
Math 405 10b: The Singular Value Decomposition

Ref: Trefethen and Bau text 2007, Chap 4, Chap 5.

The SVD is conceptually related to eigenvalue decomposition but is probably more useful in
practice in numerical linear algebra.

Consider a m× n matrix A.

Interprete geometrically as mapping from unit sphere in Rn to hyperellipse in Rm. . . [Draw
figure].

What is happening in the figure:

Avj = σjuj

where σj is the semi-axis length.

Collecting this for all j, gives the SVD:

AV = UΣ

A = UΣV T

where here:

• U : left singular vectors, m×m, orthog matrix.

• V : right singular vectors, n× n, orthog matrix.

• Σ: singular values on diagonal, in descending order (by convention).

Every matrix has a SVD. Eigenvalue computations are problematic: non-diagonalizable (think
Jordan canonical form), complex eigenvalues from real-valued matrices, “illconditioning” for
non-normal matrices, etc.

(note, unfort. that the left singular vectors are on the right of the figure: position from the
equation not the graphic!)

Properties of matrices from the SVD

Matrix 2-norm: ||A||2 = σ1.

Rank of A: number of non-zero singular values:

• SVD gives A as sum of rank-1 outer products: A =
∑
σjujv

T
j

• Throw some σ away: get the best possible “low-rank” approx to A (in 2-norm and
Frobinius norm). Leads to Principle Component Analysis" (PCA) for example.

Computing nullspace and range of A: use U and V .

Determinant: |det(A)| =
∏

(σi).

Computation of the SVD

Similar to the QR Algorithm. See Youtube for old video.
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