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Abstract. We define the Mordell exceptional locus Z(V ) for affine
varieties V ⊂ Gg

a with respect to the action of a product of Drinfeld
modules on the coordinates of Gg

a. We show that Z(V ) is a closed subset
of V . We also show that there are finitely many maximal algebraic φ-
modules whose translates lie in V . Our results are motivated by Denis-
Mordell-Lang conjecture for Drinfeld modules.

1. Introduction

Faltings proved the Mordell-Lang conjecture in the following form (see
[Fal94]).

Theorem 1.1 (Faltings). Let G be an abelian variety defined over the field
of complex numbers C. Let X ⊂ G be a closed subvariety and Γ ⊂ G(C)
a finitely generated subgroup of G(C). Then X(C) ∩ Γ is a finite union of
cosets of subgroups of Γ.

In particular, Theorem 1.1 says that an irreducible subvariety X of an
abelian variety G has a Zariski dense intersection with a finitely generated
subgroup of G(C) only if X is a translate of an algebraic subgroup of G.

We define the Mordell exceptional locus of X ⊂ G as the set (see also
[Abr94])

Z(X) = {x ∈ X | ∃B, dim B > 0, B an algebraic subgroup, x + B ⊂ X}.
Thus, Theorem 1.1 says that for each finitely generated subgroup Γ, we have
that (X \Z(X))∩Γ is finite. The Mordell exceptional locus of subvarieties of
abelian varieties was shown to be closed (see [Kaw80], [Bog81] and [Abr94]).
This last paper served as inspiration for our work.

If we try to formulate the Mordell-Lang conjecture in the context of al-
gebraic subvarieties contained in a power of the additive group scheme Ga,
the conclusion is either false (in the characteristic 0 case, as shown by the
curve y = x2 which has an infinite intersection with the finitely generated
subgroup Z × Z, without being itself a translate of an algebraic subgroup
of G2

a) or it is trivially true (in the characteristic p > 0 case, because ev-
ery finitely generated subgroup of a power of Ga is finite). Denis [Den92]
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formulated a Mordell-Lang conjecture for powers of Ga in characteristic p
in the context of Drinfeld modules. Denis replaced the finitely generated
subgroup from the usual Mordell-Lang statement with a finitely generated
φ-submodule, where φ is a Drinfeld module. He also strengthened the con-
clusion of the Mordell-Lang statement by asking that the subgroups whose
cosets are contained in the intersection of the algebraic variety with the
finitely generated φ-submodule be actually φ-submodules. Several cases of
Denis-Mordell-Lang conjecture were proved by the author (see [Ghi05] and
[Ghi06]), and by Thomas Tucker and the author (see [GT07]).

Similar with the case of abelian varieties, Denis-Mordell-Lang conjecture
suggests that the intersection of a variety V with a finitely generated φ-
module should be finite outside the Mordell exceptional locus Z(V ) of V
(see our Definition 2.2 for Z(V )). In the present paper we prove that Z(V )
is closed (see our Theorem 2.4). In addition, we show that there exists no
infinite family of algebraic φ-modules (see Corollary 3.9), and that for every
affine variety V ⊂ Gg

a there are finitely many maximal algebraic φ-modules
whose translates lie in V (see our Theorem 2.5). Both of these statements
are further indications that Denis-Mordell-Lang conjecture should be true.

We briefly sketch the plan of our paper. In Section 2 we set the notation,
describe the Denis-Mordell-Lang conjecture and then state our main results.
In Section 3 we prove these main results (Theorems 2.4 and 2.5).

2. Notation and statement of our main results

All subvarieties appearing in this paper are closed. We define next the
notion of a Drinfeld module.

Let p be a prime and let q be a power of p. Let C be a projective non-
singular curve defined over Fq. Let A be the ring of Fq-valued functions
defined on C, regular away from a fixed closed point ∞ ∈ C. Let K be
a finite field extension of the fraction field Frac(A) of A. We let Kalg be
a fixed algebraic closure of K, and let Ksep be the separable closure of K
inside Kalg.

We define the operator τ as the Frobenius on Fq, extended so that for
every x ∈ Kalg, we have τ(x) = xq. Then for every subfield L ⊂ Kalg,
we let L{τ} be the ring of polynomials in τ with coefficients from L (the
addition is the usual addition, while the multiplication is given by the usual
composition of functions).

Following Goss [Gos96], we call a Drinfeld module of generic characteristic
defined over K a morphism φ : A → K{τ} for which the coefficient of τ0

in φa is a for every a ∈ A, and there exists a ∈ A such that φa 6= aτ0. All
Drinfeld modules appearing in this paper are of generic characteristic.

For every field extension K ⊂ L, any Drinfeld module φ induces an action
on Ga(L) by a ∗ x := φa(x), for each a ∈ A.

Let g be a fixed positive integer. Let φ1 : A → K{τ}, . . . , φg : A → K{τ}
be Drinfeld modules. From now on, we denote by φ the (φ1, . . . , φg)-action
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on Gg
a (where each Drinfeld module φi acts on the corresponding coordinate

of the affine space).
A point x ∈ Gg

a(Kalg) is torsion for the φ-action if there exists a ∈ A\{0}
such that φa(x) = 0. We denote by φ[a] the finite set of all torsion points x
killed by φa. We denote by φtor the set of all torsion points in Gg

a(Kalg).
The subgroups of Gg

a(Kalg) invariant under the action of φ are called
φ-submodules.

Definition 2.1. An algebraic φ-(sub)module of Gg
a is an irreducible algebraic

subgroup of Gg
a invariant under φ.

Now we can define the Mordell exceptional locus of an affine subvariety
V ⊂ Gg

a.

Definition 2.2. Let V ⊂ Gg
a be an affine subvariety. We let Z(V ) be the set

of all points y ∈ V with the property that there exists a positive dimensional
algebraic φ-submodule Y ⊂ Gg

a such that (y + Y ) ⊂ V .

Denis proposed in [Den92] the following conjecture.

Conjecture 2.3. Let V ⊂ Gg
a be an affine variety defined over K. Let Γ

be a finitely generated φ-submodule of Gg
a(K). Then there exist algebraic

φ-submodules B1, . . . , Bl of Gg
a and there exist γ1, . . . , γl ∈ Γ such that

V (K) ∩ Γ =
l⋃

i=1

(γi + Bi(K)) ∩ Γ.

As explained in Introduction, the results of our paper were motivated by
Conjecture 2.3. Our main result is the following.

Theorem 2.4. With the above notation for φ and V , the Mordell exceptional
locus Z(V ) is Zariski closed.

The following important result is a consequence of Theorem 2.4.

Theorem 2.5. Let V ⊂ Gg
a be an affine subvariety. There are finitely many

maximal algebraic φ-submodules Y such that a translate of Y lies in V (where
Y is maximal in the sense that there is no larger algebraic φ-module whose
translate lies in V ).

3. Proofs of our main results

We continue with the notation from Section 2. Hence φ1, . . . , φg are Drin-
feld modules, and we denote by φ the action of (φ1, . . . , φg) on Gg

a. Unless
otherwise stated, V ⊂ Gg

a is an affine subvariety, and Z(V ) is its Mordell
exceptional locus (as defined in Definition 2.2).

We first state a result which we will use later (Lemme 4 of [Den92]).

Lemma 3.1 (Denis). Let Y ⊂ Gg
a be an irreducible subvariety, and let

t ∈ A be a non-constant function. If φt(Y ) = Y , then Y is a translate of an
algebraic φ-module.
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The following corollary follows easily from Lemma 3.1.

Corollary 3.2. Let 0 ∈ Y ⊂ Gg
a be an irreducible subvariety, and let t ∈ A

be a non-constant function. If φt(Y ) = Y , then Y is an algebraic φ-module.

Proof. According to Lemma 3.1, Y = y + Z is a translate of an algebraic φ-
module Z. Because 0 ∈ Y , then −y ∈ Z, and so, because Z is an algebraic
group, we conclude that y + Z = Z. Therefore Y = Z is an algebraic
φ-module. �

The following Fact is a consequence of Lemma 3.1.

Fact 3.3. Let t ∈ A be a non-constant function. Let 0 ∈ Y ⊂ Gg
a be a variety

such that φt(Y ) ⊂ Y . Let Z be an irreducible component of Y containing 0.
Then Z is an algebraic φ-module.

Proof. First we prove the following Claim.

Claim 3.4. Let Z be an irreducible subvariety of Gg
a containing 0. Suppose

that for some positive integers m < n, we have φtm(Z) = φtn(Z). Then Z
is an algebraic φ-module.

Proof of Claim 3.4. By our assumption, the irreducible subvariety φtm(Z)
is invariant under φtn−m . Hence, using Corollary 3.2, we conclude that
Z0 := φtm(Z) is an algebraic φ-module. In particular, φtm(Z0) = Z0. Thus,
using that φtm(Z) = φtm(Z0), we get that

(3.4.1) Z ⊂
⋃

z∈φ[tm]

(z + Z0).

Because Z is irreducible, then (3.4.1) yields that there exists z ∈ φ[tm] such
that Z ⊂ (z+Z0). Because dim(Z) = dim(φtm(Z)) = dim(Z0), and because
Z0 is irreducible, we conclude that Z = z +Z0. Because 0 ∈ Z = z +Z0, we
obtain that −z ∈ Z0, and so, Z = z + Z0 = Z0 is an algebraic φ-module, as
desired. �

The following result is an easy corollary of Claim 3.4.

Corollary 3.5. Let ` be a positive integer, and let S := {Yi}`
i=1 be a finite

set of irreducible subvarieties of Gg
a, each containing 0, such that φt acts on

S (by permuting the varieties). Then each Yi is an algebraic φ-module.

Proof of Corollary 3.5. Because φt acts on the finite set S, then there exist
positive integers m < n such that for each i ∈ {1, . . . , `}, we have φtm(Yi) =
φtn(Yi). Then Claim 3.4 yields the conclusion of Corollary 3.5. �

Let d be the maximal dimension of the irreducible components of Y pass-
ing through 0. Let Z be an irreducible component of Y , passing through 0.
We will prove Fact 3.3 by induction on s := d− dim(Z).

First we prove the case s = 0. So, let {Zi}`
i=1 be all the irreducible

components of Y of dimension d, which contain 0. Because 0 ∈ φt(Zi) ⊂
φt(Y ) ⊂ Y , then φt(Zi) is contained in an irreducible component Zj of Y (of
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maximal dimension d, because dim(φt(Zi)) = dim(Zi) = d), which passes
through 0. Because dim(φt(Zi)) = dim(Zj) and both φt(Zi) and Zj are
irreducible, we conclude that φt(Zi) = Zj . Hence, φt acts on the finite set
{Zi}`

i=1. Thus, Corollary 3.5 yields that each Zi is an algebraic φ-module.
Let s ≥ 1. We assume that we proved Fact 3.3 for all irreducible compo-

nents of dimension greater than (d−s), and we will prove next that Fact 3.3
holds also for the irreducible components of dimension d− s.

Let T := {Wi}k
i=1 be all the irreducible components of Y of dimension

(d − s), which contain 0. If φt acts on the finite set T , then Corollary 3.5
yields that each Wi is an algebraic φ-module, as desired. Therefore, assume
from now on that φt does not act on T . However, for each W := Wi, there
exists another irreducible component Z of Y passing through 0, such that
φt(W ) ⊂ Z. Assume Z /∈ T . Then dim(Z) > d − s. By the induction
hypothesis, Z is an algebraic φ-module. Hence, because Z = φt(Z) contains
φt(W ), then

(3.5.1) W ⊂
⋃

y∈φ[t]

y + Z.

Because W is irreducible, then there exists y ∈ φ[t] such that W ⊂ y + Z.
But 0 ∈ W , and so, 0 ∈ y + Z. Therefore −y ∈ Z, and because Z is
an algebraic group, we conclude that y + Z = Z. Hence W ⊂ Z, which
contradicts the fact that W is an irreducible component of Y , different from
Z. This contradiction shows that actually φt acts on the finite set T , and
so, it concludes our inductive proof. �

We are ready to prove that Z(V ) is a (closed) subvariety of V .

Proof of Theorem 2.4. Our proof follows the second proof of Theorem 1 from
[Abr94]. Let t ∈ A be a non-constant function.

For each m ≥ 2 we define the map Fm : (Gg
a)

m → (Gg
a)

m−1 by

(y1, . . . , ym) → (φt(y1)− y2, φt(y2)− y3, . . . , φt(ym−1)− ym).

Clearly, the map F ′
m : Ggm

a → Ggm
a given by

F ′
m(y1, . . . , ym) := (y1, φt(y1)− y2, φt(y2)− y3, . . . , φt(ym−1)− ym)

is an isomorphism. We let F V
m be the map Fm restricted to V m.

We let Dm : V → Gg(m−1)
a defined by Dm(y) = φt−1 · (y, y, . . . , y). We let

Ym ⊂ V m+1 be defined as

(3.5.2) {(y1, . . . , ym, y) ∈ V m × V | F V
m (y1, . . . , ym) = Dm(y)}.

Using the fact that F ′
m is an isomorphism, we obtain that Ym embeds into

V × V via the map

(3.5.3) (y1, . . . , ym, y) → (y1, y).

Let Y ′
m ⊂ V × V be the image of Ym through the map in (3.5.3). We claim

that for n > m, we have Y ′
n ⊂ Y ′

m.
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Indeed, if (y1, . . . , yn, y) ∈ Yn, then (y1, . . . , ym, y) ∈ Ym. Therefore
{Y ′

m}m≥2 is a descending chain of subvarieties of V ×V , which has to stabi-
lize. Hence, for some positive integer n, we have Y ′

m = Y ′
n for each m ≥ n.

We note that each Ym contains the diagonal of V m+1. Hence, each Y ′
m

contains the diagonal ∆ of V × V .
We have the natural projection π2 of Y ′

n ⊂ V ×V on the second coordinate.
The following Claim is the key to our proof.

Claim 3.6. For each y ∈ V , and for each irreducible component Z × {y}
of the fiber π−1

2 (y), which passes through (y, y), the translate −y + Z is
an algebraic φ-module. Moreover, π−1

2 (y) contains a positive dimensional
irreducible component passing through (y, y) if and only if there exists a
positive dimensional algebraic φ-module Z such that (y + Z) ⊂ V , if and
only if y ∈ Z(V ).

Proof of Claim 3.6. Let y ∈ V , and let Y ′×{y} = π−1
2 (y) ⊂ Y ′

n be the fiber
above y. Hence Y ′ ⊂ V , and we let Y := (Y ′ − y). Then 0 ∈ Y (because
∆ ⊂ Y ′

n, and so, y ∈ Y ′). We claim that φt(Y ) ⊂ Y .
Indeed, every point y1 ∈ Y ′ lies below a point (y1, y) ∈ Y ′

n, and in addition
because {Y ′

m}m stabilizes for m ≥ n, we obtain that (y1, y) ∈ Y ′
m for all

m ≥ n. In particular, using (3.5.2), we conclude that there exists an infinite
sequence {yi}i≥1 ⊂ V such that

(3.6.1) φt(yi)− yi+1 = φt−1(y) for every i ≥ 1.

Therefore,

(3.6.2) φt(yi − y) = yi+1 − y for all i ≥ 1.

Moreover, (3.6.1) yields that also (y2, y) ∈ Y ′
n, and so (y2 − y) ∈ Y . Hence,

(3.6.2) yields that φt(Y ) ⊂ Y . Therefore, using Fact 3.3, we conclude that
each irreducible component of Y containing 0 is an algebraic φ-module.

Now, conversely, assume (y +Y ) ⊂ V and Y is maximal in the sense that
there exists no larger algebraic φ-module whose translate by y lies in V .
Then, because Y is invariant under φt, for each y1 ∈ (y + Y ) there exists an
infinite sequence

{yi}i≥1 ⊂ (y + Y ) ⊂ V

such that (3.6.2) holds, and so, (3.6.1) holds. Therefore (y1, y) ∈ Y ′
n, and so,

(y + Y )× {y} lies in an irreducible component Z × {y} of the fiber π−1
2 (y).

We note that Z ×{y} passes through (y, y) because y ∈ (y + Y ). Moreover,
as shown in the above paragraph, Z ⊂ V is a translate by y of an algebraic
φ-module. Because Y is maximal, then (y + Y ) = Z. Hence dim(Z) > 0 if
and only if dim(Y ) > 0, if and only if y ∈ Z(V ). �

We define the subset U of points x ∈ Y ′
n such that if y := π2(x) ∈ V ,

then there exists a positive dimensional irreducible component of the fiber
π−1

2 (y), containing x. According to part (d) of 3.22 (page 95) in [Har77],
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the subset U is Zariski closed. We let Z̃ := U ∩∆. Then Z̃ is Zariski closed,
and we claim that

(3.6.3) Z̃ = {(y, y) | y ∈ Z(V )}.
Indeed, if y ∈ Z(V ), then there exists a positive dimensional algebraic φ-
module Y such that (y +Y ) ⊂ V . We may assume Y is a maximal algebraic
φ-module with the property that its translate by y lies in V . Then (y+Y )×
{y} is an irreducible component of the fiber π−1

2 (y), which contains (y, y)
(as shown in Claim 3.6). Therefore, (y, y) ∈ U ∩∆ = Z̃. Now, conversely, if
(y, y) ∈ U , then there exists a positive dimensional irreducible component
Y ′ of π−1

2 (y) passing through (y, y). Then Y ′ = y + Y for some positive
dimensional algebraic φ-module Y (see Claim 3.6). Thus y ∈ Z(V ), as
desired.

Because Z̃ is Zariski closed, then (3.6.3) yields that also Z(V ) is a closed
subvariety. This concludes the proof of Theorem 2.4. �

Before proceeding to the proof of Theorem 2.5, we will prove several
preliminary results.

Lemma 3.7. Let Y ⊂ Gg
a be an algebraic φ-submodule. Then φtor ∩ Y is

Zariski dense in Y .

Proof. Let m := dim(Y ). Then there exists a suitable finite-to-one, domi-
nant projection π of Y on m coordinates of Gg

a. At the expense of relabelling
the coordinates, we may assume the projection is on the first m coordinates.
Because π(Y ) is actually an algebraic group, and π is a group homomor-
phism, we conclude that π(Y ) = Gm

a . Moreover, π has finite fibers. By
abuse of notation, we also denote by φ the induced action of (φ1, . . . , φm)
on Gm

a .

Claim 3.8. The preimage of a torsion point of Gm
a through π−1 is a finite

set of torsion points in Y .

Proof of Claim 3.8. Let x be a torsion point of Gm
a . Let S0 be the orbit of

x under the action of φ; hence S0 is a finite φ-submodule of Gm
a . Moreover

S0 is a finite set of torsion points. Because π has finite fibers, S := π−1(S0)
is a finite subset of Y . Moreover, because π commutes with the φ-action,
we conclude that S is also a φ-module. Hence, S consists of finitely many
torsion points (if S would contain a non-torsion point z, then the infinite
φ-orbit of z would be contained in S, contradicting the fact that S is finite).
Therefore, the preimage of x is indeed a finite set of torsion points in Y . �

Because φtor(Gm
a ) is a cartesian product of infinite subsets of the affine

line, then φtor(Gm
a ) is Zariski dense in Gm

a . We conclude that the Zariski
closure of π−1(φtor(Gm

a )) ⊂ Y has dimension m. Hence, it equals Y (because
Y is irreducible). Thus π−1(φtor(Gm

a )) is a Zariski dense set of torsion points
in Y (see Claim 3.8). This concludes the proof of Lemma 3.7. �

The following key result is an immediate corollary of Lemma 3.7.
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Corollary 3.9. There are no infinite algebraic families of algebraic φ-
submodules of Gg

a.

Proof. Using Lemma 3.7, every algebraic φ-submodule of Gg
a contains a

Zariski dense set of torsion points. Hence each algebraic φ-submodule of Gg
a

is defined over Ksep (because every torsion point of φ is defined over Ksep).
Therefore, there are no infinite algebraic families of algebraic φ-submodules
of Gg

a. �

Definition 3.10. For an irreducible subvariety V ⊂ Gg
a, we call the φ-

stabilizer of V (denoted by Stabφ(V )) the largest algebraic φ-submodule Y
such that Y + V = V .

The φ-stabilizer of V is well-defined because if the algebraic φ-modules
Y1 and Y2 have the property that Y1 + V = V and Y2 + V = V , then the
connected component Y0 of (Y1+Y2) is also an algebraic φ-module such that
Y0 + V = V . Moreover, Y1 and Y2 are contained in Y0.

The following result is a corollary of Theorem 2.4.

Corollary 3.11. Let V ⊂ Gg
a be a positive dimensional irreducible affine

variety. If Z(V ) = V , then dim Stabφ(V ) > 0. More precisely, Stabφ(V ) is
the unique maximal algebraic φ-submodule whose translate lies in V .

Proof. Using the notation as in the proof of Theorem 2.4, the fact that
Z(V ) = V yields that Z̃ = ∆. In particular, ∆ ⊂ U . Because V is irre-
ducible, then ∆ is irreducible. Let U0 be an irreducible component of U
which contains ∆. Then the restriction of π2 : Y ′

n → V to U0 is a dominant
morphism. By abuse of notation, this restriction will also be called π2.

The fibers of π2 : U0 → V form an algebraic family of algebraic φ-
submodules (there is only one family because both V and U0 are irre-
ducible). Thus, they are translates of the same positive dimensional al-
gebraic φ-submodule Y , since there is no non-constant algebraic family of
algebraic φ-modules (see Corollary 3.9). Therefore for each y ∈ V , we have
y + Y ⊂ V . Hence Y ⊂ Stabφ(V ), which shows that Stabφ(V ) is positive
dimensional. Moreover, no larger algebraic φ-submodule Y ′ has a translate
which lies in V (because all fibers of U0 are translates of the same algebraic
φ-module). �

We are ready to prove Theorem 2.5.

Proof of Theorem 2.5. Clearly, there is only one algebraic φ-module of di-
mension 0. So, let Y be a maximal algebraic φ-module (of positive dimen-
sion) whose coset lies in V . Therefore, a coset (y +Y ) lies in Z(V ). Because
Z(V ) is a closed subset of V (as shown by Theorem 2.4), then (y + Y ) lies
in one of the finitely many irreducible components V1 of Z(V ). Because
V1 is irreducible and Z(V1) = V1 (because Z(Z(V )) = Z(V )), then Corol-
lary 3.11 shows that there exists a unique maximal algebraic φ-submodule
whose coset lies in V1. Therefore Y is one of the finitely many φ-stabilizers
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of the irreducible components of Z(V ), which concludes the proof of Theo-
rem 2.5. �
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[Den92] L. Denis, Géométrie diophantienne sur les modules de Drinfel′d, The arithmetic
of function fields (Columbus, OH, 1991), Ohio State Univ. Math. Res. Inst. Publ.,
vol. 2, de Gruyter, Berlin, 1992, pp. 285–302.

[Fal94] G. Faltings, The general case of S. Lang’s conjecture, Barsotti Symposium in
Algebraic Geometry (Abano Terme, 1991), Perspect. Math., no. 15, Academic
Press, San Diego, CA, 1994, pp. 175–182.

[Ghi05] D. Ghioca, The Mordell-Lang theorem for Drinfeld modules, Int. Math. Res. Not.
(2005), no. 53, 3273–3307.

[Ghi06] , Towards the full Mordell-Lang conjecture for Drinfeld modules, submit-
ted for publication, 6 pages, 2006.

[Gos96] D. Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)],
vol. 35, Springer-Verlag, Berlin, 1996.

[GT07] D. Ghioca and T. J. Tucker, A dynamical version of the Mordell-Lang conjecture,
submitted for publication, 14 pages, 2007.

[Har77] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.
[Kaw80] Y. Kawamata, On Bloch’s conjecture, Invent. Math. 57 (1980), no. 1, 97–100.

Dragos Ghioca, Department of Mathematics, McMaster University, 1280
Main Street West, Hamilton, Ontario, Canada L8S 4K1,

E-mail address: dghioca@math.mcmaster.ca


