Math 405 10b: The Singular Value Decomposition

Ref: Trefethen and Bau text 2007, Chap 4, Chap 5.
The SVD is conceptually related to eigenvalue decomposition but is probably more useful in practice in numerical linear algebra.
Consider a $m \times n$ matrix A.
Interprete geometrically as mapping from unit sphere in R^{n} to hyperellipse in $R^{m} \ldots$ [Draw figure].

What is happening in the figure:

$$
A v_{j}=\sigma_{j} u_{j}
$$

where σ_{j} is the semi-axis length.
Collecting this for all j, gives the SVD:

$$
\begin{gathered}
A V=U \Sigma \\
A=U \Sigma V^{T}
\end{gathered}
$$

where here:

- U : left singular vectors, $m \times m$, orthog matrix.
- V : right singular vectors, $n \times n$, orthog matrix.
- Σ : singular values on diagonal, in descending order (by convention).

Every matrix has a SVD. Eigenvalue computations are problematic: non-diagonalizable (think Jordan canonical form), complex eigenvalues from real-valued matrices, "illconditioning" for non-normal matrices, etc.
(note, unfort. that the left singular vectors are on the right of the figure: position from the equation not the graphic!)

Properties of matrices from the SVD

Matrix 2-norm: $\|A\|_{2}=\sigma_{1}$.
Rank of A: number of non-zero singular values:

- SVD gives A as sum of rank-1 outer products: $A=\sum \sigma_{j} u_{j} v_{j}^{T}$
- Throw some σ away: get the best possible "low-rank" approx to A (in 2-norm and Frobinius norm). Leads to Principle Component Analysis" (PCA) for example.

Computing nullspace and range of A : use U and V.
Determinant: $|\operatorname{det}(A)|=\Pi\left(\sigma_{i}\right)$.

Computation of the SVD

Similar to the QR Algorithm. See Youtube for old video.

