Math 405: Numerical Methods for Differential Equations 2017 W1

Topic 3: Lagrange Interpolation

This lecture adapted from chapter 6 of the numerical analysis textbook by Süli and Mayers.
Setup: $\Pi_{n}=\{$ real polynomials of degree $\leq n\}$. Problem: given data f_{i} at distinct x_{i}, $i=0,1, \ldots, n$, with $x_{0}<x_{1}<\cdots<x_{n}$, can we find a polynomial p_{n} such that $p_{n}\left(x_{i}\right)=f_{i}$? Such a polynomial is said to interpolate the data.
E.g.: \quad constant $n=0 \quad$ linear $n=1 \quad$ quadratic $n=2$

Theorem. $\exists p_{n} \in \Pi_{n}$ such that $p_{n}\left(x_{i}\right)=f_{i}$ for $i=0,1, \ldots, n$.
Proof. (Constructive!) Consider, for $k=0,1, \ldots, n$, the "cardinal polynomial"

$$
\begin{equation*}
L_{n, k}(x)=\frac{\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)} \in \Pi_{n} \tag{1}
\end{equation*}
$$

Then

$$
L_{n, k}\left(x_{i}\right)=0 \text { for } i=0, \ldots, k-1, k+1, \ldots, n \text { and } L_{n, k}\left(x_{k}\right)=1
$$

So now define

$$
\begin{equation*}
p_{n}(x)=\sum_{k=0}^{n} f_{k} L_{n, k}(x) \in \Pi_{n} \tag{2}
\end{equation*}
$$

\Longrightarrow

$$
p_{n}\left(x_{i}\right)=\sum_{k=0}^{n} f_{k} L_{n, k}\left(x_{i}\right)=f_{i} \text { for } i=0,1, \ldots, n
$$

The polynomial (2) is the Lagrange interpolating polynomial. The cardinal polynomials for $n=3$ look like:

Theorem. The interpolating polynomial of degree $\leq n$ (through $n+1$ points) is unique.
Proof. "One root too many". Consider two interpolating polynomials $p_{n}, q_{n} \in \Pi_{n}$. Difference $d_{n}=p_{n}-q_{n} \in \Pi_{n}$ satisfies $d_{n}\left(x_{k}\right)=0$ for $k=0,1, \ldots, n$, i.e., d_{n} is a polynomial of degree at most n but has at least $n+1$ distinct roots. Fundam. Thm. Algebra \Longrightarrow $d_{n} \equiv 0 \Longrightarrow p_{n}=q_{n}$.
Demos: See demo_03_lagrange.m and demo_03_lagrange_construct.m.
Data from an underlying smooth function: Suppose that $f(x)$ has at least $n+1$
smooth derivatives in the interval $\left(x_{0}, x_{n}\right)$. Let $f_{k}=f\left(x_{k}\right)$ for $k=0,1, \ldots, n$, and let p_{n} be the Lagrange interpolating polynomial for the data $\left(x_{k}, f_{k}\right), k=0,1, \ldots, n$.
Error: how large can the error $f(x)-p_{n}(x)$ be on the interval $\left[x_{0}, x_{n}\right]$?
Theorem. For every $x \in\left[x_{0}, x_{n}\right]$ there exists $\xi=\xi(x) \in\left(x_{0}, x_{n}\right)$ such that

$$
e(x):=f(x)-p_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \frac{f^{(n+1)}(\xi)}{(n+1)!},
$$

where $f^{(n+1)}$ is the $(n+1)$-st derivative of f.
Proof. (sketch) Trivial for $x=x_{k}, k=0,1, \ldots, n(e(x)=0$ by construction). So suppose $x \neq x_{k}$. Key idea is to define

$$
\phi(t):=e(t)-\frac{e(x)}{\pi(x)} \pi(t)
$$

where $\pi(t):=\left(t-x_{0}\right)\left(t-x_{1}\right) \cdots\left(t-x_{n}\right)=t^{n+1}+\cdots \in \Pi_{n+1}$. Now we count at how many points ϕ vanishes. Then note ϕ^{\prime} must vanish at one few point. And continue that idea recursively until there is only a single root.

Runge phenomenon. See famous example due to Carl Runge from 1901, where the error from the interpolating polynomial approximation to $f(x)=\left(1+x^{2}\right)^{-1}$ for $n+1$ equallyspaced points on $[-5,5]$ diverges near ± 5 as n tends to infinity: try demo_03_runge.m.

Building Lagrange interpolating polynomials from lower degree ones.

Notation: Let $Q_{i, j}$ be the interpolating polynomial at $x_{k}, k=i, \ldots, j$.
Theorem.

$$
\begin{equation*}
Q_{i, j}(x)=\frac{\left(x-x_{i}\right) Q_{i+1, j}(x)-\left(x-x_{j}\right) Q_{i, j-1}(x)}{x_{j}-x_{i}} \tag{3}
\end{equation*}
$$

Proof. Let $s(x)$ denote the right-hand side of (3). Because of uniqueness, we wish to show that $s\left(x_{k}\right)=f_{k}$ and that the $s(x)$ is of the correct degree; left as exercises.

Comment: this can be used as the basis for constructing interpolating polynomials. In books: may find topics such as the Newton form and divided differences.
Generalisation: given data f_{i} and g_{i} at distinct $x_{i}, i=0,1, \ldots, n$, with $x_{0}<x_{1}<\cdots<$ x_{n}, can we find a polynomial p such that $p\left(x_{i}\right)=f_{i}$ and $p^{\prime}\left(x_{i}\right)=g_{i}$?
Theorem. There is a unique polynomial $p_{2 n+1} \in \Pi_{2 n+1}$ such that $p_{2 n+1}\left(x_{i}\right)=f_{i}$ and $p_{2 n+1}^{\prime}\left(x_{i}\right)=g_{i}$ for $i=0,1, \ldots, n$.
Construction: given $L_{n, k}(x)$ in (1), let

$$
\begin{aligned}
H_{n, k}(x) & =\left[L_{n, k}(x)\right]^{2}\left(1-2\left(x-x_{k}\right) L_{n, k}^{\prime}\left(x_{k}\right)\right) \\
\text { and } K_{n, k}(x) & =\left[L_{n, k}(x)\right]^{2}\left(x-x_{k}\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
p_{2 n+1}(x)=\sum_{k=0}^{n}\left[f_{k} H_{n, k}(x)+g_{k} K_{n, k}(x)\right] \tag{4}
\end{equation*}
$$

interpolates the data as required. The polynomial (4) is called the Hermite interpolating polynomial.
Theorem. Let $p_{2 n+1}$ be the Hermite interpolating polynomial in the case where $f_{i}=f\left(x_{i}\right)$ and $g_{i}=f^{\prime}\left(x_{i}\right)$ and f has at least $2 n+2$ smooth derivatives. Then, for every $x \in\left[x_{0}, x_{n}\right]$,

$$
f(x)-p_{2 n+1}(x)=\left[\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)\right]^{2} \frac{f^{(2 n+2)}(\xi)}{(2 n+2)!}
$$

where $\xi \in\left(x_{0}, x_{n}\right)$ and $f^{(2 n+2)}$ is the $(2 n+2)$ nd derivative of f.

