Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm

References: Trefethen \& Bau textbook.
Eigenvalue problem: given a matrix A, find (a/several/all) eigenvalue(s) λ and and corresponding eigenvector(s) v such that:

$$
A v=\lambda v
$$

Iterative Methods: methods such as LU or QR factorizations are direct: they compute a certain number of operations and then finish with "the answer". But eigenvalue calculations in general cannot be direct because they are equivalent to finding roots of the characteristic polynomials: for degree greater than 5 , there does not exist a finite sequence of arithmetic operations for a solution. They instead must be iterative:

- construct a sequence;
- truncate that sequence "after convergence";
- typically concerned with fast convergence rate (rather than operation count).

Notations: for $x \in \mathbb{R}^{n}$, we take norm $\|x\|=\sqrt{x^{T} x}$ to be Euclidean length of x. In iterative methods, x_{k} usually means the vector x at the k th iteration (rather than k th entry of vector x). Some sources use x^{k} or $x^{(k)}$ instead.
Power Iteration: a simple method for calculating a single (largest) eigenvalue of a square matrix A (and its associated eigenvector). For arbitrary $y \in \mathbb{R}^{n}$, set $x_{0}=y /\|y\|$ to calculate an initial vector, and then for $k=0,1, \ldots$

Compute $y_{k}=A x_{k}$
and set $x_{k+1}=y_{k} /\left\|y_{k}\right\|$.
This is the Power Method or Iteration, and computes unit vectors in the direction of $x_{0}, A x_{0}, A^{2} x_{0}, A^{3} x_{0}, \ldots, A^{k} x_{0}$.
Suppose that A is diagonalizable so that there is a basis of eigenvectors of A :

$$
\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

with $A v_{i}=\lambda_{i} v_{i}$ and $\left\|v_{i}\right\|=1, i=1,2, \ldots, n$, and assume that

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

Then we can write

$$
x_{0}=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

for some $\alpha_{i} \in \mathbb{R}, i=1,2, \ldots, n$, so

$$
A^{k} x_{0}=A^{k} \sum_{i=1}^{n} \alpha_{i} v_{i}=\sum_{i=1}^{n} \alpha_{i} A^{k} v_{i} .
$$

However, since $A v_{i}=\lambda_{i} v_{i} \Longrightarrow A^{2} v_{i}=A\left(A v_{i}\right)=\lambda_{i} A v_{i}=\lambda_{i}^{2} v_{i}$, inductively $A^{k} v_{i}=\lambda_{i}^{k} v_{i}$. So

$$
A^{k} x_{0}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} v_{i}=\lambda_{1}^{k}\left[\alpha_{1} v_{1}+\sum_{i=2}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} v_{i}\right] .
$$

Since $\left(\lambda_{i} / \lambda_{1}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty, A^{k} x_{0}$ tends to look like $\lambda_{1}^{k} \alpha_{1} v_{1}$ as k gets large. The result is that by normalizing to be a unit vector

$$
\frac{A^{k} x_{0}}{\left\|A^{k} x_{0}\right\|} \rightarrow \pm v_{1} \text { and } \frac{\left\|A^{k} x_{0}\right\|}{\left\|A^{k-1} x_{0}\right\|} \approx\left|\frac{\lambda_{1}^{k} \alpha_{1}}{\lambda_{1}^{k-1} \alpha_{1}}\right|=\left|\lambda_{1}\right|
$$

as $k \rightarrow \infty$, and the sign of λ_{1} is identified by looking at, e.g., $\left(A^{k} x_{0}\right)_{1} /\left(A^{k-1} x_{0}\right)_{1}$.
Essentially the same argument works when we normalize at each step: the Power Iteration may be seen to compute $y_{k}=\beta_{k} A^{k} x_{0}$ for some β_{k}. Then, from the above,

$$
x_{k+1}=\frac{y_{k}}{\left\|y_{k}\right\|}=\frac{\beta_{k}}{\left|\beta_{k}\right|} \cdot \frac{A^{k} x_{0}}{\left\|A^{k} x_{0}\right\|} \rightarrow \pm v_{1} .
$$

Similarly, $y_{k-1}=\beta_{k-1} A^{k-1} x_{0}$ for some β_{k-1}. Thus

$$
x_{k}=\frac{\beta_{k-1}}{\left|\beta_{k-1}\right|} \cdot \frac{A^{k-1} x_{0}}{\left\|A^{k-1} x_{0}\right\|} \quad \text { and hence } \quad y_{k}=A x_{k}=\frac{\beta_{k-1}}{\left|\beta_{k-1}\right|} \cdot \frac{A^{k} x_{0}}{\left\|A^{k-1} x_{0}\right\|} .
$$

Therefore, as above,

$$
\left\|y_{k}\right\|=\frac{\left\|A^{k} x_{0}\right\|}{\left\|A^{k-1} x_{0}\right\|} \approx\left|\lambda_{1}\right|
$$

and the sign of λ_{1} may be identified by looking at, e.g., $\left(x_{k+1}\right)_{1} /\left(x_{k}\right)_{1}$.
Hence the largest eigenvalue (and its eigenvector) can be found.
Note: it is possible for a chosen vector x_{0} that $\alpha_{1}=0$, but rounding errors in the computation generally introduce a small component in v_{1}, so that in practice this is not a concern!
This simplified method for eigenvalue computation is the basis for effective methods (c.f., Rayleigh Quotient and the Arnoldi Algorithm as used in MatLaB's sparse eigs command).

For general dense matrices, we will look at a popular method known as the QR Algorithm. There are also Divide and Conquer algorithms (since late 1990's).

QR Algorithm We consider only the case where A is symmetric.
Recall: a symmetric matrix A is similar to B if there is a nonsingular matrix P for which $A=P^{-1} B P$. Similar matrices have the same eigenvalues, since if $A=P^{-1} B P$,

$$
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(P^{-1}(B-\lambda I) P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P) \operatorname{det}(B-\lambda I),
$$

so $\operatorname{det}(A-\lambda I)=0$ if, and only if, $\operatorname{det}(B-\lambda I)=0$.
The basic $\mathbf{Q R}$ algorithm is:

```
Set \(A_{1}=A\).
for \(k=1,2, \ldots\)
    form the QR factorization \(A_{k}=Q_{k} R_{k}\)
    and set \(A_{k+1}=R_{k} Q_{k}\)
end
```

Proposition. The symmetric matrices $A_{1}, A_{2}, \ldots, A_{k}, \ldots$ are all similar and thus have the same eigenvalues.
Proof. Since

$$
A_{k+1}=R_{k} Q_{k}=\left(Q_{k}^{\mathrm{T}} Q_{k}\right) R_{k} Q_{k}=Q_{k}^{\mathrm{T}}\left(Q_{k} R_{k}\right) Q_{k}=Q_{k}^{\mathrm{T}} A_{k} Q_{k}=Q_{k}^{-1} A_{k} Q_{k}
$$

A_{k+1} is symmetric if A_{k} is, and is similar to A_{k}.
At least when A has distinct eigenvalues, this basic QR algorithm can be shown to work (A_{k} converges to a diagonal matrix as $k \rightarrow \infty$, the diagonal entries of which are the eigenvalues). However, a really practical, fast algorithm is based on some refinements.
Reduction to tridiagonal form: the idea is to apply explicit similarity transformations $Q A Q^{-1}=Q A Q^{\mathrm{T}}$, with Q orthogonal, so that $Q A Q^{\mathrm{T}}$ is tridiagonal.
Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible. If

$$
H(w) A=\left[\begin{array}{cccc}
\times & \times & \cdots & \times \\
0 & \times & \cdots & \times \\
\vdots & \vdots & \ddots & \vdots \\
0 & \times & \cdots & \times
\end{array}\right]
$$

then $H(w) A H(w)^{\mathrm{T}}$ is generally full, i.e., all zeros created by pre-multiplication are destroyed by the post-multiplication. However, if

$$
A=\left[\begin{array}{ll}
\gamma & u^{\mathrm{T}} \\
u & C
\end{array}\right]
$$

(as $A=A^{\mathrm{T}}$) and

$$
w=\left[\begin{array}{c}
0 \\
\hat{w}
\end{array}\right] \quad \text { where } H(\hat{w}) u=\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0
\end{array}\right]
$$

it follows that

$$
H(w) A=\left[\begin{array}{cccc}
\gamma & & u^{\mathrm{T}} & \\
\alpha & \times & \vdots & \times \\
\vdots & \vdots & \vdots & \vdots \\
0 & \times & \vdots & \times
\end{array}\right]
$$

i.e., the u^{T} part of the first row of A is unchanged. However, then

$$
H(w) A H(w)^{-1}=H(w) A H(w)^{\mathrm{T}}=H(w) A H(w)=\left[\begin{array}{c|cccc}
\gamma & \alpha & 0 & \cdots & 0 \\
\hline \alpha & & & & \\
0 & & & \\
\vdots & & B & \\
0 & & &
\end{array}\right]
$$

where $B=H(\hat{w}) C H^{\mathrm{T}}(\hat{w})$, as $u^{\mathrm{T}} H(\hat{w})^{\mathrm{T}}=(\alpha, \quad 0, \quad \cdots, \quad 0)$; note that $H(w) A H(w)^{\mathrm{T}}$ is symmetric as A is.
Now we inductively apply this to the smaller matrix B, as described for the QR factorization but using post- as well as pre-multiplications. The result of $n-2$ such Householder similarity transformations is the matrix

$$
H\left(w_{n-2}\right) \cdots H\left(w_{2}\right) H(w) A H(w) H\left(w_{2}\right) \cdots H\left(w_{n-2}\right)
$$

which is tridiagonal.
The QR factorization of a tridiagonal matrix can now easily be achieved with $n-1$ Givens rotations: if A is tridiagonal

$$
\underbrace{J(n-1, n) \cdots J(2,3) J(1,2)}_{Q^{\mathrm{T}}} A=R, \quad \text { upper triangular. }
$$

Precisely, R has a diagonal and 2 super-diagonals,

$$
R=\left[\begin{array}{cccccccc}
\times & \times & \times & 0 & 0 & 0 & \cdots & 0 \\
0 & \times & \times & \times & 0 & 0 & \cdots & 0 \\
0 & 0 & \times & \times & \times & 0 & \cdots & 0 \\
\vdots & \vdots & \searrow & \searrow & \searrow & \searrow & \searrow & \vdots \\
0 & 0 & 0 & 0 & \times & \times & \times & 0 \\
0 & 0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \times
\end{array}\right]
$$

(exercise: check!). In the QR algorithm, the next matrix in the sequence is $R Q$.
Lemma. In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry and tridiagonal form are preserved when Givens rotations are used.
Proof. We have already shown that if $A_{k}=Q R$ is symmetric, then so is $A_{k+1}=R Q$. If $A_{k}=Q R=J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}} \cdots J(n-1, n)^{\mathrm{T}} R$ is tridiagonal, then $A_{k+1}=R Q=$ $R J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}} \cdots J(n-1, n)^{\mathrm{T}}$. Recall that post-multiplication of a matrix by $J(i, i+1)^{\mathrm{T}}$
replaces columns i and $i+1$ by linear combinations of the pair of columns, while leaving columns $j=1,2, \ldots, i-1, i+2, \ldots, n$ alone. Thus, since R is upper triangular, the only subdiagonal entry in $R J(1,2)^{\mathrm{T}}$ is in position $(2,1)$. Similarly, the only subdiagonal entries in $R J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}}=\left(R J(1,2)^{\mathrm{T}}\right) J(2,3)^{\mathrm{T}}$ are in positions (2,1) and (3,2). Inductively, the only subdiagonal entries in

$$
\begin{aligned}
& R J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}} \cdots J(i-2, i-1)^{\mathrm{T}} J(i-1, i)^{\mathrm{T}} \\
& \quad=\left(R J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}} \cdots J(i-2, i-1)^{\mathrm{T}}\right) J(i-1, i)^{\mathrm{T}}
\end{aligned}
$$

are in positions $(j, j-1), j=2, \ldots i$. So, the lower triangular part of A_{k+1} only has nonzeros on its first subdiagonal. However, then since A_{k+1} is symmetric, it must be tridiagonal.

Using shifts. One further and final step in making an efficient algorithm is the use of shifts:
for $k=1,2, \ldots$
form the QR factorization of $A_{k}-\mu_{k} I=Q_{k} R_{k}$ and set $A_{k+1}=R_{k} Q_{k}+\mu_{k} I$
end
For any chosen sequence of values of $\mu_{k} \in \mathbb{R},\left\{A_{k}\right\}_{k=1}^{\infty}$ are symmetric and tridiagonal if A_{1} has these properties, and similar to A_{1}.
The simplest shift to use is $a_{n, n}$, which leads rapidly in almost all cases to

$$
A_{k}=\left[\begin{array}{c|c}
T_{k} & 0 \\
\hline 0^{T} & \lambda
\end{array}\right],
$$

where T_{k} is $n-1$ by $n-1$ and tridiagonal, and λ is an eigenvalue of A_{1}. Inductively, once this form has been found, the QR algorithm with shift $a_{n-1, n-1}$ can be concentrated only on the $n-1$ by $n-1$ leading submatrix T_{k}. This process is called deflation.
The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix:
reduce A to tridiagonal form by orthogonal (Householder) similarity transformations.
for $m=n, n-1, \ldots 2$
while $a_{m-1, m}>$ tol
$[Q, R]=\operatorname{qr}\left(A-a_{m, m} * I\right)$ $A=R * Q+a_{m, m} * I$
end while
record eigenvalue $\lambda_{m}=a_{m, m}$
$A \leftarrow$ leading $m-1$ by $m-1$ submatrix of A
end
record eigenvalue $\lambda_{1}=a_{1,1}$

