Math 405: Numerical Methods for Differential Equations 2016 W1 Topic 9a: Numerical Linear Algebra: Gaussian Elimination

Setup: given a square n by n matrix A and vector with n components b, find x such that

Ax = b.

Equivalently find $x = (x_1, x_2, \dots, x_n)^T$ for which

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n.$$
(1)

Lower-triangular matrices: the matrix A is **lower triangular** if $a_{ij} = 0$ for all $1 \le i < j \le n$. The system (1) is easy to solve if A is lower triangular.

This works if, and only if, $a_{ii} \neq 0$ for each *i*. The procedure is known as **forward** substitution.

Computational work estimate: one floating-point operation (flop) is one scalar multiply/division/addition/subtraction as in y = a * x where a, x and y are computer representations of real scalars.¹

Hence the work in forward substitution is 1 flop to compute x_1 plus 3 flops to compute x_2 plus ... plus 2i - 1 flops to compute x_i plus ... plus 2n - 1 flops to compute x_n , or in total

$$\sum_{i=1}^{n} (2i-1) = 2\left(\sum_{i=1}^{n} i\right) - n = 2\left(\frac{1}{2}n(n+1)\right) - n = n^{2} + \text{lower order terms}$$

flops. We sometimes write this as $n^2 + O(n)$ flops or more crudely $O(n^2)$ flops. **Upper-triangular matrices:** the matrix A is **upper triangular** if $a_{ij} = 0$ for all $1 \le j < i \le n$. Once again, the system (1) is easy to solve if A is upper triangular.

¹This is an abstraction: e.g., some hardware can do y = a * x + b in one FMA flop ("Fused Multiply and Add") but then needs several FMA flops for a single division. For a trip down this sort of rabbit hole, look up the "Fast inverse square root" as used in the source code of the video game "Quake III Arena".

Again, this works if, and only if, $a_{ii} \neq 0$ for each *i*. The procedure is known as **backward** or **back substitution**. This also takes approximately n^2 flops.

For computation, we need a reliable, systematic technique for reducing Ax = b to Ux = c with the same solution x but with U (upper) triangular: Gauss elimination.

Example

$$\begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 12 \\ 11 \end{bmatrix}.$$

Multiply first equation by 1/3 and subtract from the second \implies

$$\begin{bmatrix} 3 & -1 \\ 0 & \frac{7}{3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 12 \\ 7 \end{bmatrix}.$$

Gaussian Elimination (GE): this is most easily described in terms of overwriting the matrix $A = \{a_{ij}\}$ and vector b. At each stage, it is a systematic way of introducing zeros into the lower triangular part of A by subtracting multiples of previous equations (i.e., rows); such (elementary row) operations do not change the solution.

for columns j = 1, 2, ..., n - 1for rows i = j + 1, j + 2, ..., n

$$\operatorname{row} i \leftarrow \operatorname{row} i - \frac{a_{ij}}{a_{jj}} * \operatorname{row} j$$
$$b_i \leftarrow b_i - \frac{a_{ij}}{a_{jj}} * b_j$$

end

 ${\rm end}$

Example

Back substitution:

$$x_{3} = 2$$

$$x_{2} = \frac{7 - \frac{7}{3}(2)}{\frac{7}{3}} = 1$$

$$x_{1} = \frac{12 - (-1)(1) - 2(2)}{3} = 3.$$

Cost of Gaussian Elimination: note, row $i \leftarrow row \ i - \frac{a_{ij}}{a_{jj}} * row \ j$ is for columns k = j + 1, j + 2, ..., n

$$a_{ik} \leftarrow a_{ik} - \frac{a_{ij}}{a_{jj}} a_{jk}$$

end

This is approximately 2(n-j) flops as the **multiplier** a_{ij}/a_{jj} is calculated with just one flop; a_{jj} is called the **pivot**. Overall therefore, the cost of GE is approximately

$$\sum_{j=1}^{n-1} 2(n-j)^2 = 2\sum_{l=1}^{n-1} l^2 = 2\frac{n(n-1)(2n-1)}{6} = \frac{2}{3}n^3 + O(n^2)$$

flops. The calculations involving b are

$$\sum_{j=1}^{n-1} 2(n-j) = 2\sum_{l=1}^{n-1} l = 2\frac{n(n-1)}{2} = n^2 + O(n)$$

flops, just as for the triangular substitution.