Math 405: Numerical Methods for Differential Equations 2016 W1

Topic 4b: Composite Quadrature
See Chapter 7 of Süli and Mayers.
Motivation: we've seen oscillations in polynomial interpolation - the Runge phenomenonfor high-degree polynomials.
Idea: split a required integration interval $[a, b]=\left[x_{0}, x_{n}\right]$ into n equal intervals $\left[x_{i-1}, x_{i}\right]$ for $i=1, \ldots, n$. Then use a composite rule:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{x_{0}}^{x_{n}} f(x) \mathrm{d} x=\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x
$$

in which each $\int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x$ is approximated by quadrature.
Thus rather than increasing the degree of the polynomials to attain high accuracy, instead increase the number of intervals.
Trapezium Rule:

$$
\int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x=\frac{h}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]-\frac{h^{3}}{12} f^{\prime \prime}\left(\xi_{i}\right), \quad \text { for some } \xi_{i} \in\left(x_{i-1}, x_{i}\right)
$$

Composite Trapezium Rule:

$$
\begin{aligned}
\int_{x_{0}}^{x_{n}} f(x) \mathrm{d} x & =\sum_{i=1}^{n}\left[\frac{h}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]-\frac{h^{3}}{12} f^{\prime \prime}\left(\xi_{i}\right)\right] \\
& =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]+e_{h}^{\mathrm{T}}
\end{aligned}
$$

where $\xi_{i} \in\left(x_{i-1}, x_{i}\right)$ and $h=x_{i}-x_{i-1}=\left(x_{n}-x_{0}\right) / n=(b-a) / n$, and the error e_{h}^{T} is given by

$$
e_{h}^{\mathrm{T}}=-\frac{h^{3}}{12} \sum_{i=1}^{n} f^{\prime \prime}\left(\xi_{i}\right)=-\frac{n h^{3}}{12} f^{\prime \prime}(\xi)=-(b-a) \frac{h^{2}}{12} f^{\prime \prime}(\xi)
$$

for some $\xi \in(a, b)$, using the Intermediate-Value Theorem n times. Note that if we halve the stepsize h by introducing a new point halfway between each current pair (x_{i-1}, x_{i}), the factor h^{2} in the error should decrease by four.
Another composite rule: if $[a, b]=\left[x_{0}, x_{2 n}\right]$,

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{x_{0}}^{x_{2 n}} f(x) \mathrm{d} x=\sum_{i=1}^{n} \int_{x_{2 i-2}}^{x_{2 i}} f(x) \mathrm{d} x
$$

in which each $\int_{x_{2 i-2}}^{x_{2 i}} f(x) \mathrm{d} x$ is approximated by quadrature.

Simpson's Rule:

$\int_{x_{2 i-2}}^{x_{2 i}} f(x) \mathrm{d} x=\frac{h}{3}\left[f\left(x_{2 i-2}\right)+4 f\left(x_{2 i-1}\right)+f\left(x_{2 i}\right)\right]-\frac{(2 h)^{5}}{2880} f^{\prime \prime \prime \prime}\left(\xi_{i}\right), \quad$ for some $\xi_{i} \in\left(x_{2 i-2}, x_{2 i}\right)$.

Composite Simpson's Rule:

$$
\begin{aligned}
\int_{x_{0}}^{x_{2 n}} f(x) \mathrm{d} x= & \sum_{i=1}^{n}\left[\frac{h}{3}\left[f\left(x_{2 i-2}\right)+4 f\left(x_{2 i-1}\right)+f\left(x_{2 i}\right)\right]-\frac{(2 h)^{5}}{2880} f^{\prime \prime \prime \prime}\left(\xi_{i}\right)\right] \\
= & \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots\right. \\
& \left.+2 f\left(x_{2 n-2}\right)+4 f\left(x_{2 n-1}\right)+f\left(x_{2 n}\right)\right]+e_{h}^{\mathrm{S}}
\end{aligned}
$$

where $\xi_{i} \in\left(x_{2 i-2}, x_{2 i}\right)$ and $h=x_{i}-x_{i-1}=\left(x_{2 n}-x_{0}\right) / 2 n=(b-a) / 2 n$, and the error e_{h}^{S} is given by

$$
e_{h}^{\mathrm{S}}=-\frac{(2 h)^{5}}{2880} \sum_{i=1}^{n} f^{\prime \prime \prime \prime}\left(\xi_{i}\right)=-\frac{n(2 h)^{5}}{2880} f^{\prime \prime \prime \prime}(\xi)=-(b-a) \frac{h^{4}}{180} f^{\prime \prime \prime \prime}(\xi)
$$

for some $\xi \in(a, b)$, using the Intermediate-Value Theorem n times. Note that if we halve the stepsize h by introducing a new point half way between each current pair (x_{i-1}, x_{i}), the factor h^{4} in the error should decrease by sixteen (assuming f is smooth enough).
Adaptive (or automatic) procedure: if S_{h} is the value given by Simpson's rule with a stepsize h, then

$$
S_{h}-S_{\frac{1}{2} h} \approx-\frac{15}{16} e_{h}^{S} .
$$

This suggests that if we wish to compute $\int_{a}^{b} f(x) \mathrm{d} x$ with an absolute error ε, we should compute the sequence $S_{h}, S_{\frac{1}{2} h}, S_{\frac{1}{4} h}, \ldots$ and stop when the difference, in absolute value, between two consecutive values is smaller than $\frac{16}{15} \varepsilon$. That will ensure that (approximately) $\left|e_{h}^{\mathrm{S}}\right| \leq \varepsilon$.

Often spatially-varying adaptivity is used in practice: refine only is regions where a local estimate is large.

Comments:

Sometimes much better accuracy may be obtained using the Trapezoidal Rule: for example, as might happen when computing Fourier coefficients, if f is periodic with period $b-a$ so that $f(a+x)=f(b+x)$ for all x.

