Math 405: Numerical Methods for Differential Equations 2016 W1 Topic 9b: LU Factorization

The basic operation of Gaussian Elimination, row $i \leftarrow$ row $i+\lambda *$ row j, can be achieved by pre-multiplication by a special lower-triangular matrix

$$
M(i, j, \lambda)=I+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & 0
\end{array}\right] \leftarrow i
$$

where I is the identity matrix.
Example: $n=4$,

$$
M(3,2, \lambda)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } M(3,2, \lambda)\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
a \\
b \\
\lambda b+c \\
d
\end{array}\right]
$$

i.e., $M(3,2, \lambda) A$ performs: row 3 of $A \leftarrow$ row 3 of $A+\lambda *$ row 2 of A and similarly $M(i, j, \lambda) A$ performs: row i of $A \leftarrow$ row i of $A+\lambda *$ row j of A.

So GE for e.g., $n=3$ is

$$
\begin{array}{cccc}
M\left(3,2,-l_{32}\right) & M\left(3,1,-l_{31}\right) & M\left(2,1,-l_{21}\right) \cdot A=U=(\nabla) \\
l_{32}=\frac{a_{32}}{a_{22}} & l_{31}=\frac{a_{31}}{a_{11}} & l_{21}=\frac{a_{21}}{a_{11}} & \text { (upper triangular) }
\end{array}
$$

The $l_{i j}$ are called the multipliers.
Be careful: each multiplier $l_{i j}$ uses the data $a_{i j}$ and $a_{i i}$ that results from the transformations already applied, not data from the original matrix. So l_{32} uses a_{32} and a_{22} that result from the previous transformations $M\left(2,1,-l_{21}\right)$ and $M\left(3,1,-l_{31}\right)$.
Lemma. If $i \neq j,(M(i, j, \lambda))^{-1}=M(i, j,-\lambda)$.
Proof. Exercise.
Outcome: for $n=3, A=M\left(2,1, l_{21}\right) \cdot M\left(3,1, l_{31}\right) \cdot M\left(3,2, l_{32}\right) \cdot U$, where

$$
M\left(2,1, l_{21}\right) \cdot M\left(3,1, l_{31}\right) \cdot M\left(3,2, l_{32}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]=\underset{\text { (lower triangular) }}{L=(\Delta) .}
$$

This is true for general n :
Theorem. For any dimension n, GE can be expressed as $A=L U$, where $U=(\nabla)$ is upper triangular resulting from GE, and $L=(\Delta)$ is unit lower triangular (lower
triangular with ones on the diagonal) with $l_{i j}=$ multiplier used to create the zero in the (i, j) th position.

Most implementations of GE therefore, rather than doing GE as above,

$$
\begin{array}{rll}
\text { factorize } & A=L U & \left(\approx \frac{1}{3} n^{3} \text { adds }+\approx \frac{1}{3} n^{3}\right. \text { mults) } \\
\text { and then solve } & A x=b & \\
\text { by solving } & L y=b & \text { (forward substitution) } \\
\text { and then } & U x=y & \text { (back substitution) }
\end{array}
$$

Note: this is much more efficient if we have many different right-hand sides b but the same A.

Pivoting: GE or LU can fail if the pivot $a_{i i}=0$. For example, if

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

GE fails at the first step. However, we are free to reorder the equations (i.e., the rows) into any order we like. For example, the equations

$$
\begin{aligned}
& 0 \cdot x_{1}+1 \cdot x_{2}=1 \\
& 1 \cdot x_{1}+0 \cdot x_{2}=2
\end{aligned} \text { and } \quad \begin{aligned}
& 1 \cdot x_{1}+0 \cdot x_{2}=2 \\
& 0 \cdot x_{1}+1 \cdot x_{2}=1
\end{aligned}
$$

are the same, but their matrices

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

have had their rows reordered: GE fails for the first but succeeds for the second \Longrightarrow better to interchange the rows and then apply GE.
Partial pivoting: when creating the zeros in the j th column, find

$$
\left|a_{k j}\right|=\max \left(\left|a_{j j}\right|,\left|a_{j+1 j}\right|, \ldots,\left|a_{n j}\right|\right)
$$

then swap (interchange) rows j and k.
For example,

Property: GE with partial pivoting cannot fail if A is nonsingular.
Proof. If A is the first matrix above at the j th stage,

$$
\operatorname{det}[A]=a_{11} \cdots a_{j-1 j-1} \cdot \operatorname{det}\left[\begin{array}{ccccc}
a_{j j} & \cdot & \cdot & \cdot & a_{j n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
a_{k j} & \cdot & \cdot & \cdot & a_{k n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n j} & \cdot & \cdot & \cdot & a_{n n}
\end{array}\right]
$$

Hence $\operatorname{det}[A]=0$ if $a_{j j}=\cdots=a_{k j}=\cdots=a_{n j}=0$. Thus if the pivot $a_{k, j}$ is zero, A is singular. So if A is nonsingular, all of the pivots are nonzero. (Note: actually $a_{n n}$ can be zero and an LU factorization still exist.)
The effect of pivoting is just a permutation (reordering) of the rows, and hence can be represented by a permutation matrix P.
Permutation matrix: P has the same rows as the identity matrix, but in the pivoted order. So

$$
P A=L U
$$

represents the factorization - equivalent to GE with partial pivoting. E.g.,

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] A
$$

has the 2 nd row of A first, the 3 rd row of A second and the 1st row of A last.

Matlab example:

```
>> A = rand (5,5)
```

A $=$

0.69483	0.38156	0.44559	0.6797	0.95974
0.3171	0.76552	0.64631	0.6551	0.34039
0.95022	0.7952	0.70936	0.16261	0.58527
0.034446	0.18687	0.75469	0.119	0.22381
0.43874	0.48976	0.27603	0.49836	0.75127
>> exactx $=$ ones (5,1) ; b = A*exactx;				
>> [LL, UU] $=~ l u(A) ~ \% ~ n o t e ~ " p s y c h o l o g i c a l l y ~ l o w e r ~ t r i a n g u l a r " ~ L L ~$				
0.73123	-0.39971	0.15111	1	0
0.33371	1	0	0	0
1	0	0	0	0
0.036251	0.316	1	0	0
0.46173	0.24512	-0.25337	0.31574	1
UU =				
0.95022	0.7952	0.70936	0.16261	0.58527
0	0.50015	0.40959	0.60083	0.14508
0	0	0.59954	-0.076759	0.15675

```
    0 0
    0 0
    0.81255
    0.56608
                                0
    O
                0
                    0
                        0.30645
>> [L, U, P] = lu(A)
L =
\begin{tabular}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0.33371 & 1 & 0 & 0 & 0 \\
0.036251 & 0.316 & 1 & 0 & 0 \\
0.73123 & -0.39971 & 0.15111 & 1 & 0 \\
0.46173 & 0.24512 & -0.25337 & 0.31574 & 1 \\
0.95022 & 0.7952 & 0.70936 & 0.16261 & 0.58527 \\
0 & 0.50015 & 0.40959 & 0.60083 & 0.14508 \\
0 & 0 & 0.59954 & -0.076759 & 0.15675 \\
0 & 0 & 0 & 0.81255 & 0.56608 \\
0 & 0 & 0 & 0 & 0.30645
\end{tabular}
P =
\begin{tabular}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{tabular}
>> max(max(P'*L - LL))) % we see LL is P'*L
ans =
    0
>> y = L \ (P*b); % now to solve Ax = b...
>> x = U \ y
x =
```

```
    1
```

 1
 1
 1
 1
 1
 1
 1
 1
 1
 >> norm(x - exactx, 2) % within roundoff error of exact soln
>> norm(x - exactx, 2) % within roundoff error of exact soln
ans =
ans =
3.5786e-15

```
    3.5786e-15
```

Pivoting When we looked at partial pivoting, a valid question is why did we take the largest entry? Surely any nonzero entry would do?

Leads to stability and conditioning questions...
In fact, even using partial pivoting, GE not backward stable: but in practice it works fine, examples were it is unstable are rare: "anyone that unlucky has already been hit by a bus" [Jim Wilkinson].

Complete pivoting: provably backward stable, but costs twice as much.

