
THE ISOTRIVIAL CASE IN THE MORDELL-LANG THEOREM

DRAGOS GHIOCA

Abstract. We determine the structure of the intersection of a finitely generated subgroup
of a semiabelian variety G defined over a finite field with a closed subvariety X ⊂ G. We
also study a related question in the context of a power of the additive group scheme.

1. Introduction

Faltings proves in [2] the Mordell-Lang conjecture in characteristic 0, showing that the
intersection of a subvariety X of a semiabelian variety G (defined over a field of characteristic
0) with a finitely generated subgroup Γ of G is a finite union of cosets of subgroups of Γ. In
particular, this shows that an irreducible subvariety X ⊂ G has a Zariski dense intersection
with a finitely generated subgroup Γ ⊂ G if and only if X is a translate of an algebraic
subgroup of G. The obvious translation of this last statement to semiabelian varieties defined
over fields of positive characteristic fails to be true due to the presence of the varieties defined
over finite fields. In [1], Abramovich and Voloch conjecture a function-field version of the
Mordell-Lang statement in positive characteristic by formulating a condition which has to be
satisfied by the subvariety X, if X has a Zariski dense intersection with a finitely generated
subgroup Γ ⊂ G. The conjecture is proved, using model-theoretic techniques, by Hrushovski
in [5]. However, [5] does not offer a description of the intersection of X with Γ. Moosa and
Scanlon provide in [8] and [9] a first answer toward the last question in the isotrivial case,
under an extra assumption on the subgroup Γ. In the present paper we are able to remove
their assumption.

Let G be a semiabelian variety defined over a finite field Fq. Let F be the corresponding
Frobenius for Fq. Then F ∈ End(G). Let K be a field extension of Fq. Let X be a subvariety
of G defined over K (in this paper, all subvarieties will be closed). In [8] and [9], Moosa
and Scanlon discussed the intersection of the K-points of X with a finitely generated Z[F ]-
submodule Γ of G(K). They proved that the intersection is a finite union of F -sets in Γ
(see Definition 2.4). Our goal for this paper is to extend their result to the case when Γ is
a finitely generated subgroup of G(K) (not necessarily invariant under F ). In a somewhat
different direction, we also show that their result remains valid when the semiabelian variety
is replaced by a power of the additive group scheme. We also mention that Rahim Moosa and
the author were able to describe in [4], through completely different methods, the intersection
of X with the divisible hull of a finitely generated Z[F ]-submodule of G.

In Section 2 we state our main results. In Section 3 we will prove our main theorem
for semiabelian varieties, while in Section 4 we will show how our statement for Gg

a can be
proved along similar lines as the result in [8].
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We note that our Mordell-Lang statement for the additive group scheme is actually a
Mordell-Lang statement for Drinfeld modules defined over finite fields. For the general
statement of the Mordell-Lang conjecture for Drinfeld modules we refer the reader to [3].

I thank Rahim Moosa for his comments on an earlier version of the present paper. I thank
Thomas Scanlon for introducing me to the beautiful questions related to the Mordell-Lang
Conjecture. I thank the referee and the editor for their helpful comments.

2. Statement of our main results

Everywhere in this paper, Y represents the Zariski closure of the set Y .
A central notion for the present paper is the notion of a Frobenius ring. This notion was

first introduced by Moosa and Scanlon (see Definition 2.1 in [9]). We extend their definition
to include also rings of finite characteristic.

Definition 2.1. Let R be a Dedekind domain with the property that for every nonzero
prime ideal p ⊂ R, R/p is a finite field. We call R[F ] a Frobenius ring over R if the following
properties are satisfied:

(i) R[F ] is a finite integral extension of R.
(ii) F is not a zero divisor in R[F ].
(iii) The ideal F∞R[F ] :=

⋂
n≥0 F nR[F ] is trivial.

The classical example of a Frobenius ring associated to a semiabelian variety G defined
over the finite field Fq is Z[F ], where F ∈ End(G) is the endomorphism of G induced by the
Frobenius map on Fq. This Frobenius ring is discussed in [8] and [9]. Also, Fp[F ] ⊂ End(Ga)
is a Frobenius ring over itself when the distinguished element F ∈ Fp[F ] is the Frobenius on
Fq. We define the notion of groupless F -sets contained in a module over a Frobenius ring.

Definition 2.2. Let R[F ] be a Frobenius ring over R and let M be an R[F ]-module. For
a ∈ M and δ ∈ N∗, we denote the F δ-orbit of a by S(a; δ) := {F δna | n ∈ N}. If a1, . . . , ak ∈
M and δ1, . . . , δk ∈ N∗, then we denote the sum of the F δi-orbits of ai by

S(a1, . . . , ak; δ1, . . . , δk) = {
k∑

i=1

F δiniai | (n1, . . . , nk) ∈ Nk}.

A set of the form b + S(a1, . . . , ak; δ1, . . . , δk) with b, a1, . . . , ak ∈ M is called a groupless
F -set based in M . We do allow in our definition of groupless F -sets k = 0, in which case,
the groupless F -set consists of the single point b. We denote by GFM the set of all groupless
F -sets based in M . For every subgroup Γ ⊂ M , we denote by GFM(Γ) the collection of
groupless F -sets contained in Γ and based in M . When M is clear from the context, we will
drop the index M from our notation.

Remark 2.3. Each groupless F -set O is based in a finitely generated R[F ]-module.

Definition 2.4. Let M be a module over a Frobenius ring R[F ]. Let Γ ⊂ M be a subgroup.
A set of the form (C + H) ⊂ Γ, where C ∈ GFM(Γ) and H is a subgroup of Γ is called an
F -set in Γ based in M . The collection of all such F -sets in Γ is denoted by FM(Γ). When
M is clear from the context, we will drop the index M from our notation.

Let G be a semiabelian variety defined over Fq. Let F be the Frobenius on Fq. Let K be
a finitely generated regular extension of Fq. We fix an algebraic closure Kalg of K. Let Γ
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be a finitely generated subgroup of G(K). We denote by F(Γ) and GF(Γ) the collection of
F -sets and respectively, the collection of groupless F -sets in Γ based in G(Kalg) (which is
obviously a Z[F ]-module). When we do not mention the Z[F ]-submodule containing the base
points for the F -sets contained in Γ, then we will always understand that the corresponding
submodule is G(Kalg). The following theorem is our main result for semiabelian varieties.

Theorem 2.5. Let G, K and Γ be as in the above paragraph. Let X be a K-subvariety of
G. Then X(K) ∩ Γ =

⋃r
i=1(Ci + ∆i), where (Ci + ∆i) ∈ F(Γ). Moreover, the subgroups ∆i

are of the form Gi(K) ∩ Γ, where Gi is an algebraic subgroup of G defined over Fq.

As mentioned in Section 1, the result of our Theorem 2.5 was proved in [8] (see Theorem
7.8) and in [9] (see Theorem 2.1) for finitely generated Z[F ]-modules Γ ⊂ G(K). Because
Z[F ] is a finite extension of Z, each finitely generated Z[F ]-module is also a finitely generated
group (but not every finitely generated group is invariant under F ).

Now we formulate the setting for our Mordell-Lang statement for the additive group
scheme. As before, p is a prime number and q is a power of p, while F is the Frobenius on
Fq. Trivially, Fp[F ] is a Frobenius ring over itself. We extend the action of Fp[F ] ⊂ End(Ga)
diagonally to any power of the additive group scheme.

Let K be a field extension of Fq. We fix an algebraic closure Kalg of K. Let Γ be a
finitely generated Fp[F ]-submodule of Gg

a(K). We denote by F(Γ) and GF(Γ) the F -sets and
respectively, the groupless F -sets in Γ based in the module Gg

a(K
alg) (with respect to the

Frobenius ring Fp[F ]). For us, always the F -sets in Section 4 will be based in Gg
a(K

alg).
We will explain in Section 4 that the following Mordell-Lang statement for Gg

a follows along
the same lines as Theorem 7.8 in [8]. Moreover, our Theorem 2.6 is the analogue of Theorem
7.8 in [8] for a power of the additive group scheme. We also note that the translation of our
Theorem 2.5 for the additive group scheme is trivial because any finitely generated subgroup
of the additive group scheme (in characteristic p) is finite.

Theorem 2.6. Let K be a finitely generated regular field extension of Fq. Let Γ ⊂ Gg
a(K)

be a finitely generated Fp[F ]-module. Let X be an affine subvariety of Gg
a defined over K.

Then X(K) ∩ Γ is a finite union of F -sets in Γ. Moreover, the subgroups of Γ appearing in
the intersection X(K) ∩ Γ are Fp[F ]-modules.

Remark 2.7. Because for any Drinfeld module φ defined over a finite field, a suitable power
of the Frobenius lies in the endomorphism ring End(φ) of φ, Theorem 2.6 is actually a
Mordell-Lang statement for Drinfeld modules defined over finite fields. This is equivalent
with replacing in Theorem 7.8 from [8] the semiabelian variety G by the power Gg

a of the
additive group scheme together with a Drinfeld module action given by φ, and replacing the
subring Z[F ] ⊂ End(G) by the subring Fp[F ] ⊂ End(φ).

3. The Mordell-Lang Theorem for semiabelian varieties defined over
finite fields

Proof of Theorem 2.5. We first observe that the subgroups ∆i from the intersection of X
with Γ are indeed of the form Gi(K)∩Γ for algebraic groups Gi defined over Fq. Otherwise,
we can always replace a subgroup ∆i appearing in the intersection X(K)∩Γ with its Zariski
closure Gi and then intersect with Γ (see also the proof of Lemma 7.4 in [8]). Because Gi

is the Zariski closure of a subset of G(K), then Gi is defined over K. Because Gi is an
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algebraic subgroup of G, then Gi is defined over Falg
q . Because K is a regular extension of

Fq, we conclude that Gi is defined over Fq = K ∩ Falg
q .

We will prove the main statement of Theorem 2.5 by induction on dim(X). Clearly, when
dim(X) = 0 the statement holds (the intersection is a finite collection of points in this case).
Assume the statement holds for dim(X) < d and we prove that it holds also for dim(X) = d.

We will use in our proof a number of reduction steps.
Step 1. Because X(K) ∩ Γ = X(K) ∩ Γ ∩ Γ we may assume that X(K) ∩ Γ is Zariski

dense in X.
Step 2. At the expense of replacing X by one of its irreducible components, we may

assume X is irreducible. Each irreducible component of X has Zariski dense intersection
with Γ. If Theorem 2.5 holds for each irreducible component of X, then it also holds for X.

Step 3. We may assume the stabilizer StabG(X) of X in G is trivial. Indeed, let H :=
StabG(X). Then H is defined over K (because X is defined over K) and also, H is defined
over Falg

q (because it is an algebraic subgroup of G). Thus H is defined over Fq. Let

π : G → G/H be the natural projection. Let Ĝ, X̂ and Γ̂ be the images of G, X and Γ

through π. Then Ĝ is a semiabelian variety defined over Fq, and Γ̂ is a finitely generated

subgroup of Ĝ(K), and X̂ is defined over K. Then StabĜ(X̂) = {0}. Assume Theorem 2.5

holds for X̂ ⊂ Ĝ. Then X̂(K) ∩ Γ̂ is a finite union of F -sets in Γ̂. Using the fact that the
kernel of π|Γ stabilizes X(K) ∩ Γ, we conclude

X(K) ∩ Γ = π|−1
Γ

(
X̂(K) ∩ Γ̂

)
,

which shows that X(K) ∩ Γ is also a finite union of F -sets.
Therefore, we work from now on under the assumptions that
(i) X(K) ∩ Γ = X;
(ii) X is irreducible;
(iii) StabG(X) = {0}.
Let Γ̃ be the Z[F ]-module generated by Γ. Because Γ is finitely generated and F is integral

over Z, then also Γ̃ is finitely generated. By Theorem 7.8 of [8], X(K) ∩ Γ̃ is a finite union

of F -sets in Γ̃. Moreover, there are finitely many groupless F -sets Ci and Z[F ]-submodules

Hi ⊂ Γ̃ such that

X(K) ∩ Γ̃ =
⋃
i

(Ci + Hi) .

We want to show
⋃

i (Ci + Hi)∩Γ is a finite union of F -sets in Γ. It suffices to show that for
each i, there exists a finite union Bi of F -sets in Γ such that (Ci + Hi) ∩ Γ ⊂ Bi ⊂ X(K).
Indeed, the existence of such Bi yields

X(K) ∩ Γ =
⋃
i

Bi,

as desired.
Case 1. dim Ci + Hi < d.
Let Xi := Ci + Hi. Then Xi is defined over K because (Ci + Hi) ⊂ Γ̃ ⊂ G(K). Also

dim(Xi) < d. So, by the induction hypothesis, Bi := Xi(K)∩Γ is a finite union of F -sets in
Γ. Clearly, (Ci + Hi) ∩ Γ ⊂ Bi ⊂ X(K), because Xi ⊂ X.

Case 2. dim Ci + Hi = d.
4



Because X = X(K) ∩ Γ, then X = X(K) ∩ Γ̃. Moreover, X is irreducible and so, because
dim Ci + Hi = dim(X), then X = Ci + Hi. Hence Hi ⊂ StabG(X) because

Ci + Hi + Hi = Ci + Hi and so, Ci + Hi + Hi ⊂ Ci + Hi.

Because StabG(X) is trivial, we conclude Hi = {0}, and so, Ci+Hi = Ci. We let Bi := Ci∩Γ.
The following Theorem 3.1 will conclude the proof of Theorem 2.5. �

Theorem 3.1. Let M be a finitely generated Z[F ]-submodule of G(Kalg) and let O ∈ GFM .
If Γ is a finitely generated subgroup of G(Kalg), then O ∩ Γ is a finite union of groupless
F -sets based in M .

Proof. Let

(1) f(X) := Xg −
g−1∑
i=0

αiX
i

be the minimal polynomial for F over Z (i.e. f(F ) = 0 in End(G)). Let r1, . . . , rg be all the
roots in C of f(X).

Claim 3.2. All roots ri of f are distinct complex numbers, greater than 1 in absolute value.

Proof of Claim 3.2. It suffices to prove the minimal polynomial h(X) of a power F n of F has
distinct roots of absolute value greater than 1. Indeed, because f is the minimal polynomial
for F over Z in End(G), then f(X)|h(Xn). Assuming, h(X) has distinct roots, then h(Xn)
also has distinct roots, and so, f(X) has distinct roots. The claim about the absolute values
of ri follows immediately if we know this to be true for the absolute values of the roots of h.

Let 0 → T → G → A → 0 be a short exact sequence of group varieties, with T being a
torus and A an abelian variety defined over a finite field. Moreover, according to Proposition
9.1 in [7], A is isogenous with a direct product of simple abelian varieties defined over Falg

p :

A ∼ A0 :=
l∏

i=1

Ani
i ,

where ni ≥ 1 and the abelian varieties Ai 6
∼→ Aj for i 6= j.

Let n be a positive integer number such that the above exact sequence of algebraic groups
is defined over Fqn , and the isogeny between A and A0 is defined over Fqn , and also each Ai is
defined over Fqn . It suffices to prove Claim 3.2 for the minimal polynomial h of F n ∈ End(G)
over Z.

Because there are no nonzero group homomorphisms between T and A, End(G) embeds
into End(T )×End(A). Hence, h is the least common multiple of the minimal polynomial of
F n on T and the minimal polynomial h0 for the induced Frobenius F n on A. Actually, the
minimal polynomial for F n on T is X − qn, while the roots of h0 are all in absolute value√

qn (see Theorem 14.1 in [7]). Thus all roots of h are bigger than 1 in absolute value. It
remains to show that all the roots of h0 are simple.

Because A is isogenous to A0, then the Frobenius F n has the same monic polynomial h0

over Z in End(A0). The Frobenius F n restricts to an endomorphism of each copy of Ai

in Ani
i . Because Ai is a simple abelian variety, End(Ai) is a domain, and so, the minimal

polynomial hi of F n ∈ End(Ai) over Z is an irreducible polynomial. Moreover, hi|h0 because
they both kill the Frobenius F n on Ai, but hi is the minimal polynomial of the Frobenius F n
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on Ai. The least common multiple h′0 of all hi satisfies ker(h′0(F
n)) = A0, and so, h′0(F

n) = 0.
Therefore, h0|h′0, and so, h0 = h′0. Thus we proved that each hi has distinct roots, and so,
their least common multiple h0 has distinct roots. �

The definition of f shows that for every point P ∈ G(Kalg),

(2) F gP =

g−1∑
j=0

αjF
jP.

We conclude that for all n ≥ g,

(3) F nP =

g−1∑
j=0

αjF
n−g+jP.

For each j ∈ {0, . . . , g − 1} we define the sequence {zj,n}n≥0 as follows

(4) zj,n = 0 if 0 ≤ n ≤ g − 1 and n 6= j;

(5) zj,j = 1 and

(6) zj,n =

g−1∑
l=0

αlzj,n−g+l for all n ≥ g.

Using (4) and (5) we obtain that

(7) F nP =

g−1∑
j=0

zj,nF
jP , for every 0 ≤ n ≤ g − 1.

Using (3), (6) and (7), an easy induction on n shows that

(8) F nP =

g−1∑
j=0

zj,nF
jP , for every n ≥ 0.

For each j, {zj,n}n is a recursively defined sequence. Moreover, using Claim 3.2, the roots
of the characteristic polynomial

(9) Xg −
g−1∑
i=0

αiX
i

associated to each such recursively defined sequence are nonzero, distinct complex numbers.
We will prove later in Lemma 3.9 that for each j ∈ {0, . . . , g−1} there exist {γj,l}1≤l≤g ⊂ Qalg

such that for every n ∈ N,

(10) zj,n =
∑

1≤l≤g

γj,lr
n
l .

Equations (8) and (10) show that for every n and for every P ∈ G(Kalg),

(11) F nP =
∑

0≤j≤g−1

(∑
1≤l≤g

γj,lr
n
l

)
F jP.
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If O ∩ Γ is finite, then we are done. So, from now on, we may assume O ∩ Γ is infinite.
Also, we may and do assume Γ ⊂ M (otherwise we replace Γ with Γ ∩M).

Let O := Q + S(P1, . . . , Pk; δ1, . . . , δk), where Q,P1, . . . , Pk ∈ M and δi ∈ N∗ for every
i ∈ {1, . . . , k}. We may assume that δ1 = · · · = δk = 1, in which case we let

S(P1, . . . , Pk; 1) := S(P1, . . . , Pk; δ1, . . . , δk).

Indeed, if we show that (Q + S(P1, . . . , Pk; 1)) ∩ Γ is a union of groupless F -sets, then also
its subsequent intersection with (Q + S(P1, . . . , Pk; δ1, . . . , δk)) is a finite union of groupless
F -sets, as shown in part (a) of Lemma 3.7 in [8].

Because M is a finitely generated Z-module, M is isomorphic with a direct sum of its
finite torsion submodule Mtor and a free Z-submodule M1.

For each i ∈ {1, . . . , k} and for each j ∈ {0, . . . , g − 1}, let F jPi := T
(j)
i + Q

(j)
i , with

T
(j)
i ∈ Mtor and Q

(j)
i ∈ M1. Also, let Q := T0 + Q0, where T0 ∈ Mtor and Q0 ∈ M1.

Let R1, . . . , Rm be a basis for the Z-module M1. For each j ∈ {0, . . . , g − 1} and for each
i ∈ {1, . . . , k}, let

(12) Q
(j)
i :=

m∑
l=1

a
(l)
i,jRl,

where a
(l)
i,j ∈ Z. Finally, let a

(1)
0 , . . . , a

(m)
0 ∈ Z such that Q0 =

∑m
j=1 a

(j)
0 Rj.

For every n ∈ N and for every i ∈ {1, . . . , k}, (8) and the definitions of Q
(j)
i and T

(j)
i yield

(13) F nPi =
∑

0≤j≤g−1

zj,n

(
T

(j)
i + Q

(j)
i

)
=

∑
0≤j≤g−1

zj,nT
(j)
i +

∑
0≤j≤g−1

zj,nQ
(j)
i .

Because T
(j)
i ∈ Mtor, then for each (n1, . . . , nk) ∈ Nk,

T0 +
k∑

i=1

g−1∑
j=0

zj,ni
T

(j)
i ∈ Mtor.

Also, because Q0 and all Q
(j)
i are in M1 and because zj,n ∈ Z, then for each (n1, . . . , nk) ∈ Nk,

Q0 +
k∑

i=1

g−1∑
j=0

zj,ni
Q

(j)
i ∈ M1.

Moreover,

(14) Q +
k∑

i=1

F niPi =

T0 +
∑

1≤i≤k
0≤j≤g−1

zj,ni
T

(j)
i

+

Q0 +
∑

1≤i≤k
0≤j≤g−1

zj,ni
Q

(j)
i

 .

For each h ∈ Mtor, if (h + M1) ∩ Γ is not empty, we fix (h + Uh) ∈ Γ for some Uh ∈ M1.
Let Γ1 := Γ ∩M1. Then

(15) (h + M1) ∩ Γ = h + Uh + Γ1.
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For each h ∈ Mtor, we let Oh := {P ∈ O | P = h + P ′ with P ′ ∈ M1}. Then using (15), we
get

(16) O ∩ Γ =
⋃

h∈Mtor

Oh ∩ (h + Uh + Γ1) =
⋃

h∈Mtor

(h + ((−h + Oh) ∩ (Uh + Γ1))) .

We observe that the rank of Γ1 as a Z-module is strictly positive because otherwise, as shown
by (16), O ∩ Γ is finite (and we assumed it is infinite).

Therefore (16) and (14) yield O ∩ Γ is a (finite) union over all h ∈ Mtor of the points
(Q +

∑
i F

niPi) ∈ O corresponding to tuples (n1, . . . , nk) such that

(17) T0 +
∑
i,j

zj,ni
T

(j)
i = h and

(
Q0 +

∑
i,j

zj,ni
Q

(j)
i

)
∈ (Uh + Γ1) .

Claim 3.3. Let h ∈ Mtor be fixed. The set of tuples (n1, . . . , nk) ∈ Nk for which

(18) h = T0 +
∑
i,j

zj,ni
T

(j)
i

is a finite union of cosets of semigroups of Nk (a semigroup of Nk is the intersection with
Nk of a subgroup of Zk; a coset of a semigroup is the intersection with Nk of a coset of a
subgroup of Zk).

Proof of Claim 3.3. Indeed, let N ∈ N∗ such that Mtor ⊂ G[N ]. Because for each j ∈
{0, . . . , g−1}, zj,n is a recursively defined sequence over Z (as shown by (4), (5) and (6)), then
the sequence {zj,n}n is preperiodic modulo N (a recursively defined sequence is preperiodic
modulo any integral modulus). We recall that a sequence {xn}n is preperiodic if there exists
a positive integer l such that the subsequence {xn}n≥l is periodic.

Now, because of our choice for N , NT
(j)
i = 0 for each i and j. Thus {zj,nT

(j)
i }n is

preperiodic, for every j and i. So, each value taken by T0 +
∑

i,j zj,ni
T

(j)
i is attained for

tuples (n1, . . . , nk) which belong to a finite union of cosets of semigroups of Nk. �

Claim 3.4. Let h ∈ Mtor be fixed such that (h+M1)∩Γ is not empty. The tuples (n1, . . . , nk)
for which

(19)

(
Q0 +

∑
i,j

zj,ni
Q

(j)
i

)
∈ (Uh + Γ1)

form a finite union of cosets of semigroups of Nk.

Before proving Claim 3.4 we observe that its proof will finish the proof of our Theorem 3.1.
The intersection of two finite unions of cosets of semigroups of Nk is a finite union of cosets
of semigroups of Nk. Using the results of Claim 3.3 and Claim 3.4, we get that for each
fixed h ∈ Mtor, there is a finite union Wh of cosets of semigroups of Nk such that a tuple
(n1, . . . , nk) ∈ Nk satisfies

(20) h = T0 +
∑
i,j

zj,ni
T

(j)
i and

(21)

(
Q0 +

∑
i,j

zj,ni
Q

(j)
i

)
∈ (Uh + Γ1) ,
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if and only if (n1, . . . , nk) ∈ Wh. Using (16), (17) and that |Mtor| < ℵ0, we conclude that the
tuples (n1, . . . , nk) for which

Q +
k∑

i=1

F niPi ∈ Γ

form a finite union of cosets of semigroups of Nk. Lemma 3.4 of [8] shows that the set of
points (Q +

∑
i F

niPi) ∈ O corresponding to tuples (n1, . . . , nk) contained in a finite union
of cosets of semigroups of Nk is a finite union of groupless F -sets.

Proof of Claim 3.4. We first define three classes of subsets of Zm.

Definition 3.5. A C-subset of Zm is a set C(d1, . . . , dm, D1, D2), where d1, . . . , dm, D1, D2 ∈
Z and D2 6= 0, containing all solutions (x1, . . . , xm) ∈ Zm of

∑m
i=1 dixi ≡ D1 (mod D2).

An L-subset of Zm is a set L(d1, . . . , dm, D), where d1, . . . , dm, D ∈ Z, containing all
solutions (x1, . . . , xm) ∈ Zm of

∑m
i=1 dixi = D.

A CL-subset of Zm is either a C-subset or an L-subset of Zm.

Subclaim 3.6. There exist CL-subsets S1, . . . , Sm of Zm such that a point P :=
∑m

j=1 c(j)Rj

lies in Uh + Γ1 if and only if

(c(1), . . . , c(m)) ∈
m⋂

i=1

Si.

Proof of Subclaim 3.6. Because Γ1 ⊂ M1 and M1 is a free Z-module with basis {R1, . . . , Rm},
we can find (after a possible relabelling of R1, . . . , Rm) a Z-basis V1, . . . , Vn (1 ≤ n ≤ m) of
Γ1 of the following form:

V1 = β
(i1)
1 Ri1 + · · ·+ β

(m)
1 Rm;

V2 = β
(i2)
2 Ri2 + · · ·+ β

(m)
2 Rm;

and in general, Vj = β
(ij)
j Rij + · · ·+ β

(m)
j Rm for each j ≤ n, where

1 ≤ i1 < i2 < · · · < in ≤ m

and all β
(i)
j ∈ Z. We also assume β

(ij)
j 6= 0 for every j ∈ {1, . . . , n}.

Let b
(1)
0 , . . . , b

(m)
0 ∈ Z such that Uh =

∑m
j=1 b

(j)
0 Rj. Then P ∈ (Uh + Γ1) if and only if there

exist integers k1, . . . , kn such that

(22) P = Uh +
n∑

i=1

kiVi.

Using the expressions of the Vi, Uh and P in terms of the Z-basis {R1, . . . , Rm} of M1, we
obtain the following relations for the coefficients c(j):

(23) c(j) = b
(j)
0 for every 1 ≤ j < i1;

(24) c(j) = b
(j)
0 + k1β

(j)
1 for every i1 ≤ j < i2;

(25) c(j) = b
(j)
0 + k1β

(j)
1 + k2β

(j)
2 for every i2 ≤ j < i3

9



and so on, until

(26) c(m) = b
(m)
0 +

n∑
i=1

kiβ
(m)
i .

We interpret the above relations as follows: the numbers c(i) are the unknowns, while the

numbers k1, . . . , kn are integer parameters, and all b
(i)
0 and β

(i)
j are integer constants. We

will show, by eliminating the parameters ki, that the unknowns c(j) must satisfy n linear

congruences and (m − n) linear equations with coefficients involving only the b
(i)
0 and the

β
(i)
j . Each such equation will generate a CL-set.

Therefore we express equation (24) for j = i1 as a linear congruence modulo β
(i1)
1 (by

eliminating k1) and obtain

(27) c(i1) ≡ b
(i1)
0

(
mod β

(i1)
1

)
.

Also from (24) for j = i1, we get k1 =
c(i1)−b

(i1)
0

β
(i1)
1

. Then we substitute this formula for k1 in

(24) for all i1 < j < i2 and obtain

(28) c(j) = b
(j)
0 +

c(i1) − b
(i1)
0

β
(i1)
1

β
(j)
1 for every i1 < j < i2.

Then we express (25) for j = i2 as a linear congruence modulo β
(i2)
2 (also using the expression

for k1 computed above). We obtain

(29) c(i2) ≡ b
(i2)
0 +

c(i1) − b
(i1)
0

β
(i1)
1

β
(i2)
1

(
mod β

(i2)
2

)
.

Next we equate k2 from (25) for j = i2 (also using the above formula for k1) and obtain

k2 =
c(i2) − b

(i2)
0 − c(i1)−b

(i1)
0

β
(i1)
1

β
(i2)
1

β
(i2)
2

Then we substitute this formula for k2 in (25) for i2 < j < i3 and obtain

(30) c(j) = b
(j)
0 +

c(i1) − b
(i1)
0

β
(i1)
1

· β(j)
1 +

c(i2) − b
(i2)
0 − c(i1)−b

(i1)
0

β
(i1)
1

β
(i2)
1

β
(i2)
2

· β(j)
2 .

We go on as above until we express c(m) in terms of b
(m)
0 , c(i1), . . . , c(in) and {β(l)

j }j,l. We
observe that all of the above congruences and linear equations can be written as linear
congruences or linear equations over Z (after clearing the denominators). For example, the
congruence equation (29) can be written as the following linear congruence over Z:

β
(i1)
1 · c(i2) ≡ β

(i1)
1 b

(i2)
0 +

(
c(i1) − b

(i1)
0

)
β

(i2)
1

(
mod β

(i1)
1 · β(i2)

2

)
.

Hence all the above conditions that need be satisfied by c(j) such that
m∑

j=1

c(j)Rj ∈ (Uh + Γ1)

10



are either linear equations or linear congruences with integer coefficients. There are precisely
n congruences (corresponding to the n degrees of freedom introduced by the parameters ki)
and (m− n) linear equations. �

We will show that for each Si, there exists a finite number of cosets of semigroups W
(i)
j ⊂

Nk such that (n1, . . . , nk) ∈
⋃

j W
(i)
j if and only if (c(1), . . . , c(m)) ∈ Si, where

Q0 +
∑
i,j

zj,ni
Q

(j)
i =:

m∑
j=1

c(j)Rj.

This will show that there exists a finite number of cosets of semigroups

W̃ :=
m⋂

i=1

(⋃
j

W
(i)
j

)
⊂ Nk

such that (n1, . . . , nk) ∈ W̃ if and only if

(31)

(
Q0 +

∑
i,j

zj,ni
Q

(j)
i

)
∈ (Uh + Γ1) .

Subclaim 3.7. Let C := C(d1, . . . , dm, D1, D2) be a C-subset of Zm. There exists a finite
number of cosets of semigroups Wj ⊂ Nk such that (n1, . . . , nk) ∈

⋃
j Wj if and only if

(c(1), . . . , c(m)) ∈ C, where

Q0 +
∑
i,j

zj,ni
Q

(j)
i =:

m∑
j=1

c(j)Rj.

Proof of Subclaim 3.7. Using (12) (and the similar expression for Q0 in terms of R1, . . . , Rm),
we conclude that for every 1 ≤ j ≤ m:

(32) c(j) = a
(j)
0 +

∑
1≤i≤k

0≤l≤g−1

a
(j)
i,l zl,ni

.

Hence, the congruence equation
∑m

j=1 djc
(j) ≡ D1 (mod D2) yields the following congruence

(33)

g−1∑
j=0

k∑
i=1

dj,izj,ni
≡ D′

1 (mod D2)

for some integer numbers D′
1 and {dj,i}j,i (we recall that all a

(j)
0 ∈ Z and all a

(j)
i,l ∈ Z).

Recursively defined sequences such as {zj,n}n are preperiodic modulo any nonzero integer
(hence, they are preperiodic modulo D2). Therefore all solutions (n1, . . . , nk) ∈ Nk to (33)
belong to a finite union

⋃
j Wj of cosets of semigroups of Nk. �

Subclaim 3.8. Let L := L(d1, . . . , dm, D) be an L-subset of Zm. There exists a finite number
of cosets of semigroups Wj ⊂ Nk such that (n1, . . . , nk) ∈

⋃
j Wj if and only (c(1), . . . , c(m)) ∈

L, where

Q0 +
∑
i,j

zj,ni
Q

(j)
i =:

m∑
j=1

c(j)Rj.

11



Proof of Subclaim 3.8. Using (12) and (10), we conclude that for every 1 ≤ j ≤ m:

(34) c(j) = a
(j)
0 +

∑
1≤i≤k

0≤l≤g−1

a
(j)
i,l

g∑
e=1

γl,er
ni
e .

The linear equation
∑m

j=1 djc
(j) = D yields the following equation (after collecting the coef-

ficients of rni
e for each 1 ≤ e ≤ g and each 1 ≤ i ≤ k):

(35)

g∑
e=1

k∑
i=1

de,ir
ni
e = D0,

where all de,i and D0 are algebraic numbers (actually, D0 ∈ Z, but we will not need to use
this). A tuple (n1, . . . , nk) ∈ Nk satisfying (35) corresponds to an intersection point of the

linear variety L0 in (Gg
m)k (Qalg) given by the equation

(36)

g∑
e=1

k∑
i=1

de,iXe,i = D0

with the finitely generated subgroup G0 of (Gg
m)k (Qalg) spanned by

(37)
v1 := (r1, . . . , rg, 1, . . . , 1); v2 := (1, . . . , 1, r1, . . . , rg, 1, . . . , 1); . . . ; vk := (1, . . . , 1, r1, . . . , rg).

Each vector vi has gk components. The correspondence between the tuples (n1, . . . , nk)
satisfying (35) and the solutions of (36) is given by

(n1, . . . , nk) → vn1
1 vn2

2 . . . vnk
k .

In (37) there are k multiplicatively independent generators for G0 (we are using the fact
that |ri| 6= 1, for each i). Hence G0 ' Zk, where the isomorphism σ : G0 → Zk is given on the
Z-basis {v1, . . . , vk} of G0 by sending the vector vi ∈ G0 to the vector (0, . . . , 1, . . . , 0) ∈ Zk,
whose only nonzero entry is on the ith coordinate.

By Lang Theorem for Ggk
m (see [6]), we conclude the intersection of L0(Qalg) and G0 is a

finite union of cosets of subgroups of G0. The cosets of subgroups of G0 correspond through
σ to cosets of subgroups of Zk (for all possible tuples (n1, . . . , nk) ∈ Zk satisfying (35)).
Hence the tuples (n1, . . . , nk) ∈ Nk which satisfy (35) belong to a finite union of cosets of
semigroups of Nk. �

Because the intersection of two cosets of semigroups of Nk is a finite union of cosets of
semigroups, Subclaims 3.7 and 3.8 finish the proof of Claim 3.4. �

As explained before the proof of Claim 3.4, the results of Claims 3.3 and 3.4 finish the
proof of Theorem 3.1. �

The following classical result on recursively defined sequences was used in the proof of
Theorem 2.5. We provide its proof for completeness.

Lemma 3.9. Let g ∈ N∗ and let α0, . . . , αg−1 ∈ C. Assume the roots {rj}g
j=1 of the polyno-

mial

f(X) := Xg −
g−1∑
i=0

αiX
i

12



are distinct, nonzero complex numbers. Let {zn}n≥0 be the recursively defined sequence given
by

zn =

g−1∑
i=0

αizn−g+i for all n ≥ g.

Therefore, z0, . . . , zg−1 are some arbitrary complex numbers, while all other elements of the
sequence {zn} are uniquely determined for n ≥ g from the above recursively defined relation.
Then there exist {γj}g

j=1 ⊂ C such that for every n ≥ 0,

zn =

g∑
j=1

γjr
n
j .

Proof. Because the numbers rj are nonzero, distinct complex numbers, then the following
system of g equations with g unknowns γj has an unique solution (the associated determinant
is a nonzero Vandermonde determinant):

(38)

g∑
j=1

γjr
i
j = zi for i ∈ {0, . . . , g − 1}.

Moreover, if all zi ∈ Qalg for i ∈ {0, . . . , g − 1} and all rj ∈ Qalg for j ∈ {1, . . . , g}, then also
all γj ∈ Qalg for j ∈ {1, . . . , g}.

Because each rj is a root of f(X), then the sequence {z′n}n ⊂ C defined by

z′n =

g∑
j=1

γjr
n
j

satisfies the same recursively defined relation as the one satisfied by the sequence {zn}n.
Moreover, by (38), z′n = zn for all n ∈ {0, . . . , g − 1}. Because both sequences {z′n}n and
{zn}n are uniquely determined by their first g elements and the recursive relation they both
satisfy, we conclude z′n = zn. This concludes the proof of Lemma 3.9. �

4. A Mordell-Lang statement for the additive group scheme

In this section, F is the Frobenius corresponding to Fq. Also, g is a positive integer. We
will deduce Theorem 2.6 from the following more general result.

Theorem 4.1. Let K be a finitely generated regular extension of Fq. Then for each algebraic
subgroup H ⊂ Gg

a defined over Fq and for every variety X ⊂ Gg
a/H defined over K and for

every finitely generated Fp[F ]-submodule Γ ⊂ (Gg
a/H) (K), the intersection X(K) ∩ Γ is a

finite union of F -sets in Γ based in (Gg
a/H) (Kalg). Moreover, the subgroups of Γ appearing

in the intersection X(K) ∩ Γ are Fp[F ]-modules.

We first observe that because the algebraic group H in Theorem 4.1 is defined over Fq,
then Gg

a/H is invariant under F , and so, it makes sense to talk about Fp[F ]-submodules of
(Gg

a/H) (K). Theorem 2.6 is a particular case of Theorem 4.1 for H = {0}.
We will prove Theorem 4.1 through a series of lemmas. Our argument follows along the

line of ideas present in the proof of Theorem 7.8 in [8].
We fix an algebraic group U which is the quotient of Gg

a through an algebraic subgroup
H defined over the finite field Fq. The following result (which is the equivalent for Gg

a of
Lemma 7.5 in [8]) will be used in the proof of our Theorem 4.1.

13



Lemma 4.2. Let K be a finitely generated field extension of Fq and let Γ ⊂ Gg
a(K) be a

finitely generated Fp[F ]-submodule.

(a) The F -divisible hull Γ̃ of Γ in Gg
a(K), i.e. the set of all x ∈ Gg

a(K) such that Fmx ∈ Γ
for some m ≥ 0, is a finitely generated Fp[F ]-module.

(b) Let Γ′ be the image of Γ through the canonical projection σ : Gg
a → U . Let Γ̃′ be the

F -divisible hull of Γ′ in U(K). Then Γ̃′ is a finitely generated Fp[F ]-module.
(c) For each m > 0, both Γ/FmΓ and Γ′/FmΓ′ are finite.
(d) For each m > 0, there exists m1 ≥ 0 such that Γ′ \ FmΓ′ ⊂ U(K) \ U

(
Kqm1

)
.

Proof. (a) First we observe that the F -divisible hull Γ̃ of Γ is an Fp[F ]-module. Indeed, if

x ∈ Γ̃ and m ∈ N such that Fmx ∈ Γ, then for every f ∈ Fp[F ],

Fm(f(x)) = f(Fmx) ∈ f(Γ) ⊂ Γ.

Therefore f(x) ∈ Γ̃, showing that Γ̃ is an Fp[F ]-module.
It suffices to prove (a) under the extra assumption that Γ = Γg

0 (the cartesian product of
Γ0 with itself g times), where Γ0 ⊂ K is a finitely generated Fp[F ]-module. Indeed, let Γ0 be
the finitely generated Fp[F ]-submodule of K spanned by all the generators (over Fp[F ]) of

the projections of Γ on the g coordinates of Gg
a(K). Clearly Γ ⊂ Γg

0 and Γ̃g
0 =

(
Γ̃0

)g

. So, if

we prove (a) for Γ0, then the result of (a) holds also for Γg
0 and implicitly for its submodule

Γ (the F -divisible hull Γ̃ of Γ is an Fp[F ]-submodule of the F -divisible hull Γ̃g
0 of Γg

0, and a
submodule of a finitely generated module is also finitely generated). So, we are left to show

that the F -divisible hull Γ̃0 of Γ0 in K is a finitely generated Fp[F ]-module. This follows
from Lemma 4 of [10] applied to the Drinfeld module φ defined on Fp[t] by φt = F . However,
for the sake of completeness, we provide a direct proof which does not use the theory of
Drinfeld modules. We will use the following Claim 4.3 to finish the proof of (a).

Claim 4.3. Let R be a Dedekind domain such that for every proper ideal I ⊂ R, R/I is
finite. Let M be a finite rank R-module (i.e. dimFrac(R) M ⊗R Frac(R) is finite). Assume
there exists a function h : M → R≥0 satisfying the following properties:

(i) (triangle inequality) h(x± y) ≤ h(x) + h(y), for every x, y ∈ M .
(ii) for every D > 0, there exist only finitely many x ∈ M such that h(x) ≤ D.
(ii) there exists a ∈ R \ {0} such that R/aR is finite and for all x ∈ M , h(ax) ≥ 4h(x).
Then M is finitely generated.

Before proving Claim 4.3 we show that its statement yields that Γ̃0 is a finitely generated

Fp[F ]-module. Indeed, we use Claim 4.3 with R = Fp[F ], M = Γ̃0, a = F 2, and h being the

usual logarithmic Weil height on K (restricted to Γ̃0) corresponding to the set of valuations
associated to the irreducible divisors of a projective, normal variety V defined over a finite
field and whose function field is K (see [11] for the construction of the Weil height on any
finitely generated field K). Clearly, Fp[F ] is a Dedekind domain with the property from
Claim 4.3.

The Fp[F ]-module Γ̃0 lies in the divisible hull of the finitely generated module Γ0, and so,
it has finite rank over Fp[F ]. Clearly h satisfies the triangle inequality. Condition (ii) in
Claim 4.3 is simply the Northcott Theorem for the Weil height h on the finitely generated
field K. As for condition (iii), clearly Fp[F ]/(F 2) is finite. On the other hand, for every

14



x ∈ K, h(F 2x) = q2h(x) ≥ 4h(x), as desired in condition (iii) of Claim 4.3. Thus the

conditions of Claim 4.3 are satisfied and its conclusion shows that Γ̃0 is finitely generated.

Proof of Claim 4.3. Let a ∈ R as in condition (iii). We first show Mtor is finite. Indeed, let
x ∈ Mtor, and let I ⊂ R be a proper ideal of R such that Ix = 0. Then because R/I is
finite, there exist positive integers m < n such that an − am ∈ I. Using condition (iii), we
conclude:

h(anx) ≥ 4n−mh(amx).

Because anx = amx, we get h(anx) = h(amx) = 0. Another application of condition (iii)
yields

0 = h(anx) ≥ 4nh(x) ≥ 0.

Hence we proved that for every torsion point x ∈ M , h(x) = 0. Then using condition (ii),
we conclude Mtor is finite, as desired. By Lemma 3 of [10], because Mtor is finite, and M has
finite rank and R satisfies the hypothesis of Claim 4.3, we conclude M/aM is finite.

From this point, our proof follows the classical descent argument in the Mordell-Weil
theorem (see [11]). Let y1, . . . , yk be coset representatives for aM in M . Define then

B = max
i∈{1,...,k}

h(yi).

Consider the set Z = {x ∈ M | h(x) ≤ B}, which is finite according to condition (ii). Let
N be the finitely generated R-submodule of M which is spanned by Z.

We claim that M = N . If we suppose this is not the case, then by condition (ii) we can
pick y ∈ M − N which minimizes h(y). Because N contains all the coset representatives
of aM in M , we can find i ∈ {1, . . . , k} such that y − yi ∈ aM . Let x ∈ M be such that
y − yi = ax. Then x /∈ N because otherwise it would follow that y ∈ N (we already know
yi ∈ N). By our choice of y and by properties (iii) and (i), we have

h(y) ≤ h(x) ≤ h(y − yi)

4
≤ h(y) + h(yi)

4
≤ h(y) + B

4
.

This means that h(y) ≤ B
3

< B. This contradicts the fact that y /∈ N because N contains
all the elements z ∈ M such that h(z) ≤ B. This contradiction shows that indeed M = N
and so, M is finitely generated. �

(b) It suffices to show that there exists a finitely generated Fp[F ]-module M ⊂ Gg
a(K) such

that the F -divisible hull of (Γ + H(K)) in Gg
a(K) equals (M + H(K)). Then Γ̃′ = σ(M) is

finitely generated as an Fp[F ]-module.
Because H(K) ∩Gg

a(K
q) = H(Kq), we conclude H(K)/H(Kq) is a subgroup of

Gg
a(K)/Gg

a(K
q)

∼→ (K/Kq)g.

Because K is finitely generated over Fq, we conclude K/Kq is finite. Thus Gg
a(K)/Gg

a(K
q)

and H(K)/H(Kq) are also finite. Let {h1, . . . , hl} be coset representatives for H(Kq) in
H(K). Because H is defined over Fq, then H(Kq) = F (H(K)). Thus we obtain that for

every m ∈ N, {Fmh1, . . . , F
mhl} are coset representatives for Fm+1(H(K)) = H(Kqm+1

) in
Fm(H(K)) = H(Kqm

). Moreover,

(39) {
m−1∑
i=0

F ihf(i) | f : {0, . . . ,m− 1} → {1, . . . , l}}
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is a complete system of coset representatives for H(Kqm
) in H(K). Let M0 be the finitely

generated Fp[F ]-module generated by the elements of Γ ∪ {h1, . . . , hl}. Let M be the F -
divisible hull of M0 in Gg

a(K). By part (a), M is a finitely generated Fp[F ]-module. We will
prove that the F -divisible hull of (Γ + H(K)) in Gg

a(K) equals (M + H(K)).
By the construction of M , clearly M and H(K) are subsets of the F -divisible hull of (Γ+

H(K)) in Gg
a(K). Therefore (M + H(K)) is contained in the F -divisible hull of (Γ + H(K))

in Gg
a(K).

Let x ∈ Gg
a(K) and assume there exists m ∈ N∗ such that Fmx ∈ (Γ + H(K)). So,

Fmx = γ + h, where γ ∈ Γ and h ∈ H(K). We write h = h0 + Fmh1, where h0 is a coset
representative from (39) of H(Kqm

) = Fm(H(K)) in H(K) and h1 ∈ H(K). Hence

(40) Fm(x− h1) = γ + h0 ∈ M0.

Thus (x− h1) ∈ M and so, x ∈ (M + H(K)), as desired. This concludes the proof of (b).
(c) Because Γ and Γ′ are finitely generated Fp[F ]-modules, then Γ/FmΓ and Γ′/FmΓ′ are

finitely generated (Fp[F ]/FmFp[F ])-modules. But Fp[F ]/FmFp[F ] is a finite ring. Hence
Γ/FmΓ and Γ′/FmΓ′ are finite, as desired.

(d) Because the F -divisible hull Γ̃′ of Γ′ in U(K) is finitely generated as an Fp[F ]-module,

then there exists m0 > 0 such that Fm0Γ̃′ ⊂ Γ′. Let m1 := m0 + m. Then

Γ′ ∩ U
(
Kqm1

)
⊂ Fm1Γ̃′ ⊂ FmΓ′.

Hence Γ′ \ FmΓ′ ⊂ U(K) \ U
(
Kqm1

)
. �

The proofs of the next two lemmas are identical with the proofs of Corollary 7.3 and
respectively, Lemma 3.9 in [8].

Lemma 4.4. Let K be a finitely generated regular field extension of Fq. Let Γ ⊂ U(K) be
a finitely generated Fp[F ]-module. Let B be a finite union of sets of the form (C + ∆) ⊂ Γ,
where C ∈ GF(Γ) and ∆ is a subgroup of Γ invariant under F . Let X ⊂ U be a subvariety
defined over K. Let Σ :=

⋃
n≥0 F nB and suppose that Σ ⊂ X(K). Then there exists a finite

union V of sets of the form (C ′ + ∆′) ⊂ Γ, where C ′ ∈ GF(Γ) and ∆′ is a subgroup of Γ
invariant under F , such that Σ ⊂ V ⊂ X(K).

Lemma 4.5. Suppose M is a finitely generated Fp[F ]-module. Let B and V be two finite
unions of F -sets in M . In addition, assume the groups appearing in B and V are invariant
under some power F b of F . Then B ∩ V is a finite union of F -sets in M ; moreover, the
groups appearing in B ∩ V are invariant under F b.

Proof of Theorem 4.1. Our proof follows the proof of Theorem 7.8 in [8]. We proceed by
induction on dim(X). If dim(X) = 0, then X(K) ∩ Γ is a finite union of points and clearly,
the conclusion of Theorem 4.1 holds. We assume Theorem 4.1 holds for dim(X) < d (for
some d ≥ 1) and we will prove that it also holds for dim(X) = d.

We may assume X(K) ∩ Γ = X (otherwise, we may replace X with X(K) ∩ Γ). Also, we
may assume X is irreducible because it suffices to prove Theorem 4.1 for each irreducible
component of X.

The next lemma shows that a translate of X is defined over a finite field. The proof of
Lemma 4.6 is identical with the proof of Lemma 7.7 in [8]. Everywhere in the proof of Lemma
7.7 in [8] we replace the Frobenius ring Z[F ] with the Frobenius ring Fp[F ]. The only property
of the Frobenius ring used in the proof of Lemma 7.7 in [8] is property (c) from Lemma 4.2
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and the only property of the ambient algebraic group G (a semiabelian variety in [8] and
U = Gg

a/H for us) used in the proof of Lemma 7.7 in [8] is that
⋂

n≥1 F nG(Ksep) = G(Falg
q ).

Lemma 4.6. Suppose Γ is a finitely generated Fp[F ]-submodule of U(K) and X ⊂ U is a
variety defined over K such that X(K) ∩ Γ is Zariski dense in X. Then for some γ ∈ Kalg,
(γ + X) is defined over Falg

q .

Next we show that we may assume X is defined over Fq. Lemma 4.6 shows that there
exists γ ∈ Kalg such that (γ + X) is defined over Falg

q . Let Γ′ be the finitely generated
Fp[F ]-module generated by γ and the elements of Γ. Let K ′ := K(γ). Because X is defined
over K ′ and γ ∈ K ′, then (γ + X) is defined over K ′. But we already know that (γ + X)
is defined over Falg

q . Hence Y := (γ + X) is defined over Fqb := K ′ ∩ Falg
q (we recall that

K ∩ Falg
q = Fq). Assuming Theorem 4.1 holds for Y (K ′) ∩ Γ′ (note that Γ′ is also a finitely

generated Fp[F
b]-module), we obtain that

X(K ′) ∩ Γ′ = −γ + (Y (K ′) ∩ Γ′)

is a finite union of F -sets in Γ′ of the form (Ci+∆i), where ∆i is invariant under F b. Because
Γ is a submodule of Γ′, we conclude

X(K) ∩ Γ = X(K ′) ∩ Γ = (X(K ′) ∩ Γ′) ∩ Γ.

Hence, using Lemma 4.5, X(K) ∩ Γ is itself a finite union of F -sets in Γ of the form (C ′
i +

∆′
i), where ∆′

i are Fp[F
b]-submodules of Γ. By replacing ∆′

i with the Zariski closure of ∆′
i

intersected with Γ (see the proof of Lemma 7.4 in [8]), X(K) ∩ Γ is a finite union of F -sets
in Γ of the form (C ′

i + ∆′′
i ), where ∆′′

i are Fp[F ]-submodules of Γ, as desired.
Therefore we reduced Theorem 4.1 to the case when X is defined over Fq. We may assume

Stab(X) ⊂ U is trivial. Indeed, let H1 = Stab(X). Then H1 is defined over Fq, because X
is defined over Fq. We consider the canonical quotient map π : U → U/H1. Clearly, U/H1

is another quotient of Gg
a by an algebraic subgroup defined over Fq. Let X̂ and Γ̂ be the

images of X and Γ through π. Clearly Stab(X̂) = {0}. Moreover, if X̂(K) ∩ Γ̂ is a finite

union of F -sets (for which the groups are actually Fp[F ]-submodules in Γ̂), then

X(K) ∩ Γ = π|−1
Γ

(
X̂(K) ∩ Γ̂

)
is also a finite union of F -sets for which the groups are Fp[F ]-submodules in Γ (we use the
fact that ker (π|Γ) = Γ ∩H1(K) is a subgroup of Γ invariant under F ).

From this point on, the proof continues precisely as the proof of Theorem 7.8 in [8]. We
provided in Lemmas 4.2, 4.4 and 4.5 the technical ingredients which are used in the argument
from the proof of Theorem 7.8 in [8]. �

The following result follows from Theorem 3.1 in [9] the same way our Theorems 2.6 and
4.1 followed from Theorem 7.8 in [8].

Theorem 4.7. Let K be an algebraically closed field extension of Fq. Let X ⊂ Gg
a (for

some g ≥ 1) be an affine variety defined over K. Let Γ ⊂ Gg
a(K) be a finitely generated

Fp[F ]-module. Let Γ′ := Γ + Gg
a(Falg

q ). Then X(K) ∩ Γ′ is a finite union of sets of the form(
V + Y (Falg

q )
)
, where V ⊂ Γ′ is an F -set and Y ⊂ Gg

a is an affine variety defined over Falg
q .
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