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Abstract. The positive characteristic function-field Mordell-Lang conjecture

for finite rank subgroups is resolved for curves as well as for subvarieties of
semiabelian varieties defined over finite fields. In the latter case, the structure

of the division points on such subvarieties is determined.

1. Introduction

In its most general form, the Mordell-Lang theorem in characteristic 0 was proved
by McQuillan [5] and states that if G is a semiabelian variety over C, Λ ≤ G(C) is
a finite rank subgroup, and X ⊂ G is an irreducible subvariety whose intersection
with Λ is Zariski dense, then X is a translate of an algebraic subgroup of G.
(Recall that a subgroup is said to be of finite rank if it is contained in the divisible
hull of a finitely generated subgroup.) This fails when C is replaced by a field of
positive characteristic. In [1], Abramovich and Voloch formulate and conjecture a
function-field version of the Mordell-Lang statement in positive characteristic. The
conjecture is proved, using model-theoretic techniques, by Hrushovski:

Theorem 1.1 (Mordell-Lang [3]). Suppose L is an algebraically closed field of
characteristic p > 0, G is a semiabelian variety defined over L, X ⊂ G is an
irreducible subvariety defined over L, and Λ ≤ G(L) is a subgroup of the prime-to-p
divisible hull of a finitely generated subgroup of G(L). If X(L)∩Λ is Zariski dense
in X, then X is special. That is, X = g + h−1(X0) where g ∈ G(L), h : G′ → G0

is a surjective homomorphism from an algebraic subgroup G′ of G to a semiabelian
variety G0 defined over Falg

p , and X0 is a subvariety of G0 also defined over Falg
p .

Besides the necessary modification of the conclusion from “translate of algebraic
subgroup” to “special” (note that translates of algebraic subgroups are special),
this theorem differs from the characteristic 0 version in that it only applies to
subgroups of the prime-to-p divisible hull of a finitely generated group. Indeed, the
more general statement is not accessible by the methods of [3] and remains open:

Conjecture 1.2 (Full Mordell-Lang). Suppose Λ ≤ G(L) is a finite rank subgroup
and X ⊂ G is an irreducible subvariety. If X(L) ∩Λ is Zariski dense in X, then X
is special.

Here is a summary of what we accomplish in this paper:
I. We reduce Conjecture 1.2 to the case of Λ ≤ G(Kper) where K is a finitely

generated field and Kper := {a ∈ Kalg | apn ∈ K for some n ∈ N} is the perfect
closure of K. This is done in Section 2 by combining model theoretic methods of
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Scanlon [11] with an idea of Rössler’s [10]. As a consequence, a result of Kim’s [4]
resolves the curve case of Conjecture 1.2.

II. We resolve Conjecture 1.2 for semiabelian varieties defined over finite fields.
This is done in Section 3. Besides (I), we make use of a uniform description,
obtained by Scanlon and the second author [8], of sets of the form X(L)∩Γ where
Γ is a finitely generated subgroup of G(L) that is invariant under the Frobenius
endomorphism of G.

III. Still in the isotrivial case, we extend the results of [8] to give an explicit
description of sets of the form X(L)∩Γdiv where Γ is a finitely generated subgroup
of G(L) that is invariant under the Frobenius endomorphism of G and Γdiv := {g ∈
G(L) | ng ∈ Γ for some n ∈ Z} is the divisible hull of Γ. See Theorem 3.24 for a
precise statement.

We are grateful to Thomas Scanlon for communicating to us Lemma 2.3 below.
We end this introduction with a slight elaboration on special subvarieties.

Definition 1.3. For Λ ≤ G(L), by a Λ-special subvariety of G we mean a subvariety
of the form g+h−1(X0) where g ∈ Λdiv, h : G′ → G0 is a surjective homomorphism
from an algebraic subgroup G′ of G to a semiabelian variety G0 defined over Falg

p ,
and X0 is a subvariety of G0 also defined over Falg

p .
If Λ = {0} then we say absolutely special rather than {0}-special.
A special subvariety is then a G(L)-special subvariety (note that because L is

algebraically closed G(L)div = G(L)).

Fact 1.4. An irreducible subvariety X ⊂ G is absolutely special if and only if it
has a Zariski dense set of torsion points.

Proof. The right-to-left direction is the positive characteristic Manin-Mumford con-
jecture: see Pink and Rössler [9] for an algebraic proof, or Scanlon [11] for a model-
theoretic proof that relies on the trichotomy theorem for generic difference fields in
positive characteristic [2].

For the left-to-right direction, suppose h : G′ → G0 is a surjective homomorphism
where G′ is an algebraic subgroup of G and G0 is a semiabelian variety defined
over Falg

p . Given X0 ⊂ G0 defined over Falg
p , it suffices to show that h−1(X0)

has a Zariski dense intersection with G′
tor. Since X0(Falg

p ) is Zariski dense in X0,
this will follow once we observe that h−1(x) has a Zariski dense intersection with
G′

tor for any x ∈ X0(Falg
p ). As taking the torsion subgroup is an exact functor

on semiabelian varieties, h(G′
tor) =

(
G0

)
tor

= G(Falg
p ). It follows that for any

x ∈ X0(Falg
p ), h−1(x) = g + ker(h) for some g ∈ G′

tor. As every algebraic subgroup
of G′ has a Zariski dense set of torsion points, we have that h−1(x) has a Zariski
dense intersection with G′

tor, as desired. �

Corollary 1.5. (a) The sum of (Λ-)special subvarieties is (Λ-)special.
(b) If G is defined over a finite field then a subvariety of X is special if and

only if some translate of it is also defined over a finite field.

Proof. It is clear from Fact 1.4 that the sum of absolutely special varieties is abso-
lutely special. Part (a) follows as a Λ-special subvariety is of the form g + Y where
Y is absolutely special (and g ∈ Λdiv). Part (b) also follows from Fact 1.4 using
the fact that if G is defined over Falg

p then its torsion group is G(Falg
p ). �
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2. Toward the full Mordell-Lang conjecture in positive
characteristic

Fix L an algebraically closed field of positive characteristic p and G a semiabelian
variety defined over L. All varieties in this section are assumed to be defined over L.
Our aim here is to show that the following apparent weakening is in fact equivalent
to the Full Mordell-Lang conjecture.

Conjecture 2.1. Let K ≤ L be a finitely generated field over which G is defined,
Λ ≤ G(Kper) a finite rank subgroup, and X ⊂ G an irreducible subvariety defined
over K. If X(L) ∩ Λ is Zariski dense in X, then X is special.

The published proof that Conjecture 2.1 implies Conjecture 1.2 (Theorem 4.3
of [11]) is incorrect; for one thing, it implicitly assumes that the semiabelian variety
has Falg

p -trace zero. We were unable to correct that argument. On the other hand,
using some ideas from that argument together with a modification of a technique
of Rössler’s from [10] we are able to prove:

Theorem 2.2. Conjecture 2.1 implies Conjecture 1.2.

Proof. Let Λ ≤ Γdiv where Γ ≤ G(L) is a finitely generated group, and X ⊂ G an
irreducible subvariety such that X(L) ∩ Λ is Zariski dense in X. We wish to show
that X is special. We proceed by induction on dim X. Working modulo Stab(X)
we may assume that X has trivial stabiliser.

Let K ≤ L be a finitely generated field over which G and X are defined and
such that Γ ≤ G(K). We begin with the following uniform version of the Manin-
Mumford conjecture communicated to us by Thomas Scanlon.

Lemma 2.3 (T. Scanlon). There exist absolutely special subvarieties Y1, . . . , Y` of
G such that for any g ∈ Γdiv there is I ⊂ {1, . . . , `} and ζ ∈ Gtor such that(

g + X(L)
)
∩Gtor =

⋃
i∈I

ζ + Yi.

Proof of Lemma 2.3. The proof of this lemma uses (and repeats) that part of the
proof of Theorem 4.3 of [11] which is correct.

Let σ : L → L be a field automorphism fixing K and let P (x) ∈ Z[x] be a
polynomial whose complex roots do not include any roots of unity and such that
P (σ) vanishes on Gtor. The existence of such a pair (σ, P ) is proved in [11] (cf.
Corollary 3.5). Extend the difference field (L, σ) to a difference closed field (U, σ)
(i.e., a model of ACFAp). Let T := kerP (σ)(U) and F := G(Fix(σ)). The main
consequence of our choice of P and σ is that T and Fix(σ) are orthogonal (cf.
sections 3.2 and 3.3, and especially Lemma 3.18, of [11]).

Note the following facts:
(i) Γdiv ∩ T = Gtor

(ii) (σ − 1)(Γdiv) ⊂ Gtor

(iii) P (σ)(Γdiv) ⊂ Γdiv ∩ F

Indeed, (i) and (ii) follow from the fact that σ fixes Γ ≤ G(K) pointwise and
commutes with all multiplication-by-n maps. By (ii), P (σ) ◦ (σ − 1) vanishes on
Γdiv. Since P (σ) ◦ (σ − 1) = (σ − 1) ◦ P (σ), we get (iii). Now – exactly as in the
proof of Theorem 4.3 of [11] – using (ii),(iii), and the fact that P (x) and x − 1
are co-prime, one shows that Γdiv = (Γdiv ∩ T ) + (Γdiv ∩ F ). By (i) this implies
Γdiv = Gtor + (Γdiv ∩ F ).
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Let s : G×G → G be the addition map on G, and let X̃ = s−1(X). Now

X(L) ∩ Γdiv = X(U) ∩ Γdiv

= s
[
X̃(U) ∩

(
Gtor × (Γdiv ∩ F )

)]
= s

[(
X̃(U) ∩ (T × F )

)
∩

(
Gtor × (Γdiv ∩ F )

)]
The orthogonality of T and Fix(σ) implies that there are σ-closed sets A1, . . . , A` ⊂
T and B1, . . . , B` ⊂ F such that

X̃(U) ∩ (T × F ) =
⋃̀
i=1

Ai ×Bi.

Letting Yi be the Zariski closure of Gtor∩Ai and Zi the Zariski closure of Γdiv∩Bi,
we obtain that

X(L) ∩ Γdiv =
⋃̀
i=1

(
Yi(U) ∩Gtor

)
+

(
Zi(U) ∩ (Γdiv ∩ F )

)
and

X =
⋃̀
i=1

Yi + Zi.

By the positive characteristic Manin-Mumford theorem (Fact 1.4) we know that
each Yi is a finite union of absolutely special subvarieties of X. Decomposing
further we may assume that each Yi is itself absolutely special.

We now show that these Y1, . . . , Y` satisfy the conclusion of Lemma 2.3. Suppose
g ∈ Γdiv, and write g = ζ + η where ζ ∈ Gtor and η ∈ Γdiv ∩ F . Let I := {i : −η ∈
Zi}. Fix i ∈ I and suppose y ∈ Yi. Then y−η ∈ Yi+Zi ⊂ X and so y ∈

(
η+X(L)

)
.

That is, Yi ⊂
(
η + X(L)

)
, and so Yi ⊂

(
η + X(L)

)
∩Gtor. On the other hand,

suppose t ∈
(
η + X(L)

)
∩Gtor. Then t− η ∈ X(L) and so (t,−η) ∈ X̃ ∩ (T × F ).

Hence (t,−η) ∈ Ai × Bi for some i ≤ `. In particular, −η ∈ Zi (so i ∈ I) and
t ∈ Yi. That is,

(
η + X(L)

)
∩Gtor ⊂

⋃
i∈I Yi and so

(
η + X(L)

)
∩Gtor ⊂

⋃
i∈I Yi.

We have shown that (
η + X(L)

)
∩Gtor =

⋃
i∈I

Yi.

So (
g + X(L)

)
∩Gtor =

(
ζ + η + X(L)

)
∩Gtor

= ζ +
(
η + X(L)

)
∩Gtor

=
⋃
i∈I

ζ + Yi

as desired. �

Let Y1, . . . , Y` be as in Lemma 2.3. Fix i ≤ ` such that dim Yi > 0, and let

Wi := {w ∈ G : w + Yi ⊂ X}.
So Wi is a Zariski closed subset of G and Wi + Yi ⊂ X. If dim Wi = dim X then
X = Wi + y for all y ∈ Yi. But the facts that Stab(X) = 0 and dim Yi > 0 make
this impossible. Hence, dim Wi < dim X. By induction, the Zariski closure W̃i of
Wi ∩ Γdiv is a finite union of special subvarieties of G.
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Let Z :=
⋃
{W̃i + Yi : dim Yi > 0}. By Corollary 1.5(a), Z is a finite union of

special subvarieties. Hence, if Z = X we are done. We may therefore assume that
Z is a proper Zariski closed subset of X. We now follow Rössler’s argument [10]
using Z in place of the union of all positive dimensional “linear” subvarieties of X.
The only substantial modification of his argument that we require in our context
is that we need Claim 2.5 to prove Lemma 2.4 below.

Let U := X \ Z. Replacing K by a finitely generated extension we may assume
that Z is defined over K.

Lemma 2.4. There exists a finite set C ⊂ G(Kalg) such that for all a ∈ U ∩ Γdiv

and τ ∈ Gal(Kalg/Kper), τ(a)− a ∈ C.

Proof of Lemma 2.4. Let a ∈ Γdiv. We first point out that Gtor ∩ (U − a) is finite,
and its cardinality is bounded independently of a. Indeed,(

Gtor ∩ (U − a)
)
∪

(
Gtor ∩ (Z − a)

)
= Gtor ∩ (X − a) =

⋃
i∈I

ζ + Yi

for some I ⊂ {1, . . . , `} and ζ ∈ Gtor by Lemma 2.3. Fix i ∈ I such that dimYi > 0.
As a+ζ +Yi ⊂ X, a+ζ ∈ Wi. On the other hand, a ∈ Γdiv and ζ ∈ Gtor ≤ Γdiv. So
a + ζ ∈ W̃i, which implies that a + ζ + Yi ⊂ Z. Hence (ζ + Yi)∩ (U − a) = ∅. That
is, Gtor∩ (U −a) is contained in the finite set {ζ +Yi | 1 ≤ i ≤ ` and dim(Yi) = 0}.
The size of this latter set, say c, does not depend on a.

On the other hand, for any a ∈ U ∩ Γdiv and τ ∈ Gal(Kalg/Kper), τ(a) − a ∈
Gtor ∩ (U − a). Indeed, τ(U) = U as Z is defined over K, and if na ∈ Γ then
n
(
τ(a)− a

)
= τ(na)− na = 0. Hence [Kper(a) : Kper] is bounded by c. It follows

that for any a ∈ U ∩ Γdiv and τ ∈ Gal(Kalg/Kper),

[Kper
(
τ(a)− a

)
: Kper] ≤ [Kper(a, τ(a)) : Kper] ≤ c2.

The lemma will therefore follow from the following claim: �

Claim 2.5. Given d > 0 there are only finitely many torsion points α ∈ Gtor such
that [Kper(α) : Kper] < d.

Proof of Claim 2.5. First note that if [Kper(α) : Kper] < d then [K(α) : K]sep < d.
So if α is separable over K then [K(α) : K] < d. Hence, the set of prime-to-p torsion
points on G that satisfy [Kper(α) : Kper] < d is finite (by Northcott’s Theorem as
in Lemma 2.5 of [10]). Since every torsion point on G is the sum of a prime-to-p
torsion point and a p-primary torsion point, it suffices to show that the set

N := {α ∈ G(L) : [Kper(α) : Kper] < d, pnα = 0 for some n}
is finite.

First we prove that there are only finitely many p-primary torsion points in
G(Eper) for any finitely generated field E ≥ K (and hence in fact only finitely
many torsion at all in G(Eper)). Let

1 → T → G → A → 0

be an exact sequence of algebraic groups, where T is a torus and A is an abelian
variety. Replacing E by a finitely generated extension, we may assume that the
above exact sequence of algebraic groups is defined over E. Because the p-primary
part of Ttor is trivial (recall that T is isomorphic to a power of the multiplicative
group in characteristic p), we conclude that the p-primary part of G(Eper) injects
into the p-primary part of A(Eper). Hence, it suffices to show that the p-primary
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part of A(Eper) is finite. At the expense of replacing E by a finite extension, we
may assume A[p] ⊂ A(E).

As explained in Lemma 3.2 of [11], we can find a discrete valuation ring R whose
fraction field is E and whose residue field is finite, such that its corresponding place
v of E is of good reduction for A, and moreover, the reduction at v is injective
on A[p] (in the language from [11], this means that we can find a DVR R and
an abelian scheme A such that its generic fibre is A, and its special fibre is an
abelian variety which has the same p-rank as A). Because A is a projective variety,
A(R) = A(E) and so, reducing the E-points of A at v is a well-defined notion. For
every n ≥ 1, there exists an unique place of E1/pn

which lies above v. By abuse
of language, we may also call it v. Because the reduction at v is injective on A[p],
then the reduction at v is also injective on all the p-primary torsion of A(E1/pn

),
for each n ≥ 1. However, the residue field of each extension of v on E1/pn

is the
same finite field for each n (because E1/pn

is a purely inseparable extension of E).
Thus, reduction at v embeds the p-primary torsion of A(Eper) into a finite set. We
conclude that there are only finitely many p-primary torsion points in A(Eper), and
so, only finitely many p-primary torsion points in G(Eper).

We continue the proof of Claim 2.5. Assume toward a contradiction that N
is infinite. Note that for each α ∈ N , pα ∈ N . Consider the tree whose nodes
are elements of N , and for a node α the set of nodes immediately above α is
{β ∈ N : pβ = α}. This is an infinite but finitely branching tree – hence there
must be an infinite branch. That is, there exists (αn : n ∈ ω) such that each
αi ∈ N , α0 = 0, and pαn+1 = αn for all n. Using the fact that for α ∈ N ,
[K(α) : K]sep < d, we conclude that there exists n0 ≥ 1 such that for every n > n0,
[K(αn) : K(αn0)]sep = 1. This implies that {αn : n ∈ ω} ⊂ G

(
K(αn0

)per). Setting
E := K(αn0), we have contradicted what we proved in the previous paragraph.
Hence N must be finite. �

We now complete the proof of Theorem 2.2.
Since Z is a proper Zariski closed subset of X, U ∩ Γdiv is Zariski dense in

X. Hence, either
(
U ∩ Γdiv

)
\ G(Kper) or U ∩ Γdiv ∩ G(Kper) is Zariski dense in

X. Suppose (toward a contradiction) that the former holds. Note that for any
a ∈ U ∩ Γdiv \ G(Kper), there is an automorphism τ ∈ Gal(Kalg/Kper) such that
τ(a)−a 6= 0 and τ(a)−a ∈ C, where C is the finite set given by Lemma 2.4. Hence
there exists t 6= 0 such that

A := {a ∈ U ∩G(Kalg) : τ(a)− a = t for some τ ∈ Gal(Kalg/Kper)}

is Zariski dense in X. But for a ∈ A, t + a = τ(a) ∈ X. So t ∈ Stab(X),
contradicting the fact that Stab(X) = 0. It must therefore be the case that U ∩
Γdiv ∩G(Kper) is Zariski dense in X. So

X(L) ∩
(
Γdiv ∩G(Kper)

)
is Zariski dense in X, and Conjecture 2.1 (our assumption) implies that X is special.
This proves Theorem 2.2. �

Remark 2.6. If we strengthen the conjectures so that the conclusions state that X
is Λ-special (rather than just special), then the above proof of Theorem 2.2 shows
that the strengthened Conjecture 2.1 implies the strengthened Conjecture 1.2.
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Using the reduction given by Theorem 2.2, together with a result of Kim’s [4],
we can resolve the curve case of the full Mordell-Lang conjecture:

Corollary 2.7 (Full Mordell-Lang for Curves). Suppose C is a smooth projective
curve embedded in its jacobian A, and Λ ≤ A(L) is of finite rank. If C ∩ Λ is
infinite then C is special.

Proof. By Theorem 2.2 we need only consider the case when Λ ≤ A(Kper) for K a
finitely generated field over which A and C are defined. It suffices to show that if
C(Kper) is infinite then C is special.

If the genus of C is 1 then C = A is special. Hence, we may assume that the
genus of C is greater than 1. Now C is birationally equivalent to an affine plane
curve C ′ ⊂ A2 of genus greater than 1. Extending K if necessary, we may assume
that the birational equivalence is over K, and hence C ′(Kper) is infinite. Now
Corollary 1 of [4] states that an affine plane curve of genus greater than 1 with
infinitely many Kper-rational points must be birational to one defined over a finite
field. Hence, there exists a smooth projective curve C0 defined over Falg

p that is
birationally equivalent, and hence isomorphic, to C. It follows that there is an
isomorphism h : A → A0, where A0 is the jacobian of C0 (also defined over Falg

p )
with h(C) = C0. So C is special, as desired. �

3. The isotrivial case

Here we consider the case of semiabelian varieties defined over finite fields.
Fix L an algebraically closed field of characteristic p > 0 and G a semiabelian

variety defined over the finite field Fq, where q is a power of p. Let F denote the
endomorphism of G induced by the q-power Frobenius, and denote by Z[F ] the
subring of the endomorphism ring of G generated by F .

Fact 3.1. F is integral over Z in End(G). Moreover, the minimal monic polynomial
of F over Z has roots whose absolute values are all either q or

√
q.

Proof. Let r > 0 be such that there exists a short exact sequence

1 → T → G → A → 0

defined over Fqr , where T is an algebraic torus and A is an abelian variety. More-
over, choose r so that T is isomorphic over Fqr to a power of the multiplicative
group, say Gµ

m for some µ ∈ N. Note that if F r is integral over Z and P (X) is
its minimal monic polynomial, then F is integral over Z and the minimal monic
polynomial of F divides P (Xr). Hence it suffices to prove that F r is integral over
Z and that its minimal monic polynomial has roots whose absolute values are all
either qr or

√
qr. In other words we may assume that r = 1 and that the above

exact sequence as well as the isomorphism between T and Gµ
m are defined over Fq.

If G = T then the fact is clear since F = q in End(Gµ
m). For G = A this is

the Riemann hypothesis (see for example Theorem 14.1 of [6]). In general, use
the fact that End(G) embeds into End(T ) × End(A) since there are no nontrivial
homomorphisms from T to A or vice versa. �

It follows that Z[F ] is a finite integral extension of Z. In particular, every finitely
generated Z[F ]-module is a finitely generated group.
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3.1. F -sets and bi-F -sets. We will be interested in the intersection of subvarieties
of G with certain Z[F ]-submodules of G(L). In the case of finitely generated Z[F ]-
submodules, such intersections were described in [8] in terms of the following kinds
of sets:

Definition 3.2 (cf. Section 2 of [7]). Suppose Γ ≤ G(L) is a Z[F ]-submodule.
(a) By a sum of F -orbits in Γ we mean a set of the form

S(a1, . . . , am; δ1, . . . , δm) :=
m∑

j=1

{Fnδj aj : n ∈ N}

where a1, . . . , am ∈ Γ and δ1, . . . , δm are positive integers. If all the δj ’s are
the same and equal to δ, then we simply write S(a1, . . . , am; δ) for this set.

(b) By a sum of F -cycles in Γ we mean a set of the form

C(a1, . . . , am; δ1, . . . , δm) :=
m∑

j=1

{aj + F δj aj + F 2δj aj + · · ·+ Fnδj aj : n ∈ N}

where a1, . . . , am ∈ Γ and δ1, . . . , δm are positive integers. If all the δj ’s are
the same and equal to δ, then we simply write C(a1, . . . , am; δ) for this set.

(c) An F -set in Γ is a set of the form b + C + Λ where b ∈ Γ, C is a sum of
F -cycles in Γ, and Λ ≤ Γ is a Z[F r]-submodule for some r > 0.

Remark 3.3. If δ = rγ then S(a; γ) =
r−1⋃
`=0

S(F `γa; δ). Hence, if δ is divisible by

each of δ1, . . . , δn, then S(a1, . . . , an; δ1, . . . , δn) is a finite union of sets of the form
S(b1, . . . , bn, δ).

Note that as F commutes with multiplication by any integer, if Γ ≤ G(L) is a
Z[F ]-module, then so is Γdiv. The following lemma says that in Γdiv one can ignore
the F -cycles and deal only with F -orbits.

Lemma 3.4. Every sum of F -cycles in Γ is a translate of a sum of F -orbits in
Γdiv. In particular, every F -set in Γdiv is of the form b + S + Λ where b ∈ Γdiv, S
is a sum of F -orbits in Γdiv, and Λ ≤ Γdiv is a Z[F r]-submodule for some r > 0.

Proof. By Lemmas 2.7 and 7.1 of [8] every sum of F -cycles in Γ is a translate of
a sum of F -orbits in some finitely generated Z[F ]-module extension Γ′ ≤ G(L) of
Γ. In fact, Γ′ is obtained by a finite sequence of “splitting extensions” – that is,
extensions generated by elements x of G(L) satisfying F δx − x − b = 0 for some
δ > 0 and b ∈ Γ. It suffices to show therefore that such x are in Γdiv.

Let P (X) be the minimal monic polynomial for h := F δ − 1 over Z and let ` be
the constant term of P . Note that h is an isogeny (its kernel is G(Fqδ)) and hence
not a zero-divisor in End(G). It follows that ` 6= 0. Factoring h out of P (h)− ` we
have that −` = Q(h)h for some non-zero polynomial Q(X). So −`x = Q(h)

(
h(x)

)
.

Since h(x) = b ∈ Γ, −`x ∈ Γ, and so x ∈ Γdiv as claimed. �

The following “absolute” isotrivial Mordell-Lang statement for finitely generated
Z[F ]-modules is why F -sets were introduced.

Fact 3.5 (Theorem 7.8 and Corollary 7.15 of [8]). Suppose X ⊂ G is a subvariety
and Γ ≤ G(L) is a finitely generated Z[F ]-module. Then X(L)∩Γ is a finite union
of F -sets in Γ.
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Moreover, this happens uniformly: suppose {Xb}b∈B is an algebraic family of
subvarieties of G. Then there exist F -sets A1, . . . , A` in Γ such that for any b ∈ B
there exist I ⊂ {1, . . . , `} and points (gi)i∈I from Γ such that

Xb(L) ∩ Γ =
⋃
i∈I

gi + Ai.

One of the goals of the current paper, accomplished in Section 3.3 below, is to
extend the above description to sets of the form X(L) ∩ Γdiv. In order to do this
we need to allow for negative powers of F .

Lemma 3.6. If Γ ≤ G(L) is a Z[F ]-submodule, then F−1(Γdiv) = Γdiv.

Proof. As Γdiv is a Z[F ]-module, it suffices to show that for g ∈ G(L), if F (g) ∈ Γdiv

then g ∈ Γdiv. Now the constant term of the minimal monic polynomial P (X) of
F over Z is non-zero – it is in fact ` = ±qr for some r > 0. So for some polynomial
Q(X), ` = Q(F )F in End(G). Hence, if F (g) ∈ Γdiv then Q(F )

(
F (g)

)
∈ Γdiv and

so `g ∈ Γdiv, and so g ∈ Γdiv as desired. �

Definition 3.7. Suppose Γ = Γdiv ≤ G(L) is a Z[F ]-submodule.

(a) By a sum of bi-F -orbits in Γ we mean a set of the form

B(a1, . . . , am; δ1, . . . , δm) :=
m∑

j=1

{Fnδj aj : n ∈ Z}

where a1, . . . , am ∈ Γ and δ1, . . . , δm are positive integers. If all the δj ’s are
the same and equal to δ, then we simply write B(a1, . . . , am; δ) for this set.

(b) A bi-F -set in Γ is a set of the form b + B + Λ where b ∈ Γ, B is a sum of
bi-F -orbits in Γ, and Λ ≤ Γ is a Z[F r]-submodule for some r > 0.

3.2. Full Mordell-Lang for isotrivial semiabelian varieties. Before giving an
explicit description of sets of the form X(L) ∩ Γdiv we first prove the full function-
field Mordell-Lang conjecture (Conjecture 1.2) in this case where G is defined over
a finite field. The key ingredient, besides the reduction obtained in Section 2, is
the explicit description of the sets X(L) ∩ Γ obtained by Scanlon and the second
author in [8], and stated as Fact 3.5 above. More precisely, it is the uniformity of
this description as X varies in an algebraic family that is essential.

Lemma 3.8. Suppose K ≤ L is a finitely generated field. If Γ ≤ G(K) is a finitely
generated group then Γdiv ∩G(K) is a finitely generated group.

Proof. After taking a finite extension of K, we may assume that, over K, G is an
extension of an abelian variety A by a torus T , and that T is isomorphic to Gµ

m

over K. In the case that G = A the lemma follows from the fact that A(K) is itself
finitely generated.

Consider the case when G = T . Let R ≤ K be an integrally closed finitely
generated Fq-algebra such that Γ ≤ T (R), T is isomorphic to Gµ

m over R, and K is
the fraction field of R. Then T (R) is finitely generated. Moreover, by integrality,
Gµ

m(R)div ∩ Gµ
m(K) = Gµ

m(R). Hence T (R)div ∩ T (K) = T (R), and the lemma is
true in this case also.
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Finally, consider the general case. Let π : G → A be a surjective homomorphism
over K such that T = ker(π). Then

π
(
Γdiv ∩G(K)

)
≤ (πΓ)div ∩A(K)

and (
Γdiv ∩G(K)

)
∩ ker(π) =

(
T (L) ∩ Γ

)div ∩ T (K)

are both finitely generated. Hence Γdiv ∩ G(K), being an extension of a finitely
generated group by a finitely generated group, is itself finitely generated. �

Proposition 3.9. Suppose Γ ≤ G(L) is a finitely generated Z[F ]-submodule and
X ⊂ G is an irreducible subvariety. If X(L) ∩

( ⋃
n≥0

F−nΓ
)

is Zariski dense in X

then for some n ≥ 0, X(L) ∩ F−nΓ is Zariski dense in X.

Proof. For each n, let Yn be the Zariski closure of X(L)∩F−nΓ. We need to show
that for some n, Yn = X. Since the Yn’s form a countable increasing chain of
subvarieties of X whose union is Zariski-dense in X, it suffices to show that for
some N , Yn = Yn+1 for all n > N . Since dim Yn ≤ dim X, it will suffice to show
that the number of irreducible components of Yn is bounded as n varies. This is
what we will show.

For each n, let X(n) ⊂ G denote the transformation of X under the qnth power
Frobenius. Note that Fn is a bijection between X(L)∩F−nΓ and X(n)(L)∩Γ. So
Fn is a bijective morphism from Yn to the Zariski closure of X(n)(L) ∩ Γ.

Since Γ is finitely generated, Fact 3.5 tells us that X(n)(L) ∩ Γ is a finite union
of F -sets. But more is true: since all the X(n) belong to an algebraic family of
subvarieties of G, this happens uniformly. There exist F -sets A1, . . . , A` in Γ such
that for any n there exist I ⊂ {1, . . . , `} and elements (gi)i∈I from Γ, such that

X(n)(L) ∩ Γ =
⋃
i∈I

gi + Ai.

Hence the number of irreducible components of the Zariski closure of X(n)(L)∩Γ is
bounded independently of n – it is bounded by the sum of the number of irreducible
components of the Zariski closures of the Ai’s. Taking preimages under the bijective
morphism Fn, we see that the number of irreducible components of Yn is bounded
independently of n, as desired. �

Corollary 3.10. Suppose K ≤ L is a finitely generated field and Λ ≤ G(Kper)
is a finite rank subgroup. Suppose X ⊂ G is an irreducible subvariety such that
X(L) ∩ Λ is Zariski dense in X. Then X is special.

More precisely, some translate of X by an element of the divisible hull of the
Z[F ]-module generated by Λ is defined over a finite field.

Proof. Since Λ is a finite rank subgroup of G(Kper), there is a finitely generated
subgroup of G(Kper) in whose divisible hull Λ is contained. Let Γ be the Z[F ]-
module generated by such a finitely generated group. Replacing K by a finite
extension contained in Kper, we may assume that Γ ≤ G(K). By Lemma 3.8,
Γdiv ∩ G(K) is finitely generated. Hence, without changing the divisible hull, we
may assume Γ = Γdiv ∩G(K).

We will show that some translate of X by an element of Γdiv is defined over a
finite field.
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Let Γ̂ := Γdiv ∩ G(Kper). So Λ ⊂ Γ̂. We claim that Γ̂ =
⋃
n≥0

F−nΓ. Indeed, it

suffices to show that F−nΓ = Γ̂ ∩G(K
1

qn ). Let Q(X) be the minimal polynomial
for Fn in Z[F ] and let ` be the constant term of Q. Since Fn is not a zero-divisor,
` 6= 0. Factoring Fn out of Q(Fn) − ` we have that −` = R(Fn)Fn for some
polynomial R(X). So, for g ∈ G(L), if Fng ∈ Γ then −`g ∈ Γ, and so g ∈ Γdiv. On
the other hand, if Fng ∈ Γ then g ∈ G(Kper). Hence F−nΓ ⊂ Γ̂. Now,

Γ̂ ∩G(K
1

qn ) ⊂ F−nΓ̂ ∩G(K
1

qn ) = F−n
(
Γ̂ ∩G(K)

)
= F−nΓ ⊂ Γ̂ ∩G(K

1
qn ).

where the second equality is by the fact that Γ = Γdiv ∩G(K) = Γ̂ ∩G(K). Hence
F−nΓ = Γ̂ ∩G(K

1
qn ). Hence Γ̂ =

⋃
n≥0

F−nΓ, as claimed.

Since X(L) ∩ Γ̂ is Zariski dense in X, Proposition 3.9 implies that for some
n ≥ 0, X(L) ∩ F−nΓ is Zariski dense in X. At this point, since F−nΓ is a finitely
generated group, Theorem 1.1 already implies that X is special.1 To get the more
precise statement claimed we need to argue further using Lemma 3.4 as follows.

Since Γn := F−nΓ is a finitely generated Z[F ]-module, X(L) ∩ Γn is a finite
union of F -sets in Γn by Fact 3.5. By irreducibility there exist a Z[F r]-submodule
H ≤ Γn and a translate of a sum of F -cycles C in Γn such that C + H is Zariski
dense in X. By Lemma 3.4, C is a translate of a sum of F -orbits in Γdiv

n . But
Γ ≤ Γn ≤ Γ̂ ≤ Γdiv and so Γdiv

n = Γdiv. Hence C = d+A where d ∈ Γdiv and A is a
sum of F -orbits in Γdiv. So A + H is Zariski dense in −d + X. But for some δ > 0,
F δ(A + H) ⊂ A + H. It follows that −d + X is defined over a finite field. �

The following corollary is Conjecture 1.2 for isotrivial semiabelian varieties.

Theorem 3.11 (Full Isotrivial Mordell-Lang). Let L be an algebraically closed field
of characteristic p > 0, G a semiabelian variety defined over Fq, Λ ≤ G(L) a finite
rank subgroup, and X ⊂ G an irreducible subvariety. If X(L) ∩ Λ is Zariski-dense
in X, then X is special.

Proof. By Theorem 2.2 it suffices to prove the theorem in the case that Λ ≤ G(Kper)
for some finitely generated field K. This is done in Corollary 3.10. �

Remark 3.12. If in Theorem 3.11 we assume that Λ is in addition a Z[F ]-
submodule, then we can in fact conclude that X is Λ-special. Indeed, this is by
Remark 2.6 and the “more precisely” clause of Corollary 3.10. For example, if
R ≤ L is a finitely generated Fq-algebra and X(L)∩G(R)div is Zariski dense in X,
then X is G(R)-special.

3.3. Division points on subvarieties of isotrivial semiabelian varieties. We
now aim to describe the sets of the form X(L) ∩ Γdiv where X ⊂ G is a subvariety
and Γ ≤ G(L) is a finitely generated Z[F ]-submodule. We will do this in two

1The isotrivial Mordell-Lang for finitely generated subgroups, which is what is being used here,

is a very special case of Theorem 1.1 that was also proved in [1] using a Hilbert scheme argument
and in [8] (cf. Proposition 7.7) using elementary model theory.
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steps: First we will study X(L)∩ΓS , where ΓS introduced below is a certain Z[F ]-
submodule of Γdiv that contains the prime-to-p divisible hull of Γ. Then, proving
that Γdiv =

⋃
n≥0

F−nΓS , we will give a complete description of X(L) ∩ Γdiv.

Definition 3.13. Let S ⊂ End(G) be the multiplicative set

S := {Q(F ) ∈ Z[F ] : Q(X) ∈ Z[X] such that Q(0) is coprime with p}.

Suppose Γ ≤ G(L) is a Z[F ]-submodule. By the S-divisible hull of Γ we mean

ΓS := {g ∈ G(L) : α(g) ∈ Γ for some α ∈ S}.

Lemma 3.14. Every endomorphism in S is a separable isogeny.

Proof. Let α = Q(F ) ∈ S where Q(X) = n+XR(X) ∈ Z[X] and n is coprime with
p. Then α = n + FR(F ) and hence α has the same differential as multiplication-
by-n. As multiplication-by-n is a separable isogeny, so is α. �

We collect together in the following lemma the relevant properties of the S-
divisible hull and its relation to the full divisible hull:

Lemma 3.15. Suppose Γ ≤ G(L) is a Z[F ]-submodule.
(a) ΓS is a Z[F ]-submodule of Γdiv.
(b) ΓS = Γ + F (ΓS)
(c) If Γ is finitely generated as a Z[F ]-module then ΓS/F (ΓS) is finite.
(d) If Γ ≤ G(K) for some subfield K ≤ L, then ΓS ≤ G(Ksep).
(e) Γdiv =

⋃
n≥0

F−nΓS.

Proof. Using the fact that F commutes with everything in Z[F ], it is not hard to
see that ΓS is a Z[F ]-module. Now suppose g ∈ ΓS and so α(g) ∈ Γ for some
α ∈ S. Note that as α is an isogeny (Lemma 3.14) it cannot be a zero-divisor
in End(G), and hence the constant term of the minimal monic polynomial of α
over Z in End(G) is non-zero. So there is a non-zero integer `, and a polynomial
Q(X) ∈ Z[X], such that ` = Q(α)α in End(G). On the other hand, as Q(α) ∈ Z[F ]
and Γ is a Z[F ]-module, Q(α)

(
α(g)

)
∈ Γ. So `g ∈ Γ, and hence g ∈ Γdiv. This

proves part (a).
Let ±qr be the constant term of the minimal monic polynomial of F over Z (cf.

Fact 3.1). Then qr ∈ FZ[F ], and so Z[F ]/(F ) is a quotient of Z/qrZ. In particular,
if n is coprime with p then there is an m ∈ Z such that mn = 1 in Z[F ]/(F ). We
use this to prove that ΓS = Γ+F (ΓS). Indeed, let g ∈ ΓS . Then, α(g) ∈ Γ for some
α ∈ S. As the constant term of α is coprime with p, there is an integer m and some
β ∈ Z[F ] such that mα = 1+Fβ in End(G). Hence mα(g) = g+Fβ(g) ∈ g+F (ΓS).
On the other hand, mα(g) ∈ Γ. So g ∈ Γ + F (ΓS), as desired for part (b).

Using part (b) we have that

ΓS/F (ΓS) =
(
Γ + F (ΓS)

)
/F (ΓS) ≈ Γ/

(
Γ ∩ F (ΓS)

)
and the latter is a quotent of Γ/FΓ. If Γ is finitely generated then Γ/FΓ is a finitely
generated Z[F ]/(F )-module, and we have already seen that Z[F ]/(F ) is a quotient
of the finite ring Z/qrZ. Hence, ΓS/F (ΓS) is finite, proving part (c).

Part (d) is a consequence of Lemma 3.14.
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The right-to-left containment of part (e) follows from part (a) together with the
fact (Lemma 3.6) that FΓdiv = Γdiv. For the left-to-right containment of part (e)
we begin with the following claim.

Claim 3.16. There exists i ∈ N such that for any g ∈ G(L), if pg ∈ ΓS then
F i(g) ∈ ΓS.

Proof of Claim 3.16. Write the minimal monic polynomial of F ∈ Z[F ] as

a0 + a1X + · · ·+ amXm.

In fact a0 = ±qr and am = 1. So there is a least 0 < i ≤ m such that ai

is not divisible by p. Let α := −ai − ai+1F − · · · − amFm−i ∈ S. Note that
a0+a1F+· · ·+ai−1F

i−1 = F iα. On the other hand, (a0+a1F+· · ·+ai−1F
i−1)(g) ∈

ΓS since each aj is divisible by p for all j < i and pg ∈ ΓS by assumption. Hence
αF i(g) = F iα(g) ∈ ΓS , and so F i(g) ∈ ΓS as desired. �

Claim 3.17. For each n ≥ 0 there exists k ∈ N such that for any g ∈ G(L), if
png ∈ ΓS then F kg ∈ ΓS.

Proof of Claim 3.17. By induction on n. The case of n = 0 is clear and the case of
n = 1 is just Claim 3.16. Now suppose n ≥ 2 and g ∈ G(L) is such that png ∈ ΓS .
By Claim 3.16 applied to pn−1g, there is an i such that pn−1F i(g) = F i(pn−1g) ∈
ΓS . By the induction hypothesis, F `F i(g) ∈ ΓS for some `. Hence k = ` + i
works. �

To complete the proof of part (e), and hence of Lemma 3.15, note that the prime-
to-p divisible hull of Γ is contained in ΓS , and so Γdiv is the p-primary diivisible hull
of ΓS . So by Claim 3.17, Γdiv ⊂

⋃
n≥0

F−nΓS . So Γdiv =
⋃
n≥0

F−nΓS as desired. �

The following is a first step toward understanding the intersection of X(L) with
the divisible hull of a finitely generated group.

Proposition 3.18. Suppose Γ = Θ+G(Falg
p ) where Θ ≤ G(L) is a finitely generated

Z[F ]-submodule. If X ⊂ G is a subvariety of G over L, then X(L) ∩ ΓS is a finite
union of sets of the form W + Y (Falg

p ) where W is an F -set in ΓS and Y ⊂ G is a
subvariety defined over Falg

p .

Remark 3.19. (a) Since G(Falg
p ) = Gtor, Θdiv = Γdiv.

(b) One obtains a natural example of such a Γ by considering G(R) where
R ≤ L is a finitely generated Falg

p -algebra (cf. [7], Section 3).

Proof of Proposition 3.18. Essentially, the proof of Theorem 3.1 of [7], which in
turn relies on [8], goes through in this setting. For the sake of completeness we give
the argument here. We work by induction on dim X. As usual, we may assume
that X(L)∩ΓS is Zariski dense in X, that X is irreducible, and that X has trivial
stabiliser.

Let R ≤ L be an integrally closed finitely generated Falg
p -algebra such that

Γ ≤ G(R). Hence ΓS ≤ G(R)S . If we show that X(L) ∩ G(R)S has the desired
form, then so will X(L) ∩ ΓS . Indeed, this follows from the following two facts:

• If W ⊂ G(L) is an F -set and Y ⊂ G is a subvariety defined over Falg
p , then(

W + Y (Falg
p )

)
∩ ΓS = (W ∩ ΓS) + Y (Falg

p )
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since Y (Falg
p ) ⊂ Γ ≤ ΓS .

• An F -set intersected with a Z[F ]-submodule is a finite union of F -sets (cf.
Proposition 3.9(b) of [8]).

Hence, we may assume that Γ = G(R).

Claim 3.20. For some g ∈ G(L), X − g is defined over Falg
p .

Proof of Claim 3.20. As ΓS ≤ Γdiv = Θdiv, Θ is finitely generated, and X(L) ∩ ΓS

is Zariski dense in X, this is just an instance of the full isotrivial Mordell-Lang
theorem (Theorem 3.11). �

Let R ≤ R̃ ≤ L be an integrally closed finitely generated Falg
p -algebra such that

g ∈ G(R̃). Exactly as before, if we show that X(L) ∩G(R̃)S has the desired form,
then so will X(L)∩ΓS . Hence, we may assume that g ∈ Γ. Replacing X by X − g,
and F by an appropriate power of itself, we may thus assume that X is defined
over Fq.

Let E be the separable closure of the fraction field of R. So ΓS ≤ G(E) by
Lemma 3.15(d). Note that since E is the separable closure of a finitely generated
extension of Falg

p ,
⋂
n

Eqn

= Falg
p .

Claim 3.21. There exists n > 0 such that if a ∈ ΓS \ F (ΓS) then X − a does not
have a Zariski dense intersection with FnΓS.

Proof of Claim 3.21. Suppose this were false. Let (ai)i∈ω be a sequence of points
in ΓS \F (ΓS) and (ni)i∈ω be a strictly increasing sequence of positive integers such
that X − ai has a Zariski dense intersection with FniΓS , and so with G(Eqni ).

Note that ΓS is F -pure in G(E). Indeed, if g ∈ G(E) and F (g) ∈ ΓS , then
αF (g) ∈ Γ = G(R) for some α ∈ S. So F

(
α(g)

)
∈ G(R). Hence α(g) ∈ G(E) ∩

G(R
1
q ). But E ∩ R

1
q = R since R is integrally closed and E is separable over the

fraction field of R. Hence g ∈ G(R)S = ΓS .
It follows that ΓS \F (ΓS) ⊂ G(E) \G(Eq). So each ai ∈ G(E) \G(Eq). Passing

to a saturated elementary extension ∗E we find ∗a ∈ G(∗E) \ G(∗Eq) such that
X− ∗a has a Zariski dense intersection with

⋂
i

G(∗Eqni ), and hence is defined over

the algebraically closed field
⋂
i

∗Eqni . But since X is defined over Fq we obtain

that σ(∗a) − ∗a stabilises X for all automorphisms of ∗Ealg that fix
⋂
i

∗Eqni . As

X has trivial stabiliser, ∗a ∈ G
( ⋂

i

∗Eqni
)
. But this contradicts ∗a /∈ G(∗Eq). �

The rest of the argument is exactly as in [7].
By Claim 3.21, for each a ∈ ΓS \ FΓS , (X − a)(L) ∩ FnΓS has lower dimen-

sion than X. Note that as G(Falg
p ) is S-divisible, ΓS = ΘS + G(Falg

p ). Hence by
Lemma 3.15(c) applied to the finitely generated Θ, FΓS has finite index in ΓS . It
follows that FnΓS has finite index in FΓS . So (X − a)(L) ∩ FΓS has lower dimen-
sion than X. Let A ⊂ ΓS be a finite set of coset representatives for the non-zero
cosets of FΓS in ΓS . Let Za := (X − a)(L) ∩ FΓS as above. By induction we have
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that

X(L) ∩ (ΓS \ FΓS) =
⋃
a∈A

X(L) ∩ (a + FΓS)

=
⋃
a∈A

a + [(X − a)(L) ∩ FΓS ]

=
⋃
a∈A

a + Za(L) ∩ FΓS

=
k⋃

i=1

Si + Yi(Falg
p )

where each Si is an F -set and Yi is a subvariety defined over Falg
p . Let m be

sufficiently divisible so that each Yi is defined over the extension of Fq of degree m.
Noting that since G(Falg

p ) ≤ ΓS ≤ G(E), F∞ΓS = G(Falg
p ), we compute:

X(L) ∩ ΓS =
[
X(L) ∩ F∞ΓS

]
∪

[
X(L) ∩ (ΓS \ F∞ΓS)

]
= X(Falg

p ) ∪
∞⋃

t=0

X(L) ∩ (F tΓS \ F t+1ΓS)

= X(Falg
p ) ∪

∞⋃
j=0

m−1⋃
`=0

X(L) ∩ [Fmj+`ΓS \ Fmj+`+1ΓS ]

= X(Falg
p ) ∪

∞⋃
j=0

Fmj [
m−1⋃
`=0

F `(X(L) ∩ (ΓS \ FΓS))]

= X(Falg
p ) ∪

∞⋃
j=0

Fmj [
m−1⋃
`=0

k⋃
i=1

F `Si + Y
(q`)
i (Falg

p )]

= X(Falg
p ) ∪

m−1⋃
`=0

k⋃
i=1

[( ∞⋃
j=0

Fmj(F `Si)
)

+ Y
(q`)
i (Falg

p )
]

By Corollary 7.3 of [8], fixing i and `, the set
∞⋃

j=0

Fmj(F `Si) is contained in some

t⋃
k=1

T
(i,`)
k where T

(i,`)
k are F -sets in ΓS and

∞⋃
j=0

Fmj(F `Si) =
t⋃

k=1

T
(i,`)
k . So for

any y ∈ Y
(q`)
i (Falg

p ),
∞⋃

j=0

Fmj(F `Si) ⊂
t⋃

k=1

T
(i,`)
k ⊂ X − y. Hence we may replace

∞⋃
j=0

Fmj(F `Si) with
t⋃

k=1

T
(i,`)
k in the above expression. That is,

X(L) ∩ ΓS = X(Falg
p ) ∪

m−1⋃
`=0

k⋃
i=1

[( t⋃
k=1

T
(i,`)
k

)
+ Y

(q`)
i (Falg

p )
]

and hence is a set of the desired form. This proves Proposition 3.18 �
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The following lemmas extend 7.2 and 7.3 of [8] to the bi-F -set context (cf. Sec-
tion 3.1 for the notation).

Lemma 3.22. Suppose Y ⊂ G is a subvariety defined over Fqr , Λ ≤ G(L) is a
Z[F r]-submodule, and a1, . . . , an ∈ G(L). Then,

B(a1, . . . , an; r) + Λ + Y (Falg
p ) = S(a1, . . . , an; r) + Λ + Y (Falg

p ).

Moreover, this subvariety is defined over Fqr .

Proof. The right-to-left containment is clear. For the other direction, let Z :=
S(a1, . . . , an; r) + Λ + Y (Falg

p ). Since

F r
(
S(a1, . . . , an; r) + Λ + Y (Falg

p )
)
⊂ S(a1, . . . , an; r) + Λ + Y (Falg

p ),

Z is defined over Fqr . Now let a ∈ B(a1, . . . , an; r) + Λ + Y (Falg
p ). Then for some

N > 0, FNr(a) ∈ S(a1, . . . , an; r) + Λ + Y (Falg
p ) ⊂ Z. Since Z is defined over Fqr ,

it follows that a ∈ Z. So B(a1, . . . , an; r) + Λ + Y (Falg
p ) ⊂ Z, as desired. �

Lemma 3.23. Suppose Y ⊂ G is a subvariety defined over Fqr , Λ ≤ G(L) is an
F r-divisible Z[F r]-submodule, and b, a1, . . . , an ∈ G(L). If X ⊂ G is a subvariety
such that

Σ :=
⋃

m≥0

F−mr
(
b + S(a1, . . . , an; r) + Λ + Y (Falg

p )
)
⊂ X

then Σ ⊂ B(b, a1, . . . , an; r) + Λ + Y (Falg
p ) ⊂ X.

Proof. Since Λ is F r-divisible and Y is defined over Fqr , it is not hard to verify the
first containment. For the second containment we note that for all m ≥ 0,

F−mrb + B(a1, . . . , an; r) + Λ + Y (Falg
p ) ⊂ F−mrb + B(a1, . . . , an; r) + Λ + Y (Falg

p )

= F−mrb + S(a1, . . . , an; r) + Λ + Y (Falg
p )

= F−mr
(
b + S(a1, . . . , an; r) + Λ + Y (Falg

p )
)

⊂ Σ
⊂ X

where the first equality is by Lemma 3.22 and the second equality is by the fact
that S(a1, . . . , an; r) + Λ + Y (Falg

p ) is defined over Fqr (also Lemma 3.22). �

We are now ready to prove the following “absolute” full isotrivial Mordell-Lang
statement:

Theorem 3.24. Let L be an algebraically closed field of characteristic p, q a power
of p, G a semiabelian variety defined over Fq, and F the q-power Frobenius endo-
morphism of G. If Γ ≤ G(L) is a finitely generated Z[F ]-submodule and X ⊂ G
is a subvariety, then X(L) ∩ Γdiv is a finite union of sets of the form T + Y (Falg

p )
where T is a bi-F -set in Γdiv and Y ⊂ G is a subvariety defined over Falg

p .

Proof. We may assume that X is irreducible and X ∩ Γdiv is Zariski dense in X.
Hence, by Theorem 3.11, X is special. That is, X = d + Z where Z is defined
over Falg

p . Moreover, by Remark 3.12, we can find d ∈ Γdiv. By Lemma 3.15(e),

Γdiv =
⋃
n≥0

F−nΓS . Say d ∈ F−mΓS and let Γ1 := F−mΓ. Note that d ∈ ΓS
1 .
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Set Ψ := Γ1 + G(Falg
p ). As we have pointed out before, the S-divisibility of

G(Falg
p ) implies that ΨS = ΓS

1 + G(Falg
p ). We have

Γdiv = Γdiv
1

= Γdiv
1 + G(Falg

p )

=
⋃
n≥0

F−nΓS
1 + G(Falg

p )

=
⋃
n≥0

F−n
(
ΓS

1 + G(Falg
p )

)
=

⋃
n≥0

F−nΨS

where the first equality is by Lemma 3.6, the third is by Lemma 3.15(e) applied to
Γ1, and the fourth uses the fact that F−nG(Falg

p ) = G(Falg
p ).

On the other hand, since Γ1 is finitely generated, Proposition 3.18 tells us that
Z ∩ΨS is a finite union of sets of the form W +Y (Falg

p ) where W is an F -set in ΨS

and Y ⊂ G is a subvariety defined over Falg
p . Using Lemma 3.4 we can express the

W ’s as F -sets in Γdiv that involve sums of F -orbits rather than F -cycles. Moreover,
using Remark 3.3, we can choose r sufficiently divisible such that

Z ∩ΨS =
⋃̀
i=1

(
bi + S(ai,1, . . . , ai,t; r) + Λi + Yi(Falg

p )
)

where bi, ai,1, . . . , ai,t ∈ Γdiv, Λi ≤ ΨS is a Z[F r]-module, and Z and Yi are all
defined over Fqr . Now

X ∩ Γdiv = (d + Z) ∩
( ⋃

n≥0

F−nΨS
)

= d +
[
Z ∩

( ⋃
n≥0

F−nΨS
)]

= d +
[
Z ∩

( ⋃
n≥0

F−nrΨS
)]

= d +
⋃
n≥0

F−nr(Z ∩ΨS)

= d +
⋃̀
i=1

⋃
n≥0

F−nr
(
bi + S(ai,1, . . . , ai,t; r) + Λi + Yi(Falg

p )
)

Since Λi and Γdiv are preserved under F−r, replacing each Λi by Λi ∩ Γdiv allows
us to assume that each Λi is F r-divisible. Hence, letting

Σi :=
⋃
n≥0

F−nr
(
bi + S(ai,1, . . . , ai,t; r) + Λi + Yi(Falg

p )
)
,

Lemma 3.23 gives us that

Σi ⊂ B(bi, ai,1, . . . , ai,t; r) + Λi + Yi(Falg
p ) ⊂ −d + X
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for all i = 1, . . . , `. Hence

X ∩ Γdiv = d +
⋃̀
i=1

(
B(bi, ai,1, . . . , ai,t; r) + Λi + Yi(Falg

p )
)

which is of the desired form. �

References

[1] D. Abramovich and J. Voloch, Toward a proof of the Mordell-Lang conjecture in character-
istic p., International Mathematics Research Notices (1992), no. 5, 103–115.

[2] Z. Chatzidakis, E. Hrushovski, and Y. Peterzil, Model theory of difference fields. II. Periodic

ideals and the trichotomy in all characteristics, Proceedings of the London Mathematical
Society 85 (2002), no. 3, 257–311.

[3] E. Hrushovski, The Mordell-Lang conjecture for function fields, Journal of the American

Mathematical Society 9 (1996), no. 3, 667–690.
[4] M. Kim, Purely inseparable points on curves of higher genus, Mathematical Research Letters

4 (1997), no. 5, 663–666.

[5] M. McQuillan, Division points on semi-abelian varieties, Inventiones Mathematicae 120
(1995), no. 1, 143–159.

[6] J.S. Milne, Abelian varieties, Course notes available at
http://www.jmilne.org/math/CourseNotes/math731.pdf.

[7] R. Moosa and T. Scanlon, The Mordell-Lang conjecture in positive characteristic revisited,

Model theory and applications, Quaderni di matematica, vol. 11, Dipartimento di Matematica
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