
Numerical Methods for Differential Equations
Homework 4

Due by 2pm Tues 15 Nov. Please submit your hardcopy at the start of lecture. The answers
you submit should be attractive, brief, complete, and should include program listings and plots where
appropriate. Possible approaches include “publish” in Matlab/Octave and pims.jupyter.ca .

Introduction A digital image is usually represented using an rectangular array of pixels. In a gray-scale
image, each pixel has an intensity value in [0, 1] where 0 is black and 1 is white (often in practice, these
values are “quantized” into integers in [0, 255]). The human eye is very sensitive to edges in an image.
We’re going to look at “sharpening” an image, by making the edges more obvious; this can make the image
appear to be higher resolution than it actually is (technically this is known as “acutance”). This is, at
best, the sort of thing televisions do when they claim to “upscale” low-rez signals to full HD or 4K.1

Given an image u, an “unsharp mask” first computes a diffused or blurry copy of u. This blurred copy
is the subtracted from u to give an edge map. The edge map should be zero in regions where the image is
smooth. Finally the edge map is added to the original image.

Problem 1: Image processing and Gaussian blurring

1. Download the file hw4_images.zip from the course website. Run the example code given.

2. Write a code to “blur” the image by using it as the initial condition for the heat equation ut =
∇22u = uxx + uyy. Use h = 1 (one pixel) and a time-step of k = 0.1. Use 10 steps.

3. Produce a close-up picture showing the result of testpat_noblur.png.

4. Produce another picture using k = 0.5: WTF just happened and why?

Problem 2: The Unsharp Mask

1. Modify your code to perform an unsharp mask based on the algorithm described above. You can use
the images in the .zip file to test.

2. Using parameter values as shown above, display the results (zoomed in) for testpar_blur2.png.
What are the minimum and maximum values of u (i.e., the lightest and darkest pixel values for the
result).

3. If the image is not blurry to begin with (e.g., textpat_noblur.png), what does the unsharp mask do
locally around edges? Your solution should show a “zoom-in” of the results. The number of blurring
steps is a tuneable parameter in this algorithm: what effect does it have?

The tutorial at http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm gives some more
details and also discusses the biological reasons of why this works. It also cautions photographers, quite
rightly, against overusing this technique.

1Caution, learning too much about digital image processing can really spoil television for you! Ingrid Daubechies (of
“Wavelets” fame) tells a story of watching football and recognizing from the compression artifacts that the broadcaster was
(over-)using one of the wavelet techniques that she invented.

pims.jupyter.ca
http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm


Problem 3 (Perona–Malik Image denoising) Let’s look at a fully nonlinear application in image process-
ing. First try regular diffusion (the heat equation in 2D). This is Gaussian blurring. It should get rid of the
noise but it will also blur all the detail in the image and in particular the edges. The “correct” boundary
condition is probably zero-Neumann but for simplicity, you could start with periodic.

Photograph by Harry Biddle [1]

The Perona–Malik equation [2, 3] is a modification of Gaus-
sian diffusion that employs edge preservation by varying the dif-
fusion coefficient across the image, penalising it at edges. The
general equation is

ut = ∇ ·
(
g(‖∇u‖)∇u

)
, where g(s) =

1

1 + s2

λ2

is an edge detection function with a tunable parameter λ that
controls the sensitivity of the equation to visual edges. It gives
a threshold to separate noise from edges.

The two-dimensional Cartesian form of the Perona–Malik
equation is

∂u

∂t
=

∂

∂x

[
g
(√

u2x + u2y

)
ux

]
+

∂

∂y

[
g
(√

u2x + u2y

)
uy

]
.

Following the lecture notes, this can be discretized with finite differences and forward Euler

vn+1
ij = vnij + k

[gn
i+ 1

2
,j
Dx

+v
n
ij − gni− 1

2
,j
Dx

−v
n
ij

h
+
gn
i,j+ 1

2

Dy
+v

n
ij − gni,j− 1

2

Dy
−v

n
ij

h

]
. (1a)

Here Dα
+ and Dα

− indicate forward and backward finite differences, in the direction indicated by the
superscript α, on a grid spacing of h. The expressions involving g between grid points are calculated as
the average of the values at the two neighbouring grid points, e.g.,

gn
i+ 1

2
,j

= 1
2(gni+1,j + gnij), gn

i− 1
2
,j

= 1
2(gni−1,j + gnij), (1b)

where the nodal gnij are computed using central finite differences

gnij = g
(√

(Dx
c v

n
ij)

2 + (Dy
c vnij)

2
)
. (1c)

Download the code from the website which loads the image and adds noise. Write a code to perform
Perona–Malik denoising. Assuming you choose to make hx = hy = 1, then you might start with k = 0.05
and λ = 1/100.

You might find the Matlab/Octave code “fdmatrices” useful (details to follow).

Problem 4: Git (for bonus points). If you haven’t done your Git homework from previous HW, you
still have a chance (see HW3 for problem).

References

[1] H. Biddle, I. von Glehn, C. B. Macdonald, and T. März. A volume-based method for denoising on
curved surfaces. In Proc. ICIP13, 20th IEEE International Conference on Image Processing, pages
529–533, 2013.

[2] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. In Proceedings of
IEEE Computer Society Workshop on Computer Vision, pages 16–22, 1987.

[3] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12:629–639, 1990.


