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Abstract. We prove that if nonlinear complex polynomials of the
same degree have orbits with infinite intersection, then the poly-
nomials have a common iterate. We also prove a special case of a
conjectured dynamical analogue of the Mordell-Lang conjecture.

1. Introduction

One of the main topics in complex dynamics is the study of orbits
of polynomial maps: namely, for f ∈ C[X] and x0 ∈ C, the set
Of (x0) := {x0, f(x0), f(f(x0)), . . . }. We prove the following result
about intersections of orbits.

Theorem 1.1. Let x0, y0 ∈ C and f, g ∈ C[X] satisfy deg(f) =
deg(g) > 1. If Of (x0) ∩ Og(y0) is infinite, then f and g have a
common iterate.

The pairs of complex polynomials with a common iterate were
determined by Ritt [19]; in Proposition 6.3 we state Ritt’s result in
the above case deg(f) = deg(g).

Our motivation comes from arithmetic geometry. Fundamental
progress in this subject has been driven by the Mordell-Lang con-
jecture on intersections of subgroups and subvarieties of algebraic
groups. This conjecture was proved by Faltings [8] and Vojta [25]:
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Theorem 1.2. Let G be a semiabelian variety over C, let V be a
subvariety, and let Γ be a finitely generated subgroup of G(C). Then
V (C) ∩ Γ is a finite union of cosets of subgroups of Γ .

Recall that a semiabelian variety (over C) is an extension of an
abelian variety by a torus (Gm)k. Theorem 1.2 has the following con-
sequence [11]: if φ is an endomorphism of G of degree > 1, then
any orbit of φ has finite intersection with a subvariety V ⊂ G,
unless V contains a positive dimensional subvariety which is peri-
odic under φ. In the case G = Gk

m (which was first treated by
Laurent [14]), this implies that if a subvariety V ⊂ Gk

m contains
no positive dimensional subvariety which is periodic under the map
ψ : (X1, . . . , Xk) 7→ (Xe1

1 , . . . , X
ek
k ) (with ei ∈ Z and ei ≥ 2), then V

contains at most finitely many points of any ψ-orbit in Ak.
It is natural to ask whether a similar conclusion holds for any

polynomial action on Ak. The first two authors have proposed the
following conjecture:

Conjecture 1.3. Let f1, . . . , fk be polynomials in C[X], and let V be
a subvariety of Ak which contains no positive dimensional subvariety
that is periodic under the action of (f1, . . . , fk) on Ak. Then V (C)
has finite intersection with each orbit of (f1, . . . , fk) on Ak.

This conjecture fits into Zhang’s far-reaching system of dynamical
conjectures [27]. Zhang’s conjectures include dynamical analogues of
the Manin-Mumford and Bogomolov conjectures for abelian varieties
(now theorems of Raynaud [17,18], Ullmo [24], and Zhang [26]), as
well as a conjecture about the Zariski density of orbits of points
under fairly general maps from a projective variety to itself. The latter
conjecture is related to our Conjecture 1.3, though neither conjecture
contains the other.

A p-adic version of Conjecture 1.3 has been proved in certain
special cases [10]. Also, an analogue of Conjecture 1.3 has been proved
in positive characteristic, for the additive group under the action of
an additive polynomial (Drinfeld module) [9]. This result is a special
case of a more general conjecture proposed by Denis [7], in which
orbits are replaced with arbitrary submodules under the action of a
Drinfeld module.

The techniques of Laurent [14], Faltings [8], and Vojta [25] require
conditions that are not implied by the hypotheses of Conjecture 1.3.
Laurent’s proof uses the fact that the torsion points on a torus are
defined over a cyclotomic field; the fields of definition of preperiodic
points of general polynomials admit no such simple description. Vo-
jta’s proof (which generalizes that of Faltings) relies on the fact that
integral points on semiabelian varieties satisfy a strong diophantine
property, which does not hold for the points in Conjecture 1.3. Specif-
ically, if z is an S-integral point on Gk

m, then the coordinates of zn
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are S-units for all n, whereas the coordinates of points in an or-
bit of (f1, . . . , fk) need not be S-units. Finally, one crucial difference
between the polynomial maps of Conjecture 1.3 and the maps that
arise for semiabelian varieties and Drinfeld modules is that the maps
in Conjecture 1.3 are not étale in general.

In the present paper we use a new approach to prove the first
non-monomial cases of Conjecture 1.3, when the variety V is a line
in the affine plane. Our result is as follows, where we write fn for the
nth iterate of the polynomial f .

Theorem 1.4. Let K be a field of characteristic zero, let f, g ∈
K[X], and let x0, y0 ∈ K. If the set

{(fn(x0), gn(y0)) : n ∈ N}

has infinite intersection with a line L in A2 defined over K, then L
is periodic under the action of (f, g) on A2.

Using interpolation (for instance), one can construct examples in
which this intersection is finite but larger than any prescribed bound.

Along the lines of Theorem 1.4, we will prove the following gener-
alization of Theorem 1.1.

Theorem 1.5. Let K be a field of characteristic zero, let α, β, x0, y0 ∈
K with α 6= 0, and let f, g ∈ K[X] with deg(f) = deg(g) > 1. If in-
finitely many points of Of (x0)×Og(y0) lie on the line Y = αX + β,
then gk(αX + β) = αfk(X) + β for some positive integer k.

This result is neither stronger nor weaker than Theorem 1.4: only
Theorem 1.4 applies to polynomials of distinct degrees, but if deg(f) =
deg(g) > 1 then Theorem 1.5 strengthens Theorem 1.4 by replacing
O(f,g)((x0, y0)) with Of (x0)×Og(y0).

In the simple case that f(X) = αX and g(X) = βX with α, β ∈
K∗, Theorem 1.4 says that, for any u, v, w ∈ K that are not all zero,
if uαn + vβn = w for infinitely many n then α or β is a root of unity.
Already the result is nontrivial in this case: it is a consequence of
Siegel’s theorem on integral points of curves, or it could be proved
directly using the techniques from Siegel’s proof.

One consequence of Theorem 1.4 is that if f and g have distinct
degrees then O(f,g)((x0, y0)) has finite intersection with any line. We
do not know whether the analogous result is true for Of (x0)×Og(y0)
(for lines which are neither horizontal nor vertical, and for polynomi-
als f, g with no common iterate).

Our proofs of Theorems 1.4 and 1.5 involve arguments of several
flavors. For general K, we will prove there is a partially-defined map
(‘specialization’) from K to a number field K0 which allows us to
deduce the results for K as a consequence of the results for K0.
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Our proof of this fact relies on Ritt’s classification of polynomials
with a common iterate, as well as a dynamical analogue of a result
of Silverman (from [21]) on specialization of nontorsion elements of
abelian varieties over function fields.

We reduce the number field case of Theorem 1.4 to the corre-
sponding case of Theorem 1.5 as follows. First, by comparing Weil
heights of fn(x0) and gn(x0), we conclude that f and g must have
the same degree if O(f,g)((x0, y0)) contains infinitely many points on
some line. Next we use Siegel’s theorem on integral points to prove
Theorem 1.4 when f and g are linear.

The strategy of our proof of Theorem 1.5 for number fields K is as
follows, where we simplify the discussion by addressing the case that
the line is the diagonal and all polynomials and points are defined
over Z. Suppose there are integers x0, y0 and polynomials f, g ∈ Z[X]
such that Of (x0)×Og(y0) has infinite intersection with the diagonal
in A2. Then, for every m, there are infinitely many integer solutions
to the Diophantine equation fm(X) = gm(Y ). This is an instance
of a ‘separated variable’ Diophantine equation F (X) = G(Y ), of
which special cases have been studied for many years. The definitive
finiteness result for these equations was proved in 2000 by Bilu and
Tichy [5]; we will use their result (together with various new results
about polynomial decomposition) in order to obtain some information
about f and g from the fact that fm(X) = gm(Y ) has infinitely
many integer solutions. Our result will follow upon combining the
information deduced for each m.

Although the Bilu-Tichy result has not previously been applied
to arithmetic geometry or dynamics, inspection of its proof suggests
it fits naturally into both topics. Namely, the two key ingredients in
its proof are Siegel’s theorem on integral points on curves, and Ritt’s
results on functional decomposition of complex polynomials.

In more detail, Bilu and Tichy listed five explicit families of ‘stan-
dard pairs’ of polynomials (F1, G1) such that, if F (X) = G(Y ) has in-
finitely many integer solutions, then there is a standard pair (F1, G1)
for which F = E ◦ F1 ◦ a and G = E ◦ G1 ◦ b, where E, a, b ∈ Q[X]
and deg(a) = deg(b) = 1. When applying this result to specific poly-
nomials F and G, the main work involved is to determine the various
different ways that F and G can be written as compositions of lower-
degree polynomials, in order to determine the possibilities for E. In
practice, unless F and G are specifically constructed with decom-
posability in mind, it turns out that any randomly chosen F and
G are indecomposable, in which case it is quite simple to apply the
Bilu-Tichy criterion (after one has proven this indecomposability).
Based on this principle, dozens of recent papers have applied the
Bilu-Tichy criterion when F and G come from basically any class
of polynomials one can think of: Bernoulli polynomials, falling fac-
torials, power-sum polynomials, Taylor polynomials for ex, Jacobi
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polynomials, Laguerre polynomials, Hermite polynomials, Meixner
polynomials, Krawtchouk polynomials, etc. (cf., e.g., [3,4,23]). In ev-
ery case, the polynomials were either indecomposable or had just one
nontrivial decomposition.

Our situation is quite different, since we are applying Bilu-Tichy
to polynomials F = fm and G = gm, which by their very nature are
far from indecomposable. Moreover, we are doing this for arbitrary f
and g, which themselves might have various different decompositions.
Thus we are forced to prove new results about functional decompo-
sitions of polynomials.

The rest of this paper is organized as follows. We begin with some
preliminary results about Diophantine equations and functional de-
composition. In Section 3 we prove Theorem 1.1 in caseK is a number
field, modulo the proof of one technical proposition which we give in
Section 4. In Section 5 we prove Theorem 1.4 when either K is a num-
ber field or the polynomials are linear. Then in Section 6 we prove
Theorems 1.4 and 1.5. In the final section we state some conjectures
and directions for further research.

Notation. Throughout this paper, fn denotes the nth iterate of the
polynomial f . We also use αn and Xn for the nth power of a constant
or of X itself, but this should not cause confusion. We write N for
the set of positive integers. We write K for an algebraic closure of
the field K. By a ‘nonarchimedean place’ of a number field K, we
mean a maximal ideal of the ring OK of algebraic integers in K. If
S is a finite set of nonarchimedean places of a number field K, then
the ring of S-integers of K is the intersection of the localizations of
OK at all nonarchimedean places outside S.

2. Previous results

In this section we present some known results which will be used in
our proof.

2.1. Diophantine equations

We will make crucial use of a recent result of Bilu and Tichy [5,
Thm. 10.5] describing all F,G ∈ Z[X] for which F (X) = G(Y ) has
infinitely many integer solutions. In fact, they proved a version for
S-integers in an arbitrary number field. We state their result in the
special case deg(F ) = deg(G) arising in our proof; in this special case
the statement is somewhat simpler than in the general situation.

Theorem 2.1. Let K be a number field, S a finite set of nonar-
chimedean places of K, and F,G ∈ K[X] with deg(F ) = deg(G) > 1.
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Suppose F (X) = G(Y ) has infinitely many solutions in the ring of
S-integers of K. Then F = E ◦ F1 ◦ a and G = E ◦ G1 ◦ b, where
E, a, b ∈ K[X] with deg(a) = deg(b) = 1, and (F1, G1) or (G1, F1) is
one of the following pairs:

1. (X,X);
2. (X2, c ◦X2) with c ∈ K[X] linear;
3. (D2(X,α)/α,D2(X,β)/β) with α, β ∈ K∗;
4. (Dn(X,α),−Dn(X cos(π/n), α)) with α ∈ K,

where in the fourth case n ∈ N satisfies cos(2π/n) ∈ K.

Here Dn(X,Y ) is the unique polynomial in Z[X,Y ] such that Dn(U+
V,UV ) = Un+V n. Note that, for α ∈ K, the polynomial Dn(X,α) ∈
K[X] is monic of degree n. It follows at once from the defining
functional equation that Dn(X, 0) = Xn and, for α ∈ C, we have
αnDn(X, 1) = Dn(αX,α2).

We will not need arithmetic information about F1 and G1, but
instead only need their shape up to composition with linears over an
extension of K.

Corollary 2.2. Let K,S, F,G satisfy the hypotheses of Theorem 2.1.
Then F = Ê ◦H ◦ â and G = Ê ◦ ĉ ◦H ◦ b̂ for some Ê ∈ K[X], some
linear â, b̂, ĉ ∈ K[X], and some H = Dn(X, α̂) with α̂ ∈ {0, 1} and
n ∈ N satisfying cos(2π/n) ∈ K. In particular, for fixed K, there are
only finitely many possibilities for H (even if we vary S, F,G).

Proof. We consider the four possibilities for (F1, G1) in Theorem 2.1.
It suffices to show that in each case there is a polynomial H of the
desired form such that both F1 and G1 are gotten from H by com-
posing on both sides with linears over K. This is clear in the first
two cases (since Dn(X, 0) = Xn). For the last two cases, note that if
γ 6= 0 then Dn(X, γ2) = γnDn(X/γ, 1). Thus, in the third case, F1

and G1 are gotten from D2(X, 1) by composing with linears. And in
the fourth case, F1 and G1 are gotten from Dn(X, α̂) by composing
with linears, where α̂ = 1 if α 6= 0 (and α̂ = 0 otherwise).

Finally, if cos(2π/n) ∈ K then [K : Q] ≥ [Q(cos(2π/n)) : Q]; the
latter degree equals φ(n)/2 if n > 2. Since only finitely many n satisfy
φ(n) ≤ 2[K : Q], there are only finitely many possibilities for H. ut

2.2. Polynomial decomposition

Our application of Theorem 2.1 relies on results about polynomial
decomposition. The fundamental results in this topic were proved
by Ritt in the 1920’s [20]; for more recent developments, see [16,
22]. Specifically, we will use the following simple but surprising result
which shows a type of ‘rigidity’ of polynomial decomposition.
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Lemma 2.3. Let K be a field of characteristic zero. If A,B,C,D ∈
K[X] \K satisfy A ◦B = C ◦D and deg(B) = deg(D), then there is
a linear ` ∈ K[X] such that A = C ◦ `−1 and B = ` ◦D.

Proof. Write F = A ◦B (= C ◦D). Pick a linear v ∈ K[X] such that
B̂ := v ◦ B is monic and has no constant term. Then F = Â ◦ B̂,
where Â = A ◦ v−1. We will show that there are unique Ã, B̃ ∈ K[X]
such that F = Ã ◦ B̃ and deg(B̃) = deg(B) and B̃ is monic with no
constant term. Thus A = Ã◦v and B = v−1 ◦ B̃. Since we could have
done the same thing with C and D in place of A and B, the result
follows.

Let m be the degree of B, and say the leading term of F is αXnm;
then the leading term of Ã is αXn. Now consider the identity F =
Ã◦ B̃ and equate terms of degrees nm−1, nm−2, . . . , nm−m+1 to
uniquely determine, in order, the terms of B̃ of degrees m − 1,m −
2, . . . , 1. Then consider terms of F of degrees nm−m,nm−2m, . . . , 0
to determine the terms of Ã of degrees n− 1, n− 2, . . . , 0. ut

Remark 2.4. This lemma was first proved by Ritt [20] in the case
K = C (using Riemann surface techniques); the proof above is due
to Levi [15].

2.3. Linear relations of polynomials

The following lemma shows when a polynomial can be gotten from
itself by composing with linears.

Lemma 2.5. Let K be a field of characteristic zero. If F ∈ K[X] has
degree d > 1, and a, b ∈ K[X] are linears such that a ◦ F = F ◦ b,
then there exist α, β ∈ K, integers r, s ≥ 0, an element γ ∈ K∗ with
γs = 1, and a polynomial F̂ ∈ XrK[Xs] such that b = β + γ(X − β),
a = −α + γr(X + α), and F = −α + F̂ (X − β). Specifically, if
the coefficients of Xd and Xd−1 in F are θd and θd−1, we can take
β = −θd−1/(dθd) and α = −F (β).

Proof. Putting β = −θd−1/(dθd) and α = −F (β), we see that F̂ :=
α+F (X+β) has no terms of degree d−1 or 0. We rewrite a◦F = F ◦b
as â ◦ F̂ = F̂ ◦ b̂, where â := α+ a(X − α) and b̂ := −β + b(X + β).
Since F̂ has no term of degree d − 1, also â ◦ F̂ (and hence F̂ ◦ b̂)
has no such term, so b̂ cannot have a term of degree 0. Then F̂ ◦ b̂
has no term of degree 0, so also â has no term of degree 0. Writing
â = δX and b̂ = γX, we have δF̂ (X) = F̂ (γX). Writing F̂ =

∑
θ̂iX

i,
it follows that δθ̂i = θ̂iγ

i, so δ = γi for every i such that θ̂i 6= 0. If F̂
has terms of distinct degrees i and j, then γi−j = 1; letting s be the
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greatest common divisor of the set of differences between degrees of
two terms of F̂ , it follows that γs = 1, and further F̂ ∈ XrK[Xs] for
some r ≥ 0 such that δ = γr. If F̂ (X) = θ̂dX

d then we take s = 0
and r = d, so again δ = γr and γs = 1 and F̂ ∈ XrK[Xs]. The result
follows. ut

Remark 2.6. The first reference we know for this result is [1] (for
K = C).

3. The number field case

In this section we prove the number field version of Theorem 1.1. Our
proof relies on Proposition 3.3, which will be proved in the next sec-
tion. We begin with two lemmas applying the results of the previous
section to the present context.

Lemma 3.1. Let K be a field of characteristic zero. Suppose F,H,E, Ẽ ∈
K[X] \K and linear a, b, c, ã, b̃, c̃ ∈ K[X] satisfy

F = E ◦H ◦ a
G = E ◦ c ◦H ◦ b
F t = Ẽ ◦H ◦ ã
Gt = Ẽ ◦ c̃ ◦H ◦ b̃

for some integer t > 1. Then there is a linear e ∈ K[X] such that
F t−1 = Gt−1 ◦ e.

Proof. We have

F t−1 ◦ E ◦H ◦ a = F t = Ẽ ◦H ◦ ã and

Gt−1 ◦ E ◦ c ◦H ◦ b = Gt = Ẽ ◦ c̃ ◦H ◦ b̃.

By Lemma 2.3, there are linears `1, `2 ∈ K[X] such that

H ◦ a = `1 ◦H ◦ ã and

c ◦H ◦ b = `2 ◦ c̃ ◦H ◦ b̃.

Thus
F t−1 ◦ E ◦ `1 = Ẽ = Gt−1 ◦ E ◦ `2.

Again using Lemma 2.3, there is therefore a linear e ∈ K[X] such
that

F t−1 = Gt−1 ◦ e,
as desired. ut
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Lemma 3.2. Let K be a number field, S a finite set of nonarchimedean
places of K, and f, g ∈ K[X] with deg(f) = deg(g) > 1. Suppose that,
for every k ∈ N, the equation fk(X) = gk(Y ) has infinitely many so-
lutions in the ring of S-integers of K. Then there exists r ∈ N such
that, for both n = 1 and infinitely many other values n ∈ N, there is
a linear `n ∈ K[X] such that f rn = grn ◦ `n.

Proof. First we show that there exists r ∈ N such that f r = gr ◦ `
for some linear ` ∈ K[X]. By Corollary 2.2, for each k we have f2k

=
Ek ◦ Hk ◦ ak and g2k

= Ek ◦ ck ◦ Hk ◦ bk with Ek ∈ K[X], linear
ak, bk, ck ∈ K[X], and some Hk ∈ K[X] which comes from a finite
set of polynomials. Thus, Hk = Hs for some k and s with k < s.
Applying Lemma 3.1 with F = f2k

and G = g2k
and t = 2s−k, it

follows that there is a linear ` ∈ K[X] such that F t−1 = Gt−1 ◦ `,
whence f r = gr ◦ ` for r = 2s − 2k.

Suppose there are only finitely many n ∈ N for which there is a
linear `n ∈ K[X] with f rn = grn ◦ `n. Let N be an integer exceeding
each of these finitely many integers n. We get a contradiction by
applying the previous paragraph with (f rN , grN ) in place of (f, g).
ut

In the next section we will prove the following proposition.

Proposition 3.3. Let K be a field of characteristic zero, and let
F, ` ∈ K[X] satisfy deg(F ) = d > 1 = deg(`). Suppose that, for
infinitely many n > 0, there is a linear `n ∈ K[X] such that Fn =
(F ◦ `)n ◦ `n. Then either

1. F k = (F ◦ `)k for some k ∈ N; or
2. F = v−1 ◦ εXd ◦ v and ` = v−1 ◦ δX ◦ v for some linear v ∈ K[X]

and some ε, δ ∈ K∗.

We now show that this result implies the number field version of
Theorem 1.1. Specifically, we prove the following.

Theorem 3.4. Let K be a number field, let x0, y0 ∈ K, and let f, g ∈
K[X] satisfy deg(f) = deg(g) > 1. If Of (x0)∩Og(y0) is infinite, then
fk = gk for some k ∈ N.

Proof. Let S be a finite set of nonarchimedean places of K such that
the ring of S-integers OS contains x0, y0, and every coefficient of f
and g. Then OS contains every fn(x0) and gn(y0) with n ∈ N.

Our hypotheses imply that x0 is not preperiodic for f , and y0

is not preperiodic for g. Moreover, for every k ∈ N, the equation
fk(x) = gk(y) has infinitely many solutions (x, y) ∈ OS ×OS .

By Lemma 3.2, there is some r ∈ N such that, for both n = 1 and
infinitely many n ∈ N, we have f rn = grn ◦ `n with `n ∈ K[X] linear.
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Put F = f r and ` = `−1
1 ; then gr = F ◦ `, and for infinitely many n

we have Fn = (F ◦ `)n ◦ `n. If F and F ◦ ` have a common iterate,
then so do f and g. By Proposition 3.3, it remains only to consider
the case that F = v−1 ◦ εXd ◦v and ` = v−1 ◦ δX ◦v, where v ∈ K[X]
is linear and ε, δ ∈ K∗. Note that d > 1.

By hypothesis, the set M of pairs (m,n) ∈ N × N satisfying
fm(x0) = gn(y0) is infinite, and (from non-preperiodicity) its pro-
jections onto each coordinate are injective. Thus, for some s1, s2 ∈ N,
the set M contains infinitely many pairs (rm + s1, rn + s2) with
m,n ∈ N; since the projections are injective, M contains pairs of this
form in which min(m,n) is arbitrarily large. For any m,n ∈ N such
that (rm+ s1, rn+ s2) ∈ M, we have Fm(x1) = (F ◦ `)n(y1), where
x1 := fs1(x0) and y1 := gs2(y0). Thus

v−1(ε(d
m−1)/(d−1)v(x1)dm

) = Fm(x1)
= (F ◦ `)n(y1)

= v−1((εδd)(d
n−1)/(d−1)v(y1)dn

),

so
v(x1)dm

ε(d
m−dn)/(d−1) = δd(dn−1)/(d−1)v(y1)dn

. (3.1)

We cannot have v(x1) = 0, since otherwise x1 = fs1(x0) is a fixed
point of F = f r, contrary to our hypotheses. Likewise v(y1) 6= 0. Now
let ε1, δ1 ∈ K satisfy εd−1

1 = ε and δd−1
1 = δd, so (3.1) implies

δ1 = v(x1)−dm · εdn−dm

1 · δdn

1 · v(y1)dn
. (3.2)

Since (3.2) holds for pairs (m,n) with min(m,n) arbitrarily large,
there are infinitely many k ∈ N for which δ1 is a dk-th power in
the number field K0 := Q(v(x1), v(y1), ε1, δ1). Letting O be the ring
of algebraic integers in K0, it follows that the fractional ideal of O
generated by δ1 is a dk-th power for infinitely many k; now unique
factorization of fractional ideals implies δ1 is in the unit group U of
O. Moreover, δ1 is a dk-th power in U for infinitely many k; since
U is a finitely generated abelian group, δ1 must be a root of unity
whose order N is coprime to d. Thus N | (dt − 1) for some t ∈ N.
Now (F ◦ `)t = v−1 ◦ (εδd)(d

t−1)/(d−1)Xdt ◦ v, and since δd = δd−1
1 and

δdt−1
1 = 1, it follows that (F ◦ `)t = F t, as desired. ut

4. Proof of Proposition 3.3

In this section we complete the proof of Theorem 3.4, by proving
Proposition 3.3. We consider two cases, depending on whether F is
gotten from a monomial by composing with linears on both sides. Our
strategy is to show in both cases that there are only finitely many
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linears ˆ̀∈ K[X] for which there exists n such that (F ◦ `)n ◦ ˆ̀= Fn;
after this, we pick two values n < N having the same ˆ̀, and deduce
that FN−n = (F ◦ `)N−n.

Lemma 4.1. Let K be a field of characteristic zero, and suppose F ∈
K[X] has the property that u ◦F ◦ v has at least two monomial terms
whenever u, v ∈ K[X] are linear. Then the equation F ◦ b = a◦F has
only finitely many solutions in linear polynomials a, b ∈ K[X].

Proof of Lemma 4.1. Our hypothesis implies deg(F ) > 1. Pick α, β ∈
K as in Lemma 2.5, and put F̂ := α + F (X + β); note that these
choices depend only on F . Then F̂ ∈ XrK[Xs] for some integers
r, s ≥ 0. Our hypothesis implies s 6= 0; now choose s to be as large as
possible. By Lemma 2.5, if F ◦b = a◦F with a, b ∈ K[X] linear, then
there is an sth root of unity γ ∈ K such that b = β + γ(X − β) and
a = −α+ γr(X + α). Since there are only finitely many possibilities
for γ, there are only finitely many possibilities for a and b. ut

Remark 4.2. Our proof shows that the number of solutions is less
than deg(F ) (in fact: the number of solutions is at most the size of
the largest group of roots of unity in K of order less than deg(F )).

Lemma 4.3. Let K be a field of characteristic zero, let u, v, ` ∈ K[X]
be linear, and let F = u ◦ Xd ◦ v where d > 1. The following are
equivalent:

1. The equation

F ◦ ` ◦ F ◦ b = a ◦ F ◦ F (4.1)

has infinitely many solutions in linears a, b ∈ K[X].
2. F = v−1 ◦ εXd ◦ v and ` = v−1 ◦ δX ◦ v for some ε, δ ∈ K∗.

Proof of Lemma 4.3. Pick any solution (a, b) to (4.1). By Lemma 2.3,
there is a linear c ∈ K[X] such that

` ◦ F ◦ b = c ◦ F,

which implies

F ◦ c = a ◦ F.

For any linears e1, e2 ∈ K[X] such that e1 ◦ F ◦ e2 = F , we have

Xd = (u−1 ◦ e1 ◦ u) ◦Xd ◦ (v ◦ e2 ◦ v−1),
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so v ◦ e2 ◦ v−1 = γX and u−1 ◦ e1 ◦ u = X/γd for some γ ∈ K∗. Thus,
there exist γ1, γ2 ∈ K∗ such that

b = v−1 ◦ γ1X ◦ v

c−1 ◦ ` = u ◦ X
γd

1

◦ u−1

c = v−1 ◦ γ2X ◦ v

a−1 = u ◦ X
γd

2

◦ u−1.

We can eliminate c from the second and third equations:

u ◦ γd
1X ◦ u−1 = `−1 ◦ c = `−1 ◦ v−1 ◦ γ2X ◦ v.

Thus,
γd

1X = (u−1 ◦ `−1 ◦ v−1) ◦ γ2X ◦ (v ◦ u).

Write α := (v ◦ u)(0). Since γd
1X fixes 0, the linear polynomial h :=

u−1 ◦ `−1 ◦v−1 must map γ2α to 0. Since α and h do not depend on a
and b, it follows that if α 6= 0 then γ2 (and thus γd

1) does not depend
on a and b, so there are only finitely many possibilities for a and b.
Now assume α = 0, so 0 is fixed by both v ◦ u and u−1 ◦ `−1 ◦ v−1,
whence these two linears have the form εX and δ̂X with ε, δ̂ ∈ K∗.
Then u = v−1 ◦ εX and `−1 = v−1 ◦ εδ̂X ◦ v, so F = v−1 ◦ εXd ◦ v
and (with δ = 1/(εδ̂)) we have ` = v−1 ◦ δX ◦ v.

It remains only to show that, when F = v−1 ◦ εXd ◦ v and ` =
v−1 ◦ δx ◦ v, the number of solutions of (4.1) is infinite. To this end,
pick any ι ∈ K∗, and note that b = v−1◦ιX◦v and a = v−1◦δdιd

2
X◦v

satisfy (4.1). ut

Remark 4.4. This proof shows that, when the number of solutions to
(4.1) is finite, this number is at most d (in fact: at most the number
of dth roots of unity in K).

Proof of Proposition 3.3. We have

(F ◦ `)n ◦ `n = Fn (4.2)

for every n in some infinite subset M of N. For n ∈ M, we apply
Lemma 2.3 to (4.2) with B = F ◦ ` ◦ `n and D = F , to conclude that
there is a linear un ∈ K[X] such that

F ◦ ` ◦ `n = un ◦ F.

By Lemma 4.1, if F is not gotten from a monomial by composing
with linears on both sides, then {`n : n ∈M} is finite.
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Next, for n ∈ M with n > 1, apply Lemma 2.3 to (4.2) with
B = (F ◦ `)2 ◦ `n and D = F 2, to conclude that there is a linear
vn ∈ K[X] such that

(F ◦ `)2 ◦ `n = vn ◦ F 2.

By Lemma 4.3, if F is gotten from a monomial by composing with
linears on both sides, then either {`n : n ∈M} is finite or conclusion
(2) of Proposition 3.3 holds.

Thus, whenever (2) of Proposition 3.3 does not hold, the set {`n :
n ∈ M} is finite, so there exist n,N ∈ M such that `n = `N and
n < N . Then

FN−n ◦ Fn = FN

= (F ◦ `)N ◦ `n
= (F ◦ `)N−n ◦ (F ◦ `)n ◦ `n
= (F ◦ `)N−n ◦ Fn,

so FN−n = (F ◦ `)N−n, as desired. ut

5. Some reductions

In this section we show that it suffices to prove Theorems 1.4 and 1.5
in case K is a finitely generated extension of Q. Moreover, for any
such K, it suffices to prove these results in case deg(f) = deg(g) > 1
and the line is the diagonal, X = Y .

We begin with the first reduction. For fixed K, f, g, x0, y0, L, only
finitely many elements ofK occur as coefficients of f or g, as values x0

or y0, or in the defining equation for L. Let K0 be the extension of Q
generated by these finitely many elements. Then Theorem 1.4 holds
for (K, f, g, x0, y0, L) if it holds for (K0, f, g, x0, y0, L), and likewise
for Theorem 1.5.

We next show that we need only consider the case that the line is
the diagonal.

Lemma 5.1. If Theorem 1.4 is true for the line X = Y , then it is
true for every line.

Proof. If L has the form X = α then the theorem is obvious: if there
are infinitely many n such that fn(x0) = α, then α is periodic point
for f , so X = α is a periodic line for (f, g). Likewise the result is
clear if L has the form Y = β, so we may assume L is X = `(Y )
with ` ∈ K[Y ] of degree one. Suppose {(fn(x0), gn(y0)) : n ∈ N}
has infinite intersection with L. If fn(x0) = `(gn(y0)) then fn(x0) =
(`◦g ◦ `−1)n(`(y0)). Thus, assuming Theorem 1.4 for the line X = Y ,
we conclude that X = Y is periodic under the action of (f, `◦g◦`−1);
it follows that X = `(Y ) is periodic under the (f, g)-action. ut
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The analogous result for Theorem 1.5 follows from a similar argu-
ment.

Lemma 5.2. If Theorem 1.5 is true in case α = 1 and β = 0, then
it is true for arbitrary α and β.

We now prove Theorem 1.4 in case f and g are linear polynomials.
As noted in the introduction, Theorem 1.5 fails in this case, so our
proof must necessarily distinguish between the equations fn(x0) =
gn(y0) and fm(x0) = gn(y0).

Proposition 5.3. Theorem 1.4 holds if deg(f) = deg(g) = 1 and L
is the diagonal.

Proof. Suppose the hypotheses of Theorem 1.4 hold. As above, we
may assume K ⊆ C. By replacing x0 and y0 with fn0(x0) and gn0(y0)
(for some n0 ∈ N), we may assume x0 = y0. Let f(X) = αX + β and
g(X) = γX + δ. Note that α cannot be a root of unity different
from 1, for otherwise some iterate of f would be the identity map,
contradicting infinitude of {fn(x0) : n ∈ N}. Likewise, γ is not a root
of unity different from 1. We consider two cases:

Case 1. Neither α nor γ equals 1.
For n ∈ N, we have fn(x0) = αnx̂0 − β

α−1 and gn(x0) = γnŷ0 −
δ

γ−1 , where x̂0 := x0 + β
α−1 and ŷ0 := x0 + δ

γ−1 . Since x0 is not
preperiodic for f or g, both x̂0 and ŷ0 are nonzero. By the hypothesis
of Theorem 1.4, there are infinitely many n ∈ N such that αnx̂0 −
γnŷ0 = x̂0−ŷ0. If x̂0 6= ŷ0, we may divide through and obtain infinitely
many n such that

âαn + b̂γn = 1

for some constants â and b̂. As noted by Lang [12, p. 28], this is
impossible (as can be seen by passing to a curve âαit3 + b̂γiu3 = 1,
with 0 ≤ i ≤ 2, and using Siegel’s theorem on integral points). Hence,
we must have x̂0 = ŷ0, so there are infinitely many n ∈ N for which
αn = γn, and fn = gn for each such n.

Case 2. Either α or γ equals 1.
Without loss of generality, we may assume α = 1. If also γ = 1,

then since fn(x0) = gn(x0) for some n ∈ N, we must have β = δ, so
f = g as desired. Now assume γ 6= 1. Then gn(x0) = γn

(
x0 + δ

γ−1

)
−

δ
γ−1 . Since {gn(x0) : n ∈ N} is infinite, we must have x0 6= −δ/(γ−1).
By hypothesis, there are infinitely many n ∈ N such that

x0 + nβ = γn

(
x0 +

δ

γ − 1

)
− δ

γ − 1
. (5.1)

This is not possible if |γ| > 1, since then the absolute value of the
right side exceeds that of the left side for sufficiently large n. Thus
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|γ| ≤ 1, so the right side is bounded independently of n, whence also
x0 + nβ is bounded. This implies β = 0, so f is the identity map,
contradicting the hypothesis that {fn(x0) : n ∈ N} is infinite. ut
Remark 5.4. We note that the argument used in Case 2 above does
not generalize to the setting of Theorem 1.1, since we used in a crucial
way that we have only one variable n in (5.1), so the orders of growth
of the two sides of (5.1) are different. In fact, the conclusion of The-
orem 1.1 is not generally true if f is a monic linear polynomial. For
example, let f(X) = X+1 and let g(X) be any nonconstant polyno-
mial with positive integer coefficients. Then for any positive integers
x0 and y0 such that g(y0) > y0, the intersection Of (x0) ∩ Og(y0) is
infinite, since Of (x0) contains every sufficiently large integer. On the
other hand, the argument from Case 1 generalizes at once to show
that the conclusion of Theorem 1.1 holds when f and g are non-monic
linear polynomials.

The remainder of this section is devoted to proving Theorem 1.4
in case K is a number field and deg(f) 6= deg(g). We recall some stan-
dard terminology: a global field is either a number field or a function
field of transcendence degree 1 over another field. Any global field E
comes equipped with a set ME of normalized absolute values || · ||v
which satisfy a product formula1:∏

v∈ME

||x||v = 1 for every x ∈ E∗.

If E is a global field, the logarithmic Weil height of x ∈ E is
defined as

h(x) =
1

[E(x) : E]
·

∑
v∈ME

∑
w|v

w∈ME(x)

log max{||x||w, 1}.

We will use the following easy consequence of these definitions (cf.
[13, p. 77]).

Lemma 5.5. Let E be a global field, and let ` ∈ E[X] be a linear
polynomial. Then there exists c` > 0 such that |h(`(x)) − h(x)| ≤ c`
for all x ∈ E.

Definition 5.6. Let E be a global field, let f ∈ E[X] with deg(f) > 1,
and let z ∈ E. The canonical height ĥf (z) of z with respect to the
morphism f : P1 −→ P1 is

ĥf (z) = lim
k→∞

h(fk(z))
deg(f)k

.

1 A ‘normalized absolute value’ is a power of an absolute value, but might not
be an absolute value itself since it might fail the triangle inequality.
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This definition is due to Call and Silverman, who proved the ex-
istence of the above limit in [6, Thm. 1.1] by using boundedness of
|h(f(x))−(deg f)h(x)| and a telescoping series argument due to Tate.
We will use the following properties of the canonical height.
Lemma 5.7. Let E be a global field, let f ∈ E[X] be a polynomial of
degree greater than 1, and let z ∈ E. Then
(a) for each k ∈ N, we have ĥf (fk(z)) = deg(f)k · ĥf (z);
(b) |h(z)− ĥf (z)| is uniformly bounded independently of z ∈ E;
(c) if E is a number field, z is preperiodic if and only if ĥf (z) = 0.

Proof. Part (a) is clear; for (b) and (c) see [6, Thm. 1.1 and Cor.
1.1.1]. ut
Part (c) of Lemma 5.7 is not true if E is a function field with constant
field E0, since ĥf (z) = 0 whenever z ∈ E0 and f ∈ E0[X]. But these
are essentially the only counterexamples in the function field case (cf.
Lemma 6.7).

Lemma 5.8. Let K be a number field, let f, g ∈ K[X] and let x0, y0 ∈
K. If O(f,g)((x0, y0)) has infinitely many points on the diagonal, then
deg(f) = deg(g) > 0.

Proof. The hypothesis implies x0 (resp., y0) is not preperiodic for f
(resp., g). Thus f and g are nonconstant. Suppose deg(f) > deg(g).

Since ĥf (x0) > 0 (by Lemma 5.7), there exists δ > 0 such that
every sufficiently large k satisfies

h(fk(x0)) > (deg f)kδ.

If deg g = 1, by Lemma 5.5 there exists cg > 0 such that

h(gk(y0)) ≤ kcg + h(y0)

for every k, and for sufficiently large k we have (deg f)kδ > kcg +
h(y0). If deg g > 1, there exists ε > 0 such that every k satisfies

h(gk(y0)) < (deg g)kε,

and since deg f > deg g we have (deg f)kδ > (deg g)kε for k suffi-
ciently large. Hence, in either case, for k sufficiently large we have
h(fk(x0)) > h(gk(y0)) and thus fk(x0) 6= gk(y0). ut
Remark 5.9. This proof does not work for function fields, since it
relies on Lemma 5.7 (c). However, one can use a different argument
to show that Lemma 5.8 is valid for any fieldK (of any characteristic).
In characteristic zero, this is a consequence of Theorem 1.4. One can
prove this for general K using arguments similar to those in this
paper; the key intermediate result is that, for any f ∈ K[X] with
deg(f) > 1, and any z ∈ K non-preperiodic for f , there is an absolute
value v of K such that limn→∞ |fn(z)|v = +∞.
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6. The function field case

In this section we prove Theorems 1.4 and 1.5. Our strategy is to
‘specialize’ every transcendental generator of K to an element of a
number field, and then deduce these results from the number field
version proved previously (Theorem 3.4). We begin by proving that
Theorem 1.4 follows from the existence of a suitable specialization
homomorphism.

Proof of Theorem 1.4, assuming existence of a suitable specialization.
From the results of the previous section, it suffices to prove The-

orem 1.4 in case K is a finitely generated extension of Q, the line
L is the diagonal, and deg(f) ≥ 2. We will prove Theorem 1.4 by
induction on the transcendence degree of K/Q. The base case is The-
orem 3.4 and Lemma 5.8. For the inductive step, let E be a subfield
of K such that tr.deg(K/E) = 1 and E/Q is finitely generated. Sup-
pose in addition that the diagonal is not periodic under the (f, g)
action (i.e., there is no k ∈ N for which fk = gk), and that the set
{(fn(x0), gn(y0)) : n ∈ N} has infinite intersection with the diagonal.
Assume there is a subring R of K, a finite extension E′ of E, and a
homomorphism α : R→ E′, such that

1. R contains x0, y0, and every coefficient of f and g, but the leading
coefficients of f and g have nonzero image under α;

2. fk
α 6= gk

α for each k ∈ N;
3. x0,α is not preperiodic for fα.

(Here fα, gα, and x0,α denote the images of f , g, and x0, respectively,
under the homomorphism α.)

Properties (1) and (3) show that {(fn
α (x0,α), gn

α(y0,α)) : n ∈ N}
has infinite intersection with the diagonal. The inductive hypothesis
implies fk

α = gk
α for some k ∈ N, which contradicts property (2).

Theorem 1.4 follows. ut

The proof of Theorem 1.5 is nearly identical to the proof of The-
orem 1.4, the only difference being that we replace the set

{(fn(x0), gn(y0)) : n ∈ N}

with Of (x0)×Og(y0).
To explain why there exists an α as in the proof of Theorem 1.4,

we recall the usual setup for specialization. By replacing E with a
finite extension of E, we may assume E is algebraically closed in K.
Let C be a smooth projective curve over E whose function field is K,
and let π : P1

C → C be the natural fibration. Any z ∈ P1
K gives rise to

a section Z : C → P1 of π, and for α ∈ C(E), we let zα := Z(α), and
let E(α) be the residue field of K at the valuation corresponding to α.
In the notation of the previous paragraph, R is the valuation ring for
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this valuation, E′ is E(α), and the homomorphism R→ E′ is z 7→ zα.
The polynomial f ∈ K[X] extends to a rational map (of E-varieties)
from P1

C to itself, whose generic fiber is f , and whose fiber above any
α ∈ C is fα. Note that fα is a morphism of degree deg(f) from the
fiber (P1

C)α = P1
E(α) to itself whenever the coefficients of f have no

poles or zeros at α; hence it is a morphism on P1
E(α) of degree deg(f)

at all but finitely many α (we call these α places of good reduction
for f).

Intuitively, we will show that most choices of α satisfy conditions
(2) and (3) above (obviously all but finitely many α satisfy (1)).

We will first prove the following result about specializations of
polynomials.

Proposition 6.1. For each r > 0, there are at most finitely many
α ∈ C(E) such that [E(α) : E] ≤ r and fk

α = gk
α for some k ∈ N.

Next, letting hC be the logarithmic Weil height on C associated to
a fixed degree-one ample divisor, we will prove the following dynam-
ical analogue of Silverman’s specialization result for abelian varieties
[21, Thm. C].

Proposition 6.2. There exists c > 0 such that, for α ∈ C(E) with
hC(α) > c, the point x0,α is not preperiodic for fα.

We now show that these two results imply the existence of α
satisfying (1)–(3), which in turn implies Theorems 1.4 and 1.5. Let
φ : C → P1

E be any nonconstant rational function, and let r = deg(φ).
By [13, Prop. 4.1.7], there are positive constants c1 and c2 such that
for all P ∈ P1(E), the preimage α = φ−1(P ) satisfies hC(α) ≥
c1h(P ) + c2. Since there are infinitely many P ∈ P1(E) such that
h(P ) > (c − c2)/c1, we thus obtain infinitely many α ∈ C(E) such
that hC(α) > c and [E(α) : E] ≤ r. Hence, Propositions 6.1 and 6.2
imply there are infinitely many α satisfying (2) and (3), and all but
finitely many of these satisfy (1) as well.

6.1. Polynomials with a common iterate

In this section we prove Proposition 6.1.
Our proof relies on a classical result of Ritt [19, p. 356] describing

the pairs of complex polynomials having a common iterate, i.e., Fn =
Gm for some n,m ∈ N. We only need this for n = m, in which case
Ritt’s result is as follows.

Proposition 6.3. Let F,G ∈ C[X] with d := deg(F ) > 1. For n ∈
N, we have Fn = Gn if and only if F (x) = −β + γH(x + β) and
G(x) = −β + H(x + β) for some γ ∈ C∗, β ∈ C and H ∈ xrC[xs]
(with r, s ≥ 0) such that γs = 1 and γ(dn−1)/(d−1) = 1.
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Corollary 6.4. Let K be a field of characteristic zero, and let NK be
the number of roots of unity in K. Let F,G ∈ K[X] satisfy deg(F ) =
d > 1 and F k = Gk for some k ∈ N. Then Fn = Gn for some n with
1 ≤ n ≤ NK .

Proof of Corollary 6.4. Let K0 be the subfield of K generated by the
coefficients of F and G. Then K0 is a finitely generated extension of
Q, so K0 is isomorphic to a subfield of C. After identifying K0 with
its image in C, Proposition 6.3 implies that F = −β+γH(x+β) and
G = −β +H(x+ β) for some γ ∈ C∗, β ∈ C, and H ∈ xrC[xs] (with
r, s ≥ 0) such that γs = 1. Moreover, for n ∈ N we have Fn = Gn

if and only if γ(dn−1)/(d−1) = 1. Since γ is the ratio of the leading
coefficients of F and G, we see that γ ∈ K∗

0 . Since γ(dk−1)/(d−1) = 1,
the multiplicative order m of γ is coprime to d. Note that m ≤ NK .

Let p be a prime factor of m, and let pt be the maximal power of
p dividing m. If p - (d − 1) then let qp be the order of d in (Z/pt)∗;
otherwise, put qp = pt. Then n :=

∏
qp satisfies n ≤ m and m |

(dn − 1)/(d− 1), whence n ≤ NK and Fn = Gn. ut

Proof of Proposition 6.1. Pick a point α on C such that [E(α) : E] ≤ r
and fk

α = gk
α for some k ∈ N. Let Nα be the number of roots of unity

in E(α). By Corollary 6.4, the least n ∈ N with fn
α = gn

α satisfies
n ≤ Nα. Now, Nα is bounded in terms of the degree [E(α) ∩Q : Q],
which is at most r · [E ∩ Q : Q]; since E is finitely generated, the
latter number is finite, so there is a finite bound on n which depends
only on E and r (and not on α).

For any fixed n ∈ N, we have fn 6= gn, so deg(fn
α−gn

α) = deg(fn−
gn) ≥ 0 for all but finitely many α ∈ C. The result follows. ut

6.2. Specialization of non-preperiodic points

In this section we prove Proposition 6.2.
First note that E is a global field. The key ingredient in our proof is

the following result of Call and Silverman [6, Thm. 4.1], which relates
hC to the canonical heights ĥf : K → R≥0 and ĥfα : E → R≥0 of f
and fα (cf. Definition 5.6).

Lemma 6.5. For each z ∈ K we have

lim
hC(α)→∞

ĥfα(zα)
hC(α)

= ĥf (z). (6.1)

We will also use a result about canonical heights of non-preperiodic
points for polynomials that are not isotrivial.
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Definition 6.6. We say a polynomial f ∈ K[X] is isotrivial if there
exists a finite extension K ′ of K and a linear ` ∈ K ′[X] such that
`−1 ◦ f ◦ ` ∈ E[X].

Benedetto proved that a non-isotrivial polynomial can only have
canonical height equal to 0 at its preperiodic points [2, Thm. B]:

Lemma 6.7. Let f ∈ K[X] with deg(f) ≥ 2, and let z ∈ K. If f is
not isotrivial, then ĥf (z) = 0 if and only if z is preperiodic for f .

We need one more preliminary result.

Lemma 6.8. Let f ∈ K[X] be isotrivial with deg(f) ≥ 2, and let `
be as in Definition 6.6. If z ∈ K satisfies ĥf (z) = 0, then `−1(z) ∈ E.

Proof. Put F := `−1 ◦ f ◦ ` ∈ K ′[X], so Fn(`−1(z)) = `−1(fn(z)).
Since ĥf (z) = 0, Lemma 5.5 implies that ĥF (`−1(z)) = 0. For any
v ∈ MK′(z), we know that every nonzero coefficient γ of F satisfies
||γ||v = 1 (since γ ∈ E). Since v is nonarchimedean, if y ∈ K ′(z)
satisfies ||y||v > 1 then log ||Fn(y)||v = deg(F )n log ||y||v, so ĥF (y) >
0. Thus ||`−1(z)||v ≤ 1 for every v ∈MK′(z), so `−1(z) ∈ E. ut

Proof of Proposition 6.2. Put z = x0. If ĥf (z) > 0 then, by Lemma 6.5,
there exists c > 0 such that every α ∈ C(E) with hC(α) > c satisfies

ĥfα(zα)
hC(α)

> 0.

Then ĥfα(zα) > 0, so part (a) of Lemma 5.7 implies zα is not prepe-
riodic for fα.

If f is not isotrivial, Lemma 6.7 implies ĥf (z) > 0, so the proof
is complete. It remains only to consider the case that f is isotrivial
and ĥf (z) = 0.

Pick a finite extension K ′ of K and a linear ` ∈ K ′[X] such that
g := `−1 ◦ f ◦ ` is in E[X], and put E′ := E ∩K ′. Lemma 6.8 implies
w := `−1(z) is in E′. Moreover, since `−1 ◦ fn(z) = gn(w) and z is
not preperiodic for f , we see that w is not preperiodic for g. Because
g ∈ E′[X] and w ∈ E′, then for all places α′ of K ′, the reductions
of g and w at α′ equal g, and respectively w (because E′ embeds
naturally into the residue field at α′). Hence, for all but finitely many
α′ (we only need to exclude the places where ` does not have good
reduction), if α is the place of K lying below α′, then zα is not
preperiodic for fα. ut
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7. Further conjectures

We suspect that Theorem 1.5 remains true without the hypothesis
that deg(f) = deg(g). It might be possible to prove this by methods
similar to those in this paper; however, this seems to require sub-
stantial effort, since the results of Bilu-Tichy and Ritt which we used
became much simpler in our case deg(f) = deg(g).

It would be interesting to study Conjecture 1.3 for other curves
in the plane. In particular, it may be possible to treat curves of the
form F (X) = G(Y ) (with F,G polynomials) by methods similar to
ours.
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