Math 405: Numerical Methods for Differential Equations 2016 W1 Topic 9a: Numerical Linear Algebra: Gaussian Elimination

Setup: given a square n by n matrix A and vector with n components b, find x such that

$$
A x=b .
$$

Equivalently find $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ for which

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \tag{1}\\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} .
\end{gather*}
$$

Lower-triangular matrices: the matrix A is lower triangular if $a_{i j}=0$ for all $1 \leq i<j \leq n$. The system (1) is easy to solve if A is lower triangular.

$$
\begin{array}{llll}
a_{11} x_{1} & =b_{1} & \Longrightarrow & x_{1}=\frac{b_{1}}{a_{11}} \\
a_{21} x_{1}+a_{22} x_{2} & \Downarrow \\
\vdots & =b_{2} & \Longrightarrow & x_{2}=\frac{b_{2}-a_{21} x_{1}}{a_{22}} \\
& & \Downarrow \\
& & \begin{array}{c}
\\
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i i} x_{i} \\
\vdots
\end{array} & =b_{i} \\
& \Longrightarrow & x_{i}=\frac{b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}}{a_{i i}} & \Downarrow \\
& & &
\end{array}
$$

This works if, and only if, $a_{i i} \neq 0$ for each i. The procedure is known as forward substitution.

Computational work estimate: one floating-point operation (flop) is one scalar multiply/division/addition/subtraction as in $y=a * x$ where a, x and y are computer representations of real scalars. ${ }^{1}$

Hence the work in forward substitution is 1 flop to compute x_{1} plus 3 flops to compute x_{2} plus ... plus $2 i-1$ flops to compute x_{i} plus \ldots plus $2 n-1$ flops to compute x_{n}, or in total

$$
\sum_{i=1}^{n}(2 i-1)=2\left(\sum_{i=1}^{n} i\right)-n=2\left(\frac{1}{2} n(n+1)\right)-n=n^{2}+\text { lower order terms }
$$

flops. We sometimes write this as $n^{2}+O(n)$ flops or more crudely $O\left(n^{2}\right)$ flops.
Upper-triangular matrices: the matrix A is upper triangular if $a_{i j}=0$ for all $1 \leq j<i \leq n$. Once again, the system (1) is easy to solve if A is upper triangular.

[^0]\[

$$
\begin{aligned}
a_{i i} x_{i}+\cdots+a_{i n-1} x_{n-1}+a_{1 n} x_{n} & =b_{i}
\end{aligned}
$$ \quad \Longrightarrow x_{i}=\frac{b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}} \quad \Uparrow \quad $$
\begin{aligned}
\Uparrow & \\
\vdots & \\
a_{n-1 n-1} x_{n-1}+a_{n-1 n} x_{n}=b_{n-1} & \Longrightarrow x_{n-1}=\frac{b_{n-1}-a_{n-1 n} x_{n}}{a_{n-1 n-1}} \Uparrow \\
a_{n n} x_{n} & =b_{n}
\end{aligned}
$$ \quad \Longrightarrow x_{n}=\frac{b_{n}}{a_{n n}} . \quad \Uparrow
\]

Again, this works if, and only if, $a_{i i} \neq 0$ for each i. The procedure is known as backward or back substitution. This also takes approximately n^{2} flops.
For computation, we need a reliable, systematic technique for reducing $A x=b$ to $U x=c$ with the same solution x but with U (upper) triangular: Gauss elimination.

Example

$$
\left[\begin{array}{rr}
3 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
12 \\
11
\end{array}\right] .
$$

Multiply first equation by $1 / 3$ and subtract from the second \Longrightarrow

$$
\left[\begin{array}{rr}
3 & -1 \\
0 & \frac{7}{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
12 \\
7
\end{array}\right] .
$$

Gaussian Elimination (GE): this is most easily described in terms of overwriting the matrix $A=\left\{a_{i j}\right\}$ and vector b. At each stage, it is a systematic way of introducing zeros into the lower triangular part of A by subtracting multiples of previous equations (i.e., rows); such (elementary row) operations do not change the solution.
for columns $j=1,2, \ldots, n-1$
for rows $i=j+1, j+2, \ldots, n$

$$
\begin{aligned}
\text { row } i & \leftarrow \text { row } i-\frac{a_{i j}}{a_{j j}} * \text { row } j \\
b_{i} & \leftarrow b_{i}-\frac{a_{i j}}{a_{j j}} * b_{j}
\end{aligned}
$$

end
end

Example

$$
\begin{gathered}
{\left[\begin{array}{ccc}
3 & -1 & 2 \\
1 & 2 & 3 \\
2 & -2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
12 \\
11 \\
2
\end{array}\right]: \text { represent as }\left[\begin{array}{rrr|r}
3 & -1 & 2 & 12 \\
1 & 2 & 3 & 11 \\
2 & -2 & -1 & 2
\end{array}\right]} \\
\Longrightarrow \quad \text { row } 2 \leftarrow \text { row } 2-\frac{1}{3} \text { row } 1 \\
\left.\quad \begin{array}{rrr|r}
3 & -1 & 2 & 12 \\
0 & \frac{7}{3} & \frac{7}{3} & 7 \\
0 & -\frac{4}{3} & -\frac{7}{3} & -6
\end{array}\right] \\
\left.\Longrightarrow \quad \text { row } 3 \leftarrow \text { row } 3-\frac{2}{3} \text { row } 1 \begin{array}{rrr|r}
3 & -1 & 2 & 12 \\
0 & \frac{7}{3} & \frac{7}{3} & 7 \\
0 & 0 & -1 & -2
\end{array}\right]
\end{gathered}
$$

Back substitution:

$$
\begin{aligned}
& x_{3}=2 \\
& x_{2}=\frac{7-\frac{7}{3}(2)}{\frac{7}{3}}=1 \\
& x_{1}=\frac{12-(-1)(1)-2(2)}{3}=3
\end{aligned}
$$

Cost of Gaussian Elimination: note, row $i \leftarrow$ row $i-\frac{a_{i j}}{a_{j j}} *$ row j is for columns $k=j+1, j+2, \ldots, n$

$$
a_{i k} \leftarrow a_{i k}-\frac{a_{i j}}{a_{j j}} a_{j k}
$$

end
This is approximately $2(n-j)$ flops as the multiplier $a_{i j} / a_{j j}$ is calculated with just one flop; $a_{j j}$ is called the pivot. Overall therefore, the cost of GE is approximately

$$
\sum_{j=1}^{n-1} 2(n-j)^{2}=2 \sum_{l=1}^{n-1} l^{2}=2 \frac{n(n-1)(2 n-1)}{6}=\frac{2}{3} n^{3}+O\left(n^{2}\right)
$$

flops. The calculations involving b are

$$
\sum_{j=1}^{n-1} 2(n-j)=2 \sum_{l=1}^{n-1} l=2 \frac{n(n-1)}{2}=n^{2}+O(n)
$$

flops, just as for the triangular substitution.

[^0]: ${ }^{1}$ This is an abstraction: e.g., some hardware can do $y=a * x+b$ in one FMA flop ("Fused Multiply and Add") but then needs several FMA flops for a single division. For a trip down this sort of rabbit hole, look up the "Fast inverse square root" as used in the source code of the video game "Quake III Arena".

