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Abstract. We count permutation polynomials of Fq which are sums of m + 1(≥ 2) monomials
of prescribed degrees. This allows us to prove certain results about existence of permutation
polynomials of prescribed shape.

1. Introduction

Let p be prime and let q be a nontrivial power of p. A polynomial is a permutation polynomial
of Fq if it induces a bijective map from Fq onto itself. The study of permutation polynomials
of a finite field goes back to 19-th century when Hermite and later Dickson pioneered this area
of research. In recent years, interests in permutation polynomials have significantly increased
because of their potential applications in cryptography, coding theory, and combinatorics (see
for example [2], [8], [12]). For more background material on permutation polynomials we refer
to Chapter 7 of [10]. In [9], Lidl and Mullen proposed nine open problems and conjectures
involving permutation polynomials of finite fields. This is one of the open problems.

Problem 1.1 (Lidl-Mullen). Let Nd(q) denote the number of permutation polynomials of Fq
which have degree d. We have the trivial boundary conditions: N1(q) = q(q − 1), Nd(q) = 0 if d
is a divisor of (q − 1) larger than 1, and

∑
Nd(q) = q! where the sum is over all 1 ≤ d < q − 1

such that d is either 1 or it is not a divisor of (q − 1). Find Nd(q).

Note that we may assume each polynomial defined over Fq has degree at most (q−1) because
xq = x for each x ∈ Fq.

We review several recent results regarding this problem. In [3], Das proved that Np−2(p) ∼
(ϕ(p)/p)p! as p→∞, where ϕ is the Euler function. More precisely he proves that∣∣∣∣Np−2(p)− ϕ(p)

p
p!
∣∣∣∣ ≤

√
pp+1(p− 2) + p2

p− 1
.

This result has been improved and generalized by Konyagin and Pappalardi [5] who proved that∣∣∣∣Nq−2(q)− ϕ(q)
q

q!
∣∣∣∣ ≤

√
2e
π
q
q
2 .

Furthermore, Konyagin and Pappalardi [6] count the permutation polynomials which have no
monomials of prescribed degrees. More precisely, they prove the following result.
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Theorem 1.2 (Konyagin-Pappalardi). Fix j integers k1, . . . , kj with the property that 0 <
k1 < · · · < kj < q− 1 and define N(k1, . . . , kj ; q) as the number of permutation polynomials h of
Fq of degree less than (q−1) such that the coefficient of xki in h equals 0, for i = 1, . . . , j. Then∣∣∣∣N(k1, . . . , kj ; q)−

q!
qj

∣∣∣∣ <
(

1 +

√
1
e

)q
((q − k1 − 1)q)q/2.

Note that Nq−2(q) = q!−N(q − 2; q).
Theorem 1.2 leaves open the question that whether there are permutation polynomials with

a prescribed set of nonzero monomials, as it only counts the permutation polynomials whose
nonzero monomials are a subset of a given set of monomials. Moreover, Theorem 1.2 is vacuous
when k1 is quite small comparing to q, as in that case the right hand side of the above inequality
is larger than q!.

In this paper we address both of the above issues. On one hand, we are able to count the
permutation polynomials which have a prescribed set of nonzero monomials (see Theorem 1.3).
More precisely, we provide a partition of the set of permutation polynomials of degree d and
obtain upper and lower bounds for the number of permutation polynomials in each class. On the
other hand, as a consequence of our main result (Theorem 1.3), we can prove the existence of
many permutation polynomials which have a prescribed shape (see Corollary 1.5), or a prescribed
degree (see Theorem 1.7).

In order to state our results we need the following terminology. For any nonconstant monic
polynomial g(x) ∈ Fq[x] of degree ≤ q − 1 with g(0) = 0, let r be the vanishing order of g(x) at
zero and let f1(x) := g(x)/xr. Then let ` be the least divisor of q − 1 with the property that
there exists a polynomial f(x) of degree (` · deg(f1)) /(q − 1) such that f1(x) = f(x(q−1)/`). So
g(x) can be written uniquely as xrf(x(q−1)/`). We call ` the index of g(x). More generally any
nonconstant polynomial h(x) can be written as h(x) = ag(x) + b where a 6= 0 and g(x) is monic
with g(0) = 0. We define the index of h(x) as the index of g(x). So any nonconstant polynomial
h(x) ∈ Fq[x] of degree ≤ q − 1 and of index ` can be written uniquely as

a(xrf(x(q−1)/`)) + b.

Clearly, h(x) is a permutation polynomial of Fq, if and only if g(x) = xrf(x(q−1)/`) is a
permutation polynomial of Fq.

If ` = 1 then f(x) = 1 and so g(x) = xr. In this case g(x) is a permutation polynomial of Fq
if and only if (r, q − 1) = 1. So from now on we assume that ` > 1.

We set up the notation for our main result. Let q be a prime power, and ` ≥ 2 be a divisor of
q − 1. Let m, r be positive integers, and ē = (e1, . . . , em) be an m-tuple of integers that satisfy
the following conditions:

(1.1) 0 < e1 < e2 · · · < em ≤ `− 1 and (e1, . . . , em, `) = 1 and r + ems ≤ q − 1,

where s := (q − 1)/`. For a tuple a := (a1, . . . , am) ∈ (Fq∗)m, we let

gar,e(x) := xr (xems + a1x
em−1s + · · ·+ am−1x

e1s + am) .

Note that if r and e satisfy (1.1) then gar,e(x) has index `.
We observe that if gar,e(x) is a permutation polynomial of Fq then

(1.2) (r, s) = 1,
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and so, r+ ems < q− 1. This is true, since otherwise (r, s) = c > 1. Let ω 6= 1 be a c-th root of
unity in Fq. Then gar,e(1) = gar,e(ω), and so gar,e(x) is not a permutation polynomial.

With the above notation define Nm
r,e(`, q) as the number of all tuples a ∈

(
F∗q
)m such that

gar,e(x) is a permutation polynomial of Fq. In other words Nm
r,e(`, q) is the number of all monic

permutation (m+ 1)-nomials gar,e(x) = xrf(x(q−1)/`) of Fq with vanishing order at zero equal to
r, set of exponents ē for f(x), and index `.

In this paper we will find an asymptotic formula for Nm
r,e(`, q). Our main result is the following.

Theorem 1.3. We have ∣∣∣∣∣ `
`

`!N
m
r,e(`, q)− qm

``+1qm−1/2

∣∣∣∣∣ < 1.

In fact in (2.16) and (2.17) we establish more precise upper and lower bounds for the quotient
in Theorem 1.3. Our theorem together with (2.16) and (2.17) improve and generalize Theorem
4.5 of [7] which treats only the case that m = 1 and e1 = 1. We also note that one may generalize
the methods introduced in [11] to obtain similar bounds for Nm

r,e(`, q) as in our Theorem 1.3.
Next we employ Theorem 1.3 to study the existence of permutation polynomials of certain

shapes. There are no permutation polynomials of Fq of degree d > 1 such that d | (q − 1).
Moreover Carlitz’s conjecture (now a theorem due to Fried, Guralnick, and Saxl [4]) states that,
for any positive even degree n, there is no permutation polynomial of degree n of Fq if q is
sufficiently large compared to n. On the other hand one can prove the existence of permutation
polynomials of varying degrees, as it is evident from the following result.

Theorem 1.4 (Carlitz-Wells). (i) Let ` > 1. Then for q sufficiently large such that ` | (q−1),
there exists a ∈ Fq such that the polynomial x(x(q−1)/` + a) is a permutation polynomial of Fq.

(ii) Let ` > 1, (r, q − 1) = 1, and k be a positive integer. Then for q sufficiently large such
that ` | (q − 1), there exists a ∈ Fq such that the polynomial xr(x(q−1)/` + a)k is a permutation
polynomial of Fq.

Note that in Theorem 1.4, part (i) is a special case of part (ii) for r = 1 and k = 1. See [1,
Theorem 2 and Theorem 3] for a proof of the above result.

Recently several authors found quantitative versions of the Carlitz-Wells theorem in bino-
mial case. In [7], Laigle-Chapuy proves the first assertion of Theorem 1.4 assuming q >

`2`+2
(
1 + `+1

``+2

)2
. In [11], Masuda and Zieve obtain a stronger result for more general bino-

mials of the form xr(xe1(q−1)/` + a). More precisely they show the truth of part (i) of Theorem
1.4 for q > `2`+2.

Here by employing Theorem 1.3 we obtain the following quantitative generalization of the
Carlitz-Wells theorem, which surpasses all the above results.

Corollary 1.5. For any q, r, ē, m, ` that satisfy (1.1), (1.2), and q > `2`+2, there exists an
ā ∈ (F∗q)m such that the (m+ 1)-nomial gār,e(x) is a permutation polynomial of Fq.

Remark 1.6. For q ≥ 7 we have `2`+2 < q as long as ` < log q
2 log log q .

As an immediate corollary of Theorem 1.3 we can obtain the existence of permutation (m+1)-
nomials which have coefficients equal to 0 for their xk terms, where 2 ≤ k ≤ s (simply take r = 1
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in a permutation polynomial of the form xrf(xs) as in Corollary 1.5). This observation addresses
one of the questions left open by Konyagin and Pappalardi (see the discussion after Theorem 1.2).

Next note that for 1 ≤ t ≤ q − 2 the number of permutation polynomials of degree at least
(q − t − 1) is q! −N(q − t − 1, q − t, . . . , q − 2; q). In [6, Corollary 2] Konyagin and Pappalardi
proved that

N(q − t− 1, q − t, . . . , q − 2; q) ∼ q!
qt

holds for q → ∞ and t ≤ 0.03983 q. This result will guarantee the existence of permutation
polynomials of degree at least (q − t − 1) for t ≤ 0.03983 q (as long as q is sufficiently large).
Our next theorem gives generalization and refinement of this existence result for certain values
of t.

Theorem 1.7. Let m ≥ 1. Let q be a prime power such that (q− 1) has a divisor ` with m < `

and `2`+2 < q. Then for every 1 ≤ t < (`−m)
` (q − 1) coprime with (q − 1)/` there exists an

(m+ 1)-nomial gār,e(x) of degree (q − t− 1) which is a permutation polynomial of Fq.

Note that Theorem 1.7 establishes the existence of permutation polynomials with exact degree
(q − t− 1).

Our arguments in the proof of our main result (Theorem 1.3) are of two flavors. Firstly, we use
combinatorial arguments specific for permutation polynomials, which were inspired from Laigle-
Chapuy’s work [7]. Secondly, we use an upper bound on sums of multiplicative characters, which
originally is a consequence of Weil’s proof of the Riemann hypothesis for curves over finite fields.
We further would like to point out that the proof of Theorem 1.3 for m > 1 differs significantly
from the case m = 1. In fact the direct application of the method of [7] leads to difficulties in
the case m > 1. In this paper we deal with the latter case by splitting all tuples in (Fq)m in two
categories: good and bad tuples (see Section 2 for the definition), and then applying the Weil
bound only to the character sums associated to the good tuples.

In the next section we prove our main result (Theorem 1.3), and in Section 3 we prove
Theorem 1.7.

2. Proof of the Main Theorem

In the proof of Theorem 1.3 we will use the following classical inequality for character sums
which is proved by Weil in [14] using methods of algebraic geometry (see [10, Theorem 5.41]
for an elementary proof; see also [10, Chapter 5] for a discussion of upper bounds for character
sums).

Theorem 2.1 (Weil). Let Ψ be a multiplicative character of Fq of order ` > 1 and let f(x) ∈
Fq[x] be a monic polynomial of positive degree that is not an `-th power of a polynomial. Let d
be the number of distinct roots of f(x) in its splitting field over Fq. Then for every t ∈ Fq we
have ∣∣∣∣∣∣

∑
a∈Fq

Ψ(tf(a))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.

We continue with the notation from Section 1; so, ` ≥ 2 is a divisor of (q−1), and s = (q−1)/`.
We denote by S` the set of all permutations of {1, . . . , `}, and by µ` the set of all `-th roots of
unity in F∗q .
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We let α be a generator of the cyclic group F∗q . Let ψ be a multiplicative character of order `
of µ`. More precisely, let ω be a primitive `-th root of unity in C. Define ψ(αs) = ω and extend
it with ψ(0) = 0. Finally, we let a multiplicative character Ψ of Fq of order ` be defined by
Ψ(α) = ψ(αs), and extended so that Ψ(0) = 0.

For any permutation σ ∈ S`, and any β1, . . . , β` ∈ µ`, we define

Pσ(β1, . . . , β`) =
∏̀
i=1

`−1∑
j=0

(
ψ(βi)ψ(αs)−σ(i)

)j .

It is easy to see that

(2.1) {β1, . . . , β`} = µ` ⇐⇒ there exists σ such that Pσ(β1, . . . , β`) = ``.

Furthermore, there exists a unique permutation σ satisfying (2.1); it is given by solving the
equations

(2.2) αs·σ(i) = βi,

for each i ∈ {1, . . . , `}. Indeed, it is known that for every `-th root of unity ζ we have
`−1∑
k=0

ζk = 0,

unless ζ = 1, in which case
∑`−1

k=0 ζ
k = `. So, if {β1, . . . , β`} = µ`, then there exists a unique

permutation σβ ∈ S` which satisfies (2.2) and then Pσβ (β1, . . . , β`) = ``, as desired.
Now, if {β1, . . . , β`} 6= µ`, then for each permutation σ ∈ S` there exists some i = 1, . . . , `

(depending on σ) such that (2.2) does not hold. Therefore,
`−1∑
k=0

(
ψ(βi)ψ(αs)−σ(i)

)k
= 0,

and so, Pσ(β1, . . . , β`) = 0.
We summarize below our findings about Pσ.

Lemma 2.2. Let β1, . . . , β` ∈ µ`. Then
1
``

∑
σ∈S`

Pσ(β1, . . . , β`) =
{

1 if {β1, . . . , β`} = µ`
0 otherwise .

We extend the definition of Pσ to βi ∈ µ` ∪ {0}. If there are exactly k numbers βi (for some
k ∈ {1, . . . , `}), which are equal to 0, while the other βj ’s are in µ`, then for every σ ∈ S` we
have

(2.3) either Pσ(β1, . . . , β`) = 0, or Pσ(β1, . . . , β`) = ``−k.

In (2.3) we used the convention that 00 = 1.
We will use the following result in our proof of Theorem 1.3.

Lemma 2.3. If βi ∈ µ` ∪ {0} for each 1 ≤ i ≤ `, and at least one βi is zero, then

0 ≤ 1
``

∑
σ∈S`

Pσ(β1, . . . , β`) ≤
1
`
.
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Proof. If the nonzero βi’s are not all distinct, then Pσ(β1, . . . , β`) = 0 for every σ ∈ S` and the
lemma is proved in this case. Hence we only need to consider that all nonzero βi’s are distinct
and k of the βi’s are equal to 0.

Now, assume without loss of generality, that β1 = · · · = βk = 0 (for some k ∈ {1, . . . , `}),
while βk+1, . . . , β` are distinct elements of µ`. Then there are precisely k! permutations σ ∈ S`
such that Pσ(β1, . . . , β`) 6= 0. Indeed, the value of σ(i) for each i ∈ {k + 1, . . . , `} is determined
by (2.2), while the values σ(i) for i ∈ {1, . . . , k} are arbitrary in the set {1, . . . , `} \ {σ(k +
1), . . . , σ(`)}. Thus, using (2.3), we obtain

1
``

∑
σ∈S`

Pσ(β1, . . . , β`) =
k!
`k
≤ 1
`
,

as desired. �

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Because e and r are fixed satisfying (1.1) and (1.2), for the sake of sim-
plifying the notation, we drop the indices r and e and denote gar,e(x) by

ga(x) = xr(xems + a1x
em−1s + · · ·+ am−1x

e1s + am).

According to [13, Theorem 1.3], the polynomial ga permutes Fq if and only if the following
two conditions are satisfied:

(i) αiems + a1α
iem−1s + · · ·+ am−1α

ie1s + am 6= 0, for each i = 1, . . . , `;
(ii) ga(αi)s 6= ga(αj)s, for 1 ≤ i < j ≤ `.

Using conditions (i) and (ii), and Lemma 2.2, we obtain

(2.4) Nm
r,e(`, q) =

1
``

∑
a∈(F∗q)m

a satisfies (i)

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
.

We note that there are at least
m−1∑
j=0

(−1)j
(
m

j

)
qm−j−1,

and at most

` ·
m−1∑
j=0

(−1)j
(
m

j

)
qm−j−1

tuples (a1, . . . , am) ∈ (Fq∗)m satisfying at least one of the equations

αemis + a1α
em−1is + · · ·+ am−1α

e1is + am = 0,

for some 1 ≤ i ≤ ` (by using the inclusion-exclusion principle). An easy computation shows that

m−1∑
j=0

(−1)j
(
m

j

)
qm−j−1 =

(q − 1)m − (−1)m

q
.
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Using Lemma 2.3 in the formula (2.4) for each tuple a which fails condition (i), we obtain

1
``

∑
a∈(F∗q)m

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
− (q − 1)m − (−1)m

q
(2.5)

≤ Nm
r,e(`, q)

≤ 1
``

∑
a∈(F∗q)m

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
.

On the other hand, there are (qm − (q − 1)m) tuples (a1, . . . , am) ∈ (Fq)m in which at least
one ai = 0. Thus, using Lemma 2.2 in (2.5) for each tuple a which has at least one entry equal
to 0, we obtain

1
``

∑
a∈Fmq

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
− (q − 1)m − (−1)m

q
− (qm − (q − 1)m)(2.6)

=
1
``

∑
a∈Fmq

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
− qm+1 − (q − 1)m+1 − (−1)m

q

≤ Nm
r,e(`, q)

≤ 1
``

∑
a∈Fmq

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
.

Now we consider two cases.

Case 1: m > 1

Let β := αs be a fixed generator of µ`. We call a (m−1)-tuple (a1, . . . , am−1) ∈ (Fq)m−1 good
if there is no 1 ≤ i1 < i2 ≤ ` such that

(2.7) βi1em + a1β
i1em−1 + · · ·+ am−1β

i1e1 = βi2em + a1β
i2em−1 + · · ·+ am−1β

i2e1 .

We call a (m− 1)-tuple bad, if it is not good. Observe that the number of bad tuples is at least
qm−2 and at most

(
`
2

)
qm−2. Indeed, this follows from the fact that for each pair (i1, i2) as above,

(2.8)
(
βi1em , βi1em−1 , . . . , βi1e1

)
6=
(
βi2em , βi2em−1 , . . . , βi2e1

)
,

which is true since (e1, . . . , em, `) = 1. From (2.8) it follows that each equation (2.7) has at most
qm−2 solutions in (Fq)m−1. There could be no solutions if βi1ei = βi2ei for 1 ≤ i ≤ m− 1, while
βi1em 6= βi2em . However, if i2 − i1 = 1, then (2.7) has precisely qm−2 solutions.

An additional application of Lemma 2.2 for each bad tuple (a1, . . . , am−1) in (2.6) yields that

1
``

∑
am∈Fq

(a1,...,am−1) is good

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
− qm+1 − (q − 1)m+1 − (−1)m

q
(2.9)

≤ Nm
r,e(`, q)

≤
(
`

2

)
qm−1 +

1
``

∑
am∈Fq

(a1,...,am−1) is good

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
.
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For a fixed permutation σ ∈ S`, and a fixed good tuple (a1, . . . , am−1), and a fixed set of
numbers k1, . . . , k` ∈ {0, . . . , `− 1} (not all equal to 0), and for every am ∈ Fq, we let

Ma,σ,k :=
∏̀
i=1

(
ψ(ga(αi)s)ψ(αs)−σ(i)

)ki
,

where a = (a1, . . . , am) and k = (k1, . . . , k`). We consider the sum
∑

am∈Fq Ma,σ,k, where the
tuple (a1, . . . , am−1) is fixed in the above summation. Using the multiplicitivity of ψ, the sum∑

am∈Fq Ma,σ,k equals

(2.10)
∑
am∈Fq

ψ

(
β
∑`
i=1(riki−σ(i)ki) ·

∏̀
i=1

(
βemi + a1β

em−1i + · · ·+ am−1β
e1i + am

)kis) ,
which can be written as a character sum

∑
am∈Fq

ψ

(
ts
∏̀
i=1

(
βemi + a1β

em−1i + · · ·+ am−1β
e1i + am

)kis) ,
where t := α

∑`
i=1(riki−σ(i)ki) ∈ Fq. Furthermore, using the previously defined character Ψ of Fq

of order `, the sum in (2.10) can be written as

∑
am∈Fq

Ψ

(
t
∏̀
i=1

(
βemi + a1β

em−1i + · · ·+ am−1β
e1i + am

)ki) .
Because (a1, . . . , am−1) is a good tuple, and because ki < ` for each i, we obtain that the

monic polynomial

R
(a1,...,am−1)

k
(x) :=

∏̀
i=1

(
βemi + a1β

em−1i + · · ·+ am−1β
e1i + x

)ki
is not an `-th power of another polynomial.

Let I(k) := #{i : ki 6= 0}. Using that (a1, . . . , am−1) is a good tuple, we conclude that
R

(a1,...,am−1)

k
has I(k) distinct roots. Because R(a1,...,am−1)

k
is not an `-th power of another poly-

nomial, we apply Theorem 2.1 and obtain that

(2.11)

∣∣∣∣∣∣
∑
am∈Fq

Ψ

(
t
∏̀
i=1

(
βemi + a1β

em−1i + · · ·+ am−1β
e1i + am

)ki)∣∣∣∣∣∣ ≤ (I(k)− 1)q1/2.
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For each σ ∈ S`, we have

∑
(a1,...,am−1) is good

am∈Fq

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
(2.12)

=
∑

(a1,...,am−1) is good

 ∑
am∈Fq

1


+

∑
(a1,...,am−1) is good

 ∑
I(k)≥1

 ∑
am∈Fq

Ma,σ,k

(
ga(α1)s, . . . , ga(α`)s

) .

Using the bounds for the number of bad tuples, we obtain

qm −
(
`

2

)
qm−1 ≤

∑
(a1,...,am−1) is good

 ∑
am∈Fq

1

 ≤ qm − qm−1.(2.13)

On the other hand,

∣∣∣∣∣∣
∑

(a1,...,am−1) is good

 ∑
I(k)≥1

 ∑
am∈Fq

Ma,σ,k

(
ga(α1)s, . . . , ga(α`)s

)∣∣∣∣∣∣(2.14)

≤
∑

(a1,...,am−1) is good

∑̀
i=1

∑
I(k)=i

∣∣∣∣∣∣
∑
am∈Fq

Ma,σ,k

(
ga(α1)s, . . . , ga(α`)s

)∣∣∣∣∣∣
 ,

which by (2.11) is

≤
∑

(a1,...,am−1) is good

∑̀
i=1

∑
I(k)=i

(i− 1)q1/2


≤

(
qm−1 − qm−2

)(∑̀
i=1

(`− 1)i
(
`

i

)
(i− 1)q1/2

)

≤ (q − 1)qm−3/2

(∑̀
i=1

(`− 1)i
(
`

i

)
(i− 1)

)
=

(
1 + ``(`− 2)

)
(q − 1)qm−3/2,
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where in the above we used the fact that there are (` − 1)i
(
`
i

)
tuples k ∈ {0, . . . , ` − 1}` such

that I(k) = i. Using (2.13) and (2.14) in (2.12) for each permutation σ ∈ S`, we obtain

qm −
(
`

2

)
qm−1 −

(
1 + ``(`− 2)

)
(q − 1)qm−3/2(2.15)

≤
∑

(a1,...,am−1) is good
am∈Fq

Pσ

(
ga(α1)s, . . . , ga(α`)s

)

≤ qm − qm−1 +
(

1 + ``(`− 2)
)

(q − 1)qm−3/2.

Applying (2.15) in (2.9) yields

`!
``
qm − `!

``

(
1 + ``(`− 2)

)
(q − 1)qm−3/2 −

(
`
2

)
· `!
``

qm−1(2.16)

−q
m+1 − (q − 1)m+1 − (−1)m

q

≤ Nm
r,e(`, q)

≤ `!
``
qm +

`!
``

(
1 + ``(`− 2)

)
(q − 1)qm−3/2 +

((
`

2

)
− `!
``

)
qm−1.

Case 2: m = 1

The computation in this case is similar to m > 1, the only difference is that the bad tuples
will not appear in this case. The final result is the following.

(2.17)
`!
``
q − `!

``

(
1 + ``(`− 2)

)
q1/2 − 2 ≤ N1

r,e1(`, q) ≤ `!
``
q +

`!
``

(
1 + ``(`− 2)

)
q1/2.

Now let

Cmr,ē(`, q) :=
``

`!N
m
r,ē(`, q)− qm

``+1qm−1/2
.

Observe that Nm
r,ē(`, 2) is not well defined, Nm

r,ē(2, 3) = 0, and Nm
r,ē(3, 4) = 0. So |Cmr,ē(`, q)| < 1

if q = 3 or 4. So from now on we assume that q > 4.
From (2.16) and (2.17) we have that for m > 1,

−
(

1− 2`−1 + `−`−1
)

(q − 1)q−1 − `− 1
2``

q−1/2 − 1
` · `!

qm+1 − (q − 1)m+1 − (−1)m

qm+1/2

≤ Cmr,ē(`, q)

≤
(

1− 2`−1 + `−`−1
)

(q − 1)q−1 +
(
`− 1
2`!
− `−`−1

)
q−1/2,

and for m = 1,

−
(

1− 2`−1 + `−`−1
)
− 2
` · `! · q1/2

≤ C1
r,e1(`, q) ≤ 1− 2`−1 + `−`−1.

For m = 1, it is clear that
∣∣∣Cmr,e(`, q)∣∣∣ < 1 (note that q > 4).
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Now we assume m > 1. For the upper bound of Cmr,e(`, q) we obtain(
1− 2`−1 + `−`−1

)
· q − 1

q
+
(
`− 1
2`!
− `−`−1

)
· 1
q1/2

< 1− 1
`
· q − 1

q
+

1
2`
· 1
q1/2

< 1,

as desired (note that q > 4).
For the lower bound for Cmr,e(`, q), using that ` > em ≥ m ≥ 2, we first obtain that

1
` · `!

· q
m+1 − (q − 1)m+1 − (−1)m

qm+1/2

=
1

` · `!
· q

m + qm−1(q − 1) + . . .+ (q − 1)m − (−1)m

qm+1/2

<
1

` · `!
· m+ 1
q1/2

≤ `

` · `! · q1/2

≤ 1
2` · q1/2

.

Similarly, using that ` ≥ 3, we get

`− 1
2``

· q−1/2 <
1

2` · q1/2
.

Hence

−
(

1− 2`−1 + `−`−1
)

(q − 1)q−1 − `− 1
2``

q−1/2 − 1
` · `!

qm+1 − (q − 1)m+1 − (−1)m

qm+1/2

> −1 +
1
`
· q − 1

q
− 1

2` · q1/2
− 1

2` · q1/2

= −1 +
1
`
·
(
q − 1
q
− 1
q1/2

)
> −1,

as desired (since q > 4). �

3. Existence of Permutation Polynomials

Proof of Corollary 1.5. In Theorem 1.3 if Nm
r,e(`, q) = 0 then q < `2`+2. �

Using Theorem 1.3 we can easily prove Theorem 1.7.

Proof of Theorem 1.7. We look for a permutation polynomial of the form g(x) = xrf(xs) of
degree (q − 1− t) where

f(x) = xem + a1x
em−1 + · · ·+ am−1x

e1 + am,
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and s = (q−1)/` . This means that the degree em of f satisfies the equation r+ems = q−1− t.
Note that s > 1 because `2`+2 < q. Moreover since t < (`−m)s and t is coprime with s, we can
write t as

t = u · s+ v,

where 0 ≤ u < `−m, and v ∈ {1, . . . , s− 1} is coprime with s.
If m = 1 we let r := (`− u− 1)s− v and em := 1. Note that r > 0 since r = (`− 1)s− t and

t < (`−1)s. It is clear that these choices for r and em satisfy (1.1), (1.2) and r+ems = q−1− t.
Now since `2`+2 < q, Corollary 1.5 implies the result in the case m = 1.

If m ≥ 2 we let r := s− v and em := `− u− 1 and choose (m− 1)-tuple (e1, . . . , em−1) such
that

0 < e1 < e2 · · · < em−1 < em

and

(3.1) (e1, . . . , em−1, em, `) = 1.

Note that em ≥ m and condition (3.1) is satisfied by various choices for (e1, . . . , em−1) such as
em−1 = em− 1, or e1 = 1. It is easy to check that these values for r and ē = (e1, . . . , em) satisfy
(1.1), (1.2) and r + ems = q − 1 − t. Since `2`+2 < q, Corollary 1.5 establishes the result for
m ≥ 2. �

The following result is an immediate consequence of Theorem 1.7 for ` = m+ 1 and t = 1.

Corollary 3.1. Let m ≥ 1 be an integer, and let q be a prime power such that (m+ 1) | (q− 1).
Then for all n ≥ 2m+ 4, there exists a permutation (m+ 1)-nomial of Fqn of degree (qn − 2).
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