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Abstract. According to Medvedev and Scanlon [MS14], a polynomial f(x) ∈
Q̄[x] of degree d ≥ 2 is called disintegrated if it is not conjugate to xd or to
±Cd(x) (where Cd is the Chebyshev polynomial of degree d). Let n ∈ N, let
f1, . . . , fn ∈ Q̄[x] be disintegrated polynomials of degrees at least 2, and let
ϕ = f1×· · ·×fn be the corresponding coordinate-wise self-map of (P1)n. Let X
be an irreducible subvariety of (P1)n of dimension r defined over Q̄. We define
the ϕ-anomalous locus of X which is related to the ϕ-periodic subvarieties of
(P1)n. We prove that the ϕ-anomalous locus of X is Zariski closed; this is a
dynamical analogue of a theorem of Bombieri, Masser, and Zannier [BMZ07].
We also prove that the points in the intersection of X with the union of all
irreducible ϕ-periodic subvarieties of (P1)n of codimension r have bounded
height outside the ϕ-anomalous locus of X; this is a dynamical analogue of
Habegger’s theorem [Hab09a] which was previously conjectured in [BMZ07].
The slightly more general self-maps ϕ = f1 × · · · × fn where each fi ∈ Q̄(x) is
a disintegrated rational function are also treated at the end of the paper.

1. Introduction

Throughout this paper, a variety is always over Q̄ and is defined as in [BG06,
Appendix A.4]. In other words, a variety is the set of closed points of a (not
necessarily irreducible) reduced and separated scheme of finite type over Q̄ equipped
with the Zariski topology, sheaf of regular functions, etc. For a map µ from a set
to itself and for every positive integer m, we let µm denote the m-fold iterate:
µ ◦ . . . ◦ µ; the notation µ0 denotes the identity map. Let h denote the absolute
logarithmic Weil height on P1 (see [BG06, Chapter 1] or [HS00, Part B]). Let n be
a positive integer, we define the height function hn on (P1)n by hn(a1, . . . , an) :=
h(a1) + . . . + h(an). When we say that a subset of (P1)n has bounded height, we
mean boundedness with respect to hn.

After a series of papers [BMZ06], [BMZ08] and [BMZ07] following the seminal
work [BMZ99, Theorem 1], Bombieri, Masser and Zannier define anomalous sub-
varieties in Gn

m as follows. By a special subvariety of Gn
m, we mean a translate

of an irreducible algebraic subgroup. For any irreducible subvariety X ⊆ Gn
m of

dimension r, an irreducible subvariety Y of X is said to be anomalous (or bet-
ter, X-anomalous) if there exists a special subvariety Z satisfying the following
conditions:

(1) Y ⊆ X ∩ Z and dim(Y ) > max{0,dim(X) + dim(Z)− n}.
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We define Xoa := X \
⋃
Y Y , where Y ranges over all anomalous subvarieties of

X. We let Gn,[r]
m be the union of all algebraic subgroups of Gn

m of codimension r.
The following has been established by Bombieri, Masser, Zannier [BMZ07, Theo-
rem 1.4] and Habegger [Hab09a, Theorem 1.2] (after being previously conjectured
in [BMZ07]):

Theorem 1.1. Let X be an irreducible subvariety of Gn
m of dimension r (defined

over Q̄, as always). We have:
(a) (Bombieri-Masser-Zannier) Structure Theorem: the setXoa is Zariski open

in X. Moreover, there exists a finite collection T of subtori of Gn
m (depend-

ing on X) such that the anomalous locus of X is the union of all anomalous
subvarieties Y of X for which there exists a translate Z of a tori in T sat-
isfying Y ⊆ X ∩ Z and dim(Y ) > max{0,dim(X) + dim(Z)− n}.

(b) (Habegger) Bounded Height Theorem: the set Xoa ∩ Gn,[r]
m has bounded

height.

The Bounded Height Theorem is closely related to the problem of unlikely in-
tersections in arithmetic geometry introduced in [BMZ99] whose motivation comes
from the classical Manin-Mumford conjecture (which is Raynaud’s theorem [Ray83a,
Ray83b] for abelian varieties and Laurent’s theorem [Lau84] for Gn

m). Moreover,
Pink [Pin] and Zilber [Zil02] independently propose a similar problem to the un-
likely intersection problem introduced in [BMZ99] in the more general context of
semiabelian varieties and mixed Shimura varieties. For an excellent treatment of
these topics, we refer the readers to Zannier’s book [Zan12]. Both the Bounded
Height Theorem and the Pink-Zilber problem are also considered in the context
of function fields in [CGMM13]. On the other hand, very little is known in the
context of arithmetic dynamics. Zhang [Zha06] proposed a dynamical analogue of
the Manin-Mumford conjecture, which was later amended in [GTZ11] and more
recently in [YZ].

This paper is the first to establish a dynamical analogue of Theorem 1.1. For
d ≥ 2, the Chebyshev polynomial Cd is the unique polynomial of degree d such that
Cd

(
x+ 1

x

)
= xd+ 1

xd . Following the terminology in Medvedev-Scanlon [MS14], we
say that a polynomial f ∈ Q̄[x] of degree d ≥ 2 is disintegrated if it is not linearly
conjugate to xd or ±Cd(x). Let n ≥ 2 and let f1, . . . , fn ∈ Q̄[x] be polynomials of
degrees at least 2. Let ϕ = f1×· · ·× fn be the induced coordinate-wise self-map of
(P1)n. According to [MS14, Theorem 2.30], to study the arithmetic dynamics of ϕ,
it suffices to study two cases: the case when none of the fi’s are disintegrated which
reduces to diophantine questions on Gn

m (as studied by Bombieri-Masser-Zannier
[BMZ99, BMZ06, BMZ07, BMZ08]) and the case when all the fi’s are disintegrated.

It is the dynamics of ϕ in the case where fi is disintegrated for 1 ≤ i ≤ n
for which we prove an analogue of Theorem 1.1. In fact, one of the main theo-
rems of [Ngu13] provides a bounded height result when we intersect a fixed curve
with periodic hypersurfaces. Our main results in this paper (see Theorem 1.3 and
Theorem 1.4) not only solve completely a bounded height problem for a general
“dynamical complementary dimensional intersection” (similar to Theorem 1.1 (b)),
but also establish a structure theorem similar to Theorem 1.1 (a).

An irreducible subvariety V of (P1)n is said to be periodic (or better, ϕ-periodic)
if there exists an integer m > 0 such that ϕm(V ) = V . If there exists k ≥ 0 such
that ϕk(V ) is periodic then we say that V is preperiodic (or better, ϕ-preperiodic).
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While it is most natural to regard periodic subvarieties as a dynamical analogue
of irreducible algebraic subgroups, the first major obstacle is to come up with an
analogue of arbitrary translates of subgroups (which were the special subvarieties
of Gn

m). Motivated by [Ngu13, Theorem 1.2], we let C be the curve ζ ×P1 in (P1)2

(endowed with the diagonal action of a polynomial f ∈ Q̄[z]) and we intersect C
with periodic hypersurfaces defined by y = f `(x) for ` ≥ 0; then the resulting set
will have unbounded height (if ζ is not preperiodic). Hence, in order to establish a
dynamical analogue of Theorem 1.1, we have to exclude certain varieties having a
constant projection to some factor (P1)m of (P1)n.

Let In := {1, . . . , n}. For every non-empty subset J of In, let ϕJ be the
coordinate-wise self-map of (P1)|J| induced by the polynomials fj for j ∈ J . We
say that an irreducible subvariety Z of (P1)n is ϕ-special if there is a subset J of
In such that after a possible rearrangement of the factors of (P1)n, Z has the form
ζ × V , where ζ ∈ (P1)n−|J| and V ⊆ (P1)|J| is ϕJ -periodic. We refer the readers to
Definition 2.1 for a formal definition of special subvarieties for the dynamics of ϕ.
We remark that we got our inspiration for defining the ϕ-special subvarieties from
the classical case of special subvarieties of Gn

m (see [BMZ99]) since the irreducible
periodic subvarieties are the analogue of irreducible algebraic groups, while ζ × V
is considered to be the analogue of a translation. We also note that using the above
definition for ϕ-special subvarieties when each fi(x) is the same power map (i.e.
fi(x) = xd for some d ≥ 2), we get certain non-torsion translates of subtori (since
ζ need not be a root of unity); yet some translates of tori are not ϕ-special as
defined above. This should not be a surprise though since it is well-known that
xd (and ±Cd(x)) have very different dynamical behavior compared to disintegrated
polynomials. For example, while a subtorus of codimension 1 can be described
by an equation involving every variable, a theorem of Medvedev-Scanlon (see Sec-
tion 2) asserts that when each fi(x) is disintegrated, every ϕ-periodic hypersurface
is described by an equation involving only at most two variables. Next we define a
dynamical analogue of anomalous subvarieties and of the set Xoa:

Definition 1.2. Let n ≥ 2, let f1(x), . . . , fn(x) ∈ Q̄[x] be disintegrated polynomials
of degrees at least 2, and let ϕ := f1 × · · · × fn be as before. For an irreducible
subvariety X ⊆ (P1)n, an irreducible subvariety Y ⊆ X is called ϕ-anomalous (with
respect to X) if there exists an irreducible ϕ-special subvariety Z ⊆ (P1)n such that

(2) Y ⊆ X ∩ Z and dim(Y ) > max{0,dim(X) + dim(Z)− n}.

Define Xoa
ϕ to be the complement in X of the union of all ϕ-anomalous subvarieties

of X.

For each 0 ≤ r ≤ n, we let Per[r]ϕ be the union of all irreducible ϕ-periodic
subvarieties of (P1)n of codimension r. When the map ϕ (hence the collection
{f1, . . . , fn}) is clear from the context, we will use the notation Per[r]. Our first
main result is the following dynamical analogue of the Bounded Height Theorem:

Theorem 1.3. Let n ≥ 2, let f1(x), . . . , fn(x) ∈ Q̄[x] be disintegrated polynomials
of degrees at least 2, and let ϕ := f1×· · ·× fn be as before. Let X be an irreducible
subvariety of (P1)n of dimension r. Then the set Xoa

ϕ ∩ Per[r] has bounded height.

We give examples at the end of Section 2 that it is necessary to omit the anoma-
lous subvarieties of X. Theorem 1.3 generalizes the results in [Ngu13] which only
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treat the case that X is a curve. Our second main result is a dynamical analogue
of the Structure Theorem [BMZ07, Theorem 1.4]:

Theorem 1.4. With the notation as in Theorem 1.3, we have the following.
(a) Fix a subset J of In := {1, . . . , n} and an irreducible ϕJ -periodic subvariety

Z of (P1)|J|. Identify (P1)n = (P1)|In\J| × (P1)|J|. Let T (X, J, Z) be the
union of subvarieties Y of X such that Y ⊆ ζ ×Z for some ζ ∈ (P1)|In\J|

and dim(Y ) > max{0,dim(X) + dim(Z)− n}. Then T (X, J, Z) is Zariski
closed in X.

(b) There exists a collection (depending on ϕ and X) consisting of finitely
many (not necessarily distinct) subsets J1, . . . , J` of In together with irre-
ducible ϕJk -periodic subvarieties Zk ⊆ (P1)|Jk| for 1 ≤ k ≤ ` such that the

ϕ-anomalous locus of X is
⋃̀
k=1

T (X, Jk, Zk).

As a consequence, the set Xoa
ϕ is Zariski open in X.

Remark 1.5. As pointed out by the referee, the height bound in Theorem 1.3 and
the equations defining the subvarieties Zi in Theorem 1.4 are effectively computable
since our arguments are effective.

It is also possible to ask a variant of the above theorems for preperiodic subva-
rieties. We define ϕ-pre-special subvarieties to be those of the form ζ × Z where
ζ ∈ (P1)n−|J| and Z ⊆ (P1)|J| is ϕJ -preperiodic for some subset J of {1, . . . , n}. For
an irreducible subvariety X ⊆ (P1)n, we define ϕ-pre-anomalous subvarieties as in
Definition 1.2 where the only change is that Z is required to be ϕ-pre-special rather
than ϕ-special. Similarly, we define Xoa,pre

ϕ to be the complement of the union of
all ϕ-pre-anomalous subvarieties in X. Finally, we use the notation Pre[r]

ϕ (or Pre[r]

if ϕ is clear) to denote the union of all ϕ-preperiodic subvarieties of codimension r.
We expect the following to have an affirmative answer:

Question 1.6. Let n, f1, . . . , fn, ϕ, X and r be as in Theorem 1.3.

(a) Does the set Xoa,pre
ϕ ∩ Pre[r] have bounded height?

(b) Is the set Xoa,pre
ϕ Zariski open in X?

Note that Question 1.6 is neither stronger nor weaker than our main theorems.
The set Pre[r] is larger than Per[r], yet the set Xoa,pre

ϕ is smaller than Xoa
ϕ . Note

that the largest intersection Xoa
ϕ ∩ Pre[r] cannot have bounded height. As an easy

example, we let n = 2, f1 = f2 =: f , and let X be a preperiodic but not periodic
curve in (P1)2 having non-constant projection to each factor P1 (for instance, an
irreducible component of the curve f(x) = f(y) other than the diagonal x = y). In
this case, we have Xoa

ϕ = X ⊂ Pre[1].
The two main ingredients for the proof of Theorem 1.3 are the classification of

ϕ-periodic subvarieties by Medvedev-Scanlon presented in the next section and an
elementary height inequality (see Corollary 3.4). The proof of Theorem 1.4 also
uses certain bounded height arguments that are similar to those in the proof of
Theorem 1.3. One natural way to attack Question 1.6 is to relate it to results in
the periodic case such as Theorem 1.3 and Theorem 1.4 since for every preperiodic
subvariety V we have ϕk(V ) is periodic for some k. The difficulty is to obtain a
good bound (perhaps uniform in the height of X) on the inequalities obtained in
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the proof of Theorems 1.3 and 1.4. For more details when X is a curve, we refer
the readers to [Ngu13].

In this paper, we first provide all the details for the proof of Theorem 1.3 and
Theorem 1.4 in the special yet essential case of the self-map f × · · · × f on (P1)n

(i.e. when f1 = . . . = fn = f). The general case ϕ = f1 × · · · fn is explained
in Section 7 and consists of two steps. First, we reduce ϕ to a map of the form
ψ = ψ1×· · ·×ψs for some 1 ≤ s ≤ n where ψi is a coordinate-wise self-map of (P1)ni

of the form wi × · · · × wi for some 1 ≤ ni ≤ n and disintegrated wi(x) ∈ Q̄[x] such
that

∑s
i=1 ni = n and wi and wj are “inequivalent” for i 6= j (see Definition 7.1 and

the discussion following Definition 7.1). Then maps ψ (as above) could be treated
by a completely similar arguments used to settle the special case ϕ = f × · · · × f
albeit with a more complicated system of notation for bookkeeping.

In fact, we can define the sets Xoa
ϕ and Xoa,pre

ϕ and formulate the dynamical
bounded height and structure theorems for the more general self-map of (P1)n of the
form ϕ = f1×· · ·×fn where each fj(x) ∈ Q̄(x) is a “disintegrated rational function”.
The readers are referred to Question 7.3 and Proposition 7.4 for more details. In
view of our main results, another possible direction of research is to formulate
a weak dynamical form of the classical Pink-Zilber Conjecture by asking that if
X ⊆ (P1)n is not contained in a ϕ-periodic (resp. ϕ-preperiodic) hypersurface, then
X ∩ Per[r+1] (resp. X ∩ Pre[r+1]) is not Zariski dense in X, where r = dim(X). In
the case of hypersurfaces in (P1)n, this restricts to the dynamical Manin-Mumford
problem formulated in [Zha06]. The case of lines X ⊆ (P1)2 was already proven in
[GTZ11], and in light of the observations made in [YZ, Section 3] (especially the
discussion following [YZ, Question 3.17]), one might expect that the general case
of curves, and perhaps even the case of arbitrary subvarieties of (P1)n holds when
each coordinate of P1 is acted on by a common disintegrated polynomial. However,
the scarcity of positive results for the Dynamical Manin-Mumford Conjecture and
also, the exotic behavior of certain examples produced in [GTZ11] when different
rational functions fi act on the coordinates of (P1)n prevent us from formally
stating a conjecture for the unlikely intersection principle in dynamics.

For the rest of this paper, we do not refer to the notion of special and anomalous
subvarieties of Gn

m given by Bombieri, Masser and Zannier. For simplicity, when
the self-map ϕ is clear from the context, we use the terminology special (resp. pre-
special, anomalous, pre-anomalous) subvarieties instead of ϕ-special (resp. ϕ-pre-
special, ϕ-anomalous, ϕ-pre-anomalous) subvarieties.

The organization of this paper is as follows. In Section 2, following [MS14] and
[Ngu13] we give a precise description of the ϕ-periodic subvarieties of (P1)n in the
special case f1 = . . . = fn. The proof of Theorems 1.3 and 1.4 in that case takes
up the following four sections. This proof uses certain properties of height and
canonical height in Section 3 coupled with some elementary geometric properties of
the set Xoa

ϕ in Section 4. In the last section, we explain how to prove Theorem 1.3
and Theorem 1.4 in general and conclude the paper with a brief discussion on the
dynamics of more general self-maps of (P1)n of the form f1 × · · · × fn where each
fi(x) ∈ Q̄(x) is a “disintegrated rational function”.

Acknowledgments. We thank Tom Scanlon and Tom Tucker for many useful
conversations. We are grateful to the anonymous referee for many useful sugges-
tions.
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2. Structure of periodic subvarieties

Recall that a polynomial f ∈ Q̄[x] of degree d ≥ 2 is called disintegrated if it is
not linearly conjugate to xd or ±Cd(x). Let n be a positive integer and f1, . . . , fn ∈
Q̄[x] be disintegrated polynomials of degrees at least 2. Let ϕ = f1×· · ·×fn be the
corresponding coordinate-wise self-map of (P1)n. Let In := {1, . . . , n}. For each
ordered subset J of In, we define:

(P1)J := (P1)|J|

equipped with the canonical projection πJ : (P1)n → (P1)J . Occasionally, we also
work with the Zariski open subset (A1)n = An of (P1)n and we use the notation
AJ to denote the Zariski open subset (A1)|J| of (P1)J . Obviously, AJ = πJ(An).
Let ϕJ denote the coordinate-wise self-map of (P1)J induced by the polynomials
fj ’s for j ∈ J . In this paper, we will consider ordered subsets of In whose orders
need not be induced from the usual order of the set of integers. If J1, . . . , Jm are
ordered subsets of In which partition In, then we have the canonical isomorphism:

(πJ1 , . . . , πJm) : (P1)n = (P1)J1 × · · · × (P1)Jm .

For each irreducible subvariety V of (P1)n, let JV denote the set of all j ∈ In such
that the projection from V to the jth coordinate P1 is constant. If JV 6= ∅, we
equip JV with the natural order of the set of integers, and we let aV ∈ (P1)JV

denote πJV (V ). Even when JV = ∅, we will vacuously define (P1)JV as the variety
consisting of one point and define aV to be that point. We have then the following
formal definition for special subvarieties.

Definition 2.1. Let Z be an irreducible subvariety of (P1)n. Identify (P1)n =
(P1)JZ × (P1)In−JZ . We say that Z is ϕ-special (respectively ϕ-pre-special) if it has
the form aZ × Z ′ where Z ′ is ϕIn−JZ -periodic (respectively preperiodic).

We now present (a crucial case of) the Medvedev-Scanlon classification of ϕ-
periodic subvarieties of (P1)n from [MS14] along with its refinement from [Ngu13].
The complete classification in [MS14] consists of two parts: the first part treats
the special case f1 = . . . = fn which is given in this section while the second part
explains why the general case reduces to this special case and is given in Section 7.

Assumption 2.2. For the rest of this section, assume that f1(x) = . . . = fn(x) and
denote this common polynomial by f(x). Since the map ϕJ on (P1)J now depends
only on |J |, for every positive integer m we usually use the notation ϕm := ϕm,f
to denote the self-map f × · · · × f on (P1)m. In particular, ϕ = ϕn and ϕJ = ϕ|J|;
such notation also emphasizes the fact that we are assuming f1 = . . . = fn = f .

Let x1, . . . , xn denote the coordinate functions of the factors P1 of (P1)n. Medvedev
and Scanlon prove the following important result [MS14, pp. 85]:

Theorem 2.3. Let V be an irreducible ϕn-periodic subvariety of (P1)n. Then V
is given by a collection of equations of the following forms:

(a) xi = ζ where ζ is a periodic point of f .
(b) xj = g(xi) for some 1 ≤ i 6= j ≤ n, where g is a polynomial commuting

with an iterate of f .

Next we describe all polynomials g commuting with an iterate of f mentioned
in Theorem 2.3; the following result is [Ngu13, Proposition 2.3].
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Proposition 2.4. We have:
(a) If g ∈ Q̄[x] has degree at least 2 such that g commutes with an iterate of f

then g and f have a common iterate.
(b) Let M(f∞) denote the collection of all linear polynomials commuting with

an iterate of f . Then M(f∞) is a finite cyclic group under composition.
(c) Let f̃ ∈ Q̄[x] be a polynomial of minimum degree d̃ ≥ 2 such that f̃ com-

mutes with an iterate of f . Then there exists D = Df > 0 relatively prime
to the order of M(f∞) such that f̃ ◦ L = LD ◦ f̃ for every L ∈M(f∞).

(d)
{
f̃m ◦ L : m ≥ 0, L ∈M(f∞)

}
=

{
L ◦ f̃m : m ≥ 0, L ∈M(f∞)

}
, and

these sets describe exactly all polynomials g commuting with an iterate of
f . As a consequence, there are only finitely many polynomials of bounded
degree commuting with an iterate of f .

From the discussion in [Ngu13, Proposition 2.3], we have the following more
refined description of ϕn-periodic subvarieties:

Proposition 2.5. (a) Let V be an irreducible ϕn-periodic subvariety of (P1)n

of dimension n − r. Then there exists a partition of In − JV into n − r
non-empty subsets J1, . . . , Jn−r such that the following hold. We fix an
order on each J1, . . . , Jn−r, and identify:

(P1)n = (P1)JV × (P1)J1 × · · · × (P1)Jn−r .

For 1 ≤ i ≤ n − r, there exists an irreducible ϕ|Ji|-periodic curve Ci in
(P1)Ji such that:

V = aV × C1 × · · · × Cn−r.

(b) Let C be an irreducible ϕn-periodic curve in (P1)n and denote m :=
|In − JC | ≥ 1. Then there exist a permutation (i1, . . . , im) of In − JC
and non-constant polynomials gi2 , . . . , gim ∈ Q̄[x] such that C is given
by the equations xi2 = gi2(xi1),. . . , xim = gim(xim−1). Furthermore, the
polynomials gi2 , . . . , gim commute with an iterate of f .

Remark 2.6. The permutation (i1, . . . , im) mentioned in part (b) of Proposition 2.5
induces the order i1 ≺ . . . ≺ im on In − JC . Such a permutation and its induced
order are not uniquely determined by V . For example, let L be a linear polynomial
commuting with an iterate of f . Let C be the periodic curve in (P1)2 defined by
the equation x2 = L(x1). Then I − JC = {1, 2}, and 1 ≺ 2 is an order satisfying
the conclusion of part (b). However, we can also express C as x1 = L−1(x2). Then
the order 2 ≺ 1 also satisfies part (b). Therefore, in part (a), the choice of an order
on each Ji is not unique. Nevertheless, the partition of In − JV into the subsets
J1, . . . , Jr is unique (see [Ngu13, Section 2]).

Definition 2.7. Let V be an irreducible ϕn-periodic subvariety of dimension r.
Partition In − JV into J1, . . . , Jr, and let C1, . . . , Cr be the periodic curves as in
the conclusion of part (a) of Proposition 2.5. For 1 ≤ i ≤ r, we equip Ji with an
order discussed in Remark 2.6 viewing each Ci as ϕ|Ji|-periodic in (P1)|Ji|. Then
the collection consisting of JV and the ordered sets J1, . . . , Jr is called a signature
of V .

Remark 2.8. Using the fact that there are finitely many signatures for periodic
varieties, in Theorem 1.3 it suffices to show that for any given signature S , the
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intersection of Xoa
ϕn

with the union of all periodic subvarieties having signature S
and codimension r has bounded height.

We finish this section by giving a couple of examples to show why it is necessary
to remove the anomalous locus in Theorem 1.3.

Example 2.9. Let X ⊆ (P1)5 be a 3-fold with the property that its intersection with
the periodic 3-fold V given by the equations x2 = f(x1) and x3 = f(x2) contains
a surface S. We claim that S should be removed from X in order for the points in
the intersection with Per[3] have bounded height. Indeed, for each positive integer
m, we let Vm be the periodic surface given by the equations

x2 = f(x1), x3 = f(x2) and x4 = fm(x3).

Then Vm ⊆ V and so, Hm ∩ S ⊆ Vm ∩ X where Hm ⊆ (P1)5 is the hypersurface
given by x4 = fm(x3). In particular, there is a curve Cm ⊆ Hm ∩ S ⊆ Vm ∩ X,
and obviously this curve contains points of arbitrarily large height. It is easy to see
that each curve Cm is different as we vary m, and moreover, their union is Zariski
dense in S.

Example 2.10. Let X ⊆ (P1)4 be a surface with the property that its intersection
with the surface (a1, a2)× (P1)2 (for a1, a2 ∈ P1) contains a curve C. Assume a1 is
not preperiodic, a2 = f(a1), and also that C projects onto the third coordinate of
(P1)4. We show that the curve C must be removed from X in order for the points in
the intersection with Per[2] have bounded height. Indeed, for each positive integer
m, we let Vm be the periodic surface given by the equations: x2 = f(x1) and
x3 = fm(x2). Because C projects onto the third coordinate of (P1)4, there exists
a4 ∈ P1 such that

(
a1, f(a1), fm+1(a1), a4

)
∈ C∩Vm ⊆ X∩Vm, whose height grows

to infinity as m→∞ (because a1 is not preperiodic).
As an aside, we note that even though the above anomalous curves need to be

removed, it is not clear whether one would also have to remove the curves which
appear in the intersection of a surface X ⊆ (P1)4 with (a1, a2) × (P1)2 if a1 and
a2 are in different orbits under f . This phenomenon also occurs in the diophantine
situation (see the discussion in [BMZ07, Section 5, pp. 24-25]).

3. Properties of the height

Recall that h denotes the absolute logarithmic Weil height on P1 (see [HS00,
Part B] or [BG06, Chapter 1]). The following result is well-known:

Lemma 3.1. For every a, b ∈ Q̄, we have:
(a) h(ab) ≤ h(a) + h(b).
(b) h(a)− h(b) ≤ h(a/b) if b 6= 0.
(c) h(a+ b) ≤ h(a) + h(b) + log 2.
(d) h(a)− h(b)− log 2 ≤ h(a− b).
(e) h(ad) = |d| · h(a) for any integer d (where a 6= 0 if d < 0).

We can use Lemma 3.1 to prove the following result (we note that part (b) of
the following Lemma is instrumental in our proof of Theorem 1.3).

Lemma 3.2. Let n ≥ 1 and F (X1, . . . , Xn) ∈ Q̄[X1, . . . , Xn] having degree D ≥ 1
in Xn. Write:

F (X1, . . . , Xn) = FD(X1, . . . , Xn−1)XD
n + . . .+ F0(X1, . . . , Xn−1).
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For each i = 1, . . . , n, let Di be the degree in Xi of F (so Dn = D). The following
hold.

(a) Then there exists a positive constant C1 depending only on F (X1, . . . , Xn)
such that for every a1, . . . , an ∈ Q̄, we have

h(F (a1, . . . , an)) ≤
n∑
i=1

Dih(ai) + C1.

(b) There exists a positive constant C2 depending only on F (X1, . . . , Xn) such
that for every a1, . . . , an ∈ Q̄ satisfying Fi(a1, . . . , an−1) 6= 0 for some
1 ≤ i ≤ D, we have:

h(an)− 2D1h(a1)− . . .− 2Dn−1h(an−1)− C2 ≤ h(F (a1, . . . , an)).

Proof. (a) This is a standard result which follows from triangle inequalities at
each place (both archimedean and nonarchimedean).

(b) Given a1, . . . , an ∈ Q̄, we let i be maximum with the property that
Fi(a1, . . . , an−1) 6= 0. Then, letting

Qi(X1, . . . , Xn) := Fi−1X
i−1
n + . . .+ F0

so that F (a1, . . . , an) = Fi(a1, . . . , an−1)ain +Qi(a1, . . . , an) we obtain the
following inequalities from part (a) and Lemma 3.1:

h(F (a1, . . . , an)) ≥ h(Fi(a1, . . . , an−1)ain)− h(Qi(a1, . . . , an))− log 2

≥ ih(an)− h(Fi(a1, . . . , an−1))− 2 log 2

− (i− 1)h(an)−
n−1∑
j=1

Djh(aj)− C3

≥ h(an)−
n−1∑
j=1

2Djh(aj)− C2

where C3 is the constant appearing when applying part (a) to the poly-
nomial Qi and C2 is another constant (depending on C3 and the constant
appearing when applying part (a) to the polynomial Fi). Clearly, all these
constants depend only on the coefficients of F and are effectively com-
putable.

�

For every polynomial f(x) ∈ Q̄[x] of degree d ≥ 2, the canonical height ĥf can
be defined using a well-known trick of Tate (see [Sil07, Chapter 3]):

ĥf (a) := lim
m→∞

h(fm(a))
dm

, for all a ∈ Q̄.

We have the following properties:

Lemma 3.3. Let f(x) ∈ Q̄[x] of degree d ≥ 2. We have:

(a) There is a constant C4 depending only on f such that |ĥf (a)− h(a)| ≤ C4

for every a ∈ Q̄.
(b) ĥf (f(a)) = dĥf (a) for every a ∈ Q̄.
(c) a is f-preperiodic if and only if ĥf (a) = 0.
(d) If f is disintegrated and g(x) ∈ Q̄[x] commutes with an iterate of f(x) then

ĥf (g(a)) = deg(g)ĥf (a) for every a ∈ Q̄.
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Proof. For parts (a), (b) and (c): see [Sil07, Chapter 3]. For part (d), Proposi-
tion 2.4 gives that f and g have a common iterate. Hence ĥf = ĥg and the desired
result follows from part (b). �

The following inequality will be the key ingredient for the proof of Theorem 1.3.
It is essentially part (b) of Lemma 3.2 where we replace h by ĥf :

Corollary 3.4. Let n ≥ 1 and F (X1, . . . , Xn) ∈ Q̄[X1, . . . , Xn] having degree
D ≥ 1 in Xn. Let f(x) ∈ Q̄[x] having degree at least 2. Write:

F (X1, . . . , Xn) = FD(X1, . . . , Xn−1)XD
n + . . .+ F0(X1, . . . , Xn−1).

For 1 ≤ i ≤ n − 1, let Di be the degree of F in Xi. There exists a positive
constant C5 depending only on F and f such that for every a1, . . . , an ∈ Q̄ satisfying
F (a1, . . . , an) = 0 and Fi(a1, . . . , an−1) 6= 0 for some 1 ≤ i ≤ D, we have:

ĥf (an) ≤ D1ĥf (a1) + . . .+Dn−1ĥf (an−1) + C5.

Proof. This follows from part (b) of Lemma 3.2 and part (a) of Lemma 3.3. �

We finish this section with the following remark about Proposition 2.4:

Remark 3.5. Recall the group M(f∞) and the choice of f̃ from Proposition 2.4.
We explain that both M(f∞) and f̃ could be determined effectively. In fact, after
conjugating with an effectively determined linear polynomial, we may assume that
f has the normal form:

f(x) = xd + ad−rx
d−r + . . .

with ad−r 6= 0 and r ≥ 2. Then it is an easy exercise to show that M(f∞) is a
subgroup of the group of linear polynomials of the form µx where µ is an rth root
of unity.

To determine f̃ , note that part (d) of Proposition 2.4 gives that d is a power
of d̃ := deg(f̃) and there are at most |M(f∞)| choices of f̃ . Let K be the field
obtained by adjoining all coefficients of f to Q. Then let K̃ be the field obtained
by adjoining all the coefficients of f̃ to K. We must have [K̃ : K] ≤ |M(f∞)|
since σ(f̃) is another choice for f̃ for every K-embedding σ of K̃ into Q̄. Together
with ĥf (f̃(m)) = d̃ · ĥf (m), we have that the degree and (Weil) height of f̃(m) are
bounded effectively in terms of f and m for every integer m. Hence f̃ is effectively
determined.

4. Basic properties of the anomalous locus

Let n ≥ 2, let f1, . . . , fn ∈ Q̄[x] be disintegrated polynomials of degree at least
2, and let ϕ be the corresponding coordinate-wise self-map of (P1)n. Let I = In :=
{1, . . . , n}. For every (ordered) subset J ⊆ I, let ϕJ be the coordinate-wise self-map
of (P1)J := (P1)|J| induced by fj ’s for j ∈ J and let πJ be the projection from (P1)n

to (P1)J as in the beginning of Section 2. Fix an irreducible subvariety X of (P1)n

of dimension r satisfying 1 ≤ r ≤ n − 1. Recall Definition 2.1 and Definition 1.2
of special and anomalous subvarieties with respect to ϕ and X. In this section we
prove several geometric properties of the set Xoa

ϕ which will be used repeatedly in
the proofs of Theorem 1.3 and Theorem 1.4. By the affine part of (P1)n, we mean
the Zariski open subset (A1)n = An. More generally the affine part of a subset of
(P1)n is its intersection with An.
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Lemma 4.1. Assume X is contained in a proper special subvariety Z of (P1)n.
Write Z = α×Z1 where Z1 is ϕJ -periodic and α ∈ (P1)I\J for some subset J of I.
Then X = T (X, J, Z1) is an anomalous subvariety of X itself, where T (X, J, Z1) is
defined as in Theorem 1.4.

Proof. This is immediate from the definition of anomalous subvarieties and the
definition of T (X, J, Z1). �

Lemma 4.2. Let J ⊆ I with |J | ≥ r. Denote J ′ = I \ J and Z = (P1)J
′
. If

dim(πJ(X)) < r then X = T (X, J ′, Z) is the anomalous locus of X.

Proof. Identify (P1)n = (P1)J × (P1)J
′

and write π = πJ . Since dim(π(X)) < r,
for any point α ∈ π(X) every irreducible component of π−1(α) ∩X has dimension
at least 1 (see Mumford’s book [Mum99, pp. 48]). By intersecting X with the
special variety α × (P1)J

′
= α × Z, we conclude that every irreducible component

of π−1(α) ∩ X is an anomalous subvariety of X and is contained in T (X, J ′, Z).
Since this holds for every α ∈ π(X), we have X = T (X, J ′, Z). �

Assumption 4.3. Thanks to Lemma 4.1 and Lemma 4.2, for the rest of this section
we make the extra assumption that the affine part of X is non-empty (otherwise
X is contained in a special subvariety of the form ∞× (P1)n−1) and the image of
X under the projection to (P1)J has dimension r for every J ⊆ I having |J | ≥ r.

Corollary 4.4. Let J be any ordered subset of I of size r + 1 explicitly listed in
increasing order as (i1, . . . , ir+1). Then (under Assumption 4.3) there exists an
irreducible polynomial F J(Xi1 , . . . , Xir+1) such that the affine part πJ(X) ∩ AJ of
πJ(X) is defined by the equation F J(xi1 , . . . , xir+1) = 0. The polynomial F J is
unique up to multiplication by an element in Q̄∗.

We now fix a choice of F J for each ordered subset J of I as in Corollary 4.4. We
have the following result which allows us to apply Corollary 3.4 later.

Proposition 4.5. Assume that Xoa
ϕ ∩An is non-empty and pick any α = (α1, . . . , αn)

in Xoa
ϕ ∩ An. Let J be any ordered set (i1, . . . , ir+1) as in Corollary 4.4 and let

1 ≤ ` ≤ r + 1. Let D ≥ 0 denote the degree of Xi` in F J . Write:

F J = F JDX
D
i`

+ . . .+ F J1 Xi` + F J0

where F Jk for 0 ≤ k ≤ D is a polynomial in the variables Xi1 , . . . , X̂i` , . . . , Xir+1 .
Then there exists 1 ≤ k ≤ D such that F Jk (αi1 , . . . , α̂i` , . . . , αir+1) 6= 0. In particu-
lar, this implies D ≥ 1.

Proof. Without loss of generality, we may assume that J = {1, . . . , r+ 1} with the
usual order on the natural numbers and ` = r + 1. Write π := πJ .

We now assume that F Jk (α1 . . . , αr) = 0 for every 1 ≤ k ≤ D (which implies
F J0 (α1, . . . , αr) = 0 too) and we arrive at a contradiction. Write α′ = (α1, . . . , αr).
Since the equation F J(x1, . . . , xr+1) = 0 defines (the affine part of) π(X), we have
that π(X) contains the curve α′ × P1. Consider the morphism π |X : X → π(X);
we have that some irreducible component Y of (π |X)−1

(
α′ × P1

)
has dimension

at least 1 (see [Mum99, pp. 48]). In other words, we have:
• Y ⊆ X ∩ (α′ × (P1)n−r);
• dim(Y ) > 0.

Therefore Y is an anomalous subvariety of X containing α, contradiction. �
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Assumption 4.6. For the rest of this section, we adopt Assumption 2.2, namely
f1 = . . . = fn = f . In particular, the notation ϕ|J| is the same as ϕJ (hence
ϕn = ϕ).

Now let V be an irreducible ϕn-periodic hypersurface of (P1)n. We define next
an embedding eV : (P1)n−1 → (P1)n such that eV

(
(P1)n−1

)
= V . According to

Theorem 2.3, V is defined by xi = ζ for some 1 ≤ i ≤ n and periodic ζ or xi = g(xj)
for some 1 ≤ i 6= j ≤ n and g ∈ Q̄[x] commuting with an iterate of f . If V is given
by xi = ζ, we define:

eV (a1, . . . , an−1) := (a1, . . . , ai−1, ζ, ai, . . . , an−1).

If V is given by xi = g(xj) and i < j, we define:

eV (a1, . . . , an−1) = (a1, . . . , ai−1, g(aj−1), ai, . . . , an−1),

while if j < i, we define:

eV (a1, . . . , an−1) = (a1, . . . , ai−1, g(aj), ai, . . . , an−1).

Consider the self-map ϕn−1 on (P1)n−1. Since the point ζ is periodic and g com-
mutes with an iterate of f , we obtain that eV maps ϕn−1-periodic subvarieties
of (P1)n−1 to ϕn-periodic subvarieties of (P1)n (contained in V ). Then it is also
easy to prove that eV maps special subvarieties of (P1)n−1 to special subvarieties
of (P1)n. Later on, in the proof of Theorem 1.3, we use eV to identify irreducible
components of X ∩V with subvarieties of (P1)n−1 so that we can use the induction
hypothesis. In fact, we have the following:

Lemma 4.7. Let W be an irreducible subvariety and let V be an irreducible ϕn-
periodic hypersurface of (P1)n. Let α ∈W oa

ϕn
∩ V . Let W ′ be an irreducible compo-

nent of W ∩V containing α. Since e−1
V (W ′) is an irreducible subvariety of (P1)n−1,

we can define the set e−1
V (W ′)oaϕn−1

as before; then e−1
V (α) ∈ e−1

V (W ′)oaϕn−1
.

Proof. Since W oa
ϕn

6= ∅, we have that W is not contained in V . And since W∩V 6= ∅,
every irreducible component of W ∩ V has dimension dim(W ) − 1 by the Krull’s
Principal Ideal Theorem.

We prove the lemma by contradiction: assume there exists an anomalous subva-
riety Y of e−1

V (W ′) containing e−1
V (α). Hence there exists a special subvariety Z of

(P1)n−1 satisfying the following condition:

(3) Y ⊆ e−1
V (W ′) ∩ Z and dim(Y ) > max{0,dim(e−1

V (W ′)) + dim(Z)− (n− 1)}.

We have dim(e−1
V (W ′)) = dim(W ′) = dim(W ) − 1, dim(eV (Y )) = dim(Y ) and

dim(eV (Z)) = dim(Z). Together with the previous condition, we have:

(4) eV (Y ) ⊆W ∩ eV (Z) and dim(eV (Y )) > max{0,dim(W ) + dim(eV (Z))− n}.

By the discussion in the paragraph before this lemma, we have that eV (Z) is
a special subvariety of (P1)n. Therefore eV (Y ) is an anomalous subvariety of W .
Since α ∈ eV (Y ), we get a contradiction. �

We conclude this section with the following useful fact:

Corollary 4.8. Let W ⊆ (P1)n be an irreducible subvariety, let V ⊆ (P1)n be
an irreducible ϕn-periodic hypersurface intersecting W properly, and let W ′ be an
irreducible component of W ∩ V .
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(a) If Y ⊆ (P1)n−1 is a ϕn−1-anomalous subvariety of e−1
V (W ′), then eV (Y ) ⊆

(P1)n is a ϕn-anomalous subvariety of both W ′ and of W .
(b) If Z ⊆ V is a ϕn-special subvariety and if Ỹ ⊆W ′ ∩Z is a ϕn-anomalous

subvariety of W satisfying dim(Ỹ ) > max{0,dim(W ) + dim(Z)− n} then
e−1
V (Ỹ ) is a ϕn−1-anomalous subvariety of e−1

V (W ′).
(c) If V is given by the equation xi = ζ then part (b) holds without the as-

sumption Z ⊆ V .

Proof. Part (a) follows immediately from the proof of Lemma 4.7.
For part (b), the condition Z ⊆ V makes sure that e−1

V (Z) remains a special sub-
variety of (P1)n−1. We have e−1

V (Ỹ ) ⊆ e−1
V (W ′) ∩ e−1

V (Z) and use dim(e−1
V (W ′)) =

dim(W )− 1 to obtain:

dim
(
e−1
V (Ỹ )

)
> max{0,dim(e−1

V (W ′)) + dim(e−1
V (Z))− (n− 1)}.

This proves that e−1
V (Ỹ ) is a special subvariety of e−1

V (W ′).
For part (c), note that if V is defined by xi = ζ then each irreducible component

of V ∩ Z is also special. Hence the conclusion follows by applying part (b) to the
special variety Z ′ ⊆ V which is an irreducible component of Z∩V containing Ỹ . �

5. Proof of Theorem 1.3 for f × · · · × f

Throughout this section, we fix a polynomial f(x) ∈ Q̄[x] of degree d ≥ 2 which
is not conjugated to xd or to ±Cd(x). Let n be a positive integer and let ϕn be
the corresponding self-map of (P1)n as in Assumption 2.2. Let X be an irreducible
subvariety of (P1)n of dimension r. Our goal is to prove Theorem 1.3 asserting that
the set

Xoa
ϕn
∩

⋃
V

V

has bounded height where V ranges among all irreducible ϕn-periodic subvarieties
of dimension n − r. Note that this is obviously true when r = 0 (or when r = n);
so, we now proceed by induction. Let r ∈ {1, . . . , n− 1} and assume Theorem 1.3
is valid for all varieties of dimension less than r for any n.

We may assume Xoa
ϕn

6= ∅; in particular, X is not contained in any proper special
subvariety of (P1)n (by Lemma 4.1). Furthermore, it suffices to replace Xoa

ϕn
by its

affine part. In other words, we only need to prove that the set
(
Xoa
ϕn
∩ An

)
∩Per[r]

has bounded height. The reason is that every point in the “non-affine part”

Xoa
ϕn
\ An

is contained in X ∩ H where H is a ϕn-periodic hypersurface of the form (after
a possible rearrangement of coordinates): (P1)n−1 ×∞. We now use Lemma 4.7
and the embedding eH introduced there to apply the induction hypothesis for the
irreducible components of e−1

H (X ∩H) ⊆ (P1)n−1.
From now on, we assume Xoa

ϕn
∩ An 6= ∅. Since there are only finitely many

possible signatures (see Definition 2.7) for all irreducible ϕn-periodic subvarieties
of dimension n− r, we fix a signature S consisting of the following data:

• A (possibly empty) subset J of In := {1, . . . , n} such that |In \J | ≥ n− r.
• A partition of In \ J into n− r non-empty subsets J1, . . . , Jn−r.
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• For each 1 ≤ k ≤ n−r, a choice of an order ≺ on Jn−r. So we can describe
the ordered set Jk as:

ik,1 ≺ ik,2 ≺ . . . ≺ ik,mk

where mk := |Jk|.

Convention 5.1. From now on, to avoid triple subscripts we denote the coordinate
functions xik,j

as xk,j; hence xik,mk
is denoted xk,mk

.

It suffices to prove that the set

XS := (Xoa
ϕn
∩ An) ∩

⋃
V

V

has bounded height, where V ranges over all irreducible ϕn-periodic subvarieties of
dimension n−r having signature S . Identify (P1)n = (P1)J×(P1)J1×· · ·×(P1)Jn−r .
Such a V is described by the following equations:

• The equations xi = ζi for i ∈ J , where ζi is f -periodic.
• For 1 ≤ k ≤ n−r, the equations xk,2 = gk,2(xk,1),. . . , xk,mk

= gk,mk
(xk,mk−1)

where each gk,i ∈ Q̄[x] (for 1 ≤ k ≤ n− r and 2 ≤ i ≤ mk) is a polynomial
commuting with an iterate of f .

If for some 1 ≤ k ≤ n− r, we have mk ≥ 2 then we define:

D(V ) := min{deg(gk,mk
) : 1 ≤ k ≤ n− r, mk ≥ 2}.

If mk = 1 for every k, then V is simply of the form (ζi)i∈J × (P1)n−r. If that is the
case, we define D(V ) = +∞.

Proposition 5.2. There exist positive constants c1, c2 depending only on X and S
such that for every irreducible ϕn-periodic subvariety V of dimension n− r having
signature S , if D(V ) > c2 then the height of points in

(
Xoa
ϕn
∩ An

)
∩ V is bounded

above by c1.

Proof. Let V be defined by the equations xi = ζi for i ∈ J and xk,i = gk,i(xk,i−1)
for 1 ≤ k ≤ n− r and 2 ≤ i ≤ mk as before.

We prove first the case when mk = 1 for each k; this also gives insight to
the general case. In this special case, without loss of generality we assume J =
{1, . . . , r} so that V = ζ × (P1)n−r, where ζ = (ζ1, . . . , ζr) such that each ζi is a
periodic point for f . Let

α := (α1, . . . , αn) ∈
(
Xoa
ϕn
∩ An

)
∩ V.

In particular, αj = ζj for j = 1, . . . , r. Now, for each i = r + 1, . . . , n, we let
πi be the projection of (P1)n onto (P1)r+1 consisting of the r + 1 coordinates
x1, . . . , xr, xi. Using Proposition 4.5, Corollary 3.4 and Lemma 3.3, we obtain that
h(αi) is uniformly bounded, as desired.

From now on, we assume that mk ≥ 2 for some k ∈ {1, . . . , n − r}. The idea
of our proof is that on V , the n − r coordinate functions xk,mk

for 1 ≤ k ≤ n − r
dominate the other r coordinate functions in terms of height. However, due to the
equations defining X, the coordinate functions xk,mk

for 1 ≤ k ≤ n − r cannot
dominate the other r coordinates “too much”. This will allow us to prove that for
each periodic variety V of signature S , and for each (α1, . . . , αn) ∈

(
Xoa
ϕn
∩ An

)
∩V

the heights of αk,mk
for k = 1, . . . , n− r are uniformly bounded, and thus, in turn

this would yield that the height of each αi for i = 1, . . . , n is uniformly bounded.
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Furthermore, using Lemma 3.3 (a), it suffices to prove that ĥf (αk,mk
) is uniformly

bounded independent of V . We formalize this idea as follows.
Define Γ := In \ {i1,m1 , . . . , in−r,mn−r

} (i.e. the set of r indices that are “domi-
nated by the other n− r indices”). For 1 ≤ k ≤ n− r, define:

Γk := {ik,mk
} ∪ Γ.

Let α = (α1, . . . , αn) ∈ (Xoa
ϕn

∩ An) ∩ V . By the equations defining V , the
definition of D(V ) and part (d) of Lemma 3.3, we have (see Convention 5.1):

(5) ĥf (αk,mk
) ≥ D(V )ĥf (αk,i), for all 1 ≤ k ≤ n− r and 1 ≤ i ≤ mk − 1

Note that (5) is vacuously true when mk = 1, so inequality (5) yields:

(6) n

n−r∑
k=1

ĥf (αk,mk
) ≥ D(V )

n−r∑
k=1

mk−1∑
i=1

ĥf (αk,i)

For 1 ≤ k ≤ n − r, we consider the projection πk := πΓk from (P1)n onto
(P1)Γk = (P1)r+1. By Corollary 4.4, there is an irreducible polynomial Fk := FΓk

in r + 1 variables such that πk(X) is defined by the equation Fk = 0.
By Proposition 4.5 and Corollary 3.4, there exist positive constants c3 and c4

depending only on X and S such that:

(7) ĥf (αk,mk
) ≤ c3

∑
i∈Γ

ĥf (αi) + c4.

for all k = 1, . . . , n − r. By the equations defining V , we have αi = ζi is periodic
for i ∈ J . Hence (7) and part (c) of Lemma 3.3 give:

(8) ĥf (αk,mk
) ≤ c3

n−r∑
`=1

m`−1∑
i=1

ĥf (α`,i) + c4.

for all k = 1, . . . , n− r. This yields:

(9)
n−r∑
k=1

ĥf (αk,mk
) ≤ nc3

n−r∑
`=1

m`−1∑
i=1

ĥf (α`,i) + nc4

From (6) and (9), we have that if D(V ) ≥ 2n2c3 then:
n−r∑
k=1

ĥf (αk,mk
) ≤ 2nc4,

and more generally:
n∑
i=1

ĥf (αi) ≤ 2nc4 +
c4
c3
.

This finishes the proof of the proposition. �

End of the proof of Theorem 1.3 for f × · · · × f . We need to prove that the set
XS has bounded height. Let c1 be the positive constant in the conclusion of
Proposition 5.2, it suffices to show that the set:

XS ,c1 := (Xoa
ϕn
∩ An) ∩

⋃
V

V

has bounded height, where V ranges over all irreducible ϕn-periodic subvarieties
of dimension n− r having signature S and D(V ) ≤ c1. For every such V , choose
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1 ≤ ` ≤ n − r such that deg(g`,m`
) = D(V ) ≤ c1. By part (d) of Proposition 2.4,

there are only finitely many such polynomials g`,m`
. We let H be the periodic

hypersurface defined by x`,m`
= g`,m`

(
x`,m`−1

)
; therefore there are only finitely

many possibilities for H. Since V ⊆ H, we can apply the induction hypothesis to
each irreducible component of e−1

H (X ∩H) by using Lemma 4.7. Note that going
from e−1

H (X ∩ H) to X ∩ H can increase the height by the factor deg(g`,m`
), but

this is fine since there are only finitely many possibilities for g`,m`
. �

6. Proof of Theorem 1.4 for f × · · · × f

Throughout this section, let f(x) ∈ Q̄[x] be a polynomial of degree d ≥ 2 which
is not conjugated to xd or to ±Cd(x), let n be a positive integer, and let ϕn be
the diagonal action of f on (P1)n as in Assumption 2.2. Let X ⊆ (P1)n be a given
irreducible variety of dimension r as in the previous section.

6.1. Part (a) of Theorem 1.4. We proceed by induction on n; the case n = 2
is immediate. Now assume n ≥ 3 and the conclusion holds for every smaller value
of n. Without loss of generality, we may assume that J = {m + 1, . . . , n} with
1 ≤ m < n. There are two cases.

Case 1: X ⊆ (P1)m × Z. Let π : X → (P1)m be the projection from X to the
first m factors of (P1)n. Let α ∈ T (X, J, Z). By the definition of T (X, J, Z), there
exists an anomalous subvariety Y of X satisfying the following conditions:

• Y ⊆ X ∩ (π(α)× Z).
• dim(Y ) > max{0,dim(X) + dim(Z)− n}.

Since X ⊆ (P1)m × Z, we have that π−1(π(α)) = X ∩ (π(α) × Z). Hence any
irreducible component Ỹ of π−1(π(α)) that contains Y satisfies:

dim(Ỹ ) ≥ dim(Y ) > max{0,dim(X) + dim(Z)− n}.

Conversely, let α ∈ X such that some irreducible component Ỹ of π−1(π(α))
containing α satisfies:

dim(Ỹ ) > max{0,dim(X) + dim(Z)− n}.

Then Ỹ is an anomalous subvariety of X cut out by π(α)× Z.
Thus our discussion so far proves that T (X, J, Z) is exactly the set of points

α ∈ X such that some irreducible component of π−1(π(α)) that contains α has
dimension at least max{1,dim(X)+dim(Z)−n+1}. By the Upper Semicontinuity
Theorem [Mum99, pp. 51], T (X, J, Z) is Zariski closed in X.

Case 2: X * (P1)m × Z. By the Medvedev-Scanlon description of periodic
subvarieties, there exists a ϕJ -periodic hypersurface H of (P1)J such that X *
(P1)m ×H =: V . If X ∩ V = ∅ then X ∩ (P1)m ×Z = ∅, hence T (X, J, Z) = ∅ and
we are done. We now assume that X ∩ V 6= ∅. Let X1, . . . , Xs be the irreducible
components of X ∩ V . By the Krull’s Principal Ideal Theorem, Xi has dimension
r − 1 for 1 ≤ i ≤ s.

By arranging coordinates, we may assume that V is defined by the equation
xn = ζ for some f -periodic ζ ∈ P1 or xn = g(xn−1) for some g ∈ Q̄[x] commuting
with an iterate of f . We now consider the embedding eV : (P1)n−1 → (P1)n

introduced in Section 4 and the self-map ϕn−1 on (P1)n−1. For each 1 ≤ i ≤ `, we
apply the induction hypothesis for the data consisting of the subvariety e−1

V (Xi) of
(P1)n−1, the subset J ′ := J \{n} of {1, . . . , n−1}, and the ϕn−1-periodic subvariety
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e−1
V (Z) to conclude that the resulting set T (e−1

V (Xi), J ′, e−1
V (Z)) is Zariski closed.

The identity

T (X, J, Z) =
⋃̀
i=1

eV (T (e−1
V (Xi), J ′, e−1

V (Z)))

concludes our proof of part (a) of Theorem 1.4.

6.2. Part (b) of Theorem 1.4. We proceed by induction on n; the case n = 2 is
immediate. Now assume n ≥ 3 and the conclusion holds for every smaller value of
n. We may assume 1 ≤ r ≤ n− 1.

Let U := UX denote the union of all the anomalous subvarieties of X. By
Lemma 4.1 and Lemma 4.2, we may assume that X is not contained in any special
subvariety, and that for any choice of j ≥ r factors P1 the image of the projection
from X to (P1)j has dimension r. Let

U0 :=
⋃
J⊆In

T (X, J, (P1)J);

then U0 is a closed subset of X since each T (X, J, (P1)J) is Zariski closed by part
(a). We also let U∞ denote the union of all anomalous subvarieties of X that are
contained in a hypersurface of the form ∞×(P1)n−1 (after a possible rearrangement
of coordinates). In other words:

U∞ =
n⋃
i=1

T (X, {i}, {∞})

which is Zariski closed thanks to part (a).
Now we let Y be an anomalous subvariety of X that is not contained in U0∪U∞.

Let Z be a special subvariety of X such that Y ⊆ X ∩ Z and

dim(Y ) > max{0,dim(X) + dim(Z)− n}.

Write ` = dim(Z). Without loss of generality, write Z = ζ × Z0 where ζ ∈ (P1)m

(the first m coordinates) and Z0 is a ϕn−m-periodic subvariety of (P1)n−m which
projects dominantly onto each coordinate of (P1)n−m; we allow for the possibility
that m = 0, in which case Z is simply a ϕn-periodic subvariety of (P1)n. Let
δ := dim(Y ); then δ ≥ max{1, r + ` − n + 1}. There exist δ coordinates of (P1)n

such that Y maps dominantly to (P1)δ. This fact follows from the Implicit Function
Theorem by considering a smooth point of Y . Without loss of generality, we assume
these δ coordinates are the last δ coordinates of (P1)n. Furthermore, since the image
of Y under the projection map (P1)n 7→ (P1)δ is closed, it has to be the entire (P1)δ.

Partition {m + 1, . . . , n} into ` ordered subsets Ji such that, writing (P1)n :=
(P1)m× (P1)J1 ×· · ·× (P1)J` , then Z = ζ×C1×· · ·×C`, where each Ci ⊆ (P1)Ji is
a periodic curve. For each i = 1, . . . , ` we list the elements of Ji as ji,1 ≺ · · · ≺ ji,mi

(where mi := |Ji|). As before, to avoid triple subscripts (such as xji,mi
), we use xi,s

to denote xji,s . Each Ci is defined by the equations xi,2 = gi,2(xi,1), . . . , xi,mi =
gi,mi(xi,mi−1) where each gi,j (for 1 ≤ i ≤ ` and 2 ≤ j ≤ mi) commutes with an
iterate of f .

Since Y projects onto the last δ coordinates (P1)δ of (P1)n, then each index
n − δ + 1 ≤ j ≤ n is part of a different chain Ji. Furthermore, because for
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each i = 1, . . . , `, and for each j = 2, . . . ,mi we have xi,j = gi,j(xi,j−1) for some
polynomial gi,j (commuting with f), we may assume

{n− δ + 1, . . . , n} ⊆ {j1,m1 , . . . , j`,m`
}.

Because Y projects onto the last δ coordinates (P1)δ, and (Y ∩An)\U0 is non-empty
open in Y , given any real number B > 1, there exists (a1, . . . , an) ∈ (Y ∩ An) \ U0

such that h(an−δ+i) < 1/B for each i = 1, . . . , δ − 1, while h(an) > B. Let SB
denote the set of all such points (which is actually Zariski dense in Y ).

Let Γ0 ⊆ In consist of:
• each s = 1, . . . ,m;
• each s ∈

(
∪`i=1Ji

)
\ {j1,m1 , . . . , j`,m`

};
• each s = n− δ + 1, ..., n− 1.

In other words, xs for s ∈ Γ0 is either one of the first m “constant coordinates”,
or one of the “dominated coordinates” in the chains Ji, or one of the δ − 1 coordi-
nates xn−δ+1, ..., xn−1 whose valuations on SB have heights bounded by 1/B. By
construction, the above three sets are disjoint and therefore:

|Γ0| = m+ (n−m− `) + (δ − 1) = n− `− 1 + δ ≥ r.

So we can fix Γ to be a subset of Γ0 of cardinality r. For each i ∈ In \ Γ0, let
Γi := Γ∪{i} and consider the projection πi : X −→ (P1)Γi . Since dim(πi(X)) = r,
then πi(X) ⊂ (P1)Γi is defined by Fi = 0 where Fi is a polynomial in the variables
xk for k ∈ Γi. We write:

Fi =
Di∑
j=0

Fi,jx
j
i ,

where Di = degxi
Fi and each Fi,j is a polynomial in the variables xk where k ∈ Γ.

Let (a1, . . . , an) ∈ SB for some B > 1. We claim that for every i ∈ In \ Γ0,
there exists j = 1, . . . , Di for which Fi,j(ak)k∈Γ 6= 0. Otherwise, as explained
in the proof of Proposition 4.5, the point (a1, . . . , an) would be contained in an
anomalous subvariety obtained by intersecting X with (ak)k∈Γ × (P1)In\Γ. This
would imply (a1, . . . , an) ∈ U0, violating the above definition of SB . Now we use
arguments similar to those in the proof of Proposition 5.2. By Corollary 3.4, there
exist positive constants c5 and c6 depending only on X such that that for every
i ∈ In \ Γ0,

(10) ĥf (ai) ≤ c5
∑
j∈Γ

ĥf (aj) + c6.

There exists i ∈ {1, . . . , `} such that mi ≥ 2 since otherwise Z = ζ × (P1)n−m

contradicting our assumption that Y is not contained in U0. Let M be a positive
integer to be chosen later. If deg(gi,mi) > M for each i = 1, . . . , ` such that mi ≥ 2,
then

nĥf (ai,mi) > M

mi−1∑
j=1

ĥf (ai,j).

Using the fact that (a1, . . . , am) = ζ is constant, and also that ĥ(an−δ+1), . . . , ĥf (an−1)
are uniformly bounded by 1/B < 1, we conclude that there exists a positive con-
stant c7 (depending only on n and ζ) such that:

(11) n
∑

i∈In\Γ0

ĥf (ai) > M
∑
j∈Γ

ĥf (aj)− c7.
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Now fix M > n2c5, by (10) and (11), ĥf (ai) for i ∈ In \Γ0 is bounded above solely
in terms of M,n, c5, c6, c7. This contradicts the fact that ĥf (an) > B once B is
chosen to be sufficiently large. In conclusion, there exists i = 1, . . . , ` such that
mi ≥ 2 and deg(gi,mi

) ≤M .
By Proposition 2.4, there are at most finitely many polynomials g of degree

bounded by M which commute with an iterate of f . For each such g there are
n(n− 1) periodic hypersurfaces in (P1)n defined by xj = g(xk) for 1 ≤ k 6= j ≤ n.
Denote the collection of all such hypersurfaces (for all choices of g) by V. We
conclude that for every special subvariety Z such that there exists a subvariety
Y ⊆ X ∩ Z satisfying dim(Y ) > max{0,dim(X) + dim(Z)− n} and Y 6⊆ U0 ∪ U∞
then Z ⊆ V for some V ∈ V.

For every V ∈ V, let WV,i for 1 ≤ i ≤ n(V ) be all the irreducible components
of X ∩ V and let eV denote the embedding associated to V as in Section 4. Let
UV denote the union of the anomalous loci of e−1

V (WV,1), . . . , e−1
V (WV,n(V )). By

Corollary 4.8, we have that U is exactly the Zariski closed set:

(12) U0

⋃
U∞

⋃
V ∈V

eV (UV ).

By definition, both U0 and U∞ are a finite union of sets of the form T (X, Ji, Zi).
We finish the proof by using the induction hypothesis for the sets UV ’s and Corol-
lary 4.8.

Remark 6.1. The referee points out that we can avoid the use of canonical height
as follows. Instead of using part (d) of Lemma 3.3, we can obtain the results of this
paper by using the inequality:

|h(g(a))− deg(g)h(a)| ≤ C deg(g)

for every non-constant g ∈ Q̄[x] commuting with an iterate of f (which is still
assumed to be disintegrated) and every a ∈ P1, where C is a constant depending
only on f .

7. More general dynamical systems

7.1. Proof of Theorem 1.3 and Theorem 1.4 in general. Our proof consists
of two steps:

(I) Reduce from ϕ to a map of the form ψ = ψ1 × · · · × ψs where ψi is
a coordinate-wise self-map of (P1)ni of the form wi × · · · × wi for some
1 ≤ ni ≤ n and disintegrated wi(x) ∈ Q̄[x] such that

∑s
i=1 ni = n and wi

and wj are inequivalent for i 6= j (see Definition 7.1).
(II) Consider maps having the same form like ψ above.

The arguments in Step (II) above are essentially the same as those used in the proof
of Theorem 1.3 and Theorem 1.4 in the special case f×· · ·×f ; one simply needs to
introduce an extra layer of complexity in the notation used in the previous sections.
Hence we will explain Step (I) in detail and only briefly sketch the arguments for
Step (II). Again, the main ingredient in Step (I) comes from [MS14]. We need the
following:

Definition 7.1. For simplicity, an irreducible curve in (P1)2 is called non-trivial
if the projection to each factor P1 is non-constant. Let A1(x), A2(x) ∈ Q̄[x] be
disintegrated polynomials of degrees at least 2. We define A1 ≈ A2 if the self-map
A1 ×A2 of (P1)2 admits a non-trivial irreducible periodic curve.
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By [MS14, Proposition 2.35], A1 ≈ A2 if and only if there exist a positive integer
N , non-constant p1(x), p2(x) ∈ Q̄[x], and a disintegrated polynomial w(x) ∈ Q̄[x]
such that: ANi ◦ pi = pi ◦ w for i = 1, 2. In other words, we have the commutative
diagram:

(P1)2 (P1)2

(P1)2 (P1)2
?

p1×p2

-w×w

?

p1×p2

-
AN

1 ×A
N
2

We say that the dynamical system w×w covers AN1 ×AN2 by the covering p1 × p2.
We can easily show that ≈ is an equivalence relation on the set of disintegrated
polynomials of degrees as least 2 (see also [MS14, Proposition 2.11]) as follows.
Suppose we also have A2 ≈ A3, then AN2 ≈ AN3 . Since w × AN3 covers AN2 × AN3
thanks to the covering p2 × id, we have that w ≈ AN3 . Applying the (existence
of the) above commutative diagram for the pair (w,AN3 ) instead of the previous
pair (A1, A2), there exists a positive integer K such that wK × ANK3 is covered
by W × W for some disintegrated polynomial W . Hence the dynamical system
ANK1 × ANK2 × ANK3 on (P1)3 is covered by W ×W ×W . By using a non-trivial
periodic curve underW×W , we have that ANK1 ×ANK3 admits a non-trivial periodic
curve. Hence A1 ≈ A3.

Applying the above arguments inductively, we can also show that given disinte-
grated polynomials A1, . . . , A` in the same equivalence class, there exist a positive
integer N , non-constant polynomials p1, . . . , p` and a disintegrated polynomial w
such that ANi ◦ pi = pi ◦ w for every 1 ≤ i ≤ `. In other words, the dynamical
system w× · · · ×w covers the system AN1 × · · · ×ANn by the covering p1 × · · · × pn.

Now given disintegrated polynomials f1, . . . , fn, let ϕ = f1 × · · · × fn, and let
s denote the number of (distinct) equivalence classes corresponding to f1, . . . , fn
(under the equivalence relation ≈). Let n1, . . . , ns denote the number of distinct fi’s
belonging in each of these classes (hence n1 + . . .+ ns = n). There exist a positive
integer N , non-constant p1, . . . , pn ∈ Q̄[x] and disintegrated w1, . . . , ws ∈ Q̄[x] such
that the following holds. For 1 ≤ i ≤ s, let ψi be the self-map wi × · · · × wi on
(P1)ni . Let η = p1×· · ·×pn as a self-map on (P1)n. After a possible rearrangement
of the polynomials f1, . . . , fn, we have the commutative diagram:

(P1)n1 × · · · × (P1)ns (P1)n1 × · · · × (P1)ns

(P1)n (P1)n
?

η

-ψ1×···×ψs

?

η

-
ϕN

Since the statements of Theorem 1.3 and Theorem 1.4 are unchanged when we
replace fi by fNi for 1 ≤ i ≤ n, we may assume N = 1. Write ψ := ψ1 × · · · × ψs.
By [MS14, Proposition 2.21], every irreducible ψ-periodic subvariety V of (P1)n =
(P1)n1 × · · · × (P1)ns has the form V1 × · · · × Vs where each Vi is a ψi-periodic
subvariety of (P1)ni for 1 ≤ i ≤ s. Since η is a finite and coordinate-wise morphism,
it satisfies the following properties:
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(i) η maps ψ-periodic subvarieties to ϕ-periodic subvarieties. Some irreducible
component of the inverse image of a ϕ-periodic subvariety under η is ψ-
periodic.

(ii) The same conclusion in (i) remains valid for ϕ-special and ψ-special sub-
varieties.

(iii) As a consequence of (ii), for every irreducible subvariety X of (P1)n and
every irreducible component W of η−1(X), η maps the ψ-anomalous locus
of W into the ϕ-anomalous locus of X. Furthermore, we have:

η(∪WW oa
ψ ) = Xoa

ϕ and η(∪W (W −W oa
ψ )) = X −Xoa

ϕ

where W ranges over all irreducible components of η−1(X).
(iv) Let J ⊆ In and let Z be a ϕJ -periodic subvariety of (P1)J . We have the

following:
η(∪W ∪Z′ T (W,J,Z ′)) = T (X, J, Z)

where W ranges over all the irreducible components of η−1(X) and Z ′

ranges over all the irreducible components of (ηJ)−1(Z).

The above properties of η reduce ϕ to maps of the form ψ1 × · · · × ψs. This
finishes Step (I). We briefly sketch Step (II).

For Bounded Height, we proceed as follows. We define a ψ-signature S to be
a collection consisting of a signature Si for each block (P1)ni for 1 ≤ i ≤ s. A
ψ-periodic subvariety V = V1×· · ·×Vs as above is said to have signature S if each
Vi has signature Si. Note also that a periodic hypersurface V is still defined by
xi = ζ or by xj = g(xi), so eV is well-defined for ψ. Given an irreducible subvariety
W of (P1)n having dimension r, it suffices to show that the set

W oa
ψ ∩ (∪V V )

has bounded height, where V ranges over all irreducible ψ-periodic subvarieties of
dimension n− r having the fixed signature S .

By Lemma 4.2, once we assume W oa
ψ 6= ∅, the projection from W to any r + 1

factors is a hypersurface. Proposition 5.2 remains valid with a similar proof (albeit
with a more complicated system of notations in order to deal with the different
blocks (P1)ni). Note that instead of the canonical height ĥf used in the proof of
Proposition 5.2, here we use the canonical heights ĥwi for the coordinates inside
the block (P1)ni for 1 ≤ i ≤ s. Finally, we apply the induction hypothesis as in the
end of Section 5. This finishes the proof of Theorem 1.3.

For part (a) of Theorem 1.4, let J be a subset of In and Z a ψJ -periodic subva-
riety of (P1)J . For 1 ≤ i ≤ s, let Ji = J ∩ {ni−1 + 1, . . . , ni} (with the convention
n0 = 0); in other words, Ji is obtained from the block of variables in (P1)ni . Then
Z has the form Z1 × · · · × Zs where each Zi is a ψJi-periodic subvariety of (P1)Ji .
This fact allows us to repeat the proof in Subsection 6.1 verbatim for the map ψ
considered here.

For part (b) of Theorem 1.4, we proceed as follows. Let U denote the union of
ψ-anomalous subvarieties of W . Define U0 and U∞ as in Subsection 6.2. Let Y be
a ψ-anomalous subvariety of X and Z a ψ-special subvariety such that Y ⊆ X ∩Z,
dim(Y ) > max{0,dim(X) + dim(Z) − n} and Y 6⊆ U0 ∪ U∞. The same argument
as in Section 6 (here we use the canonical heights ĥwi for each block (P1)ni) shows
that there is a finite collection of ψ-periodic hypersurfaces V such that for every Y
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and Z as above, we have Z ⊆ V for some V ∈ V. Then we apply the induction
hypothesis. This finishes the proof of Theorem 1.4.

7.2. More general questions for rational functions. We need the following:

Definition 7.2. A rational function f(x) ∈ Q̄(x) of degree d ≥ 2 is said to be
disintegrated if it is not linearly conjugate to xd, ±Cd(x) or a Lattès map.

For the definition of Lattès maps, we refer the readers to [Sil07, Chapter 6]. Ques-
tions about the arithmetic dynamics of f1× · · ·× fn where each fi is Lattès reduce
to diophantine questions on products of elliptic curves. The Bounded Height Con-
jecture has also been studied in this context (see, for example [Via03], [Hab09b]).

Now let n be a positive integer and let f1(x), . . . , fn(x) be disintegrated rational
functions of degrees at least 2. Let ϕ denote the coordinate-wise self-map f1×· · ·×fn
on (P1)n. Let In := {1, . . . , n} as before. Recall that for an ordered subset J of In
listed as i1 ≺ . . . ≺ im where m = |J |, we let ϕJ denote the self-map fi1 × · · ·× fim
on (P1)J . Let X be an irreducible subvariety of (P1)n. We can define ϕ-special,
ϕ-pre-special, ϕ-anomalous and ϕ-pre-anomalous subvarieties and the sets Xoa

ϕ and
Xoa,pre
ϕ as in Definition 2.1 and Definition 1.2. We expect an affirmative answer for

the following:

Question 7.3. Let n be a positive integer, let f1, . . . , fn ∈ Q̄(x) be disintegrated
rational functions of degrees at least 2 and let ϕ be the associated self-map of (P1)n.
Let X be an irreducible subvariety of dimension r in (P1)n.

(a) Is it true that the set Xoa
ϕ is Zariski open in X and Xoa

ϕ ∩Per[r]ϕ has bounded
height?

(b) Is it true that the set Xoa,pre
ϕ is Zariski open in X and Xoa,pre

ϕ ∩Pre[r]
ϕ has

bounded height?

Proposition 7.4. We have the following:
(a) Assume the Medvedev-Scanlon classification (Theorem 2.3) is valid for a

disintegrated rational function f . Then part (a) of Question 7.3 has an
affirmative answer when f1 = . . . = fn = f .

(b) Assume the Medvedev-Scanlon classification is valid for every disintegrated
rational function. Then part (a) of Question 7.3 has an affirmative answer.

Proof. Part (a) can be proved by essentially the same arguments in Section 5 and
Section 6. Besides the Medvedev-Scanlon classification, the two key results needed
in those proofs are: part (d) of Proposition 2.4 stating that for every given degree
there are only finitely many g commuting with an iterate of f and part (b) of
Lemma 3.2. In fact, we used the “affine part” of X (and the set U∞ in Subsec-
tion 6.2) in the above proofs solely for simplifying the notation. In the more general
case, we can instead work with the multi-homogeneous polynomial F J defining the
hypersurface πJ(X) in (P1)J (for |J | = r + 1). More details are given in Proposi-
tions 7.5 and 7.6.

For part (b), we consider the general case ϕ = f1 × · · · × fn for disintegrated
f1, . . . , fn. The arguments in Step (I) in the last subsection actually work when
f1, . . . , fn are disintegrated rational functions. This boils down to [MS14, Definition
2.20, Fact 2.25]; although the statement given by Medvedev-Scanlon in [MS14,
Fact 2.25] only treats the polynomial case, it is also known to be true for rational
functions thanks to Medvedev’s PhD thesis [Med07, Theorem 10]. In other words,
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we reduce ϕ to a map of the form ψ1 × · · · ×ψs where each ψi is a coordinate-wise
self-map of (P1)ni of the form wi × · · ·wi for some disintegrated rational function
wi ∈ Q̄(x). After that, Step (II) could be done as in the previous subsection; this
requires the Medvedev-Scanlon classification for each wi. �

We need a counterpart of Proposition 2.4 for rational functions:

Proposition 7.5. Let f ∈ Q̄(x) be a disintegrated rational function. Then the
following hold:

(a) If g ∈ Q̄(x) has degree at least 2 and commutes with an iterate of f then
g and f have a common iterate.

(b) The group Aut(f∞) of all Möbius maps commuting with an iterate of f is
finite.

(c) Assume that the Medvedev-Scanlon classification (Theorem 2.3) is valid for
f . In the collection of rational functions of degrees at least 2 commuting
with an iterate of f , choose f̃ that has the smallest degree. We have:{

f̃m ◦ L : m ≥ 0, L ∈ Aut(f∞)
}

=
{
L ◦ f̃m : m ≥ 0, L ∈ Aut(f∞)

}
and this is exactly the set of all rational functions commuting with an
iterate of f .

Proof. Part (a) is a well-known theorem of Ritt [Rit23] while part (c) could be
proved by the same arguments used in [Ngu13, Proposition 2.3(d)]. For part (b),
Levin’s theorem [Lev90] implies that for a given degree there are at most finitely
many rational functions having the same iterate with f . Together with part (a),
we have that the set {L ◦ f : L ∈ Aut(f∞)} is finite. Hence Aut(f∞) is finite. �

We now let [xi : yi] be the homogeneous coordinate on the ith factor of (P1)n for
1 ≤ i ≤ n. For every P ∈ P1, we choose the homogeneous coordinate [a : b] so that
b = 1 or (a, b) = (1, 0). Hence given any homogeneous polynomial F (x, y), we have
a well-defined value F (P ). Now let F (X1, Y1, . . . , Xn, Yn) be a multi-homogeneous
polynomial that is homogeneous in each [X1 : Y1], . . . , [Xn : Yn]. Let D be the
homogeneous degree of F in [Xn : Yn]. Assume D ≥ 1 and write:

F = FDX
D
n + FD−1X

D−1
n Yn + . . .+ F0Y

D
n

where each Fj is a multi-homogeneous polynomial in X1, . . . , Yn−1. We have the
following:

Proposition 7.6. There exist positive constants C8 and C9 depending only on F
such that for every (P1, . . . , Pn) ∈ (P1)n satisfying Fj(P1, . . . , Pn−1) 6= 0 for some
1 ≤ j ≤ D, we have:

h(Pn)− C8(h(P1) + . . .+ h(Pn−1))− C9 ≤ h(F (P1, . . . , Pn)).

Proof. The inequality is obvious (for any positive C8 and C9) when Pn = ∞. When
Pn 6= ∞, we can use completely similar arguments used in the proof of part (b) of
Lemma 3.2. �

Remark 7.7. In an ongoing joint work of the second author with Michael Zieve,
there are given reasons to expect that the Medvedev-Scanlon classification should
hold for every disintegrated rational function.
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