
Math 405: Numerical Methods for Differential Equations 2016 W1

Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm

References: Trefethen & Bau textbook.

Eigenvalue problem: given a matrix A, find (a/several/all) eigenvalue(s) λ and and corre-

sponding eigenvector(s) v such that:

Av = λv.

Iterative Methods: methods such as LU or QR factorizations are direct : they com-

pute a certain number of operations and then finish with “the answer”. But eigenvalue

calculations in general cannot be direct because they are equivalent to finding roots of the

characteristic polynomials: for degree greater than 5, there does not exist a finite sequence

of arithmetic operations for a solution. They instead must be iterative:

- construct a sequence;

- truncate that sequence “after convergence”;

- typically concerned with fast convergence rate (rather than operation count).

Notations: for x ∈ R
n, we take norm ‖x‖ =

√
xTx to be Euclidean length of x. In

iterative methods, xk usually means the vector x at the kth iteration (rather than kth

entry of vector x). Some sources use xk or x(k) instead.

Power Iteration: a simple method for calculating a single (largest) eigenvalue of a

square matrix A (and its associated eigenvector). For arbitrary y ∈ R
n, set x0 = y/‖y‖ to

calculate an initial vector, and then for k = 0, 1, . . .

Compute yk = Axk

and set xk+1 = yk/‖yk‖.
This is the Power Method or Iteration, and computes unit vectors in the direction of

x0, Ax0, A
2x0, A

3x0, . . . , A
kx0.

Suppose that A is diagonalizable so that there is a basis of eigenvectors of A:

{v1, v2, . . . , vn}

with Avi = λivi and ‖vi‖ = 1, i = 1, 2, . . . , n, and assume that

|λ1| > |λ2| ≥ · · · ≥ |λn|.

Then we can write

x0 =
n∑

i=1

αivi

for some αi ∈ R, i = 1, 2, . . . , n, so

Akx0 = Ak

n∑

i=1

αivi =
n∑

i=1

αiA
kvi.
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However, since Avi = λivi =⇒ A2vi = A(Avi) = λiAvi = λ2
i vi, inductively Akvi = λk

i vi.

So

Akx0 =

n∑

i=1

αiλ
k
i vi = λk

1

[

α1v1 +

n∑

i=2

αi

(
λi

λ1

)k

vi

]

.

Since (λi/λ1)
k → 0 as k → ∞, Akx0 tends to look like λk

1α1v1 as k gets large. The result

is that by normalizing to be a unit vector

Akx0

‖Akx0‖
→ ±v1 and

‖Akx0‖
‖Ak−1x0‖

≈
∣
∣
∣
∣

λk
1α1

λk−1
1 α1

∣
∣
∣
∣
= |λ1|

as k →∞, and the sign of λ1 is identified by looking at, e.g., (Akx0)1/(A
k−1x0)1.

Essentially the same argument works when we normalize at each step: the Power

Iteration may be seen to compute yk = βkA
kx0 for some βk. Then, from the above,

xk+1 =
yk
‖yk‖

=
βk

|βk|
· Akx0

‖Akx0‖
→ ±v1.

Similarly, yk−1 = βk−1A
k−1x0 for some βk−1. Thus

xk =
βk−1

|βk−1|
· Ak−1x0

‖Ak−1x0‖
and hence yk = Axk =

βk−1

|βk−1|
· Akx0

‖Ak−1x0‖
.

Therefore, as above,

‖yk‖ =
‖Akx0‖
‖Ak−1x0‖

≈ |λ1|,

and the sign of λ1 may be identified by looking at, e.g., (xk+1)1/(xk)1.

Hence the largest eigenvalue (and its eigenvector) can be found.

Note: it is possible for a chosen vector x0 that α1 = 0, but rounding errors in the com-

putation generally introduce a small component in v1, so that in practice this is not a

concern!

This simplified method for eigenvalue computation is the basis for effective methods (c.f.,

Rayleigh Quotient and the Arnoldi Algorithm as used inMatlab’s sparse eigs command).

For general dense matrices, we will look at a popular method known as the QR Algo-

rithm. There are also Divide and Conquer algorithms (since late 1990’s).
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QR Algorithm We consider only the case where A is symmetric.

Recall: a symmetric matrix A is similar to B if there is a nonsingular matrix P for which

A = P−1BP . Similar matrices have the same eigenvalues, since if A = P−1BP ,

0 = det(A− λI) = det(P−1(B − λI)P ) = det(P−1) det(P ) det(B − λI),

so det(A− λI) = 0 if, and only if, det(B − λI) = 0.

The basic QR algorithm is:

Set A1 = A.

for k = 1, 2, . . .

form the QR factorization Ak = QkRk

and set Ak+1 = RkQk

end

Proposition. The symmetric matrices A1, A2, . . . , Ak, . . . are all similar and thus have the

same eigenvalues.

Proof. Since

Ak+1 = RkQk = (QT
kQk)RkQk = QT

k (QkRk)Qk = QT
kAkQk = Q−1

k AkQk,

Ak+1 is symmetric if Ak is, and is similar to Ak. ✷

At least when A has distinct eigenvalues, this basic QR algorithm can be shown to work

(Ak converges to a diagonal matrix as k → ∞, the diagonal entries of which are the

eigenvalues). However, a really practical, fast algorithm is based on some refinements.

Reduction to tridiagonal form: the idea is to apply explicit similarity transformations

QAQ−1 = QAQT, with Q orthogonal, so that QAQT is tridiagonal.

Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible.

If

H(w)A =








× × · · · ×
0 × · · · ×
...

...
. . .

...

0 × · · · ×








then H(w)AH(w)T is generally full, i.e., all zeros created by pre-multiplication are de-

stroyed by the post-multiplication. However, if

A =

[
γ uT

u C

]

(as A = AT) and

w =

[
0

ŵ

]

where H(ŵ)u =








α

0
...

0







,
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it follows that

H(w)A =









γ uT

α × ... ×
...

...
...

...

0 × ... ×









,

i.e., the uT part of the first row of A is unchanged. However, then

H(w)AH(w)−1 = H(w)AH(w)T = H(w)AH(w) =










γ α 0 · · · 0

α

0
...

0

B










,

where B = H(ŵ)CHT(ŵ), as uTH(ŵ)T = (α, 0, · · · , 0); note that H(w)AH(w)T is

symmetric as A is.

Now we inductively apply this to the smaller matrix B, as described for the QR factoriza-

tion but using post- as well as pre-multiplications. The result of n − 2 such Householder

similarity transformations is the matrix

H(wn−2) · · ·H(w2)H(w)AH(w)H(w2) · · ·H(wn−2),

which is tridiagonal.

The QR factorization of a tridiagonal matrix can now easily be achieved with n−1 Givens

rotations: if A is tridiagonal

J(n− 1, n) · · ·J(2, 3)J(1, 2)
︸ ︷︷ ︸

QT

A = R, upper triangular.

Precisely, R has a diagonal and 2 super-diagonals,

R =





























× × × 0 0 0 · · · 0

0 × × × 0 0 · · · 0

0 0 × × × 0 · · · 0

...
...

...

0 0 0 0 × × × 0

0 0 0 0 0 × × ×

0 0 0 0 0 0 × ×

0 0 0 0 0 0 0 ×





























(exercise: check!). In the QR algorithm, the next matrix in the sequence is RQ.

Lemma. In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry

and tridiagonal form are preserved when Givens rotations are used.

Proof. We have already shown that if Ak = QR is symmetric, then so is Ak+1 = RQ.

If Ak = QR = J(1, 2)TJ(2, 3)T · · ·J(n − 1, n)TR is tridiagonal, then Ak+1 = RQ =

RJ(1, 2)TJ(2, 3)T · · ·J(n−1, n)T. Recall that post-multiplication of a matrix by J(i, i+1)T
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replaces columns i and i + 1 by linear combinations of the pair of columns, while leaving

columns j = 1, 2, . . . , i− 1, i+ 2, . . . , n alone. Thus, since R is upper triangular, the only

subdiagonal entry in RJ(1, 2)T is in position (2, 1). Similarly, the only subdiagonal entries

in RJ(1, 2)TJ(2, 3)T = (RJ(1, 2)T)J(2, 3)T are in positions (2, 1) and (3, 2). Inductively,

the only subdiagonal entries in

RJ(1, 2)TJ(2, 3)T · · ·J(i− 2, i− 1)TJ(i− 1, i)T

= (RJ(1, 2)TJ(2, 3)T · · ·J(i− 2, i− 1)T)J(i− 1, i)T

are in positions (j, j − 1), j = 2, . . . i. So, the lower triangular part of Ak+1 only has

nonzeros on its first subdiagonal. However, then since Ak+1 is symmetric, it must be

tridiagonal. ✷

Using shifts. One further and final step in making an efficient algorithm is the use of

shifts:

for k = 1, 2, . . .

form the QR factorization of Ak − µkI = QkRk

and set Ak+1 = RkQk + µkI

end

For any chosen sequence of values of µk ∈ R, {Ak}∞k=1 are symmetric and tridiagonal if A1

has these properties, and similar to A1.

The simplest shift to use is an,n, which leads rapidly in almost all cases to

Ak =

[
Tk 0

0T λ

]

,

where Tk is n− 1 by n− 1 and tridiagonal, and λ is an eigenvalue of A1. Inductively, once

this form has been found, the QR algorithm with shift an−1,n−1 can be concentrated only

on the n− 1 by n− 1 leading submatrix Tk. This process is called deflation.

The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix:

reduce A to tridiagonal form by orthogonal

(Householder) similarity transformations.

for m = n, n− 1, . . . 2

while am−1,m > tol

[Q,R] = qr(A− am,m ∗ I)
A = R ∗Q + am,m ∗ I

end while

record eigenvalue λm = am,m

A← leading m− 1 by m− 1 submatrix of A

end

record eigenvalue λ1 = a1,1
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