Math 405: Numerical Methods for Differential Equations 2016 W1
Topic 9c: Householder \& Givens Matrices, QR Factorization
References: Trefethen \& Bau Chapter 10.
Definition: a square real matrix Q is orthogonal if $Q^{\mathrm{T}}=Q^{-1}$. This is true if, and only if, $Q^{\mathrm{T}} Q=I=Q Q^{\mathrm{T}}$. E.g., the permutation matrices P in LU factorization with partial pivoting are orthogonal.
Definition: The scalar (dot)(inner) product of two vectors in \mathbb{R}^{n} is

$$
x^{\mathrm{T}} y=y^{\mathrm{T}} x=\sum_{i=1}^{n} x_{i} y_{i} \in \mathbb{R}
$$

Definition: Two vectors $x, y \in \mathbb{R}^{n}$ are orthogonal if $x^{T} y=0$. A set of vectors $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is an orthogonal set if $u_{i}^{\mathrm{T}} u_{j}=0$ for all $i, j \in\{1,2, \ldots, r\}$ such that $i \neq j$. Orthonormal set if additionally $u_{i}^{\mathrm{T}} u_{i}=1$.
Lemma. The columns of an orthogonal matrix Q form an orthogonal set, which is moreover an orthonormal basis for \mathbb{R}^{n}.
Proof. Suppose that $Q=\left[\begin{array}{lll}q_{1} & q_{2} & \vdots \\ q_{n}\end{array}\right]$, i.e., q_{j} is the j th column of Q. Then

$$
Q^{\mathrm{T}} Q=I=\left[\begin{array}{c}
q_{1}^{\mathrm{T}} \\
q_{2}^{\mathrm{T}} \\
\cdots \\
q_{n}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{lll}
q_{1} & q_{2} & \vdots \\
q_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

Comparing the (i, j) th entries yields

$$
q_{i}^{\mathrm{T}} q_{j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

Note that the columns of an orthogonal matrix are of length 1 as $q_{i}^{\mathrm{T}} q_{i}=1$, so they form an orthonormal set if and only if they are linearly independent (check this!) \Longrightarrow they form an orthonormal basis for \mathbb{R}^{n} as there are n of them.

Lemma. If $u \in \mathbb{R}^{n}, Q$ is n-by- n orthogonal and $v=Q u$, then $u^{\mathrm{T}} u=v^{\mathrm{T}} v$.
Definition: The outer product of two vectors x and $y \in \mathbb{R}^{n}$ is

$$
x y^{\mathrm{T}}=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} y_{1} & x_{n} y_{2} & \cdots & x_{n} y_{n}
\end{array}\right]
$$

an n-by- n matrix. Looks like a lot of "information", but multiplication of one of these matrices by a vector $z \in \mathbb{R}^{n}$ is simpler:

$$
\left(x y^{\mathrm{T}}\right) z=x y^{\mathrm{T}} z=x\left(y^{\mathrm{T}} z\right)=\left(\sum_{i=1}^{n} y_{i} z_{i}\right) x .
$$

Definition: For $w \in \mathbb{R}^{n}, w \neq 0$, the Householder matrix $H(w) \in \mathbb{R}^{n \times n}$ is the matrix

$$
H(w)=I-\frac{2}{w^{\mathrm{T}} w} w w^{\mathrm{T}} .
$$

Proposition. $H(w)$ is an orthogonal matrix.
Proof.

$$
\begin{aligned}
H(w) H(w)^{\mathrm{T}} & =\left(I-\frac{2}{w^{\mathrm{T}} w} w w^{\mathrm{T}}\right)\left(I-\frac{2}{w^{\mathrm{T}} w} w w^{\mathrm{T}}\right) \\
& =I-\frac{4}{w^{\mathrm{T}} w} w w^{\mathrm{T}}+\frac{4}{\left(w^{\mathrm{T}} w\right)^{2}} w\left(w^{\mathrm{T}} w\right) w^{\mathrm{T}} \\
& =I .
\end{aligned}
$$

Lemma. Given $u \in \mathbb{R}^{n}$, there exists a $w \in \mathbb{R}^{n}$ such that

$$
H(w) u=\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0
\end{array}\right] \equiv v
$$

say, where $\alpha= \pm \sqrt{u^{\mathrm{T}} u}$. That is, $v= \pm\|u\|_{2} e_{1}$.
Remark: Since $H(w)$ is an orthogonal matrix for any $w \in \mathbb{R}, w \neq 0$, it is necessary for the validity of the equality $H(w) u=v$ that $v^{\mathrm{T}} v=u^{\mathrm{T}} u$, i.e., $\alpha^{2}=u^{\mathrm{T}} u$; hence our choice of $\alpha= \pm \sqrt{u^{\mathrm{T}} u}$.
Proof. Take $w=\gamma(u-v)$, where $\gamma \neq 0$. Recall that $u^{\mathrm{T}} u=v^{\mathrm{T}} v$. Thus,

$$
\begin{aligned}
w^{\mathrm{T}} w & =\gamma^{2}(u-v)^{\mathrm{T}}(u-v)=\gamma^{2}\left(u^{\mathrm{T}} u-2 u^{\mathrm{T}} v+v^{\mathrm{T}} v\right) \\
& =\gamma^{2}\left(u^{\mathrm{T}} u-2 u^{\mathrm{T}} v+u^{\mathrm{T}} u\right)=2 \gamma u^{\mathrm{T}}(\gamma(u-v)) \\
& =2 \gamma w^{\mathrm{T}} u
\end{aligned}
$$

So

$$
H(w) u=\left(I-\frac{2}{w^{\mathrm{T}} w} w w^{\mathrm{T}}\right) u=u-\frac{2 w^{\mathrm{T}} u}{w^{\mathrm{T}} w} w=u-\frac{1}{\gamma} w=u-(u-v)=v
$$

Geometric interpretation. [draw figure, compare to the projection matrix $P(w)$] Apply these to a matrix. Now if u is the first column of the n-by- n matrix A,

$$
H(w) A=\left[\begin{array}{c|ccc}
\alpha & \times & \cdots & \times \\
\hline 0 & & & \\
\vdots & & B & \\
0 & &
\end{array}\right], \quad \text { where } \times=\text { general entry. }
$$

Similarly for B, we can find $\hat{w} \in \mathbb{R}^{n-1}$ such that

$$
H(\hat{w}) B=\left[\begin{array}{c|ccc}
\beta & \times & \cdots & \times \\
\hline 0 & & & \\
\vdots & & C & \\
0 & & &
\end{array}\right]
$$

and then

Note

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & H(\hat{w})
\end{array}\right]=H\left(w_{2}\right), \quad \text { where } w_{2}=\left[\begin{array}{c}
0 \\
\hat{w}
\end{array}\right] .
$$

Thus if we continue in this manner for the $n-1$ steps, we obtain

$$
\underbrace{H\left(w_{n-1}\right) \cdots H\left(w_{3}\right) H\left(w_{2}\right) H(w)}_{Q^{\mathrm{T}}} A=\left[\begin{array}{cccc}
\alpha & \times & \cdots & \times \\
0 & \beta & \cdots & \times \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \gamma
\end{array}\right]=(\nabla)
$$

The matrix Q^{T} is orthogonal as it is the product of orthogonal (Householder) matrices, ${ }^{1}$ so we have constructively proved the following:
Theorem. Given any square matrix A, there exists an orthogonal matrix Q and an upper triangular matrix R such that

$$
A=Q R
$$

Notes: 1. This could also be established using the Gram-Schmidt Process.
2. If u is already of the form $(\alpha, 0, \cdots, 0)^{\mathrm{T}}$, we just take $H=I$.
3. It is not necessary that A is square: if $A \in \mathbb{R}^{m \times n}$, then we need the product of (a) $m-1$ Householder matrices if $m \leq n \Longrightarrow$

$$
(\square)=A=Q R=(\square)(\square)
$$

or (b) n Householder matrices if $m>n \Longrightarrow$

$$
(\square)=A=Q R=(\square)(\nabla)
$$

[^0]
Stability of Householder reflections

We could choose two different reflections at each step. Which should we use? Consider what happens if the angle between u and $v=\|u\|_{2} e_{1}$ is small: the vector of their difference is small and this causes loss of precision because of subtraction of nearly equal numbers in floating point. A better choice:

$$
w=u+\operatorname{sign}\left(u_{1}\right)\|u\|_{2} e_{1},
$$

and indeed with this choice the QR factorization can be shown to be backward stable.
Another useful family of orthogonal matrices are the Givens rotation matrices:
where $c=\cos \theta$ and $s=\sin \theta$.
Exercise: Show $J(i, j, \theta) J(i, j, \theta)^{\mathrm{T}}=I$: follows b / c columns form an orthonormal basis. Note that if $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ and $y=J(i, j, \theta) x$, then

$$
\begin{aligned}
y_{k} & =x_{k} \text { for } k \neq i, j \\
y_{i} & =c x_{i}+s x_{j} \\
y_{j} & =-s x_{i}+c x_{j}
\end{aligned}
$$

and so we can ensure that $y_{j}=0$ by choosing $x_{i} \sin \theta=x_{j} \cos \theta$, i.e.,

$$
\begin{equation*}
\tan \theta=\frac{x_{j}}{x_{i}} \text { or equivalently } s=\frac{x_{j}}{\sqrt{x_{i}^{2}+x_{j}^{2}}} \text { and } c=\frac{x_{i}}{\sqrt{x_{i}^{2}+x_{j}^{2}}} . \tag{1}
\end{equation*}
$$

Thus, unlike the Householder matrices, which introduce lots of zeros by pre-multiplication, the Givens matrices introduce a single zero in a chosen position by pre-multiplication. Since (1) can always be satisfied, we only ever think of Givens matrices $J(i, j)$ for a specific vector or column with the angle chosen to make a zero in the j th position, e.g., $J(1,2) x$ tacitly implies that we choose $\theta=\tan ^{-1} x_{2} / x_{1}$ so that the second entry of $J(1,2) x$ is zero. Similarly, for a matrix $A \in \mathbb{R}^{m \times n}, J(i, j) A:=J(i, j, \theta) A$, where $\theta=\tan ^{-1} a_{j i} / a_{i i}$, i.e., it is the i th column of A that is used to define θ so that $(J(i, j) A)_{j i}=0$.

[^0]: ${ }^{1}$ Lemma The product of orthogonal matrices is an orthogonal matrix.
 Proof. If S and T are orthogonal, $(S T)^{\mathrm{T}}=T^{\mathrm{T}} S^{\mathrm{T}}$ so $(S T)^{\mathrm{T}}(S T)=T^{\mathrm{T}} S^{\mathrm{T}} S T=T^{\mathrm{T}}\left(S^{\mathrm{T}} S\right) T=T^{\mathrm{T}} T=I$.

