
Math 405: Numerical Methods for Differential Equations 2016 W1

Topic 9b: LU Factorization

The basic operation of Gaussian Elimination, row i ← row i+ λ ∗ row j, can be achieved

by pre-multiplication by a special lower-triangular matrix

M(i, j, λ) = I +





0 0 0

0 λ 0

0 0 0



← i

↑

j

where I is the identity matrix.

Example: n = 4,

M(3, 2, λ) =









1 0 0 0

0 1 0 0

0 λ 1 0

0 0 0 1









and M(3, 2, λ)









a

b

c

d









=









a

b

λb+ c

d









,

i.e., M(3, 2, λ)A performs: row 3 of A ← row 3 of A + λ∗ row 2 of A and similarly

M(i, j, λ)A performs: row i of A← row i of A + λ∗ row j of A.

So GE for e.g., n = 3 is

M(3, 2,−l32) · M(3, 1,−l31) · M(2, 1,−l21) · A = U = ( ) .

l32 =
a32

a22
l31 =

a31

a11
l21 =

a21

a11
(upper triangular)

The lij are called the multipliers.

Be careful: each multiplier lij uses the data aij and aii that results from the transforma-

tions already applied, not data from the original matrix. So l32 uses a32 and a22 that result

from the previous transformations M(2, 1,−l21) and M(3, 1,−l31).

Lemma. If i 6= j, (M(i, j, λ))−1 = M(i, j,−λ).

Proof. Exercise.

Outcome: for n = 3, A = M(2, 1, l21) ·M(3, 1, l31) ·M(3, 2, l32) · U , where

M(2, 1, l21) ·M(3, 1, l31) ·M(3, 2, l32) =





1 0 0

l21 1 0

l31 l32 1



 = L = ( ) .

(lower triangular)

This is true for general n:

Theorem. For any dimension n, GE can be expressed as A = LU , where U = ( )

is upper triangular resulting from GE, and L = ( ) is unit lower triangular (lower
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triangular with ones on the diagonal) with lij = multiplier used to create the zero in the

(i, j)th position.

Most implementations of GE therefore, rather than doing GE as above,

factorize A = LU (≈ 1

3
n3 adds + ≈ 1

3
n3 mults)

and then solve Ax = b

by solving Ly = b (forward substitution)

and then Ux = y (back substitution)

Note: this is much more efficient if we have many different right-hand sides b but the same

A.

Pivoting: GE or LU can fail if the pivot aii = 0. For example, if

A =

[

0 1

1 0

]

,

GE fails at the first step. However, we are free to reorder the equations (i.e., the rows)

into any order we like. For example, the equations

0 · x1 + 1 · x2 = 1

1 · x1 + 0 · x2 = 2
and

1 · x1 + 0 · x2 = 2

0 · x1 + 1 · x2 = 1

are the same, but their matrices

[

0 1

1 0

]

and

[

1 0

0 1

]

have had their rows reordered: GE fails for the first but succeeds for the second =⇒

better to interchange the rows and then apply GE.

Partial pivoting: when creating the zeros in the jth column, find

|akj| = max(|ajj|, |aj+1j|, . . . , |anj|),

then swap (interchange) rows j and k.

For example,



























a11 · a1j−1 a1j · · · a1n
0 · · · · · · ·

0 · aj−1j−1 aj−1j · · · aj−1n

0 · 0 ajj · · · ajn
0 · 0 · · · · ·

0 · 0 akj · · · akn
0 · 0 · · · · ·

0 · 0 anj · · · ann



























→



























a11 · a1j−1 a1j · · · a1n
0 · · · · · · ·

0 · aj−1j−1 aj−1j · · · aj−1n

0 · 0 akj · · · akn
0 · 0 · · · · ·

0 · 0 ajj · · · ajn
0 · 0 · · · · ·

0 · 0 anj · · · ann
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Property: GE with partial pivoting cannot fail if A is nonsingular.

Proof. If A is the first matrix above at the jth stage,

det[A] = a11 · · ·aj−1j−1 · det













ajj · · · ajn
· · · · ·

akj · · · akn
· · · · ·

anj · · · ann













.

Hence det[A] = 0 if ajj = · · · = akj = · · · = anj = 0. Thus if the pivot ak,j is zero, A is

singular. So if A is nonsingular, all of the pivots are nonzero. (Note: actually ann can be

zero and an LU factorization still exist.)

The effect of pivoting is just a permutation (reordering) of the rows, and hence can be

represented by a permutation matrix P .

Permutation matrix: P has the same rows as the identity matrix, but in the pivoted

order. So

PA = LU

represents the factorization—equivalent to GE with partial pivoting. E.g.,





0 1 0

0 0 1

1 0 0



A

has the 2nd row of A first, the 3rd row of A second and the 1st row of A last.

Matlab example:
1 >> A = rand(5,5)

2 A =

3 0.69483 0.38156 0.44559 0.6797 0.95974

4 0.3171 0.76552 0.64631 0.6551 0.34039

5 0.95022 0.7952 0.70936 0.16261 0.58527

6 0.034446 0.18687 0.75469 0.119 0.22381

7 0.43874 0.48976 0.27603 0.49836 0.75127

8 >> exactx = ones(5 ,1); b = A*exactx;

9 >> [LL, UU] = lu(A) % note "psychologically lower triangular" LL

10 LL =

11 0.73123 -0.39971 0.15111 1 0

12 0.33371 1 0 0 0

13 1 0 0 0 0

14 0.036251 0.316 1 0 0

15 0.46173 0.24512 -0.25337 0.31574 1

16 UU =

17 0.95022 0.7952 0.70936 0.16261 0.58527

18 0 0.50015 0.40959 0.60083 0.14508

19 0 0 0.59954 -0.076759 0.15675
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20 0 0 0 0.81255 0.56608

21 0 0 0 0 0.30645

22

23 >> [L, U, P] = lu(A)

24 L =

25 1 0 0 0 0

26 0.33371 1 0 0 0

27 0.036251 0.316 1 0 0

28 0.73123 -0.39971 0.15111 1 0

29 0.46173 0.24512 -0.25337 0.31574 1

30 U =

31 0.95022 0.7952 0.70936 0.16261 0.58527

32 0 0.50015 0.40959 0.60083 0.14508

33 0 0 0.59954 -0.076759 0.15675

34 0 0 0 0.81255 0.56608

35 0 0 0 0 0.30645

36 P =

37 0 0 1 0 0

38 0 1 0 0 0

39 0 0 0 1 0

40 1 0 0 0 0

41 0 0 0 0 1

42

43 >> max(max(P’*L - LL))) % we see LL is P’*L

44 ans =

45 0

46 >> y = L \ (P*b); % now to solve Ax = b...

47 >> x = U \ y

48 x =

49 1

50 1

51 1

52 1

53 1

54 >> norm(x - exactx , 2) % within roundoff error of exact soln

55 ans =

56 3.5786e-15

Pivoting When we looked at partial pivoting, a valid question is why did we take the

largest entry? Surely any nonzero entry would do?

Leads to stability and conditioning questions...

In fact, even using partial pivoting, GE not backward stable: but in practice it works

fine, examples were it is unstable are rare: “anyone that unlucky has already been hit by

a bus” [Jim Wilkinson].

Complete pivoting: provably backward stable, but costs twice as much.
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