
Math 405: Topic 7a: PDEs and the method-of-lines

Forward Euler applied to the heat/diffusion equation ut = uxx: vn+1 = vn + kLvn. Here L is our favourite “1 -2 1”
matrix. This scheme can be represented with a finite difference stencil:
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Backward Euler applied to ut = uxx: vn+1 = vn + kLvn+1
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These are “full discretizations” of the PDE.

The Method of Lines

Alternatively, we can discretize in space first. To continue with the heat equation example, discretize in space with our
favourite “1 -2 1” matrix.

This gives a large system of ODEs ~v(t)′ = L~v(t). We can then apply time-stepping methods (and analysis) to the ODEs.

This idea is the “method of lines”. The “lines” refers to the vertical lines x = xj at each grid point in a space-time
diagram; we solve an ODE for vj(t) along each line (and each ODE is typically coupled to some neighbours).

Stability in PDE finite difference calculations

Time-step restrictions for the heat equation

The choice of h may effect k. We looked at eigenvalues of the L matrix before: they depend on h. Largest magnitude is
−4/h2. Need this inside the stability region.

Choose forward Euler: need λk > −2. Leads to restriction on k for stability in time:

k ≤ 1
2h

2,

(for the heat equation in this dimension, with this spatial discretization, with this time discretization.)

The biharmonic problem ut = −uxxxx

How to discretize? Think (uxx)xx. . . , this leads to

vj(t)′ = − 1
h4 (vj−2(t)− 4vj−1(t) + 6vj(t)− 4vj+1(t) + vj+2(t))

[demo_07_biharmonic.m] Note ridiculously small time steps required. Let’s try to see why (stability issue) and what we
can do about it (implicit A-stable ODE methods).
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PDE stability in method-of-lines

As above, we follow the linear stability analysis for the ODE methods. The spatial discretization gives us the eigenvalues
of the semidiscrete system (or we may be able to compute them numerically). Need these eigenvalues to lie inside the
absolute stability region of the ODE method.
Note: this involves the eigenvalues of the semidiscrete system, not the original right-hand-side of the PDE!
Demo: run demo_07_biharmonic, then use ‘eigs’ to compute ‘largest magnitude’ eigenvalues of the discretized biharmonic
operator: need k times these less than 2 for forward Euler stability. Note this gives almost the same restriction as observed
in practice.

von Neumann stability analysis for the fully discrete problem

Another commonly used approach to stability in PDE problems is von Neumann Analysis of the finite difference formula.
Also known as discrete Fourier analysis, invented in the late 1940s.
Consider ut = −uxxxx again, discretized in space as above and with forward Euler in time:

vn+1
j = vnj −

k

h4

(
vnj−2 − 4vnj−1 + 6vnj − 4vnj+1 + vnj+2

)
.

Suppose we have periodic boundary conditions and that at step n we have a (complex) sine wave eiξx for some wave
number ξ, so that

vnj = exp(iξxj) = exp(iξjh),

Note larger ξ is more oscillatory. We will analyze whether this wave grows in amplitude or decays (for each ξ). For stability,
we want all waves to decay.
For the biharmonic diffusion equation, we substitute this wave into the finite difference scheme above, and factor out
exp(iξh) to get

vn+1
j = g(ξ)vnj ,

with the amplification factor

g(ξ) = 1− k

h4

(
e−i2ξh − 4e−iξh + 6− 4eiξh + ei2ξh

)
.

This can be simplified to:

g(ξ) = 1− 16k
h4 (sin(ξh/2))4.

As ξ ranges over various values sin is bounded by 1 so we have

1− 16k/h4 ≤ g(ξ) ≤ 1.

A mode will grow if |g(ξ)| > 1. Thus for stability we want |g(ξ)| ≤ 1 for all ξ , i.e.,

1− 16k/h4 ≥ −1, or k ≤ h4/8.

For h = 0.025, as in the demo code, this gives

k ≤ 4.883× 10−8.

This matches our experiment and ODE analysis convincingly, but confirms that this finite difference formula is not really
practical: should use implicit.
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Stability, Consistency, Convergence for PDE finite difference methods

Another version of our fundamental theorem:

Lax equivalence theorem: for linear PDEs, consistency + Lax-Richtmyer stability implies convergence.

Lax-Richtmyer Stability: Suppose we have a fixed relationship between k and h (e.g., k = 0.4h2). Say we can write our
fully-discrete system as

Un+1 = B(k)Un + bn(k)

where B(k) is a matrix. This is the case for our heat example with “1 -2 1” and forward Euler for example.

Defn: Linear method in this form is Lax–Richtmyer stable if

||B(k)n|| ≤ CT .

where CT constant indep of k, n but could depend on final time T .

MOL Example: Fisher-KPP Equation

Independent 1937 discoveries for biological applications (spread of species): Fisher; Kolmogorov, Petrovsky, and Piscounov:

ut = εuxx + u− u2.

Solutions: traveling waves. Explicit finite difference model is similar to heat equation. Note have nonhomogeneous BC
u(0) = 1, and u(20) = 0; the former is implemented by using an extra vector “BC”. [demo_07_fisher_kpp.m]

| u | |-2 1 | | u | |1/h^2|
| 1 | | | | 1 | | |
| u | | 1 -2 1 | | u | | 0 |
| 2 | | | | 2 | | |

d | . | | . . . | | . | | . | 2
-- | . | = ep/h^2 | . . . | | . | + | . | + (u -u )
dt | . | | . . . | | . | | . | j j

| | | | | | | |
| | | 1 -2 1 | | | | |
| u | | | | u | | |
| N | | 1 -2 | | N | | 0 |

BC vector

(Note the nonlinear term “u− u2” will need to be entered in Octave/Matlab using “.*" and “.ˆ” etc).

Accuracy on heat equation

Both Forward and Backward Euler with the L matrix are consistent with an expected error of O(k) +O(h2) (space error +
time error).

But with FE: k = O(h2) so error is O(h2) +O(h2) = O(h2). Maybe you only want first-order accuracy, is so, this extra
work is wasteful. (Yet another “definition” of stiffness: if your choice of timestep k is motivated by stability rather than
accuracy, you are probably dealing with a stiff problem.)
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Higher-order in time

Even if we want second-order perhaps there might be better ways, use a more accurate ODE solver: trapezoidal rule in
time + second order in space. When used on heat equation, this is called “Crank–Nicolson”:

vn+1 = vn + k

2Lv
n+1 + k

2Lv
n.

or Bvn+1 = Avn for some matrices B and A.

Note the stencil of this scheme:

(j+1,n+1)
o------o------o

|
|

o------o------o
(j,n) (j+1,n)

Caution

Sometimes hard to tell from numerical convergence study which terms are dominating. Can also do tests to isolate the
error components in h and k. For example, try to find exact (or almost exact) solution of the MOL ODE system and
compare the fully-discrete solution against that.
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