1 along
which each of ci, for i = 1, . . . , d − 2 are fixed by fa (with a ∈ L). Then
[BD13, Theorem 1.3] still yields a relation of the form gmt (cd−1) = ζ ·gmt (cd)
(for some root of unity ζ, some positive integer m, where gt is fa where
a := (ad−2, . . . , a0) is moving along the line L). However this relation does
not seem to be sufficient for deriving the desired conclusion. We suspect
that in order to derive a contradiction one would have to analyze more gen-
eral curves in the parameter space along which (d − 2) of the points ci are
persistently preperiodic. However this creates additional problems since one
would have to prove a generalization of [BD13, Theorem 1.3] which seems
difficult because that result relies (among other ingredients) on a deep the-
orem of Medvedev-Scanlon [MS14] regarding the shape of periodic plane
curves under the action of one-variable polynomials acting on each affine
coordinate.

As a by-product of our method we obtain a result on the variation of the
canonical height in an m-parameter family of endomorphisms of Pm defined
over a product formula field K (for more details on product formula fields,
see Section 3). The family of endomorphisms of Pm we consider here is a
product of the family of polynomials ft(z) = zd+ t1z

m−1 + t2z
m−2 + · · ·+ tm

where d > m ≥ 2 and t1, . . . , tm are parameters. Let φ := ft × · · · ×
ft : Am → Am and extend φ to a degree d rational map Φ : Pm → Pm.
More precisely, let X := [Xm : Xm−1 : · · · : X0] be a homogeneous set of
coordinates on Pm and let Φi(X) = Xd

0 ft(Xi/X0) for i = m, . . . , 1. Then,
with respect to the homogeneous coordinates X we have Φ(X) = [Φm(X) :
· · · : Φ1(X) : Xd

0 ]. It is easy to verify that Φ is actually a morphism on Pm.
In the following result, when we specialize our parameter t = (t1, . . . , tm) to
λ = (λ1, . . . , λm) ∈ Am(K), we write Φλ : Pm → Pm for the corresponding
(specialized) morphism on Pm.

Theorem 2.1. Let d > m ≥ 2 be integers, let K be a number field or
a function field of finite transcendence degree over another field, and let
Φ : Pm −→ Pm be the m-parameter family of endomorphisms defined as
above. Let c1, . . . , cm ∈ K be distinct elements, and let P := [cm : · · · :
c1 : 1] ∈ Pm(K). Then for each λ = (λ1, . . . , λm) ∈ Am(K), we have the

canonical height ĥΦλ
(P ) constructed with respect to the endomorphism Φλ of

Pm defined over K, and also we have the canonical height ĥΦ(P ) constructed
with respect to the endomorphism Φ of Pm defined over K(t1, . . . , tm). Then

(2.1.1) ĥΦλ
(P ) = ĥΦ(P ) · h ((λ1, . . . , λm)) +O(1),
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where h ((λ1, . . . , λm)) is the Weil height of the point (λ1, . . . , λm) ∈ Am(K)
and the constant in O(1) depends on c1, . . . , cm only.

It is essential in Theorem 2.1 that the ci’s are distinct. Indeed, assume
m = 2 and c1 = c2 = c ∈ K. Then for each λ1, λ2 ∈ K satisfying

(2.1.2) cd + λ1c+ λ2 = c,

we have that the point P := [c : c : 1] is preperiodic under the action of

Φλ1,λ2 and thus ĥΦλ1,λ2
(P ) = 0. On the other hand, ĥΦ(P ) = 1/d (after an

easy computation using degrees on the generic fiber of Φ) and thus (2.1.1)
cannot hold because there are points (λ1, λ2) ∈ A2(K) satisfying (2.1.2) of
arbitrarily large height.

Theorem 2.1 is an improvement of a special case of Call-Silverman’s gen-
eral result [CS93] for the variation of the canonical height in arbitrary fami-
lies of polarizable endomorphisms Φt of projective varieties X parametrized
by t ∈ T (for some base scheme T ). In the case where the base variety
T is a curve, Call and Silverman [CS93, Theorem 4.1] have shown that for
P ∈ X(Q), then

(2.1.3) ĥΦt(P ) = ĥΦ(P )h(t) + o(h(t))

as we vary t ∈ T (Q) where h(·) is a height function associated to a degree
one divisor on T . Their result generalizes a result of Silverman [Sil83] on
heights of families of abelian varieties. In a recent paper [Ing13], Ingram
improves the error term to O(1) when T is a curve, X is P1, and the family
of endomorphisms Φ is totally ramified at infinity (i.e., Φ is a polynomial
mapping). This result is an analogue of Tate’s theorem [Tat83] in the setting
of arithmetic dynamics.

In order to use Yuan’s equidistribution theorem [Yua08] (and same for
Gubler’s extension [Gub08] to the function field setting) for points of small
height to our situation, the error term in (2.1.3) needs to be controlled within
O(1) when Φ is an endomorphism of Pm as in Theorem 2.1. There are only
a few results in the literature when the error term in (2.1.3) is known to
be O(1). Besides Tate’s [Tat83] and Silverman’s [Sil83] in the context of
elliptic curves and more generally abelian varieties (see also the further
improvements of Silverman [Sil94a, Sil94b] in the case of elliptic curves),
there are only a few known results, all valid for 1-parameter families (see
[Ing13, Ing, GHT15, GM13]). To our knowledge, Theorem 2.1 is the first
result in the literature where one improves the error term in (2.1.3) to O(1)
for a higher dimensional parameter family of endomorphisms of Pm.

3. Notation

In this section we setup the notation used in our paper.
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3.1. Maps and preperiodic points. Let Φ : X −→ X be a self-map on
some set X. As always in dynamics, we denote by Φn the n-th compositional
iterate of Φ with itself. We denote by id := id |X the identity map on X.

For any quasiprojective variety X endowed with an endomorphism Φ, we
call a point x ∈ X preperiodic if there exist two distinct nonnegative integers
m and n such that Φm(x) = Φn(x). If x = Φn(x) for some positive integer n,
then x is a periodic point of period n. For more details, we refer the reader
to the comprehensive book [Sil07] of Silverman on arithmetic dynamics.

3.2. Absolute values on product formula fields. A product formula
field K comes equipped with a standard set ΩK of absolute values | · |v
which satisfy a product formula, i.e,

(3.0.4)
∏
v∈ΩK

|x|Nvv = 1 for every x ∈ K∗,

where N : ΩK → N and Nv := N(v) (see [Lan83] for more details).
The typical examples of product formula fields are

(1) number fields; and
(2) function fields K of finite transcendence degree over some field F .

In the case of function fields K, one associates the absolute values in ΩK

to the irreducible divisors of a smooth, projective variety V defined over the
constant field F such that K is the function field of V; for more details, see
[Lan83] and [BG06]. In the special case K = F (t1, . . . , tm), we may take
V = Pm.

As a convention, in order to simplify the notation in this paper,
a product formula field is always either a number field or a function
field over a constant field.

Let K be a product formula field. We fix an algebraic closure K of K;
if K is a function field of finite transcendence degree over another field F
(which we call the constant field), then we also fix an algebraic closure F
of F inside K. Let v ∈ ΩK . Let Cv be the completion of a fixed algebraic
closure of the completion of (K, | · |v). When v is an archimedean valuation,
then Cv = C. We use the same notation | · |v to denote the extension of the
absolute value of (K, | · |v) to Cv and we also fix an embedding of K into Cv.

3.3. The Weil height. Let m ≥ 1, and let L be a finite extension of
the product formula field K. The (naive) Weil height h(·) of any point
P := [xm : · · · : x0] ∈ Pm(L) is defined as

h(P ) =
1

[L : K]

∑
v∈ΩK

Nv ·
∑

σ:L↪→K
σ|K=id

log (max{|xm|v, · · · , |x0|v}) .

So, the above inner sum is over all possible embeddings of L into K which fix
K pointwise, counted appropriately. Indeed, here and also later in our proof,
a sum similar with the inner sum above counts each embedding σ : L ↪→ K
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(fixing K pointwise) with the multiplicity [L : L0], where L0 is the separable
closure of K inside L. Also, one can check that the above definition of height
does not depend on the particular choice of the field L containing each xi.
We also use the notation h((xm, . . . , x1)) := h([xm : · · · : x1 : 1]) to denote
the height of the point (xm, . . . , x1) in the affine space Am embedded in the
usual way in Pm.

In the special case of the function field K = F (t1, . . . , t`), for a point
P = [xm : · · · : x0] ∈ Pm(K), assuming each xi ∈ F [t1, . . . , t`] and moreover,
the polynomials xi are coprime, then h(P ) = maxmi=0 deg(xi), where deg(·)
is the total degree function on F [t1, . . . , t`].

3.4. Canonical heights. Let m ≥ 1, and let f : Pm −→ Pm be an endo-
morphism of degree d ≥ 2. In [CS93], Call and Silverman defined the global

canonical height ĥf (x) for each x ∈ Pm(K) as

(3.0.5) ĥf (x) = lim
n→∞

h(fn(x))

dn
.

If K is a number field, then using Northcott’s Theorem one deduces that x

is preperiodic for f if and only if ĥf (x) = 0. This statement does not hold
if K is a function field over a constant field F (which is not a subfield of

some Fp) since ĥf (x) = 0 for all x ∈ F if f is defined over F . However, as
proven by Benedetto [Ben05] and Baker [Bak09], this is essentially the only
counterexample.

3.5. Canonical height over function fields. In order to state the results
of Baker and Benedetto, we first define isotrivial polynomials.

Definition 3.1. We say a polynomial f ∈ K[z] is isotrivial over F if there
exists a linear ` ∈ K[z] such that ` ◦ f ◦ `−1 ∈ F [z].

Benedetto proved that a non-isotrivial polynomial has nonzero canonical
height at its non-preperiodic points [Ben05, Thm. B]. As stated, Benedetto’s
result applies only to function fields of transcendence dimension one, but
the proof extends easily to function fields of any transcendence dimension.
Baker [Bak09] later generalized the result to the case of rational functions
over arbitrary product formula fields.

Lemma 3.2 (Benedetto [Ben05], Baker [Bak09]). Let f ∈ K[z] with deg(f) ≥
2, and let x ∈ K. If f is non-isotrivial over F , then ĥf (x) = 0 if and only
if x is preperiodic for f .

A crucial observation for our paper is that a polynomial in normal form
is isotrivial if and only if it is defined over the constant field; the following
result is proven in [GHT13, Lemma 10.2].

Proposition 3.3. Let f ∈ K[z] be a polynomial in normal form. Then f
is isotrivial over F if and only if f ∈ F [z].
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4. Proof of the specialization theorem

In this section we prove Theorem 2.1. So, we work with the following
setup:

• d > m ≥ 2 are integers.
• K is a product formula field.
• For algebraically independent variables t1, . . . , tm we define

f(z) := zd + t1z
m−1 + · · ·+ tm−1z + tm.

Let Φ : Pm −→ Pm be the map on Pm defined by

Φ([Xm : · · · : X1 : X0]) =

[
Xd

0 f

(
Xm

X0

)
: · · · : Xd

0 f

(
X1

X0

)
: Xd

0

]
.

It is straightforward to verify that Φ is a morphism on Pm over
K(t1, . . . , tm).
• When we specialize each ti to some λi ∈ K, we use the notation

fλ(z) := zd + λ1z
m−1 + · · · + λm−1z + λm and Φλ to denote the

corresponding specialized polynomial and endomorphism of Pm re-
spectively, where λ = (λ1, . . . , λm) ∈ Am(K).
• Let c := (cm, . . . , c1) ∈ Am(K) where the ci’s are distinct. We denote

the point [cm : . . . : c1 : 1] ∈ Pm(K) by c̃.

• For each λ := (λ1, . . . , λm) ∈ Am(K), we let ĥΦλ
be the canonical

height corresponding to the endomorphism Φλ defined over K; also

we let ĥΦ be the canonical height corresponding to the endomor-
phism Φ defined over the function field K(t1, . . . , tm).
• Let v ∈ ΩK . The (v-adic) norm of a point P = [xm : · · · : x1 : x0] ∈
Pm(Cv) with x0 6= 0 is defined by ‖P‖ := max{|xm/x0|v, . . . , |x0/x0|v}.
Also, for a point Q = (am, . . . , a1) ∈ Am(Cv), we define its norm

‖Q‖v := max{|am|v, . . . , |a1|v, 1}; it is clear that ‖Q‖v = ‖Q̃‖v,
where Q̃ := [am : · · · : a1 : 1]. For a polynomial

g(x1, . . . , xm) =
∑

ai1,...,imx
i1
1 · · ·x

im
m ∈ Cv[x1, . . . , xm],

the norm of g is defined by ‖g‖v := maxi1,...,im{|ai1,...,im |v}. Similarly,
for a morphism Ψ = [ψm : . . . : ψ1 : ψ0] : Pm → Pm over Cv, we set
‖Ψ‖v := maxi{‖ψi‖v}/‖ψ0‖v.
• By abuse of the notation, we simply write Φn(c) for Φn(c̃) and sim-

ilarly, we let ĥΦλ
(c) denote the canonical height of the point c̃ etc.

For each n ≥ 0 and each i = 1, . . . ,m we define An,i(t1, . . . , tm) such that

Φn(c) := [An,m : · · · : An,1 : 1].

Then A0,i = ci for each i = 1, . . . ,m and for general n ≥ 0:

An+1,i(t1, . . . , tm) := f(An,i(t1, . . . , tm)).
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By induction, we see that the total degree deg(An,i) in the variables

t1, . . . , tm equals dn−1; so ĥΦ(c) = 1
d (see (3.0.5)). Therefore (2.1.1) reduces

to proving

(4.0.1) ĥΦλ
(c) =

h(λ)

d
+O(1), λ = (λ1, . . . , λm) ∈ Am(K).

Note that by our convention mentioned above, we have

‖Φn
λ(c)‖v := max{1, |An,1(λ1, . . . , λm)|v, · · · , |An,m(λ1, . . . , λm)|v}.

To ease the notation, in the following discussion we simply denoteAn,i(λ1, . . . , λm)
by An,i when λ1, . . . , λm are fixed.

Using the definition of Φn(c) which yields that each An,i has total degree
dn−1 in λ and also degree at most dn in c, we obtain an upper bound for
‖Φn

λ(c)‖v when v is a nonarchimedean place of K.

(4.0.2) ‖Φn
λ(c)‖v ≤ ‖λ‖d

n−1

v ‖c‖dnv
We first observe that from the definition of the v-adic norm of a point, we
have that always the v-adic norm of a point is at least equal to 1, i.e.,

(4.0.3) ‖c‖v ≥ 1 and ‖λ‖v ≥ 1.

Next we prove a couple of easy lemmas.

Lemma 4.1. Let λ = (λ1, . . . , λm) ∈ Am(K), and let | · |v be a nonar-
chimedean absolute value such that ‖c‖v = 1 and ‖λ‖v = 1. Then ‖Φn

λ(c)‖v =
1 for each n ≥ 0.

Proof. The result follows using (4.0.2) and also that (just as for any point;
see for example, (4.0.3)) ‖Φn

λ(c)‖v ≥ 1 for every n ≥ 0. �

Lemma 4.2. Let | · |v be a nonarchimedean absolute value such that

(i) ‖c‖v = 1; and
(ii) |ci − cj |v = 1 for each 1 ≤ i < j ≤ m.

Then for each λ ∈ Am(K), and for each n ≥ 1 we have

(4.2.1) ‖Φn
λ(c)‖v = ‖λ‖dn−1

v .

Proof. First, we note by Lemma 4.1 (see condition (i) above) that if ‖λ‖v =
1, then ‖Φn

λ(c)‖v = 1 as claimed in the above conclusion. So, from now on,
we assume that ‖λ‖v > 1. Hence |λi|v > 1 for some i = 1, . . . ,m.

For n = 1, we note that

(4.2.2)

 cm−1
m λ1 + · · ·+ cmλm−1 + λm = A1,m − cdm

· · · · · · · · · · · · · · · · · · · · · · · ·
cm−1

1 λ1 + · · ·+ c1λm−1 + λm = A1,1 − cd1
seen as a system with unknowns λ1, . . . , λm has the determinant equal with a
van der Monde determinant which is a v-adic unit (see condition (ii) above).
Therefore, using also that |ci|v ≤ 1, we get that

|λi|v ≤ max{1, |A1,1|v, . . . , |A1,m|v} i = 1, . . . ,m.
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Thus, ‖λ‖v ≤ ‖Φλ(c)‖v. Combining this last inequality with (4.0.2) for
n = 1, we conclude that ‖Φλ(c)‖v = ‖λ‖v.

Now, for n > 1, we argue by induction on n. So, assume (4.2.1) holds
for n = k ≥ 1, and we prove the same equality holds for n = k + 1. By
induction hypothesis and using the fact that d > m, we have that for each
j = 0, . . . ,m− 1,

(4.2.3) |Ajk,iλm−j |v ≤ ‖λ‖
j·dk−1

v ‖λ‖v < ‖λ‖d
k

v .

For the last inequality we also use the fact that d > m > j and that
‖λ‖v > 1. So, as Ak+1,i = f(Ak,i) for k ≥ 0, we obtain that

|Ak+1,i|v ≤ max

{
|Ak,i|dv, max

0≤j≤m−1
|Ajk,iλm−j |v

}
≤ ‖λ‖dkv .

On the other hand, since ‖Φk
λ(c)‖v = ‖λ‖dk−1

v > 1 by the induction hy-

pothesis, there exists some i = 1, . . . ,m such that |Ak,i|v = ‖λ‖dk−1

v and

so, for that index i (using (4.2.3)), we have |Ak+1,i|v = |Ak,i|dv = ‖λ‖dkv , as
claimed. �

Let S ⊂ ΩK consist of all the archimedean places of K and all the places
v which do not satisfy at least one of the two conditions (i) and (ii) from
Lemma 4.2. It is clear that the set S is finite (note that ci 6= cj for i 6= j
and thus condition (ii) from Lemma 4.2 is satisfied by all but finitely many
places v).

Lemma 4.3. Let λ = (λ1, . . . , λm) ∈ Am(K), and let L be a finite extension
of K containing λ1, . . . , λm. Then we have

ĥΦλ
(c)− ĥΦ(c) · h(Φλ(c))

=
∑
v∈S

Nv

[L : K]
·
∑

σ:L↪→K
σ|K=id

(
lim
n→∞

log ‖Φn
σ(λ)(c)‖v
dn

−
log ‖Φσ(λ)(c)‖v

d

)
.

Proof. We have

ĥΦλ
(c) = lim

n→∞

∑
v∈ΩK

Nv

[L : K]
·
∑

σ:L↪→K
σ|K=id

log ‖Φn
σ(λ)(c)‖v
dn

.

Lemma 4.1 yields that for all but finitely many absolute values | · |v we have
that ‖Φn

σ(λ)(c)‖v = 1 for each σ ∈ Gal(L/K). So, we can interchange the

above limit with the sum formula and get

ĥΦλ
(c) =

∑
v∈ΩK

Nv

[L : K]
·
∑

σ:L↪→K
σ|K=id

lim
n→∞

log ‖Φn
σ(λ)(c)‖v
dn

.

Lemma 4.2 finishes the proof of Lemma 4.3 �
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The next result is the key technical step which allows us to deal with the
potentially bad places v ∈ S for proving (4.0.1).

Lemma 4.4. Let v ∈ S. There exists a constant C(v, c) depending only
on the absolute value | · |v and on the point c such that for each λ =
(λ1, . . . , λm) ∈ Am(K), and for each positive integers n2 > n1, we have∣∣∣∣ log ‖Φn2

λ (c)‖v
dn2

−
log ‖Φn1

λ (c)‖v
dn1

∣∣∣∣ < C(v, c)

dn1
.

Proof. Since we will fix the place v and λ1, . . . , λm and | · |v, we simply
denote Mn := ‖Φn

λ(c)‖v. Similarly, as stated above, we will use the notation
An,i := An,i(λ1, . . . , λm) for i = 1, . . . ,m. We split the analysis based on
whether there exists at least one λi with large absolute value or not.

Claim 4.5. Let L be any real number larger than 1. If ‖λ‖v ≤ L, then

1

2dLd
≤ Mn+1

Md
n

≤ (m+ 1)L,

for all n ≥ 1.

Proof of Claim 4.5. Now, by definition, Mn ≥ 1; so, using also that L > 1,
we get that for each i = 1, . . . ,m we have

|An+1,i|v ≤ |An|dv +
m∑
j=1

|λj |v · |An|m−jv ≤ (m+ 1)L ·Md
n.

Thus Mn+1 = max{1, |An+1,1|v, . . . , |An+1,m|v} ≤ (m+1)L·Md
n. This proves

the existence of the upper bound in Claim 4.5.
For the proof of the existence of the lower bound, we split our analysis

into two cases:
Case 1. Mn ≤ 2L.
In this case, using that Mn+1 ≥ 1, we immediately obtain that

(4.5.1)
Mn+1

Md
n

≥ 1

2dLd
.

Case 2. Mn > 2L.
Let j ∈ {1, . . . ,m} such that |An,j |v = Mn; then

|An+1,j |v = |Adn,j +

m∑
i=1

Am−in,j λi|v

≥ |An,j |dv −
m∑
i=1

|An,j |m−iv · |λi|v

≥ |An,j |dv ·

(
1−

m∑
i=1

|λi|v
|An,j |d−m+i

v

)

≥Md
n ·

(
1−

m∑
i=1

L

M i+1
n

)
since ‖λ‖v ≤ L, |An,j |v = Mn and m < d,
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≥Md
n ·
(

1− 1

2

)
since Mn > 2L,

≥ 1

2
·Md

n.

SinceMn+1 ≥ |An+1,j |v, the above inequality coupled with inequality (4.5.1)
yields the lower bound from the conclusion of Claim 4.5. �

We continue the proof of Lemma 4.4. We solve for the λi’s in terms of
the A1,i’s from the system (4.2.2) and obtain that for each k = 1, . . . ,m we
have

(4.5.2) λk =
Qk,0(c1, . . . , cm) +

∑m
i=1Qk,i(c1, . . . , cm) ·A1,i∏

1≤i<j≤m(ci − cj)
,

where each Qk,i(X1, . . . , Xm) is a polynomial of degree at most d in each
variable Xi.

Let L0 be a real number satisfying the following inequalities:

(1) L0 ≥ (m+ 1)(d+ 1)m · ‖c‖dmv ;
(2) L0 is larger than the v-adic absolute value of each coefficient of each

Qk,i, for k = 1, . . . ,m and i = 0, . . . ,m;

(3) L0 ≥ 1∏
1≤i<j≤m

|ci − cj |v
.

Claim 4.6. Let L ≥ 4L6
0 be a real number. Then for each λ = (λ1, . . . , λm) ∈

Am(Cv) such that ‖λ‖v > L, we have

1

2
≤ Mn+1

Md
n

≤ 2,

for each n ≥ 1.

Proof of Claim 4.6. First we prove that M1 ≥ ‖λ‖vL3
0

. Note that by our choice

of L0, the triangle inequality gives

|Qk,i(c1, . . . , cm)|v ≤ L0(d+ 1)m‖c‖dmv .

Using (4.5.2) (coupled with inequalities (1)-(3) for L0), we get that

(4.6.1) |λk|v ≤
(m+ 1)L0 · (d+ 1)m · ‖c‖dm ·M1∏

1≤i<j≤m |ci − cj |v
≤ L3

0M1.

Thus, ‖λ‖v = max{1, |λ1|v, . . . , |λm|v} ≤ L3
0M1 as first claimed.

We prove by induction that for each n ≥ 1, we have Mn ≥ ‖λ‖v
L3
0

. We

already established the inequality for n = 1. Now, assume Mn ≥ ‖λ‖vL3
0

and

we show next that

(4.6.2) Mn+1 ≥
Md
n

2
≥ ‖λ‖v

L3
0

> 2.
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Note that the last inequality from (4.6.2) follows from the fact that ‖λ‖v >
L ≥ 4L6

0 > 2L3
0. Without loss of generality, we may assume |An,i|v = Mn

for some i, and so by the induction hypothesis |An,i|v = Mn ≥ ‖λ‖v
L3
0
≥ 2.

Now,

Mn+1 ≥ |An+1,i|v

≥ |An,i|dv −
m∑
j=1

|λj |v · |An,i|m−jv

≥ |An,i|dv ·

1−
m∑
j=1

|λj |v
|An,i|d−m+j

v


≥ |An,i|dv ·

1− 2‖λ‖v
|An,i|2v

m∑
j=1

|An,i|2v
2|An,i|d−m+j

v

 since |λi|v ≤ ‖λ‖v,

≥ |An,i|dv ·
(

1− 2‖λ‖v
|An,i|2v

)
since |An,i|v ≥ 2,

≥ |An,i|dv ·
(

1− 2L6
0

‖λ‖v

)
by the induction hypothesis,

≥ |An,i|dv ·
(

1− 2L6
0

L

)
by the hypothesis of Claim 4.6

≥ |An,i|
d
v

2
=
Md
n

2

≥ ‖λ‖
d
v

2L3d
0

≥ ‖λ‖v
L3

0

because ‖λ‖v > L ≥ 4L6
0.

We note that the first inequality from (4.6.2) already yields the lower bound
from the conclusion of Claim 4.6.

Next we prove that for all n ≥ 1, we have

(4.6.3)
Mn+1

Md
n

≤ 2.

Again, without loss of generality, we may assume |An+1,i|v = Mn+1. Then
using inequality (4.6.2), we get

Mn+1 = |An+1,i|v ≤ |An,i|dv +
m∑
j=1

|λj |v · |An,i|m−jv

≤Md
n +

m∑
j=1

|λj |v ·Mm−j
n
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≤Md
n ·

1 +

m∑
j=1

|λj |v
Md−m+j
n


≤Md

n ·
(

1 +
2‖λ‖v
M2
n

)
because Mn ≥ 2

≤Md
n ·
(

1 +
2L6

0

‖λ‖v

)
by induction hypothesis

≤Md
n ·
(

1 +
2L6

0

L

)
since ‖λ‖v > L

≤ 2Md
n since L ≥ 4L6

0.

This concludes the proof of Claim 4.6. �

We take L = 4L6
0 in Claim 4.6. It follows from the definition of L0 that

the constant L now depends only on v and c. Then Claims 4.5 and 4.6 yield
that there exists a constant C > 1 (depending on v and c) such that

(4.6.4)
1

C
≤ Mn+1

Md
n

≤ C,

for each n ≥ 1. An easy telescoping sum after taking the logarithm of the
inequalities from (4.6.4) finishes the proof of Lemma 4.4. �

An immediate corollary of Lemma 4.4 (for n1 = 1) is the following result.

Lemma 4.7. Let v ∈ S. There exists a constant C(v, c) depending only
on the absolute value | · |v and on the point c such that for each λ =
(λ1, . . . , λm) ∈ Am(K), and for each positive integer n, we have∣∣∣∣ lim

n→∞

log ‖Φn
λ(c)‖v
dn

− log ‖Φλ(c)‖v
d

∣∣∣∣ < C(v, c)

d
.

The next result is an easy consequence of the height machine.

Lemma 4.8. There exists a constant C(c) depending only on the point c
such that

|h (Φλ(c))− h(λ)| ≤ C(c),

for each λ ∈ Am(K).

Proof. Recall that f(x) = xd + t1x
m−1 + · · ·+ tm−1x+ tm. We consider the

linear transformation Ψ : Pm −→ Pm defined by

Ψ(P ) = [T0f(cm) : . . . : T0f(c1) : T0]

where P = [Tm : . . . : T1 : T0] and ti = Ti/T0 for i = 1, . . . ,m. Since the
ci’s are distinct, the map Ψ is an automorphism of Pm. So, there exists a
constant C(c) (see [BG06]) depending only on the constants ci such that

(4.8.1) |h(Ψ([λm : · · · : λ1 : 1]))− h([λm : · · · : λ1 : 1])| ≤ C(c).

Because Φλ(c) = Ψ([λm : · · · : λ1 : 1]) and h(λ) = h([λm : · · · : λ1 : 1]), we
obtain the conclusion of Lemma 4.8. �
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We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let L be a finite extension of K containing each λi
(for i = 1, . . . ,m). Recall that we are given the point P = c̃ = [cm : · · · : c1 :

1]. We need to show that ĥΦλ
(c) − ĥΦ(P ) · h(λ) is bounded by a constant

independent of λ. Note that ĥΦ(P ) = ĥΦ(c) = 1/d. Combining Lemmas 4.3,
4.7 and 4.8 yields that∣∣∣ĥΦλ

(c)− ĥΦ(P ) · h(λ)
∣∣∣ ≤ 1

d
· |h (Φλ(c))− h(λ)|+

∣∣∣∣ĥΦλ
(c)− h (Φλ(c))

d

∣∣∣∣
≤ C(c)

d
+
∑
v∈S

Nv

[L : K]
·
∑

σ:L↪→K
σ|K=id

∣∣∣∣∣ lim
n→∞

log ‖Φn
σ(λ)(c)‖v
dn

−
log ‖Φσ(λ)(c)‖v

d

∣∣∣∣∣
≤ C(c)

d
+
∑
v∈S

Nv

[L : K]
· [L : K] · C(v, c)

d

≤ 1

d

(
C(c) +

∑
v∈S

Nv · C(v, c)

)
as desired.

�

5. Simultaneously preperiodic points for polynomials of
arbitrary degree

We retain the notation used in Section 4. In this section we prove the
following result.

Theorem 5.1. Let K be a number field, or a function field of finite tran-
scendence degree over Q, let d > m ≥ 2 be integers, and let

f(z) := zd + t1z
m−1 + · · ·+ tm−1z + tm

be an m-parameter family of polynomials of degree d. For each point λ =
(λ1, . . . , λm) of Am(K) we let fλ be the corresponding polynomial defined
over K obtained by specializing each ti to λi for i = 1, . . . ,m.

Let c1, . . . , cm+1 ∈ K be distinct elements. Let Prep(c1, . . . , cm+1) be the
set consisting of parameters λ ∈ Am(K) such that ci is preperiodic for fλ for
each i = 1, . . . ,m+ 1. If Prep(c1, . . . , cm+1) is Zariski dense in Am(K) then
the following holds: for each λ ∈ Am(K), if m of the points c1, . . . , cm+1 are
preperiodic under the action of fλ, then all (m + 1) points are preperiodic
under the action of fλ.

Remark 5.2. We note that Theorem 5.1 does not hold if the ci’s are not
all distinct. This can be seen for example when d = 3 and m = 2 by
considering starting points c1 6= c2 = c3. One can show that in this case,
Prep(c1, c2, c3) = Prep(c1, c2) is Zariski dense in A2. Indeed, otherwise there
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are finitely many irreducible plane curves Ci (for i = 1, . . . , `) containing all
points from Prep(c1, c2). Then consider a preperiodicity portrait (m1, n1)
for the point c1 which is not identically realized along any of the curves Ci;
the existence of such a portrait is guaranteed by [GNT, Theorem 1.3]. Then
there exists a curve C := C(m1,n1) ⊂ A2 such that for each (a1, a0) ∈ C(K),

the preperiodicity portrait of c1 under fa(z) := z3 + a1z + a0 is (m1, n1).
Another application of [GNT, Theorem 1.3] yields the existence of infinitely
many points (a1, a0) ∈ C(K) such that c2 is preperiodic under the action
of fa. But this means that C must be contained in the Zariski closure of
Prep(c1, c2) contradicting the fact that C is not one of the curves Ci for
i = 1, . . . , `.

So, Theorem 5.1 yields that if there exists a Zariski dense set of m-tuples
λ = (λ1, . . . , λm) ∈ Am(K) such that each ci is preperiodic under the action
of fλ, then something quite unlikely holds: for any specialization polynomial
fλ, if m points ci are preperiodic, then all (m+ 1) points ci are preperiodic
under the action of fλ. As discussed in Section 1 (see also Remark 5.2
and [GNT]), it is expected that there are many specializations fλ such that
c1, . . . , cm are preperiodic under the action of fλ. So, Theorem 5.1 yields
that under the given conclusion, for each of these many specializations, all
(m+ 1) points ci are preperiodic. We expect that such a conclusion should
actually yield a contradiction, and in the next Section we are able to prove
this in the case m = 2.

The main ingredient in proving Theorem 5.1 is the powerful equidistribu-
tion theorem for points of small height with respect to metrized adélic line
bundles (see [Yua08] and also [Gub08] for the function field version), which
can be applied due to our Theorem 2.1.

Proof of Theorem 5.1. By assumption, we know Prep(c1, . . . , cm+1) is a Zariski
dense set of Am(K). Without loss of generality, it suffices to prove that for
each (λ1, . . . , λm) ∈ Am(K), if ci is preperiodic for fλ for each i = 1, . . . ,m,
then also cm+1 is preperiodic for fλ.

Recall from Section 4 the family Φ of endomorphisms of Pm defined by

Φ([Xm : · · · : X1 : X0]) =

[
Xd

0 f

(
Xm

X0

)
: · · · : Xd

0 f

(
X1

X0

)
: Xd

0

]
.

As before, for each λ = (λ1, . . . , λm) ∈ Am(K), we denote by Φλ the corre-
sponding endomorphism of Pm obtained by specializing each ti to λi. For
each j = 1, 2 we let

c(j) := [cm−1+j : cm−1 : · · · : c1 : 1]

and for each n ≥ 0 we define polynomials A
(j)
n,i(t1, . . . , tm) ∈ K[t1, . . . , tm]

(for i = 1, . . . ,m) such that

Φn(c(j)) = [A(j)
n,m : · · · : A(j)

n,1 : 1].
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More precisely, [A
(j)
0,m : · · · : A

(j)
0,1 : 1] = c(j), while for each n ≥ 0, we have

A
(j)
n+1,i = f(A

(j)
n,i). It is easy to check that the total degree in t1, . . . , tm is

degA
(j)
n,i = dn−1 for all n ≥ 1 (and each i = 1, . . . ,m and each j = 1, 2).

We note that if we let

Ã
(j)
n,i(u1, . . . , um+1) := ud

n−1

m+1 ·A
(j)
n,i

(
u1

um+1
, . . . ,

um
um+1

)
(for each j = 1, 2, each i = 1, . . . ,m and each n ∈ N), then the map

θ(j)
n : Pm −→ Pm given by

θ(j)
n (u) =

[
Ã(j)
n,m(u) : · · · : Ã(j)

n,1(u) : ud
n−1

m+1

]
, u = [u1 : · · · : um+1],

is a morphism defined over K. Indeed, if um+1 = 0 and 1 ≤ i ≤ m− 1, then

Ã
(j)
1,i (u1, . . . , um, 0) =

m∑
k=1

cm−ki uk,

while Ã
(j)
1,m(u1, . . . , um, 0) =

∑m
k=1 c

m−k
m−1+juk. An easy induction coupled

with the observation that the leading term in Ã
(j)
n,i (in terms of degree) is(

Ã
(j)
1,i

)dn−1

yields the formulas:

Ã
(j)
n,i(u1, . . . , um, 0) =

(
m∑
k=1

cm−ki uk

)dn−1

for i = 1, . . . ,m− 1, and

Ã(j)
n,m(u1, . . . , um, 0) =

(
m∑
k=1

cm−km−1+juk

)dn−1

.

Now the assumption that the ci’s are distinct ensures that the above map

θ
(j)
n is well-defined on Pm. Thus, we have an isomorphism

τ (j)
n : OPm(dn−1)−̃→

(
θ(j)
n

)∗
OPm(1),

given by

τ (j)
n

(
ud

n−1

i

)
= Ã

(j)
n,i(u1, . . . , um+1)

for i = 1, . . . ,m, and also τ
(j)
n

(
ud

n−1

m+1

)
= ud

n−1

m+1 .

We consider the following two families of metrics corresponding to any
section s := a1u1 + · · · + am+1um+1 (with scalars ai) of the line bundle
OPm(1) of Pm. Using the coordinates ti = ui

um+1
(for i = 1, . . . ,m) on the

affine subset of Pm corresponding to um+1 6= 0, then for each v ∈ ΩK , for



UNLIKELY INTERSECTION FOR FAMILIES OF POLYNOMIALS 19

each n ∈ N (and each j = 1, 2) we get that the metrics ‖s(·)‖(j)v,n are defined
as follows:

(5.2.1) ‖s([u1 : · · · : um+1])‖(j)v,n =


|∑m

k=1 akuk|v
maxmi=1{|Ã

(j)
1,i (u1,...,um,0)|v}

if um+1 = 0,

|am+1+
∑m
k=1 aktk|v

dn−1√
‖Φn(c(j))‖v

if um+1 6= 0.

Let ‖ · ‖′v be the metric on OPm(1) corresponding to the section s =
a1u1 + · · ·+ am+1um+1 given by

‖s([b1 : · · · : bm+1])‖′v =

∣∣∣∑m+1
k=1 akbk

∣∣∣
v

max{|b1|v, . . . , |bm+1|v}
.

We see then that ‖s‖(j)v,n is simply the dn−1-th root of
(
τ

(j)
n

)∗ (
θ

(j)
n

)∗
‖ · ‖′v.

Note that the degree of θ
(j)
n is the same as the total degree of the polynomials

An,i, and thus deg θ
(j)
n = dn−1. Hence, for each n, we have that ‖s‖(j)v,n

are semipositive metrics on L = OPm(1). Following [Yua08] (in the case of

number fields) and [Gub08] (in the case of function fields), we let L(j)
n denote

the algebraic adelic metrized line bundle corresponding to the collection of

metrics ‖s‖(j)v,n.

Let j = 1, 2. Clearly,
{

log ‖s‖(j)v,n
}
n

converges uniformly on the hyper-

plane at infinity (defined by um+1 = 0) from Pm since there is no dependence

on n in this case. Lemmas 4.3 and 4.4 yield that
{

log ‖s‖(j)v,n
}
n

converges

uniformly also when um+1 6= 0. Furthermore (as shown by Lemma 4.3), for

all but finitely many places of K, the metrics ‖s‖(j)v,n do not vary with n. For

each v ∈ ΩK , we let ‖s‖(j)v be the metric which is the limit of the metrics

‖s‖(j)v,n. We denote by L(j)
the corresponding adélic metrized line bundles(

OPm(1), {‖s‖(j)v }
)

.

Let Q ∈ Pm(K). Let s be a section of L as above such that s(Q) 6= 0;

we define the height ĥ
L(j)

(Q) associated to the metrized line bundle L(j)
as

follows. We let L be a normal, finite extension of K such that Q ∈ Pm(K)
and then define:

(5.2.2) ĥ
L(j)

(Q) :=
∑
v∈ΩK

Nv

[L : K]

∑
σ∈Gal(L/K)

− log ‖s(σ(Q))‖(j)v .

By the definition of the above adélic metrics, we have (see also [GHT15,
(9.0.8)]) for each j = 1, 2:

(5.2.3) ĥ
L(j)

([λm : · · · : λ1 : 1]) = d · ĥΦλ
(c(j)).
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By our assumption, there exists a Zariski dense set of points λ ∈ Am(K)
such that

(5.2.4) ĥ
L(1)

(λ) = ĥ
L(2)

(λ) = 0.

On the other hand, we note that
(5.2.5)

‖θ(j)
1 ([u1 : · · · : um : 0])‖v = max

{∣∣∣∣∣
m∑
k=1

cm−km−1+juk

∣∣∣∣∣
v

,
m−1
max
i=1

∣∣∣∣∣
m∑
k=1

cm−ki uk

∣∣∣∣∣
v

}
for each place v ∈ ΩK . Then for each point [u1 : · · · : um : 0] on the
hyperplane at infinity of Pm such that

(5.2.6)

m∑
k=1

cm−km uk =

m∑
k=1

cm−km+1uk,

(5.2.5) yields that

(5.2.7) ‖θ(1)
1 ([u1 : · · · : um : 0])‖v = ‖θ(2)

1 ([u1 : · · · : um : 0])‖v.

On the other hand, the definition (5.2.1) of the metric ‖ · ‖(j)v at any point
[u1 : · · · : um : 0] on the hyperplane at infinity and for any section s :=
a1u1 + · · ·+ am+1um+1 gives

‖s([u1 : · · · : um : 0])‖(j)v =
|
∑m

k=1 akuk|v
maxmi=1{|Ã

(j)
1,i (u1, . . . , um, 0)|v}

=
|
∑m

k=1 akuk|v
‖θ(j)

1 ([u1 : · · · : um : 0])‖v
for each j = 1, 2. So, for a point [u1 : · · · : um : 0] satisfying (5.2.6), equality
(5.2.7) yields

(5.2.8) ‖s([u1 : · · · : um : 0])‖(1)
v = ‖s([u1 : · · · : um : 0])‖(2)

v .

Combining (5.2.4) and (5.2.8) allows us to use [GHT15, Corollary 4.3] and
conclude that for all λ1, . . . , λm ∈ K we have

(5.2.9) h
L(1)

(λ) = h
L(2)

(λ).

Strictly speaking, [GHT15, Corollary 4.3] was stated only for metrized line
bundles defined over Q since the authors employed in that paper Yuan’s
equidistribution theorem from [Yua08]. However, using [Gub08, Theorem 1.1]
and arguing identically as in the proof of [GHT15, Corollary 4.3] one can
extend the result from number fields to any function field of characteristic
0.

Using (5.2.9) coupled with (5.2.3), we obtain that ĥΦλ
(c(1)) = 0 if and

only if ĥΦλ
(c(2)) = 0.

Assume now that K is a number field, i.e., that each ci ∈ Q. Then, as
shown in [CS93], a point is preperiodic under the action of Φλ if and only
if its canonical height equals 0. On the other hand, in general, a point
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[a1 : · · · : am : 1] ∈ Pm(Q) is preperiodic under the action of Φλ if and only
if each ai is preperiodic for the action of fλ. Therefore, we obtain that for
each λ ∈ Am(Q), if each ci (for i = 1, . . . ,m) is preperiodic for fλ, then also
cm+1 is preperiodic for fλ.

So, from now on, assume that not all ci are contained in Q. It is still

true that ĥΦλ
(c(1)) = 0 if and only if ĥfλ(ci) = 0 for i = 1, . . . ,m. Arguing

similarly for c(2), we get that for a λ ∈ AM (K) such that ĥΦλ
(c(1)) =

ĥΦλ
(c(2)) = 0, we have that each ĥfλ(ci) = 0 for i = 1, . . . ,m+ 1. But fλ is

a polynomial in normal form and therefore, it is isotrivial if and only if each
one of its coefficients are in the constant field, i.e. they are contained in Q
(see Proposition 3.3). But if this happens then we cannot have that each

ĥfλ(ci) = 0 since not all ci are in the constant field. In conclusion, fλ is not

isotrivial, and then by Lemma 3.2, we conclude that ĥfλ(ci) = 0 if and only
if ci is preperiodic under the action of fλ. Hence, if ci is preperiodic for each
i = 1, . . . ,m, then also cm+1 is preperiodic under the action of fλ. �

6. Proof of Theorem 1.4

We work under the hypotheses of Theorem 1.4. We prove the theorem
by contradiction under the assumption that we have a Zariski dense set of
parameters λ such that c1, c2 and c3 are preperiodic for fλ.

Because the starting points ci are all distinct, we may assume c1 6= 0.
Let now V ⊂ P2 be the line which is the Zariski closure in P2 of the affine
line containing all λ = (λ1, λ2) ∈ A2(K) such that c1 is a fixed point for
fλ(x) = xd+λ1x+λ2. This last condition is equivalent with asking that cd1 +
c1λ1 +λ2 = c1, or in other words, V is the line in P2 whose intersection with
the affine plane containing all points in P2 with a nonzero last coordinate is
the line (t, α+ βt), where α := c1 − cd1 and β := −c1 6= 0.

Let gt(x) := xd + tx + (α + βt) be a 1-parameter family of degree d
polynomials. Note that α + βt 6= 0 (because β 6= 0). By Theorem 5.1,
we know that for each t ∈ K, c2 is preperiodic for gt if and only if c3 is
preperiodic for gt. It follows from [BD13, Theorem 1.3] that there exists a
polynomial ht commuting with an iterate of gt, and there exist m,n ∈ N
such that

(6.0.10) gmt (c2) = ht (gnt (c3)) .

We claim that if ht ∈ K[t, x] is any (non-constant) polynomial such that
ht commutes with an iterate of gt, then ht = g`t for some ` ≥ 0. This
statement follows from [Ngu15, Proposition 2.3]. First, since gt is in normal
form, the only linear polynomials commuting with gt are of the form γx,
and because α + βt 6= 0, then γ = 1. Secondly, according to [Ngu15,
Proposition 2.3], the non-linear polynomial ht of smallest degree commuting
with gt must satisfy the condition that het = gt for some positive integer e.
Write ht(x) = a(t)x` + b(t)x`−i + lower degree terms, where ` ≥ 2, 1 ≤ i ≤ `
and both a(t) and b(t) are nonzero polynomials in t. A straightforward
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induction shows that het (x) = a(t)dex`
e

+ βe(t)x
`e−i + lower degree terms,

where de is some positive integer and βe(t) is a monomial in a(t) and b(t)
which is nonzero. Due to the shape of gt, by comparing degrees in x, we
see that the only possibility is e = 1, which yields our claim that the only
polynomials commuting with gt are of the form g`t for ` ≥ 0.

Therefore, in (6.0.10) we can take ht(x) = x; hence

(6.0.11) gmt (c2) = gnt (c3).

Now, for each c ∈ K, if c 6= c1 then degt(gt(c)) = 1 and then a simple
induction proves that degt(g

`
t(c)) = d`−1 for all ` ∈ N. Therefore, (6.0.11)

yields that m = n. The equality gmt (c2) = gmt (c3) yields in particular that
the leading coefficients of the polynomials gmt (c2) and gmt (c3) are the same,
i.e.

(6.0.12) (c2 − c1)d
m−1

= (c3 − c1)d
m−1

.

It is immediate to see that for m ≥ 2 we have

gm−1
t (x) = xd

m−1
+ dm−2t · xdm−1−d+1 + lower order terms in x.

The rest of the argument is split into two cases depending on whether d is
even or not. If d is odd, then we can easily derive the conclusion, as follows.

Assume d is odd.
Without loss of generality, we may also assume c2 6= 0 (because all three

numbers c1, c2, c3 are distinct). Then the exact same argument as above
used for deriving the equation (6.0.12) (applied this time to the line in the
parameter space along which c2 is a fixed point) yields that

(6.0.13) (c1 − c2)d
`−1

= (c3 − c2)d
`−1
,

for some ` ∈ N. Using (6.0.12) and (6.0.13), at the expense of replacing `
by a larger number, we may assume

(6.0.14) (c2 − c1)d
`

= (c3 − c1)d
`

and (c1 − c2)d
`

= (c3 − c2)d
`
.

We split now the analysis depending on whether c3 is also nonzero, or c3 = 0.
Case 1. c3 6= 0.
In this case, we can apply (a third time) the above argument, this time

for the curve in the parameter space along which c3 is a fixed point, and
therefore conclude (at the expense of replacing ` by a larger integer) that
(6.0.15)

(c2−c1)d
`

= (c3−c1)d
`
, (c1−c2)d

`
= (c3−c2)d

`
and (c1−c3)d

`
= (c2−c3)d

`
.

But then (c2−c3)d
`

= (c3−c2)d
`
, and since d is odd, this yields that c2 = c3,

contradiction.
Case 2. c3 = 0.
Under this assumption, we rewrite (6.0.14) as follows:

(6.0.16) (c2 − c1)d
`

= (−c1)d
`

and (c1 − c2)d
`

= (−c2)d
`
.



UNLIKELY INTERSECTION FOR FAMILIES OF POLYNOMIALS 23

Hence there exist d`-th roots of unity ζ1 and ζ2 such that c1 − c2 = −ζ1c2

and c2 − c1 = −ζ2c1. So, c1 = (1 − ζ1)c2 and c2 = (1 − ζ2)c1 and because
c1 6= 0, we conclude that (1 − ζ1)(1 − ζ2) = 1, i.e. −ζ1 − ζ2 + ζ1ζ2 = 0.
Hence ζ2(ζ1 − 1) = ζ1 and thus also ζ1 − 1 is a d`-th root of unity. Now,
the only roots of unity ζ with the property that also ζ − 1 is a root of unity

are ζ = 1±
√
−3

2 . However, 1±
√
−3

2 is a primitive 6-th root of unity and not a

d`-th root of unity when d is odd, contradiction.
Therefore, Theorem 1.4 holds whenever d is odd; in particular, it holds

when d = 3. Next we prove that Theorem 1.4 holds for all d ≥ 4. So,
actually it is only the case d = 3 that requires a different argument than
the general case (and luckily the case d = 3 is covered by the above analysis
which works for any odd d); see Remark 6.1 for a technical explanation of
why the case d = 3 is not covered by the argument we provide next for
d ≥ 4.

Assume now that d ≥ 4.
Noting that gt(c2) = t(c2 − c1) + cd2 + c1 − cd1, we will show further down

that for m ≥ 2 we get

gmt (c2) = gt(c2)d
m−1

+ dm−2t · gt(c2)d
m−1−d+1 +Rm(t)

= td
m−1 · (c2 − c1)d

m−1

+ dm−1 · (c2 − c1)d
m−1−1(cd2 + c1 − cd1) · tdm−1−1 +O

(
td
m−1−2

)
(6.0.17)

where Rm(t) is a polynomial in t of degree at most dm−1−d+1. In the above
computation we used the fact that d > 3 and therefore the second leading

term of gmt (c2) is indeed dm−1 · (c2− c1)d
m−1−1(cd2 + c1− cd1) · tdm−1−1. Also,

the first equality in the above expansion of gmt (c2) follows by induction on
m. This follows immediately since gt(x) = xd + tx+ (c1 − cd1 − tc1) and so,

gm+1
t (c2) = gt(g

m
t (c2))

= gmt (c2)d + tgmt (c2) + (c1 − cd1 − tc1)

=
(
gt(c2)d

m−1
+ dm−2t · gt(c2)d

m−1−d+1 +Rm(t)
)d

+ t ·
(
gt(c2)d

m−1
+ dm−2tgt(c2)d

m−1−d+1 +Rm(t)
)

+ (c1 − cd1 − c1t)

Using the induction hypothesis (and that d ≥ 3), we know that

degt gt(c2)d
m−1

> degt t · gt(c2)d
m−1−d+1 > degtRm(t).

We thus conclude that

gm+1
t (c2) = gt(c2)d

m
+ dm−1t · gt(c2)d

m−d+1 +O(td
m−d+1)

+ t · gt(c2)d
m−1

+O(td
m−1

)

Clearly, dm − d + 1 > dm−1 for m ≥ 2 (because d ≥ 3), which yields the
desired claim (6.0.17). Hence gmt (c2) = gmt (c3) yields not only (6.0.12) but
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also that

(6.0.18) (c2 − c1)d
m−1−1 · (cd2 + c1 − cd1) = (c3 − c1)d

m−1−1 · (cd3 + c1 − cd1).

Equations (6.0.12) and (6.0.18) yield that there exists u ∈ K such that

(6.0.19) u :=
cd2 + c1 − cd1
c2 − c1

=
cd3 + c1 − cd1
c3 − c1

.

Combining (6.0.12) and (6.0.19), we get that

(6.0.20) gt(c2)d
m−1

= gt(c3)d
m−1

.

Then using (6.0.20) and the expansion of gmt (c2) = gmt (c3) in terms of powers
of t, we get that

dm−2t ·
(
t(c2 − c1) + (cd2 + c1 − cd1)

)dm−1−d+1

= dm−2t ·
(
t(c3 − c1) + (cd3 + c1 − cd1)

)dm−1−d+1
+O(td

m−1−d+1).

This yields that

(6.0.21) (c2 − c1)d
m−1−d+1 = (c3 − c1)d

m−1−d+1.

Since gcd
(
dm−1, dm−1 − d+ 1

)
= 1, (6.0.12) and (6.0.21) yield that

c2 − c1 = c3 − c1,

i.e., that c2 = c3, contradiction. This concludes our proof when d ≥ 4, and
in turn, it finishes the proof of Theorem 1.4.

Remark 6.1. In the special case d = 3 we cannot employ the same argument
as is in the case d ≥ 4 since the second leading term in gmt (c2) involves also
contribution from

dm−2t ·
(
t(c2 − c1) + cd2 + c1 − cd1

)dm−1−d+1
.

Instead we had to use the additional specialization of f(x) = xd + t1x + t2
along other lines in the moduli space A2 with the property that c2 (and
c3) are fixed along these other lines. This allowed us to derive additional
relations between the ci’s similar to (6.0.12) and as long as d is odd (which
is the case when d = 3) suffices for deriving a contradiction.

The above analysis from the proof of Theorem 1.4 which is quite delicate
gives an insight into the difficulty of the general case of Question 1.1 when
one deals with d− 1 parameters ai and d starting points ci.
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[FRL04] C. Favre and J. Rivera-Letelier, Théorème d’équidistribution de Brolin en dy-
namique p-addique, C. R. Math. Acad. Sci. Paris 339 (2004), no. 4, 271-276.
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