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Abstract. In this paper we prove several Lehmer type inequalities for Drinfeld modules
which will enable us to prove certain Mordell-Weil type structure theorems for Drinfeld
modules.
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1. Introduction

The classical Lehmer conjecture (see [12], page 476) asserts that there is an absolute
constant C > 0 so that any algebraic number α that is not a root of unity satisfies the
following inequality for its logarithmic height

h(α) ≥ C

[Q(α) : Q]
.

A partial result towards this conjecture is obtained in [5]. The analog of Lehmer conjecture
for elliptic curves and abelian varieties asks for a good lower bound for the canonical height
of a non-torsion point of the abelian variety. Also this question has been much studied (see
[1], [2], [11], [13], [17]).

In this paper we prove several inequalities for the height of non-torsion points of Drinfeld
modules. These inequalities have the same flavor as the above mentioned Lehmer’s conjec-
ture. Using our inequalities we will be able to prove several Mordell-Weil type structure
theorems for Drinfeld modules over certain infinitely generated fields. Next we will define
the notion of Drinfeld modules.

In this paper we will use the following notation: p is a prime number and q is a power of
p. We denote by Fq the finite field with q elements. We let C be a nonsingular projective
curve defined over Fq and we fix a closed point ∞ on C. Then we define A as the ring of
functions on C that are regular everywhere except possibly at ∞.

We let K be a field extension of Fq. We fix a morphism i : A→ K. We define the operator
τ as the power of the usual Frobenius with the property that for every x, τ(x) = xq. Then
we let K{τ} be the ring of polynomials in τ with coefficients from K (the addition is the
usual one while the multiplication is the composition of functions).

We fix an algebraic closure of K, denoted Kalg. We denote by Falg
p the algebraic closure

of Fp inside Kalg. Also, for us, the symbol ”⊂” means inclusion, not neccessarily strict
inclusion.

A Drinfeld module is a morphism φ : A→ K{τ} for which the coefficient of φa is i(a) for
every a ∈ A, and there exists a ∈ A such that φa 6= i(a)τ 0. Following the definition from [10]
we call φ a Drinfeld module of generic characteristic if ker(i) = {0} and we call φ a Drinfeld
module of finite characteristic if ker(i) 6= {0}.
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For each field L containing K, φ(L) denotes L with the A-action given by φ. When K is a
finitely generated extension of Fq, it was proved in [14] (in the case that trdegFp

K = 1) and
in [18] (for arbitrary finite, positive transcendence degree) that φ(K) is the direct sum of a
finite torsion submodule with a free submodule of rank ℵ0. We will prove in Theorem 5.7 a
similar structure result for certain infinitely generated extensions of Fq.

The key result is Theorem 4.15, which will be proved in the fourth section of this paper.
Mainly what will be needed for our result will be a better understanding of the heights
associated to φ, both local and global heights. These heights were first introduced in [3] and
then contributions towards their understanding were done in [7], [14] and [18]. We mention
that our results are part of our Ph.D. thesis [7]. Lemma 4.14 appears also in our paper [8],
in which we prove a local Lehmer inequality for Drinfeld modules.

Theorem 4.15 will also give us the technical ingredient to obtain an uniform boundedness
result for the torsion submodule of φ(K). This will be explained in Corollary 4.22.

2. Heights associated to a Drinfeld module

We continue with the notation from Section 1. So, K is a field extension of Fq and
φ : A → K{τ} is a Drinfeld module. We define MK as the set of all discrete valuations of
K. We also normalize all the valuations v ∈MK such that the range of v is Z.

Definition 2.1. We call a subset U ⊂ MK equipped with a function d : U → R>0 a good
set of valuations if the following properties are satisfied

(i) for every nonzero x ∈ K, there are finitely many v ∈ U such that v(x) 6= 0.
(ii) for every nonzero x ∈ K, ∑

v∈U

d(v) · v(x) = 0.

The positive real number d(v) will be called the degree of the valuation v. When we say
that the positive real number d(v) is associated to the valuation v, we understand that the
degree of v is d(v).

When U is a good set of valuations, we will refer to property (ii) as the sum formula for
U .

Definition 2.2. Let U be a good set of valuations on K. The set {0} ∪ {x ∈ K | v(x) =
0 for all v ∈ U} is the set of constants for U . We denote this set by C(U).

Lemma 2.3. Let U be a good set of valuations on K. If x ∈ K is integral at all places
v ∈ U , then x ∈ C(U).

Proof. Let x ∈ K \ {0}. By the sum formula for U , if v(x) ≥ 0 for all v ∈ U , then actually
v(x) = 0 for all v ∈ U (a sum of non-negative numbers is 0 if and only if all the numbers are
0). �

The following lemma can be deduced immediately using the definition of C(U) and
Lemma 2.3.

Lemma 2.4. Let U be a good set of valuations on a field K. The set C(U) is a subfield of
K.
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Definition 2.5. Let v ∈ MK of degree d(v). We say that the valuation v is coherent (on
Kalg) if for every finite extension L of K,

(1)
∑
w∈ML
w|v

e(w|v)f(w|v) = [L : K],

where e(w|v) is the ramification index and f(w|v) is the relative degree between the residue
field of w and the residue field of v.

Condition (1) says that v is defectless in L. In this case, we also let the degree of any
w ∈ML, w|v be

(2) d(w) =
f(w|v)d(v)

[L : K]
.

It is immediate to see that (2) is equivalent to the stronger condition that for every two
finite extensions of K, L1 ⊂ L2 and for every v2 ∈ ML2 that lies over v1 ∈ ML1 , which in
turn lies over v,

(3) d(v2) =
f(v2|v1)d(v1)

[L2 : L1]
.

We will use in our proofs the following result from [6] (see (18.1), page 136).

Lemma 2.6. Let L1 ⊂ L2 ⊂ L3 be a tower of finite extensions. Let v ∈ ML1 and denote
by w1, . . . , ws all the places of L2 that lie over v. Then the following two statements are
equivalent:

1) v is defectless in L3.
2) v is defectless in L2 and w1, . . . , ws are defectless in L3.

Lemma 2.6 shows that condition (1) of Definition 2.5 is equivalent to the following state-
ment: for every two finite extensions of K, L1 ⊂ L2 and for every v1 ∈ML1 , v1|v

(4)
∑

w∈ML2
w|v1

e(w|v1)f(w|v1) = [L2 : L1].

The following result is an immediate consequence of Definition 2.5 and Lemma 2.6.

Lemma 2.7. If v ∈MK is a coherent valuation (on Kalg), then for every finite extension L
of K and for every w ∈ML and w|v, w is a coherent valuation (on Kalg = Lalg).

Definition 2.8. We let UK be a good set of valuations on K. We call UK a coherent good
set of valuations (on Kalg) if the following two conditions are satisfied

(i) for every finite extension L of K, if UL ⊂ ML is the set of all valuations lying over
valuations from UK , then UL is a good set of valuations.

(ii) for every v ∈ UK , the valuation v is coherent (on Kalg).

Remark 2.9. Using the argument from page 9 of [15], we conclude that condition (i) from
Definition 2.8 is automatially satisfied if UK is a good set of valuations and if condition (ii)
of Definition 2.8 is satisfied.

An immediate corollary to Lemma 2.7 is the following result.
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Corollary 2.10. If UK ⊂MK is a good set of valuations that is coherent (on Kalg), then for
every finite extension L of K, if UL is the set of all valuations on L which lie over valuations
from UK, then UL is a coherent good set of valuations.

Fix now a field K of characteristic p and let φ : A → K{τ} be a Drinfeld module. Let
v ∈ MK be a coherent valuation (on Kalg). Let d(v) be the degree of v as in Definition 2.5.

For such v, we construct the local height ĥv with respect to the Drinfeld module φ. Our
construction follows [14]. For x ∈ K, we set ṽ(x) = min{0, v(x)}. For a non-constant
element a ∈ A, we define

(5) Vv(x) = lim
n→∞

ṽ(φan(x))

deg(φan)
.

This function is well-defined and satisfies the same properties as in Propositions 1-3 from
[14]. Mainly, we will use the following facts:

1) if x and all the coefficients of φa are integral at v, then Vv(x) = 0.
2) for all b ∈ A \ {0}, Vv(φb(x)) = deg(φb) · Vv(x). Moreover, we can use any non-constant

a ∈ A for the definition of Vv(x) and we will always get the same function Vv.
3) Vv(x± y) ≥ min{Vv(x), Vv(y)}.
4) if x ∈ φtor, then Vv(x) = 0.
We define then

(6) ĥv(x) = −d(v)Vv(x).
If L is a finite extension of K and w ∈ML lies over v then we define similarly the function

Vw on L and just as above, we let ĥw(x) = −d(w)Vw(x) for every x ∈ L.
If U = UK ⊂MK is a coherent good set of valuations, then for each v ∈ U , we denote by

ĥU,v the local height associated to φ with respect to v (the construction of ĥU,v is identical
with the one from above). Then we define the global height associated to φ as

(7) ĥU(x) =
∑
v∈U

ĥU,v(x).

For each x, the above sum is finite due to fact 1) stated above (see also Proposition 6 of
[14]).

For each finite extension L of K, we let UL be the set of all valuations of L that lie over
places from UK . As stated in Corollary 2.10, UL is also a coherent good set of valuations

and so, we can define the local heights ĥUL,w with respect to w ∈ UL, associated to φ for all
elements x ∈ L. Then we define the global height of x as

ĥUL
(x) =

∑
w∈UL

ĥUL,w(x).

Claim 2.11. Let L1 ⊂ L2 be finite extensions of K. Let v ∈ UL1 and x ∈ L1. Then∑
w∈UL2
w|v

ĥUL2
,w(x) = ĥUL1

,v(x).

Proof. We have ∑
w∈UL2
w|v

ĥUL2
,w(x) = −

∑
w∈UL2
w|v

d(w)Vw(x).
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Because d(w) = d(v)f(w|v)
[L2:L1]

(see (3)) and Vw(x) = e(w|v)Vv(x) we get∑
w∈UL2
w|v

ĥUL2
,w(x) =

−d(v)Vv(x)
[L2 : L1]

∑
w∈UL2
w|v

e(w|v)f(w|v).

Because v is defectless and ĥUL1
,v(x) = −d(v)Vv(x), we are done. �

Claim 2.11 shows that our definition of the global height is independent of the field L
containing x and so, we can drop the index referring to the field L containing x when we
work with the global height associated to a coherent good set of valuations.

The above construction for global heights depends on the selected good set of valuations
UK on K. If we work with global heights only for points x ∈ K, then UK can be any good
set of valuations on K. If we are interested in global heights for all points x ∈ Kalg, then
UK has to be a good set of valuations on K, which is coherent (on Kalg). Also, technically

speaking, we do not need for local heights ĥv the valuation v be coherent as long as we
restrict ourselves to points x ∈ K. We will always specify first which is the good set of
valuations that we consider when we will work with heights associated to a Drinfeld module.

3. Examples of coherent good sets of valuations

Let F be a field of characteristic p and let K = F (x1, . . . , xn) be the rational function
field of transcendence degree n ≥ 1 over F . We let F alg be the algebraic closure of F inside
Kalg. We will construct a coherent good set of valuations on K.

First we construct a good set of valuations on K and then we will show that this set is
also coherent. According to Remark 2.9, we only need to show that each of the valuations
on K we construct is coherent.

Let R = F [x1, . . . , xn]. For each irreducible polynomial P ∈ R we let vP be the valuation
on K given by

vP (
Q1

Q2

) = ordP (Q1)− ordP (Q2) for every nonzero Q1, Q2 ∈ R,

where by ordP (Q) we denote the order of the polynomial Q ∈ R at P .
Also, we construct the valuation v∞ on K given by

v∞(
Q1

Q2

) = deg(Q2)− deg(Q1) for every nonzero Q1, Q2 ∈ R,

where by deg(Q) we denote the total degree of the polynomial Q ∈ R.
We let MK/F be the set of all valuations vP for irreducible polynomials P ∈ R plus the

valuation v∞. We let the degree of vP be d(vP ) = deg(P ) for every irreducible polynomial
P ∈ R and we also let d(v∞) = 1. Then, for every nonzero x ∈ K, we have the sum formula∑

v∈MK/F

d(v) · v(x) = 0.

So, MK/F is a good set of valuations on K according to Definition 2.1. The field F is the
field of constants with respect to MK/F .
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Remark 3.1. The valuations constructed above are exactly the valuations associated with
the irreducible divisors of the projective space PnF . The degrees of the valuations are the
projective degrees of the corresponding irreducible divisors.

Let K ′ be a finite extension of K and let F ′ be the algebraic closure of F in K ′. We
let MK′/F ′ be the set of all valuations on K ′ that extend the valuations from MK/F . We
normalize each valuation w from MK′/F ′ so that the range of w is Z. Also, we define

(8) d(w) =
f(w|v)d(v)
[K ′ : K]

for every w ∈ MK′/F ′ and v ∈ MK/F such that w|v. Note that strictly speaking, w is
an extension of v as a place and not as a valuation function. However, we still call w an
extension of v.

Remark 3.2. Continuing the observations made in Remark 3.1, the valuations defined on K ′

are the ones associated with irreducible divisors of the normalization of PnF in K ′. In general,
the discrete valuations associated with the irreducible divisors of a variety which is regular
in codimension 1 form a coherent good set of valuations.

In order to show that MK/F is a coherent good set of valuations (on Kalg), we need to
check that condition (1) of Definition 2.5 is satisfied. This is proved in Chapter 1, Section
4 of [16] (Hypothesis (F) holds for algebras of finite type over fields and so, it holds for
localizations of such algebras). For each v ∈ MK/F we apply Propositions 10 and 11 of [16]
to the local ring of v to show v is coherent.

Now, in general, let F be a field of characteristic p and let K be any finitely generated
extension over F , of positive transcendence degree over F . If F is algebraically closed in
K, we construct a coherent good set of valuations MK/F ⊂ MK , as follows. We pick a
transcendence basis {x1, . . . , xn} for K/F and first construct as before the set of valuations
on F (x1, . . . , xn):

{v∞} ∪ {vP | P irreducible polynomial in F [x1, . . . , xn]}.

Then, by Corollary 2.10, we have a unique way of extending coherently this set of valuations
to a good set of valuations on K. The set MK/F depends on our initial choice of the
transcendence basis for K/F . Thus, in our notation MK/F , we suppose that K/F comes
equipped with a choice of a transcendence basis for K/F .

We also note that for every v ∈MK/F , if v0 ∈MF (x1,...,xn)/F lies below v, then

(9) d(v) =
f(v|v0)d(v0)

[K : F (x1, . . . , xn)]
≥ 1

[K : F (x1, . . . , xn)]
.

In general, if K ′ is a finite extension of K and v′ ∈MK′ lies above v ∈MK , then

(10) d(v′) =
f(v′|v)d(v)
[K ′ : K]

≥ d(v)

[K ′ : K]
.

For each such good set of valuations MK/F and for any Drinfeld module φ : A → K{τ},
we construct as before the set of local heights and the global height associated to φ. We

denote the local heights by ĥMK/F ,v and the global height by ĥMK/F
. If F is a finite field, our

construction coincides with the one from [18]. Thus, if F is a finite field, we will drop the
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subscript MK/F from the notation of the local heights and of the global height. Also, when
F is a finite field and trdegF K = 1, our construction also coincides with the one from [14].

4. Lehmer inequality for Drinfeld modules

The paper [4] formulated a conjecture whose general form is Conjecture 4.1, which we
refer to as the Lehmer inequality for Drinfeld modules.

Conjecture 4.1. LetK be a finitely generated field. For any Drinfeld module φ : A→ K{τ}
there exists a constant C > 0 depending only on φ such that any non-torsion point x ∈ Kalg

satisfies ĥ(x) ≥ C
[K(x):K]

.

We fix a non-constant element t ∈ A and we let

φt =
r∑
i=0

aiτ
i.

The statement of Conjecture 4.1 is not affected if we replace K by a finite extension K ′

since if we find a constant C ′ that works for K ′ in Conjecture 4.1, then C = C′

[K′:K]
will work

for K.
If we conjugate φ by γ ∈ Kalg \ {0} (i.e. a → γ−1φaγ for every a ∈ A), we obtain a new

Drinfeld module, which we denote by φ(γ) and these two Drinfeld modules are isomorphic

over K(γ). As a particular case of Proposition 2 of [14] we get that ĥφ(x) = ĥφ(γ)(γ−1x).

Then, if Conjecture 4.1 is proved for φ(γ), it will also hold for φ. So, having these in mind,

we replace φ by one of its conjugates that has the property that φ
(γ)
t is monic, i.e. with the

above notations, γ satisfies the equation γq
r−1ar = 1. Because [K(γ) : K] ≤ qr − 1, working

over K(γ) instead of K, we may introduce a factor of 1
qr−1

at the worst in the constant C

from Conjecture 4.1, as explained in the previous paragraph. Also, the module structure
theorems that we will be proving in the next section will not be affected by replacing φ with
an isomorphic Drinfeld module or by replacing K with a finite extension.

So, for simplifying the notation we suppose from now on in this section that φt is monic.
In this section we will prove Theorem 4.5, which is a special case of the Lehmer inequality

for Drinfeld modules. We will actually prove a more general result (Theorem 4.15) from
which we will be able to infer Theorems 4.4 and 4.5.

For each finite extension L of K, we let SL be the set of places v ∈ ML for which there
exists a coefficient ai of φt such that v(ai) < 0. We will prove that the set SL is the set of
all valuations on L of bad reduction for φ. We define next the notion of good reduction for a
Drinfeld module.

Definition 4.2. Let φ : A → K{τ} be a Drinfeld module. Let L be a finite extension of
K. We call v ∈ ML a place of good reduction for φ if for all a ∈ A \ {0}, the coefficients of
φa are integral at v and the leading coefficient of φa is a unit in the valuation ring at v. If
v ∈ML is not a place of good reduction, we call it a place of bad reduction.

Lemma 4.3. The set SL is the set of all places from ML at which φ has bad reduction.

Proof. By the construction of the set SL, the places from SL are of bad reduction for φ. We
will prove that these are all the bad places for φ.

Let a ∈ A. The equation φaφt = φtφa will show that all the places where not all of the
coefficients of φa are integral, are from SL. Suppose this is not the case and take a place
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v /∈ SL at which some coefficient of φa is not integral. Let φa =
∑r′

i=0 a
′
iτ
i and assume that

i is the largest index for a coefficient a′i that is not integral at v.
We equate the coefficient of τ i+r in φaφt and φtφa, respectively. The former is

(11) a′i +
∑
j>i

a′ja
qj

r+i−j

while the latter is

(12) a′q
r

i +
∑
j>i

ar+i−ja
′qr+i−j

j .

Thus the valuation at v of (11) is v(a′i), because all the a′j (for j > i) and ar+i−j are integral

at v, while v(a′i) < 0. Similarly, the valuation of (12) is v(a′q
r

i ) = qrv(a′i) < v(a′i) (r ≥ 1
because t is non-constant). This fact gives a contradiction to φaφt = φtφa. So, the coefficients
of φa for all a ∈ A, are integral at all places of ML \ SL.

Now, using the same equation φaφt = φtφa and equating the leading coefficients in both
polynomials we obtain

a′r′ = a′q
r

r′ .

So, a′r′ ∈ Falg
p . Thus, all the leading coefficients for polynomials φa are constants with respect

to the valuations of L. So, if v ∈ ML \ SL, then all the coefficients of φa are integral at v
and the leading coefficient of φa is a unit in the valuation ring at v for every a ∈ A \ {0}.
Thus, v /∈ SL is a place of good reduction for φ. �

Theorem 4.4. Let K be a finitely generated field of characteristic p. Let φ : A→ K{τ} be
a Drinfeld module and assume that there exists a non-constant t ∈ A such that φt is monic.
Let F be the algebraic closure of Fp in K. We let MK/F be the coherent good set of valuations

on K, constructed as in Section 3. Let ĥ and ĥv be the global and local heights associated to
φ, constructed with respect to the coherent good set of valuations MK/F . Let x ∈ Kalg and let
Fx be the algebraic closure of Fp in K(x). We construct the good set of valuations MK(x)/Fx

which lie above the valuations from MK/F . Let Sx be the set of places v ∈MK(x)/Fx such that
φ has bad reduction at v.

If x is not a torsion point for φ, then there exists v ∈MK(x)/Fx such that

ĥv(x) > q−r(2+(r2+r)|Sx|)d(v)

where d(v) is as always the degree of the valuation v.

Let {x1, . . . , xn} be the transcendence basis for K/F associated to the construction of
MK/F . Let v0 ∈ MK/F be the place lying below the place v from the conclusion of Theo-

rem 4.4. Then d(v) = d(v0)f(v|v0)
[K(x):K]

. Because f(v|v0) ≥ 1, d(v0) ≥ 1
[K:F (x1,...,xn)]

(see (9)) and

ĥ(x) ≥ ĥv(x), Theorem 4.4 has the following corollary.

Theorem 4.5. With the notation from Theorem 4.4, if x /∈ φtor, then

ĥ(x) >
q−r(2+(r2+r)|Sx|)

[K(x) : F (x1, . . . , xn)]
.
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Remark 4.6. Theorem 4.5 is a weaker form of Conjecture 4.1 because our constant C for

which ĥ(x) ≥ C
[K(x):K]

for x /∈ φtor, is not completely independent of K(x). For us,

C =
q−r(2+(r2+r)|Sx|)

[K : F (x1, . . . , xn)]

and Sx depends on K(x).

Before proving Theorem 4.4, we need to prove several preliminary lemmas regarding the
local height for an arbitrary point of the Drinfeld module φ.

Fix now a finite extension L of K and let U be a good set of valuations on L. Let
S = SL ∩ U .

For each v ∈ U we define

(13) Mv = min
i∈{0,...,r−1}

v(ai)

qr − qi

where by convention, as always: v(0) = +∞. We observe that Mv < 0 if and only if v ∈ S.
Let v ∈ S. We define Pv as the subset of the negatives of the slopes of the Newton polygon

associated to φt, consisting of those α for which there exist i 6= j in {0, . . . , r} such that

(14) α =
v(ai)− v(aj)

qj − qi
≤ 0,

and v(ai) + qiα = v(aj) + qjα = min0≤l≤r
(
v(al) + qlα

)
. If φ is the Carlitz module in

characteristic 2, i.e. φ = ψ2, where ψ2 : F2[t] → K{τ} is defined by ψ2(x) = tx+x2 for every
x, then we want the set Pv to contain {0}, even if 0 is not in the set from (14).

Let

Nφ =

{
1 + r = 2, if φ = ψ2

r, otherwise.

Clearly, for every φ and v ∈ S, |Pv| ≤ Nφ. We define next the concept of angular
component for a nonzero x ∈ L. For this we first fix a uniformizer πv ∈ L for each valuation
v ∈ S.

Definition 4.7. Assume v ∈ S. For every nonzero y ∈ L we define the angular component

of y at v, denoted by acπv(y), to be the residue at v of yπ
−v(y)
v . (Note that the angular

component is never 0.)

We can define in a similar manner as above the notion of angular component at each
v ∈ML but we will work with angular components at the places from S only.

The main property of the angular component is that for every y, z ∈ L \ {0}, v(y − z) >
v(y) = v(z) if and only if (v(y), acπv(y)) = (v(z), acπv(z)).

For each α ∈ Pv we let l ≥ 1 and let i0 < i1 < · · · < il be all the indices i for which

(15) v(aiα
qi

) = min
j
v(ajα

qj

).

We define Rv(α) as the set containing all the nonzero solutions of the equation

(16)
l∑

j=0

acπv(aij)X
qij

= 0,
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where the indices ij are the ones associated to α as in (15). For α = 0, we want the set
Rv(α) to contain also {1} in addition to the numbers from (16). If α = 0, l might be 0 and
so, equation (16) might have no nonzero solutions. In that case, Rv(0) = {1}. Clearly, for
every α ∈ Pv, |Rv(α)| ≤ qr.

Lemma 4.8. Assume v ∈ S and let x ∈ L. If v(x) ≤ 0 and v(φt(x)) > mini∈{0,...,r} v(aix
qi
)

then (v(x), acπv(x)) ∈ Pv ×Rv(v(x)).

Proof. If v(φt(x)) > mini∈{0,...,r} v(aix
qi
) it means that there exists l ≥ 1 and

i0 < · · · < il

such that

(17) v(ai0x
qi0 ) = · · · = v(ailx

qil ) = min
i∈{0,...,r}

v(aix
qi

)

and also

(18)
l∑

j=0

acπv(aij) acπv(x)
qij

= 0.

Equations (17) and (18) yield v(x) ∈ Pv and acπv(x) ∈ Rv(v(x)) respectively, according to
(14) and (16).

Note that we needed our assumption that v(x) ≤ 0 only because Pv consists only of the
negatives of the non-negative slopes of the Newton polygon associated to φt (and not the
negatives of all the slopes). The above proof shows that as long as the valuation of x and the

angular component of x do not belong to certain prescribed sets, v(φt(x)) = mini v(aix
qi
). �

Lemma 4.9. Let v ∈ML and let x ∈ L. If v(x) < min{0,Mv}, then ĥv(x) = −d(v) · v(x).

Proof. For every i ∈ {0, . . . , r− 1}, v(aixq
i
) = v(ai) + qiv(x) > qrv(x) because v(x) < Mv =

mini∈{0,...,r−1}
v(ai)
qr−qi . This shows that v(φt(x)) = qrv(x) < v(x) < min{0,Mv}. By induction,

v(φtn(x)) = qrnv(x) for all n ≥ 1. So, Vv(x) = v(x) and

ĥv(x) = −d(v) · v(x).
�

An immediate corollary to (4.9) is the following result.

Lemma 4.10. Assume v /∈ S and let x ∈ L. If v(x) < 0 then ĥv(x) = −d(v) · v(x), while if

v(x) ≥ 0 then ĥv(x) = 0.

Proof. First, it is clear that if v(x) ≥ 0 then for all n ≥ 1, v(φtn(x)) ≥ 0 because all the
coefficients of φt and thus of φtn have non-negative valuation at v. Thus Vv(x) = 0 and so,

ĥv(x) = 0.

Now, if v(x) < 0, then v(x) < Mv because Mv ≥ 0 (v /∈ S). So, applying the result of (4.9)
we conclude the proof of this lemma. �

We will get a better insight into the local heights behaviour with the following lemma.

Lemma 4.11. Let x ∈ L. Assume v ∈ S and v(x) ≤ 0. If (v(x), acπv(x)) /∈ Pv × Rv(v(x))
then v(φt(x)) < Mv, unless q = 2, r = 1 and v(x) = 0.
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Proof. Lemma 4.8 implies that there exists i0 ∈ {0, . . . , r} such that for all i ∈ {0, . . . , r} we

have v(aix
qi
) ≥ v(ai0x

qi0 ) = v(φt(x)).
Suppose (4.11) is not true and so, there exists j0 < r such that

v(aj0)

qr − qj0
≤ v(φt(x)) = v(ai0) + qi0v(x).

This means that

(19) v(aj0) ≤ (qr − qj0)v(ai0) + (qr+i0 − qi0+j0)v(x).

On the other hand, by our assumption about i0, we know that v(aj0x
qj0 ) ≥ v(ai0x

qi0 ) which
means that

(20) v(aj0) ≥ v(ai0) + (qi0 − qj0)v(x).

Putting together inequalities (19) and (20), we get

v(ai0) + (qi0 − qj0)v(x) ≤ (qr − qj0)v(ai0) + (qr+i0 − qi0+j0)v(x).

Thus

(21) v(x)(qr+i0 − qi0+j0 − qi0 + qj0) ≥ −v(ai0)(qr − qj0 − 1).

But qr+i0 − qi0+j0 − qi0 + qj0 = qr+i0(1 − qj0−r − q−r + qj0−r−i0) and because j0 < r and
qj0−r−i0 > 0, we obtain

(22) 1− qj0−r − q−r + qj0−r−i0 > 1− q−1 − q−r ≥ 1− 2q−1 ≥ 0.

Also, qr − qj0 − 1 ≥ qr − qr−1 − 1 = qr−1(q − 1) − 1 ≥ 0 with equality if and only if q = 2,
r = 1 and j0 = 0. We will analyze this case separately. So, as long as we are not in this
special case, we do have

(23) qr − qj0 − 1 > 0.

Now we have two possibilities (remember that v(x) ≤ 0):
(i) v(x) < 0
In this case, (21), (22) and (23) tell us that −v(ai0) < 0. Thus, v(ai0) > 0. But we

know from our hypothesis on i0 that v(ai0x
qi0 ) ≤ v(xq

r
) which is in contradiction with the

combination of the following facts: v(x) < 0, i0 ≤ r and v(ai0) > 0.
(ii) v(x) = 0
Then another use of (21), (22) and (23) gives us −v(ai0) ≤ 0; thus v(ai0) ≥ 0. This would

mean that v(ai0x
qi0 ) ≥ 0 and this contradicts our choice for i0 because we know from the

fact that v ∈ S, that there exists i ∈ {0, . . . , r} such that v(ai) < 0. So, then we would have

v(aix
qi

) = v(ai) < 0 ≤ v(ai0x
qi0 ).

Thus, in either case (i) or (ii) we get a contradiction that proves the lemma except in the
special case that we excluded above: q = 2, r = 1 and j0 = 0. If we have q = 2 and r = 1
then

φt(x) = a0x+ x2.

By the definition of S and because v ∈ S, v(a0) < 0. Also, Mv = v(a0).
If v(x) < 0, then either v(x) < Mv = v(a0), in which case again v(φt(x)) < Mv (as shown

in the proof of Lemma 4.9), or v(x) ≥Mv. In the latter case,

v(φt(x)) = v(a0x) = v(a0) + v(x) < v(a0) = Mv.
11



So, we see that indeed, only v(x) = 0, q = 2 and r = 1 can make v(φt(x)) ≥ Mv in the
hypothesis of (4.11). �

Lemma 4.12. Assume v ∈ S and let x ∈ L. Excluding the case q = 2, r = 1 and v(x) = 0,

we have that if v(x) ≤ 0 then either ĥv(x) >
−d(v)Mv

qr or (v(x), acπv(x)) ∈ Pv ×Rv(v(x)).

Proof. If v(x) ≤ 0 then

either : (i) v(φt(x)) < Mv ,

in which case by (4.9) we have that ĥv(φt(x)) = −d(v) · v(φt(x)). So, case (i) yields

(24) ĥv(x) = −d(v) · v(φt(x))
deg φt

> −d(v) · Mv

qr

or : (ii) v(φt(x)) ≥Mv ,

in which case, Lemma 4.11 yields

(25) v(φt(x)) > v(ai0x
qi0 ) = min

i∈{0...,r}
v(aix

qi

).

Using (25) and Lemma 4.8 we conclude that case (ii) yields (v(x), acπv(x)) ∈ Pv ×Rv(v(x)).
�

Now we analyze the excluded case from Lemma 4.12.

Lemma 4.13. Assume v ∈ S and let x ∈ L. If v(x) ≤ 0, then either

(v(x), acπv(x)) ∈ Pv ×Rv(v(x))

or ĥv(x) ≥ −d(v)Mv

qr .

Proof. Using the result of (4.12) we have left to analyze the case: q = 2, r = 1 and v(x) = 0.
As shown in the proof of (4.11), in this case φt(x) = a0x+ x2 and

v(φt(x)) = v(a0) = Mv < 0.

Then, either v(φt2(x)) = v(φt(x)
2) = 2Mv < Mv or v(φt2(x)) > v(a0φt(x)) = v(φt(x)

2). If
the former case holds, then by (4.9),

ĥv(φt2(x)) = −d(v) · 2Mv

and so,

ĥv(x) =
−d(v) · 2Mv

4
.

If the latter case holds, i.e. v(φt(φt(x))) > v(a0φt(x)) = v(φt(x)
2), then acπv(φt(x)) satisfies

the equation

acπv(a0)X +X2 = 0.

Because the angular component is never 0, it must be that acπv(φt(x)) = acπv(a0) (remember
that we are working now in characteristic 2). But, because v(a0x) < v(x2) we can relate the
angular component of x and the angular component of φt(x) and so,

acπv(a0) = acπv(φt(x)) = acπv(a0x) = acπv(a0) acπv(x).
12



This means acπv(x) = 1 and so, the excluded case amounts to a dichotomy similar to the

one from (4.12): either (v(x), acπv(x)) = (0, 1) or ĥv(x) = −d(v)Mv

2
. The definitions of Pv and

Rv(α) from (14) and (16) respectively, yield that (0, 1) ∈ Pv ×Rv(0). �

Finally, we note that in (4.13) we have

−d(v)Mv

qr
= −d(v)e(v|v0)Mv0

qr
.

We have obtained the following dichotomy.

Lemma 4.14. Assume v ∈ S. If v(x) ≤ 0 then either (v(x), acπv(x)) ∈ Pv × Rv(v(x)) or

ĥU,v(x) ≥ −Mvd(v)
qr . Moreover, by its definition Mv < − 1

qr and so, if the above latter case

holds for x, then ĥU,v(x) >
d(v)
q2r .

We will deduce Theorem 4.4 from the following more general result.

Theorem 4.15. Let K be a field extension of Fq and let φ : A → K{τ} be a Drinfeld
module. Let L be a finite field extension of K. Let t be a non-constant element of A and
assume that φt =

∑r
i=0 aiτ

i is monic. Let U be a good set of valuations on L and let C(U)
be, as always, the field of constants with respect to U . Let S be the finite set of valuations
v ∈ U such that φ has bad reduction at v. Let x ∈ L.

a) If S is empty, then either x ∈ C(U) or there exists v ∈ U such that ĥU,v(x) ≥ d(v).

b) If S is not empty, then either x ∈ φtor, or there exists v ∈ U such that ĥU,v(x) >

q−2r−r2Nφ|S|d(v) ≥ q−r(2+(r2+r)|S|)d(v). Moreover, if S is not empty and x ∈ φtor, then there
exists a polynomial b(t) ∈ Fq[t] of degree at most rNφ|S| such that φb(t)(x) = 0.

Proof. a) Assume S is empty.
Then either v(x) ≥ 0 for all v ∈ U or there exists v ∈ U such that v(x) < 0. If the latter

statement is true, then Lemma 4.10 shows that for any valuation v ∈ U for which v(x) < 0,
we have

ĥU,v ≥ d(v),

because v /∈ S (S is empty).
Now, if the former statement is true, i.e. x is integral at all places from U , then by

Lemma 2.3, x ∈ C(U).
b) Assume S is not empty.
Let v ∈ S. We will use several times the following result.

Lemma 4.16. Let L be a field extension of Fq and let v be a discrete valuation on L. Let
I be a finite set of integers. Let N be an integer greater or equal than all the elements of
I. For each α ∈ I, let R(α) be a nonempty finite set of nonzero elements of the residue
field at v. Let W be an Fq-vector subspace of L with the property that for all w ∈ W ,
(v(w), acπv(w)) ∈ I ×R(v(w)) whenever v(w) ≤ N .

Let f be the smallest positive integer greater or equal than maxα∈I logq |R(α)|. Then the
Fq-codimension of {w ∈ W | v(w) > N} is bounded above by |I|f .
Proof of Lemma 4.16. Let i = |I|. Let α0 < · · · < αi−1 be the elements of I, and let
αi = N + 1. For 0 ≤ j ≤ i, define Wj = {w ∈ W |v(w) ≥ αj}. For 0 ≤ j < i, the hypothesis
gives an injection

Wj/Wj+1 → R(αj) ∪ {0}
13



taking w to the residue of w/π
αj
v . Thus

qdimFq Wj/Wj+1 ≤ qf + 1 < qf+1,

so dimFq Wj/Wj+1 ≤ f (note that we used the fact that f > 0 in order to have the inequality
qf + 1 < qf+1). Summing over j gives dimFq W0/Wi ≤ if , as desired. �

We apply Lemma 4.16 with N = 0, I = Pv and R(α) = Rv(α) for every α ∈ Pv. Because
|Pv| ≤ Nφ and |Rv(α)| ≤ qr for every α ∈ Pv, we obtain the following result.

Fact 4.17. Let v ∈ S. Let W be an Fq-subspace of L with the property that for all w ∈ W ,
(v(w), acπv(w)) ∈ Pv ×Rv(v(w)) whenever v(w) ≤ 0.

Then the Fq-codimension of {w ∈ W | v(w) > 0} in W is bounded above by rNφ.

We apply Fact 4.17 for each v ∈ S and we deduce the following two results.

Fact 4.18. Let W be an Fq-subspace of L such that (v(w), acπv(w)) ∈ Pv×Rv(v(x)) whenever
v ∈ S, w ∈ W and v(w) ≤ 0. Then the Fq-codimension of

{w ∈ W | v(w) > 0 for all v ∈ S}

in W is bounded above by rNφ|S|.

Fact 4.19. Let notation be as in Fact 4.18. If moreover, dimFq W > rNφ|S|, then there
exists a nonzero w ∈ W such that v(w) > 0 for all v ∈ S.

Using the above facts we prove the following claim which is the key for obtaining the result
of Theorem 4.15.

Claim 4.20. Assume |S| ≥ 1. If W is an Fq-subspace of L and dimFq W > rNφ|S|, then

there exists w ∈ W and there exists v ∈ U such that ĥU,v(w) > d(v)
q2r .

Proof of Claim 4.20. If there exists v ∈ U \ S and w ∈ W such that v(w) < 0, then by
Lemma 4.10,

ĥv(w) ≥ d(v) >
d(v)

q2r
.

Thus, suppose from now on in the proof of Claim 4.20, that for every v ∈ U \S and every
w ∈ W , v(w) ≥ 0.

Because dimFq W > rNφ|S|, Fact 4.19 guarantees the existence of a nonzero w ∈ W for
which either v(w) > 0 for all v ∈ S, or there exists v ∈ S such that

(26) v(w) ≤ 0 but (v(w), acπv(w)) /∈ Pv ×Rv(v(w)).

The former case is impossible because we already supposed that v(w) ≥ 0 for all v ∈ U \ S.
Because |S| ≥ 1 there is no nonzero w that has non-negative valuation at all the places in
U and positive valuation at at least one place in U . Its existence would contradict the sum
formula for the valuations in U .

Thus, the latter case holds, i.e. there exists v ∈ S satisfying (26). But then, Lemma 4.14

gives ĥU,v(w) > d(v)
q2r . �

Using Claim 4.20 we can finish the proof of part b) of Theorem 4.15.
14



Consider W = SpanFq

({
x, φt(x), . . . , φtrNφ|S|(x)

})
. If there exists no polynomial b(t) as in

the statement of part b) of Theorem 4.15, then dimFq W = 1 + rNφ|S|. Applying Claim 4.20
to W , we find some w ∈ W and some v ∈ U such that

(27) ĥU,v(w) >
d(v)

q2r
.

By the construction of W , then there exists a nonzero polynomial d(t) ∈ Fq[t] of degree at
most rNφ|S| such that

(28) w = φd(t)(x).

Using equations (27) and (28), we obtain

ĥU,v(x) =
ĥU,v(w)

deg(φd(t))
>

d(v)
q2r

qr·rNφ|S|
,

as desired. �

Proof of Theorem 4.4. There are two cases.
Case 1. The set Sx is empty.
By Lemma 2.3, all the coefficients ai of φt are from Fx. Let Fql be a finite field containing

all these coefficients.
Assume x ∈ Falg

p . Let Fqll′ = Fql(x). Then for every n ≥ 1, φtn(x) ∈ Fqll′ . Because Fqll′

is finite, there exist distinct positive integers n and n′ such that φtn(x) = φtn′ (x). Thus
φtn′−tn(x) = 0; i.e. x ∈ φtor, which is a contradiction with our hypothesis that x is not a
torsion point.

Thus, in Case 1, x /∈ Falg
p . So, x is not a constant with respect to the valuations from

MK(x)/Fx . Then, by Theorem 4.15 a), there exists v ∈MK(x)/Fx such that

ĥv(x) ≥ d(v) > q−2rd(v).

Case 2. The set Sx is not empty.
Because x /∈ φtor, Theorem 4.15 shows that there exists v ∈MK(x)/Fx such that

ĥv(x) > q−2r−r2Nφ|Sx|d(v) ≥ q−r(2+(r2+r)|Sx|)d(v).

�

Remark 4.21. Assume that we have a Drinfeld module φ : A → K{τ} and a non-constant
element t ∈ A for which φt is monic. Suppose we are in Case 1 of the proof of Theorem 4.4.
Then that proof shows that for every non-torsion x ∈ Kalg, there exists v ∈ MK(x)/Fx such

that ĥv(x) ≥ d(v0)
[K(x):K]

, where v0 is the place of MK/F that sits below v. Because of inequality

(9), d(v0) ≥ 1
[K:F (x1,...,xn)]

, where {x1, . . . , xn} is the transcendence basis for K/F with respect

to which we constructed the good set of valuations MK/F . Thus Conjecture 4.1 holds in this
case, i.e. when all the coefficients ai are from Falg

p , with C = 1
[K:F (x1,...,xn)]

.

With the help of Theorem 4.4 we can get a characterization of the torsion submodule of
a Drinfeld module. Let K be a finitely generated field and let φ : A→ K{τ} be a Drinfeld
module. If none of the non-constant a ∈ A has the property that φa is monic, then just

pick some non-constant t ∈ A and conjugate φ by γ ∈ Kalg \ {0} such that φ
(γ)
t is monic.

Then φ and φ(γ) are isomorphic over K(γ), which is a finite extension of K of degree at
15



most deg(φt) − 1. So, describing φtor (K(γ)) is equivalent with describing φ
(γ)
tor (K(γ)). The

following result does exactly this. Its proof is immediate after the proof of Theorem 4.15.

Corollary 4.22. Let K be a finitely generated field and let φ : A → K{τ} be a Drinfeld
module. Let t be a non-constant element of A. Let φt =

∑r
i=0 aiτ

i and assume that ar = 1.
Let L be a finite extension of K and let E be the algebraic closure of Fp in L.

a) If a0, . . . , ar−1 ∈ E, then φtor(L) = E.
b) If not all of the coefficients a0, . . . , ar−1 are in E, let S = SL ∩ML/E. Let b(t) ∈ Fq[t]

be the least common multiple of all the polynomials of degree at most rNφ|S|. Then for all
x ∈ φtor(L), φb(t)(x) = 0.

Remark 4.23. We can also bound the size of the torsion of a Drinfeld module φ over a fixed
field K by specializing φ at a place of good reduction. This is the classical method used
to bound torsion for abelian varieties. The bound that we would obtain by using this more
classical method will be much larger than the one from Corollary 4.22 if K contains a large
finite field. However, because our bound is obtained through completely different methods,
one can use both methods and then choose the better bound provided by either one.

The bound from Corollary 4.22 b) for the torsion subgroup of φ(L) is sharp when φ is the
Carlitz module, as shown by the following example.

Example 4.24. For each prime number p let v∞ : Fp(t) \ {0} → Z be the valuation such
that v(b) = − deg(b) for each b ∈ Fp[t] \ {0}. It is the same notation that we used in Section
2. Also, for each prime number p, let ψp be the Carlitz module in characteristic p, i.e.
ψp : Fp[t] → Fp(t){τ}, given by (ψp)t = tτ 0 + τ .

If p = 2, we let L = F2(t). Then with the notation from Corollary 4.22, S = {v∞}.
Also, r = 1, Nψ2 = 2 and so, rNψ2|S| = 2. It is immediate to see that ψ2[t] ⊂ L and also
ψ2[1 + t] ⊂ L. Thus we do need a polynomial b(t) of degree 2, i.e. b(t) = t2 + t, to kill the
torsion of ψ2(L).

If p > 2, we let L = F2

(
(−t)

1
p−1

)
. Then ψp[t] ⊂ L. With the notation from Corollary 4.22,

r = 1 and Nψp = 1. Also, S = {w∞}, where w∞ is the unique place of L sitting above v∞.
So, again we see that we need a polynomial b(t) of degree rNψp |S| = 1 to kill the torsion of
ψp(L).

5. The Mordell-Weil theorem for infinitely generated fields

Before stating and proving the theorems from this section we will introduce the notion
of modular transcendence degree. This notion refers to the minimal field of definition for a
Drinfeld module.

Definition 5.1. For a Drinfeld module φ : A→ K{τ}, its field of definition is the smallest
subfield of K containing all the coefficients of φa, for every a ∈ A.

Lemma 5.2. The field of definition of a Drinfeld module is finitely generated.

Proof. Let φ : A → K{τ}. Let t1, . . . , ts be generators of A as an Fq-algebra. Let K0 be
the field extension of Fq generated by all the coefficients of φt1 , . . . , φts . Then K0 is finitely
generated and by construction, K0 is the field of definition for φ. �
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Definition 5.3. Let φ : A → K{τ} be a Drinfeld module. The modular transcendence
degree of φ is the minimum transcendence degree over Fp of the field of definition for φ(γ),
where the minimum is taken over all γ ∈ Kalg \ {0}.

Lemma 5.4. Let φ : A → K{τ} be a Drinfeld module and let E be its field of definition.
Let t ∈ A be a non-constant element and let φt =

∑r
i=0 aiτ

i. Let E0 = Fp(a0, . . . , ar) and let

Ealg
0 be the algebraic closure of E0 inside Kalg. Then E0 ⊂ E ⊂ Ealg

0 .

Proof. Let ψ be the restriction of φ to Fp[t]. Clearly, ψ is defined over E0. For every a ∈ A, φa
is an endomorphism of ψ. Thus for every a ∈ A, by Proposition 4.7.4 of [10], the coefficients
of φa are algebraic over E0. �

Lemma 5.5. Let φ : A → K{τ} be a Drinfeld module. Assume that there exists a non-
constant element t ∈ A for which φt is monic. Let E be the field of definition for φ. Then
the modular transcendence degree of φ is trdegFp

E.

Proof. By the definition of modular transcendence degree of φ, we have to show that for
every γ ∈ Kalg \ {0}, if E(γ) is the field of definition for φ(γ), then

(29) trdegFp
E(γ) ≥ trdegFp

E.

Let γ ∈ Kalg \ {0}. If φt =
∑r

i=0 aiτ
i, then φ

(γ)
t =

∑r
i=0 aiγ

qi−1τ i.
By Lemma 5.4, trdegFp

E = trdegFp
Fp(a0, . . . , ar−1) and

trdegFp
E(γ) = trdegFp

Fp
(
a0, a1γ

q−1, . . . , ar−1γ
qr−1−1, γq

r−1
)
.

Hence, it is obvious that (29) holds. �

Definition 5.6. Let K0 be any subfield of K. Then the relative modular transcendence
degree of φ over K0 is the minimum transcendence degree over K0 of the compositum field
of K0 and the field of definition of φ(γ), the minimum being taken over all γ ∈ Kalg \ {0}.

Also, if for some non-constant t ∈ A, φt =
∑r

i=0 aiτ
i is monic, we can deduce that the

relative modular transcendence degree of φ over K0 can be defined as

trdegK0
K0(a0, . . . , ar−1),

as an immediate corollary of Lemma 5.5.

Theorem 5.7. Let K be a countable field of characteristic p. Let U be a coherent good set
of valuations on K and let F be the field of constants for U . Let φ : A→ K{τ} be a Drinfeld
module of positive relative modular transcendence degree over F . Then φ(K) is a direct sum
of a finite torsion submodule and a free submodule of rank ℵ0.

Proof. We first recall the definition of a tame module. The module M is tame if every finite
rank submodule of M is finitely generated. According to Proposition 10 from [14], in order
to prove Theorem 5.7, it suffices to show that φ(K) is a tame module of rank ℵ0.

We first prove the following lemma which will allow us to make certain reductions during
the proof of Theorem 5.7.

Lemma 5.8. Let K ′ be a field extension of K. Assume that φ(K ′) is a tame module of rank
ℵ0. Then also φ(K) is a tame module of rank ℵ0.
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Proof of Lemma 5.8. Let K0 be the field of definition for φ. By Lemma 5.2, K0 is finitely
generated. Because φ has positive modular transcendence degree, trdegFp

K0 ≥ 1. Thus, as
proved in [18], φ(K0) is a tame module of rank ℵ0. Thus φ(K) has rank ℵ0 because both
φ(K0) and φ(K ′) have rank ℵ0. Because φ(K ′) is tame, then every finite rank submodule of
φ(K) ⊂ φ(K ′) is finitely generated. Hence φ(K) is tame, as desired. �

Let t be a non-constant element of A. Let φt =
∑r

i=0 aiτ
i.

Let γ ∈ Kalg satisfy γq
r−1ar = 1. Assume that φ(γ) (K(γ)) is a tame module of rank ℵ0.

Because φ(γ) is isomorphic to φ over K(γ), it follows that also φ (K(γ)) is a tame module of
rank ℵ0. Using Lemma 5.8 for K ′ = K(γ), we obtain that φ(K) is a direct sum of a finite
torsion submodule and a free module of rank ℵ0. Thus, it suffices to prove Theorem 5.7
under the hypothesis that φt is monic.

Because F is the field of constants with respect to U , then F is algebraically closed in K.
Let S0 be the set of places in U where φ has bad reduction. Because we supposed that φt

is monic, Lemma 4.3 yields that S0 is the set of places from U where not all of the coefficients
a0, . . . , ar−1 are integral.

Lemma 5.9. The set S0 is not empty.

Proof of Lemma 5.9. If S0 is empty, then by Lemma 2.3, ai ∈ F for all i. Then by Lemma 5.4,
we derive that φ is defined over F alg ∩K = F , which is a contradiction with our assumption
that φ has positive relative modular transcendence degree over F . �

Because S0 is not empty, we use Theorem 4.15 b) and conclude that for every non-torsion
x ∈ K, there exists v ∈ U such that

(30) ĥU,v(x) > q−r(2+(r2+r)|S0|)d(v).

Using inequality (9), we conclude that

(31) ĥU,v(x) >
q−r(2+(r2+r)|S0|)

[K : F (x1, . . . , xn)]
=: c(φ,K) = c > 0.

Because ĥU(x) ≥ ĥU,v(x) we conclude that for every non-torsion x ∈ K,

(32) ĥU(x) > c.

On the other hand, Theorem 4.15 b) shows that φtor(K) is bounded. Moreover, if b(t) ∈
Fq[t] is the least common multiple of all polynomials in t of degree at most (r2 + r)|S0|, then
for every x ∈ φtor(K), φb(t)(x) = 0.

The last ingredient of our proof is the next lemma.

Lemma 5.10. Let R be a Dedekind domain and let M be an R-module. Assume there exists
a function h : M → R≥0 satisfying the following properties

(i) (triangle inequality) h(x± y) ≤ h(x) + h(y), for every x, y ∈M .
(ii) if x ∈Mtor, then h(x) = 0.
(iii) there exists c > 0 such that for each x /∈Mtor, h(x) > c.
(iv) there exists a ∈ R \ {0} such that R/aR is finite and for all x ∈M , h(ax) ≥ 4h(x).
If Mtor is finite, then M is a tame R-module.
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Proof of Lemma 5.10. By the definition of a tame module, it suffices to assume that M is a
finite rank R-module and conclude that it is finitely generated.

Let a ∈ R as in (iv) of Lemma 5.10. By Lemma 3 of [14], M/aM is finite (here we use the
assumption that Mtor is finite). The following result is the key to the proof of Lemma 5.10.

Sublemma 5.11. For every D > 0, there exists finitely many x ∈M such that h(x) ≤ D.

Proof of Sublemma 5.11. If we suppose Sublemma 5.11 is not true, then we can define

C = inf{D | there exists infinitely many x ∈M such that h(x) ≤ D}.
Properties (ii) and (iii) and the finiteness of Mtor yield C ≥ c > 0. By the definition of C,
it must be that there exists an infinite sequence of elements zn of M such that for every n,

h(zn) <
3C

2
.

Because M/aM is finite, there exists a coset of aM in M containing infinitely many zn
from the above sequence.

But if k1 6= k2 and zk1 and zk2 are in the same coset of aM in M , then let y ∈M be such
that ay = zk1 − zk2 . Using properties (iv) and (i), we get

h(y) ≤ h(zk1 − zk2)

4
≤ h(zk1) + h(zk2)

4
<

3C

4
.

We can do this for any two elements of the sequence that lie in the same coset of aM in M .
Because there are infinitely many of them lying in the same coset, we can construct infinitely
many elements z ∈M such that h(z) < 3C

4
, contradicting the minimality of C. �

From this point on, our proof of Lemma 5.10 follows the classical descent argument in the
Mordell-Weil theorem (see [15]).

Take coset representatives y1, . . . , yk for aM in M . Define then

B = max
i∈{1,...,k}

h(yi).

Consider the set Z = {x ∈M | h(x) ≤ B}, which is finite according to Sublemma 5.11. Let
N be the finitely generated R-submodule of M which is spanned by Z.

We claim that M = N . If we suppose this is not the case, then by Sublemma 5.11 we
can pick y ∈M −N which minimizes h(y). Because N contains all the coset representatives
of aM in M , we can find i ∈ {1, . . . , k} such that y − yi ∈ aM . Let x ∈ M be such that
y − yi = ax. Then x /∈ N because otherwise it would follow that y ∈ N (we already know
yi ∈ N). By our choice of y and by properties (iv) and (i), we have

h(y) ≤ h(x) ≤ h(y − yi)

4
≤ h(y) + h(yi)

4
≤ h(y) +B

4
.

This means that h(y) ≤ B
3
< B. This contradicts the fact that y /∈ N because N contains

all the elements z ∈ M such that h(z) ≤ B. This contradiction shows that indeed M = N
and so, M is finitely generated. �

Let a ∈ A be an element such that qdeg(φa) ≥ 4 (we will need this assumption because
we will apply next Lemma 5.10). Because of the finiteness of φtor(K) and because of the

equation (32), the Dedekind domain A, a ∈ A, φ(K) and ĥU satisfy the hypothesis of
Lemma 5.10 (note that A/aA is finite as shown in [14]). We conclude that φ(K) is a tame
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module. Because φ(K) is countable, it has at most countable rank. On the other hand, as
shown in the proof of Lemma 5.8, φ(K) has at least countable rank because φ has positive
modular transcendence degree. Thus φ(K) has rank ℵ0. Proposition 10 of [14] finishes the
proof of Theorem 5.7. �

The following result is an immediate corollary to Theorem 5.7.

Theorem 5.12. Let F be a countable field of characteristic p and let K be a finitely gen-
erated field over F . Let φ : A → K{τ} be a Drinfeld module of positive relative modular
transcendence degree over F . Then φ(K) is a direct sum of a finite torsion submodule and
a free submodule of rank ℵ0.

Proof. The coherent good set U of valuations on K (from the statement of Theorem 5.7) is
the set MK/F constructed in Section 3. �

The following result gives a structure theorem for Drinfeld modules which are defined over
the field of constants (with respect to some coherent good set of valuations).

Theorem 5.13. Let F be a countable, algebraically closed field of characteristic p and let
K be a finitely generated extension of F of positive transcendence degree over F . If φ : A→
F{τ} is a Drinfeld module, then φ(K) is the direct sum of φ(F ) and a free submodule of
rank ℵ0.

Proof. Let t be a non-constant element of A. Because φ is defined over F and F is alge-

braically closed, we can find γ ∈ F such that φ
(γ)
t is monic. Because φ and φ(γ) are isomorphic

over F , it suffices to prove Theorem 5.13 for φ(γ). Thus we assume from now on that φt is
monic.

We will show next that the module φ(K)/φ(F ) is tame.
Let {x1, . . . , xn} be a transcendence basis forK/F . We construct the good set of valuations

MK/F with respect to {x1, . . . , xn}, as described in Section 3. Then we construct the local
and global heights associated to φ.

Lemma 5.14. For every x ∈ F , ĥK/F (x) = 0.

Proof of Lemma 5.14. For every x ∈ F and for every a ∈ A, because φ is defined over F ,

φa(x) ∈ F . Hence v(φa(x)) = 0 and so, for every v ∈MK/F , ĥK/F,v(x) = 0. �

We define Ĥ : φ(K)/φ(F ) → R≥0 by

Ĥ (x+ φ(F )) = ĥK/F (x)

for every x ∈ K. We will prove in the next lemma that this newly defined function is indeed
well-defined.

Lemma 5.15. The function Ĥ is well-defined.

Proof of Lemma 5.15. To show that Ĥ is well-defined, it suffices to show that for every

x, y ∈ K, if x− y = z ∈ F , then ĥK/F (x) = ĥK/F (y).

Using the triangle inequality and using ĥK/F (z) = 0 (see Lemma 5.14), we get

(33) ĥK/F (x) ≤ ĥK/F (y) + ĥK/F (z) = ĥK/F (y).
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Similarly, using this time ĥK/F (−z) = 0 (also −z ∈ F ), we get

(34) ĥK/F (y) ≤ ĥK/F (x) + ĥK/F (−z) = ĥK/F (x).

Inequalities (33) and (34) show that ĥK/F (x) = ĥK/F (y), as desired. �

For each x ∈ K, we denote by x its image in φ(K)/φ(F ).

Lemma 5.16. The function Ĥ satisfies the properties:

(i) Ĥ (x+ y) ≤ Ĥ (x) + Ĥ (y), for all x, y ∈ K.

(ii) Ĥ (φa(x)) = deg(φa) · Ĥ (x), for all x ∈ K and all a ∈ A \ {0}.
(iii) Ĥ (x) ≥ 1

[K:F (x1,...,xn)]
, for all x /∈ F .

Proof of Lemma 5.16. Properties (i) and (ii) follow immediately from the definition of Ĥ and

the fact that φ is defined over F and ĥK/F satisfies the triangle inequality and ĥK/F (φa(x)) =

deg(φa) · ĥK/F (x), for all x ∈ K and all a ∈ A \ {0}.
Using the result of Theorem 4.15 part a), we conclude that if x /∈ F , there exists v ∈MK/F

such that

(35) ĥK/F,v(x) ≥ d(v).

Using inequality (9) in (35), we get ĥK/F,v(x) ≥ 1
[K:F (x1,...,xn)]

.

Because ĥK/F (x) ≥ ĥK/F,v(x), we conclude that

ĥK/F (x) ≥ 1

[K : F (x1, . . . , xn)]
.

�

Now we can finish the proof of Theorem 5.13. The rank of φ(K)/φ(F ) is at most ℵ0

because K is countable (F is countable and K is a finitely generated extension of F ). We
know that φ(K)/φ(F ) is torsion-free (if φa(x) ∈ F for some a ∈ A\{0}, then x ∈ F , because

φa ∈ F{τ}). Because Ĥ satisfies the properties (i)-(iii) from Lemma 5.16, Lemma 5.10 yields
that φ(K)/φ(F ) is tame.

Lemma 5.17. The rank of φ(K)/φ(F ) is ℵ0.

Proof of Lemma 5.17. We need to show only that the rank of the above module is at least
ℵ0. Assume the rank is finite and we will derive a contradiction.

Let y1, . . . , yg ∈ K be the generators of (φ(K)/φ(F ))⊗AFrac(A) as a Frac(A)-vector space.
Let v ∈MK/F be a place different from the finitely many places from MK/F where y1, . . . , yg
have poles. Let x ∈ K be an element which has a pole at v. Then for every a ∈ A \ {0},
φa(x) has a pole at v. On the other hand, for every a ∈ A and every i ∈ {1, . . . , g}, φa(yi)
is integral at v. Thus the equation

φa(x) = z +

g∑
i=1

φai
(yi)

has no solutions a, a1, . . . , ag ∈ A and z ∈ F with a 6= 0. This provides a contradiction to our
assumption that y1, . . . , yg are generators for (φ(K)/φ(F )) ⊗A Frac(A) as a Frac(A)-vector
space. �
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Hence the rank of φ(K)/φ(F ) is ℵ0. Because φ(K)/φ(F ) is tame, Proposition 10 of [14]
yields that φ(K)/φ(F ) is a direct sum of its torsion submodule and a free submodule of rank
ℵ0. As explained before, φ(K)/φ(F ) is torsion-free. Hence φ(K)/φ(F ) is free of rank ℵ0.
We have the exact sequence:

0 → φ(F ) → φ(K) → φ(K)/φ(F ) → 0.

Because φ(K)/φ(F ) is free, the above exact sequence splits. Thus, φ(K) is a direct sum of
φ(F ) and a free submodule of rank ℵ0. �

The following result is an immediate corollary of Theorem 5.13.

Theorem 5.18. Let K be a finitely generated field of positive transcendence degree over Fp.
If φ : A → K{τ} is a Drinfeld module defined over a finite subfield of K, then φ(Falg

p K) is

a direct sum of an infinite torsion submodule (which is Falg
p , the entire torsion submodule of

φ) and a free submodule of rank ℵ0.

6. Drinfeld modules over the perfect closure of a field

In this section we will prove a similar result as Theorem 5.7 valid for the perfect closure
of the field K (as always, φ : A → K{τ}). Even though the result is an extension to
Theorem 5.7 and the general idea of its proof is similar with the one from Theorem 5.7, it
makes more sense to be presented in a separate section. One reason is that it requires more
refined height inequalities for Drinfeld modules as the ones proved so far. Also, the results of
this section should be seen as an analogue of the author’s results from [9] (see also Chapter
3 of [7]). In [9] we proved a Mordell-Weil type theorem for non-isotrivial elliptic curves over
the perfect closure of a function field of a curve over a finite field.

The setting for this section is the following: K is a field of characteristic p and U is a
coherent good set of valuations on K. Let K0 ⊂ K be the field of constants with respect to
U .

Let φ : A→ K{τ} be a Drinfeld module. We construct the global height ĥ and the local

heights ĥv with respect to the valuations in U and the Drinfeld module φ.
Assume φ has positive relative modular transcendence degree over K0. Our goal is to prove

there exists a constant C > 0 depending only on φ and K such that for every non-torsion

point x ∈ Kper, ĥ(x) ≥ C. Clearly, it suffices to prove our result for an extension L of K
(as long as we can control the dependence of the constant C on the field extension). Also,
replacing φ by an isomorphic Drinfeld module does not affect the validity of our statement.
Therefore, we may assume as before, that for some non-constant t ∈ A, φt is monic.

Let φt =
∑r

i=0 aiτ
i (with ar = 1). Let S0 be the set of places v ∈ U for which there exists

i ∈ {0, . . . , r} such that v(ai) < 0. By Lemma 4.3, S0 is the finite set of places v ∈ U of
bad reduction for φ. Not all of the coefficients ai are constant, because this would imply φ
is defined over Kalg

0 ∩K = K0. Therefore S0 is not empty.
Let L be any finite purely inseparable extension of K. Let UL be the set of places of L

which lie above the places from U . We use the convention, as always, that each valuation
function is normalized so that its range equals Z. We let S be the finite set of places w ∈ UL
which lie above places v ∈ S0. Then |S| = |S0| > 0 (above each place from S0 lies an unique
place from S because L/K is purely inseparable).
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In this section we will use again the definitions of Mv, Pv and Rv(α) for α ∈ Pv. So, we
recall that for all v ∈ S, |Pv| ≤ r + 1 and for each α ∈ Pv, |Rv(α)| ≤ qr.

As stated in Lemma 4.14, for every x ∈ L and every v ∈ S, if v(x) ≤ 0, then either

(36) (v(x), acπv(x)) ∈ Pv ×Rv(v(x))

or ĥv(x) ≥ −d(v)Mv

qr .

Fix v ∈ S. Let v0 be the place of S0 lying below v. We define

(37) Tv := − min
0≤i≤r

v(ai)

qi
.

Because v ∈ S, Tv > 0. Moreover, Tv = −[L : K] · min0≤i≤r
v0(ai)
qi (we used that L/K is

purely inseparable and so, e(v|v0) = [L : K]). Thus

(38) Tv ≥
[L : K]

qr
.

Let P ′
v be the set of all 0 < α ≤ Tv such that

(39) min
0≤i≤r

(
v(ai) + qiα

)
=: α1 ∈ Pv.

Because the function f(y) = mini (v(ai) + qiy) is piecewise strictly increasing, we conclude
|P ′
v| ≤ |Pv| ≤ r+ 1 (for each α1 ∈ Pv, there exists at most one α ∈ P ′

v such that (39) holds).
For each α ∈ P ′

v, we let i1, . . . , il be all the indices ij such that

v(aij) + qijα = min
0≤i≤r

(
v(ai) + qiα

)
.

We let Rv(α) be the set of all β such that

(40)
∑

1≤j≤l

acπv(aij)β
qij ∈ Rv(α1).

Because |Rv(α1)| ≤ qr, |Rv(α)| ≤ q2r.
Let P ′′

v be the set of all 0 < α ≤ Tv such that −α is a slope of a segment in the Newton
polygon for φt. For each α ∈ P ′′

v , we let i1, . . . , il be all the indices ij such that v(aij)+q
ijα =

min0≤i≤r (v(ai) + qiα). We let Rv(α) be the set of all β such that

(41)
∑

1≤j≤l

acπv(aij)β
qij

= 0.

We note that it might be that α ∈ P ′
v ∩ P ′′

v . In that case, Rv(α) contains all β satisfying
both (40) and (41). Therefore |Rv(α)| ≤ q2r + qr < q2(r+1).

Let Qv := Pv ∪ P ′
v ∪ P ′′

v . Then |Qv| ≤ |P ′
v|+ |Pv ∪ P ′′

v | ≤ (r + 1) + (r + 1) = 2(r + 1) (the
cardinality of Pv ∪ P ′′

v is at most r + 1 because there are at most r segments in the Newton
polygon for φt and besides the negatives of the slopes of the segments in the Newton polygon
of φt, only the number 0 might be contained in Pv ∪ P ′′

v ).
The following result should be seen as an extension of Lemma 4.14.

Lemma 6.1. Let v ∈ S and let x ∈ L. Assume v(x) ≤ Tv. If (v(x), acπv(x)) /∈ Qv×Rv(v(x)),

then ĥv(x) ≥ −d(v)Mv

q2r .
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Proof. There are two cases: v(x) ≤ 0 and 0 < v(x) ≤ Tv.
We analyze the first case: v(x) ≤ 0. Because (v(x), acπv(x)) /∈ Pv×Rv(v(x)), Lemma 4.14

yields ĥv(x) ≥ −d(v)Mv

qr > −d(v)Mv

q2r .

Assume now that 0 < v(x) ≤ Tv. Because (v(x), acπv(x)) /∈ P ′′
v × Rv(v(x)), v(φt(x)) =

min0≤i≤r v(aix
qi
) (see the remark at the end of the proof of Lemma 4.8). Because v(x) ≤ Tv,

v(aix
qi
) ≤ 0, for some 0 ≤ i ≤ r (see the definition of Tv from (37)). Hence v(φt(x)) ≤

0. Let i1, . . . , il ∈ {0, . . . , r} be all the indices ij such that v(φt(x)) = v(aijx
qij

). Then

acπv(φt(x)) =
∑

j acπv(aij) acπv(x)
qij

. Because (v(x), acπv(x)) /∈ P ′
v ×Rv(v(x)), we conclude

(42) (v(φt(x)), acπv(φt(x)) /∈ Pv ×Rv(v(φt(x))).

Because v(φt(x)) ≤ 0, Lemma 4.14 yields ĥv(φt(x)) ≥ −d(v)Mv

qr . Hence ĥv(x) =
bhv(φt(x))

qr ≥
−d(v)Mv

q2r , as desired. �

The proof of following result is similar with the proof of Theorem 4.15.

Lemma 6.2. Let x ∈ L. Then either there exists v ∈ S such that ĥv(x) ≥ −d(v)Mv

q4r(r+1)2|S|+2r
, or

there exists a polynomial b ∈ Fq[t] of degree at most 4(r + 1)2|S| such that for every v ∈ S,
v(φb(x)) > Tv.

Proof. Let v ∈ S. We apply Lemma 4.16 with N = Tv, I = Qv and R(α) = Rv(α) for every
α ∈ Qv. Because |Qv| ≤ 2(r + 1) and |Rv(α)| < q2(r+1), for every α ∈ Qv, we conclude that
the following is true.

Fact 6.3. Let v ∈ S. Let W be an Fq-vector subspace of L with the property that for all
w ∈ W , (v(w), acπv(w)) ∈ Qv ×Rv(v(w)) whenever v(w) ≤ Tv.

Then the Fq-codimension of {w ∈ W | v(w) > Tv} in W is bounded above by 4(r + 1)2.

We apply Fact 6.3 for each v ∈ S and we deduce the following two results.

Fact 6.4. Let W be an Fq-subspace of L such that (v(w), acπv(w)) ∈ Qv×Rv(v(w)) whenever
v ∈ S, w ∈ W and v(w) ≤ Tv. Then the Fq-codimension of

{w ∈ W | v(w) > Tv for all v ∈ S}

in W is bounded above by 4(r + 1)2|S|.

Fact 6.5. Let notation be as in Fact 6.4. If moreover, dimFq W > 4(r + 1)2|S|, then there
exists a nonzero w ∈ W such that v(w) > Tv for all v ∈ S.

We are now ready to finish the proof of Lemma 6.2.
Let W = SpanFq

(
{x, φt(x), . . . , φt4(r+1)2|S|}

)
. Because dimFq W = 4(r+1)2|S|+1, Fact 6.5

yields the existence of a nonzero w ∈ W such that either there exists v ∈ S such that

(43) v(w) ≤ Tv and (v(w), acπv(w)) /∈ Qv ×Rv(v(w)),

or for all v ∈ S,

(44) v(w) > Tv.
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If (43) holds, then by Lemma 6.1, ĥv(w) ≥ −d(v)Mv

q2r . Because w ∈ W \ {0}, there exists a

nonzero polynomial b ∈ Fq[t] of degree at most 4(r + 1)2|S| such that w = φb(x). Thus

ĥv(x) =
ĥv(w)

deg(φb)
≥ −d(v)Mv

q4r(r+1)2|S|+2r
.

If (44) holds, then v(φb(x)) > Tv for every v ∈ S with deg(b) ≤ 4(r + 1)2|S|, where w =
φb(x). �

The next theorem is the main step in order to prove the existence of a positive lower
bound C for the height of non-torsion points in Kper for a Drinfeld modules φ : A→ K{τ}
of positive relative modular transcendence degree.

Theorem 6.6. Let K be a field of characteristic p and let U be a coherent good set of
valuations on K. Let K0 ⊂ K be the field of constants with respect to the valuations in U .

Let φ : A→ K{τ} be a Drinfeld module of positive relative modular transcendence degree
over K0. Let t ∈ A be a non-constant element and assume φt =

∑r
i=0 aiτ

i is monic. Let S0

be the set of the places in U of bad reduction for φ. Let s = |S0|.
Then for every non-torsion point x ∈ Kper, ĥ(x) >

minv0∈S0
d(v0)

q4r(r+1)2s+3r
> 0.

Before proving Theorem 6.6 we show how this theorem implies a more general result.

Theorem 6.7. Let K be a field of characteristic p and let U be a coherent good set of
valuations on K. Let K0 ⊂ K be the field of constants with respect to the valuations in U .
Let φ : A → K{τ} be a Drinfeld module of positive relative modular transcendence degree
over K0. There exists a positive constant C depending only on φ and K such that for every

non-torsion x ∈ Kper, ĥ(x) > C.

Proof. Let t ∈ A be a non-constant element minimizing deg(φa) as a ranges over non-constant

elements of A. Let γ ∈ Kalg such that φ
(γ)
t is monic. Let L = K(γ). If deg(φt) = qr, then

[L : K] ≤ qr − 1. As explained before, φ and φ(γ) are isomorphic and ĥφ = ĥφ(γ) .
Let S be the set of all places of L lying above places in S0 (we use the notation from

Theorem 6.6). Then

(45) |S| ≤ (qr − 1)|S0|,
because [L : K] ≤ qr − 1. Also, for each v ∈ S,

(46) d(v) =
d(v0)f(v|v0)

[L : K]
≥ d(v0)

[L : K]
.

By Theorem 6.6 applied to φ(γ) : A→ L{τ}, for every x ∈ Kper ⊂ Lper,

(47) ĥφ(x) = ĥφ(γ)(x) ≥
minv∈S d(v)

q4r(r+1)2|S|+3r
=: C > 0.

Using (45) and (46) in (47), we see that the positive constant C is bounded below by another
positive constant which depends only on φ and K, as desired. �

Proof of Theorem 6.6. We first recall that because φ has positive relative modular transcen-
dence degree over K0, s ≥ 1.

Let x ∈ Kper be a non-torsion point and let L = K(x). Let S be the set of places of L
which lie above places in S0. Because L ⊂ Kper, |S| = s.
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Let UL be the set of places of L which lie above the places from U (as always, they are
normalized so that the range of each valuation function is Z). For each place v ∈ UL, we
denote by v0 ∈ S0 the corresponding place which lies below v. Because L/K is a purely
inseparable extension, for each place v ∈ UL,

(48) d(v)e(v|v0) =
f(v|v0)d(v0)e(v|v0)

[L : K]
=
d(v0)[L : K]

[L : K]
= d(v0).

On the other hand, by its definition, Mv = e(v|v0) min0≤i<r
v0(ai)
qr−qi and so, if v ∈ S,

(49) Mv <
−e(v|v0)

qr
.

Using (48) in (49) we get −d(v)Mv >
d(v0)
qr .

If there exists v ∈ S such that ĥv(x) >
d(v0)

q4r(r+1)2s+3r
, then

ĥ(x) ≥ ĥv(x) > min
v0∈S0

d(v0)

q4r(r+1)2s+3r
,

as desired. Therefore, assume from now on, that for each v ∈ S,

ĥv(x) ≤
d(v0)

q4r(r+1)2s+3r
<

−d(v)Mv

q4r(r+1)2s+2r
.

Then by Lemma 6.2, there exists a nonzero polynomial b ∈ Fq[t] of degree at most 4(r+1)2s
such that

(50) v(φb(x)) > Tv

for all v ∈ S. Because b 6= 0 and x /∈ φtor, y := φb(x) 6= 0. Because U is a coherent good set
of valuations, UL is a good set of valuations on L and so, because y 6= 0,

(51)
∑
v∈UL

d(v) · v(y) = 0.

By its definition, for each v ∈ S, Tv = −e(v|v0) min0≤i≤r
v0(ai)
qi ≥ e(v|v0)

qr . Hence, using (50)

and (48), we get

(52)
∑
v∈S

d(v) · v(y) >
∑
v∈S

d(v)e(v|v0)

qr
=

∑
v0∈S0

d(v0)

qr
.

Using (52) in (51), we conclude there exists a finite set U(y) of places in UL \ S such that
for each v ∈ U(y), v(y) < 0 and moreover

(53)
∑
v∈U(y)

d(v) · v(y) < −
∑
v0∈S0

d(v0)

qr
.

For each v ∈ U(y), because v /∈ S and v(y) < 0, Lemma 4.10 yields

ĥv(y) = −d(v) · v(y).
Using (53) we conclude

(54)
∑
v∈U(y)

ĥv(y) >
∑
v0∈S0

d(v0)

qr
.
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Inequality (54) yields

(55) ĥ(y) >
∑
v0∈S0

d(v0)

qr
.

Because y = φb(x) and the degree of b as a polynomial in t is at most 4(r + 1)2s, we get

ĥ(x) ≥ ĥ(y)

q4r(r+1)2s
>

∑
v0∈S0

d(v0)

q4r(r+1)2s+r
> min

v0∈S0

d(v0)

q4r(r+1)2s+3r
,

as desired. �

Remark 6.8. Theorem 6.6 is sharp in the sense that if we assume φ : A → K0{τ} and we
keep the rest of the assumptions from Theorem 6.6, then the conclusion of Theorem 6.6

fails. Indeed, let x ∈ K \K0. By Lemma 4.10, ĥ(x) = −
∑

v∈U d(v) ·min{0, v(x)}. Because

x /∈ K0, ĥ(x) > 0. Moreover, for each n ≥ 1, x1/pn ∈ Kper and an easy computation, using

again Lemma 4.10 shows ĥ(x1/pn
) =

bh(x)
pn . Therefore, as n goes to infinity, the height of x1/pn

goes strictly decreasing to 0. Hence there is no uniform positive lower bound for the height
of a non-torsion point in Kper.

Corollary 6.9. Let K be a finitely generated field of characteristic p. Let φ : A→ K{τ} be
a Drinfeld module of positive modular transcendence degree. There exists a constant C > 0

depending only on φ and K such that for every non-torsion point x ∈ Kper, ĥ(x) ≥ C.

Proof. Let V be a projective normal variety defined over a finite field, whose function field
is K. We construct the coherent good set U of valuations on K associated to the irreducible
divisors of V (in Section 3 we presented a completely algebraic construction of U). The
field of constants with respect to U is the maximal finite subfield of K. Because φ has
positive modular transcendence degree we can apply Theorem 6.7 and get the existence of
the constant C in Corollary 6.9. �

Using Theorem 6.6 we prove the following Mordell-Weil type theorem.

Theorem 6.10. Let K be a countable field of characteristic p and let U be a coherent good
set of valuations on K. Let K0 ⊂ K be the field of constants with respect to the valuations
from U . Let φ : A→ K{τ} be a Drinfeld module of positive relative modular transcendence
degree over K0. Then φ(Kper) is the direct sum of a finite torsion submodule with a free
submodule of rank ℵ0.

Proof. We will prove φ(Kper) has rank ℵ0 and is a tame module. According to Proposition
10 of [14], these two properties yield our conclusion.

As proved in Lemma 5.8, it suffices to prove our theorem after replacing K by a finite
extension. Therefore, we assume from now on that there exists a non-constant t ∈ A such
that φt is monic. Let qr be the degree of φt.

We know that φ(Kper) has rank at most ℵ0 because Kper is countable, as K is count-
able. On the other hand, φ(Kper) has at least rank ℵ0 because φ has positive modular
transcendence degree (see the proof of Lemma 5.8).

In order to show φ(Kper) is tame, we use Lemma 5.10. Thus we need to show that
φtor(K

per) is finite. The other conditions of the above mentioned lemma are already satisfied
by the global height function associated to φ (see Theorem 6.6) and by any element a ∈ A
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of degree at least 2 (so that deg(φa) = qdeg(a) ≥ 4). Because Kper =
⋃
n≥1K

1/pn
, it suffices

to show φtor(K
1/pn

) is uniformly bounded.
Let s ≥ 1 be the number of places in U of bad reduction for φ. Let Un be the good set of

places on K1/pn
, which lie above places in U . There exists exactly one place in Un lying above

each place in U because K1/pn
/K is a purely inseparable extension. Thus, for each n ≥ 1,

there are s places of bad reduction for φ in Un. By Theorem 4.15, the size of φtor(K
1/pn

)
is bounded above in terms of q, r and s, independently of n. Hence φtor(K

per) is finite. As
explained in the previous paragraph, Lemma 5.10 concludes the proof of our theorem. �

Just as Corollary 6.9 followed from Theorem 6.6, in the same way we can deduce the
following result from Theorem 6.10.

Corollary 6.11. Let K be a finitely generated field of charateristic p and let φ : A→ K{τ}
be a Drinfeld module of positive modular transcendence degree. Then φ(Kper) is a direct sum
of a finite torsion submodule with a free submodule of rank ℵ0.

Remark 6.12. Corollary 6.11 is sharp in the sense that we cannot drop the hypothesis that
φ has positive modular transcendence degree. For example, let φ : Fq[t] → Fq(t){τ} be given
by φt = τ . Then we can check immediately that φ (Fq(t)per) is a direct sum of a finite torsion
submodule with a free Fq[t, t−1]-submodule of rank ℵ0.
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M. (French) [Lower bound for the Néron-Tate height on abelian varieties of CM type] J. Reine Angew.
Math. 529 (2000), 1-74.

[3] L. Denis, Canonical heights and Drinfeld modules. (French) Math. Ann. 294 (1992), no. 2, 213-223.
[4] L. Denis, The Lehmer problem in finite characteristic. (French) Compositio Math. 98 (1995), no. 2,

167-175.
[5] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial. Acta

Arith. 34, no. 4, 391-401, (1979).
[6] O. Endler, Valuation theory. To the memory of Wolfgang Krull (26 August 1899–12 April 1971). Univer-

sitext. Springer-Verlag, New York-Heidelberg, 1972. xii+243 pp.
[7] D. Ghioca, The arithmetic of Drinfeld modules. Ph.D. thesis, May 2005.
[8] D. Ghioca, The local Lehmer inequality for Drinfeld modules. submitted for publication, August 2004.
[9] D. Ghioca, Elliptic curves over the perfect closure of a function field. submitted for publication, May

2005.
[10] D. Goss, Basic structures of function field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete

(3) [Results in Mathematics and Related Areas (3)], 35. Springer-Verlag, Berlin, 1996.
[11] M. Hindry, J. Silverman, On Lehmer’s conjecture for elliptic curves. Séminaire de Théorie des Nombres,
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