Math 405: Numerical Methods for Differential Equations 2017 W1
Topic 4: Newton-Cotes Quadrature
"Quadrature" means numerical integration. Main idea: find a polynomial interpolant as proxy/model for $f(x)$ and integrate that instead. A reference is Chapter 7 of Süli and Mayers book.
Setup: given $f\left(x_{k}\right)$ at $n+1$ equally spaced points $x_{k}=x_{0}+k \cdot h, k=0,1, \ldots, n$, where $h=\left(x_{n}-x_{0}\right) / n$. Suppose that $p_{n}(x)$ interpolates this data.
Idea: does

$$
\begin{equation*}
\int_{x_{0}}^{x_{n}} f(x) \mathrm{d} x \approx \int_{x_{0}}^{x_{n}} p_{n}(x) \mathrm{d} x ? \tag{1}
\end{equation*}
$$

We investigate the error in such an approximation below, but note that

$$
\begin{align*}
\int_{x_{0}}^{x_{n}} p_{n}(x) \mathrm{d} x & =\int_{x_{0}}^{x_{n}} \sum_{k=0}^{n} f\left(x_{k}\right) \cdot L_{n, k}(x) \mathrm{d} x \tag{2}\\
& =\sum_{k=0}^{n} f\left(x_{k}\right) \cdot \int_{x_{0}}^{x_{n}} L_{n, k}(x) \mathrm{d} x=\sum_{k=0}^{n} w_{k} f\left(x_{k}\right)
\end{align*}
$$

where the coefficients

$$
\begin{equation*}
w_{k}=\int_{x_{0}}^{x_{n}} L_{n, k}(x) \mathrm{d} x \tag{3}
\end{equation*}
$$

$k=0,1, \ldots, n$, are independent of f. A formula

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{k=0}^{n} w_{k} f\left(x_{k}\right)
$$

with $x_{k} \in[a, b]$ and w_{k} independent of f for $k=0,1, \ldots, n$ is called a quadrature formula; the coefficients w_{k} are known as weights. The specific form (1)-(3), based on equally spaced points, is called a Newton-Cotes formula of order n.
Trapezoidal Rule: $n=1$ (also known as the trapezium rule):

$$
\int_{x_{0}}^{x_{1}} f(x) \mathrm{d} x \approx \frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]
$$

Simpson's Rule: $n=2$:

$$
\int_{x_{0}}^{x_{2}} f(x) \mathrm{d} x \approx \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]
$$

Note: The trapezoidal rule is exact if $f \in \Pi_{1}$, since if $f \in \Pi_{1} \Longrightarrow p_{1}=f$. Similarly, Simpson's Rule is exact if $f \in \Pi_{2}$, since if $f \in \Pi_{2} \Longrightarrow p_{2}=f$. (In fact it is better, see
next page...) The highest degree of polynomial exactly integrated by a quadrature rule is called the (polynomial) degree of accuracy (or degree of exactness).
Error: we can use the error in interpolation directly to obtain

$$
\int_{x_{0}}^{x_{n}}\left[f(x)-p_{n}(x)\right] \mathrm{d} x=\int_{x_{0}}^{x_{n}} \frac{\pi(x)}{(n+1)!} f^{(n+1)}(\xi(x)) \mathrm{d} x
$$

so that

$$
\begin{equation*}
\left|\int_{x_{0}}^{x_{n}}\left[f(x)-p_{n}(x)\right] \mathrm{d} x\right| \leq \frac{1}{(n+1)!} \max _{\xi \in\left[x_{0}, x_{n}\right]}\left|f^{(n+1)}(\xi)\right| \int_{x_{0}}^{x_{n}}|\pi(x)| \mathrm{d} x \tag{4}
\end{equation*}
$$

which, e.g., for the trapezoidal rule, $n=1$, gives

$$
\left|\int_{x_{0}}^{x_{1}} f(x) \mathrm{d} x-\frac{\left(x_{1}-x_{0}\right)}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]\right| \leq \frac{\left(x_{1}-x_{0}\right)^{3}}{12} \max _{\xi \in\left[x_{0}, x_{1}\right]}\left|f^{\prime \prime}(\xi)\right| .
$$

In fact, we can prove a tighter result using the Integral Mean-Value Theorem ${ }^{1}$:
Theorem. $\int_{x_{0}}^{x_{1}} f(x) \mathrm{d} x-\frac{\left(x_{1}-x_{0}\right)}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]=-\frac{\left(x_{1}-x_{0}\right)^{3}}{12} f^{\prime \prime}(\xi)$ for some $\xi \in\left(x_{0}, x_{1}\right)$.
For $n>1$, (4) gives pessimistic bounds. But one can prove better results such as:
Theorem. Error in Simpson's Rule I: if $f^{\prime \prime \prime \prime}$ is continuous on $\left(x_{0}, x_{2}\right)$, then

$$
\left|\int_{x_{0}}^{x_{2}} f(x) \mathrm{d} x-\frac{\left(x_{2}-x_{0}\right)}{6}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]\right| \leq \frac{\left(x_{2}-x_{0}\right)^{5}}{720} \max _{\xi \in\left[x_{0}, x_{2}\right]}\left|f^{\prime \prime \prime \prime}(\xi)\right|
$$

Proof. First a more general lemma:
Lemma. Let $x_{0}=x_{1}-h$ and $x_{2}=x_{1}+h$. Suppose $f^{\prime \prime \prime \prime}$ is continuous on $\left(x_{0}, x_{2}\right)$. Then

$$
\begin{equation*}
\frac{f\left(x_{0}\right)-2 f\left(x_{1}\right)+f\left(x_{2}\right)}{h^{2}}=f^{\prime \prime}\left(x_{1}\right)+\frac{1}{12} h^{2} f^{\prime \prime \prime \prime}(\eta) \tag{5}
\end{equation*}
$$

Proof uses Taylor expansions and Intermediate-Value Theorem ${ }^{2}$ for some $\eta \in\left(x_{0}, x_{2}\right)$.
Back to the main proof: now for any $x \in\left[x_{0}, x_{2}\right]$, we may use Taylor's Theorem again

[^0]to deduce
\[

$$
\begin{aligned}
\int_{x_{0}}^{x_{2}} f(x) \mathrm{d} x= & f\left(x_{1}\right) \int_{x_{1}-h}^{x_{1}+h} \mathrm{~d} x+f^{\prime}\left(x_{1}\right) \int_{x_{1}-h}^{x_{1}+h}\left(x-x_{1}\right) \mathrm{d} x \\
& +\frac{1}{2} f^{\prime \prime}\left(x_{1}\right) \int_{x_{1}-h}^{x_{1}-h}\left(x-x_{1}\right)^{2} \mathrm{~d} x+\frac{1}{6} f^{\prime \prime \prime}\left(x_{1}\right) \int_{x_{1}-h}^{x_{1}+h}\left(x-x_{1}\right)^{3} \mathrm{~d} x \\
& +\frac{1}{24} \int_{x_{1}-h}^{x_{1}+h} f^{\prime \prime \prime \prime}\left(\eta_{1}(x)\right)\left(x-x_{1}\right)^{4} \mathrm{~d} x \\
= & 2 h f\left(x_{1}\right)+\frac{1}{3} h^{3} f^{\prime \prime}\left(x_{1}\right)+\frac{1}{60} h^{5} f^{\prime \prime \prime \prime}\left(\eta_{2}\right) \\
= & \frac{1}{3} h\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{60} h^{5} f^{\prime \prime \prime \prime}\left(\eta_{2}\right)-\frac{1}{36} h^{5} f^{\prime \prime \prime \prime}\left(\xi_{3}\right) \\
= & \int_{x_{0}}^{x_{2}} p_{2}(x) \mathrm{d} x+\frac{1}{180}\left(\frac{x_{2}-x_{0}}{2}\right)^{5}\left(3 f^{\prime \prime \prime \prime}\left(\eta_{2}\right)-5 f^{\prime \prime \prime \prime}\left(\xi_{3}\right)\right)
\end{aligned}
$$
\]

where $\eta_{1}(x)$ and $\eta_{2} \in\left(x_{0}, x_{2}\right)$, using the Integral Mean-Value Theorem and the lemma. Thus, taking moduli,

$$
\left|\int_{x_{0}}^{x_{2}}\left[f(x)-p_{2}(x)\right] \mathrm{d} x\right| \leq \frac{8}{2^{5} \cdot 180}\left(x_{2}-x_{0}\right)^{5} \max _{\xi \in\left[x_{0}, x_{2}\right]}\left|f^{\prime \prime \prime \prime}(\xi)\right|
$$

as required.
Note: Simpson's Rule is exact if $f \in \Pi_{3}$ since then $f^{\prime \prime \prime \prime} \equiv 0$.
In fact, it is possible to compute a slightly stronger bound.
Theorem. Error in Simpson's Rule II: if $f^{\prime \prime \prime \prime}$ is continuous on $\left(x_{0}, x_{2}\right)$, then

$$
\int_{x_{0}}^{x_{2}} f(x) \mathrm{d} x=\frac{x_{2}-x_{0}}{6}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]-\frac{\left(x_{2}-x_{0}\right)^{5}}{2880} f^{\prime \prime \prime \prime}(\xi)
$$

for some $\xi \in\left(x_{0}, x_{2}\right)$.
Proof. See Süli and Mayers, Thm. 7.2.

[^0]: ${ }^{1}$ Integral Mean-Value Theorem: if f and g are continuous on $[a, b]$ and $g(x) \geq 0$ on this interval, then there exists an $\eta \in(a, b)$ for which $\int_{a}^{b} f(x) g(x) \mathrm{d} x=f(\eta) \int_{a}^{b} g(x) \mathrm{d} x$.
 ${ }^{2}$ Intermediate-Value Theorem: if f is continuous on a closed interval $[a, b]$, and c is any number between $f(a)$ and $f(b)$ inclusive, then there is at least one number ξ in the closed interval such that $f(\xi)=c$. In particular, since $c=(d f(a)+e f(b)) /(d+e)$ lies between $f(a)$ and $f(b)$ for any positive d and e, there is a value ξ in the closed interval for which $d \cdot f(a)+e \cdot f(b)=(d+e) \cdot f(\xi)$.

