
Math 405: Numerical Methods for Differential Equations 2016 W1

Topic 9c: Householder & Givens Matrices, QR Factorization

References: Trefethen & Bau Chapter 10.

Definition: a square real matrix Q is orthogonal if QT = Q−1. This is true if, and only

if, QTQ = I = QQT. E.g., the permutation matrices P in LU factorization with partial

pivoting are orthogonal.

Definition: The scalar (dot)(inner) product of two vectors in R
n is

xTy = yTx =

n∑

i=1

xiyi ∈ R

Definition: Two vectors x, y ∈ R
n are orthogonal if xTy = 0. A set of vectors

{u1, u2, . . . , ur} is an orthogonal set if uT

i uj = 0 for all i, j ∈ {1, 2, . . . , r} such that

i 6= j. Orthonormal set if additionally uT

i ui = 1.

Lemma. The columns of an orthogonal matrixQ form an orthogonal set, which is moreover

an orthonormal basis for Rn.

Proof. Suppose that Q = [q1 q2
... qn], i.e., qj is the jth column of Q. Then

QTQ = I =







qT
1

qT
2

· · ·
qTn






[q1 q2

... qn] =








1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1







.

Comparing the (i, j)th entries yields

qTi qj =

{
0 i 6= j

1 i = j.

Note that the columns of an orthogonal matrix are of length 1 as qTi qi = 1, so they form

an orthonormal set if and only if they are linearly independent (check this!) =⇒ they

form an orthonormal basis for Rn as there are n of them. ✷

Lemma. If u ∈ R
n, Q is n-by-n orthogonal and v = Qu, then uTu = vTv.

Definition: The outer product of two vectors x and y ∈ R
n is

xyT =








x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...

xny1 xny2 · · · xnyn







,

an n-by-n matrix. Looks like a lot of “information”, but multiplication of one of these

matrices by a vector z ∈ R
n is simpler:

(xyT)z = xyTz = x(yTz) =

(
n∑

i=1

yizi

)

x.
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Definition: For w ∈ R
n, w 6= 0, the Householder matrix H(w) ∈ R

n×n is the matrix

H(w) = I − 2

wTw
wwT.

Proposition. H(w) is an orthogonal matrix.

Proof.

H(w)H(w)T =

(

I − 2

wTw
wwT

)(

I − 2

wTw
wwT

)

= I − 4

wTw
wwT +

4

(wTw)2
w(wTw)wT

= I.
✷

Lemma. Given u ∈ R
n, there exists a w ∈ R

n such that

H(w)u =








α

0
...

0







≡ v,

say, where α = ±
√
uTu. That is, v = ±‖u‖2e1.

Remark: Since H(w) is an orthogonal matrix for any w ∈ R, w 6= 0, it is necessary for

the validity of the equality H(w)u = v that vTv = uTu, i.e., α2 = uTu; hence our choice

of α = ±
√
uTu.

Proof. Take w = γ(u− v), where γ 6= 0. Recall that uTu = vTv. Thus,

wTw = γ2(u− v)T(u− v) = γ2(uTu− 2uTv + vTv)

= γ2(uTu− 2uTv + uTu) = 2γuT(γ(u− v))

= 2γwTu.

So

H(w)u =

(

I − 2

wTw
wwT

)

u = u− 2wTu

wTw
w = u− 1

γ
w = u− (u− v) = v.

✷

Geometric interpretation. [draw figure, compare to the projection matrix P (w)]

Apply these to a matrix. Now if u is the first column of the n-by-n matrix A,

H(w)A =








α × · · · ×
0
...

0

B







, where × = general entry.
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Similarly for B, we can find ŵ ∈ R
n−1 such that

H(ŵ)B =








β × · · · ×
0
...

0

C








and then








1 0 · · · 0

0
...

0

H(ŵ)







H(w)A =












α × × · · · ×
0 β × · · · ×
0

0
...

0

0

0
...

0

C












.

Note [
1 0

0 H(ŵ)

]

= H(w2), where w2 =

[
0

ŵ

]

.

Thus if we continue in this manner for the n− 1 steps, we obtain

H(wn−1) · · ·H(w3)H(w2)H(w)
︸ ︷︷ ︸

QT

A =








α × · · · ×
0 β · · · ×
...

...
. . .

...

0 0 · · · γ







= ( ) .

The matrix QT is orthogonal as it is the product of orthogonal (Householder) matrices,1

so we have constructively proved the following:

Theorem. Given any square matrix A, there exists an orthogonal matrix Q and an upper

triangular matrix R such that

A = QR

Notes: 1. This could also be established using the Gram–Schmidt Process.

2. If u is already of the form (α, 0, · · · , 0)T, we just take H = I.

3. It is not necessary that A is square: if A ∈ R
m×n, then we need the product of (a) m−1

Householder matrices if m ≤ n =⇒

( ) = A = QR = ( )( )

or (b) n Householder matrices if m > n =⇒
( )

= A = QR =
( )( )

.

1
Lemma The product of orthogonal matrices is an orthogonal matrix.

Proof. If S and T are orthogonal, (ST )T = T
T
S

T so (ST )T(ST ) = T
T
S

T
ST = T

T(ST
S)T = T

T
T = I .
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Stability of Householder reflections

We could choose two different reflections at each step. Which should we use? Consider

what happens if the angle between u and v = ‖u‖2e1 is small: the vector of their difference

is small and this causes loss of precision because of subtraction of nearly equal numbers in

floating point. A better choice:

w = u+ sign(u1)‖u‖2e1,

and indeed with this choice the QR factorization can be shown to be backward stable.

Another useful family of orthogonal matrices are the Givens rotation matrices:

J(i, j, θ) =














1

·
c s

·
−s c

·
1














↑ ↑
i j

← ith row

← jth row

where c = cos θ and s = sin θ.

Exercise: Show J(i, j, θ)J(i, j, θ)T = I: follows b/c columns form an orthonormal basis.

Note that if x = (x1, x2, . . . , xn)
T and y = J(i, j, θ)x, then

yk = xk for k 6= i, j

yi = cxi + sxj

yj = −sxi + cxj

and so we can ensure that yj = 0 by choosing xi sin θ = xj cos θ, i.e.,

tan θ =
xj

xi

or equivalently s =
xj

√

x2

i + x2

j

and c =
xi

√

x2

i + x2

j

. (1)

Thus, unlike the Householder matrices, which introduce lots of zeros by pre-multiplication,

the Givens matrices introduce a single zero in a chosen position by pre-multiplication. Since

(1) can always be satisfied, we only ever think of Givens matrices J(i, j) for a specific

vector or column with the angle chosen to make a zero in the jth position, e.g., J(1, 2)x

tacitly implies that we choose θ = tan−1 x2/x1 so that the second entry of J(1, 2)x is zero.

Similarly, for a matrix A ∈ R
m×n, J(i, j)A := J(i, j, θ)A, where θ = tan−1 aji/aii, i.e., it is

the ith column of A that is used to define θ so that (J(i, j)A)ji = 0.
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