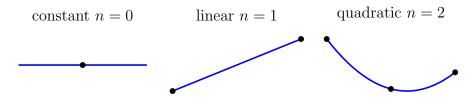
Math 405: Numerical Methods for Differential Equations 2016 W1 Topic 3: Lagrange Interpolation

This lecture adapted from chapter 6 of the numerical analysis textbook by Süli and Mayers.

Notation: $\Pi_n = \{\text{real polynomials of degree} \le n\}$ **Setup:** given data f_i at distinct x_i , i = 0, 1, ..., n, with $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p_n such that $p_n(x_i) = f_i$? Such a polynomial is said to **interpolate** the data.

E.g.:



Theorem. $\exists p_n \in \Pi_n \text{ such that } p_n(x_i) = f_i \text{ for } i = 0, 1, \dots, n.$ **Proof.** (Constructive!) Consider, for $k = 0, 1, \dots, n$, the "cardinal polynomial"

$$L_{n,k}(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)} \in \Pi_n.$$
 (1)

Then

$$L_{n,k}(x_i) = 0$$
 for $i = 0, \dots, k - 1, k + 1, \dots, n$ and $L_{n,k}(x_k) = 1$.

So now define

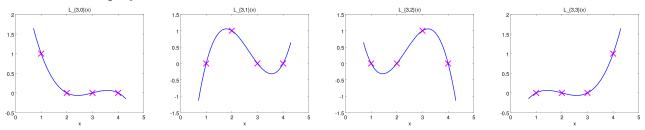
$$p_n(x) = \sum_{k=0}^n f_k L_{n,k}(x) \in \Pi_n$$
(2)

 \Longrightarrow

$$p_n(x_i) = \sum_{k=0}^n f_k L_{n,k}(x_i) = f_i \text{ for } i = 0, 1, \dots, n.$$

The polynomial (2) is the Lagrange interpolating polynomial.

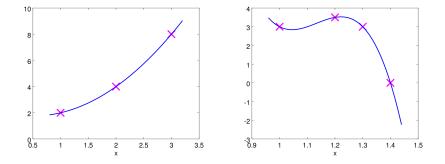
The cardinal polynomials for n = 3 look like:



Theorem. The interpolating polynomial of degree $\leq n$ (through n + 1 points) is unique. **Proof.** "One root too many". Consider two interpolating polynomials $p_n, q_n \in \Pi_n$. Difference $d_n = p_n - q_n \in \Pi_n$ satisfies $d_n(x_k) = 0$ for k = 0, 1, ..., n, i.e., d_n is a polynomial

of degree at most n but has at least n + 1 distinct roots. Fundam. Thm. Algebra \implies $d_n \equiv 0 \implies p_n = q_n$.

Demos: See demo_03_lagrange.m and demo_03_lagrange_construct.m. Here is the output of lagrange([1 2 3], [2 4 8]) and lagrange([1 1.2 1.3 1.4], [3 3.5 3 0]):



Data from an underlying smooth function: Suppose that f(x) has at least n + 1 smooth derivatives in the interval (x_0, x_n) . Let $f_k = f(x_k)$ for k = 0, 1, ..., n, and let p_n be the Lagrange interpolating polynomial for the data $(x_k, f_k), k = 0, 1, ..., n$.

Error: how large can the error $f(x) - p_n(x)$ be on the interval $[x_0, x_n]$? **Theorem** For every $x \in [x, x_n]$ there exists $\xi = \xi(x) \in (x, x_n)$ such that

Theorem. For every $x \in [x_0, x_n]$ there exists $\xi = \xi(x) \in (x_0, x_n)$ such that

$$e(x) \stackrel{\text{def}}{=} f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

where $f^{(n+1)}$ is the (n+1)-st derivative of f.

Proof. Trivial for $x = x_k$, k = 0, 1, ..., n as e(x) = 0 by construction. So suppose $x \neq x_k$. Let

$$\phi(t) \stackrel{\text{def}}{=} e(t) - \frac{e(x)}{\pi(x)} \pi(t),$$

where

$$\pi(t) \stackrel{\text{def}}{=} (t - x_0)(t - x_1) \cdots (t - x_n)$$
$$= t^{n+1} + \cdots \in \Pi_{n+1}.$$

Now note that ϕ vanishes at n + 2 points x and x_k , $k = 0, 1, \ldots, n$. $\implies \phi'$ vanishes at n + 1 points ξ_0, \ldots, ξ_n between these points $\implies \phi''$ vanishes at n points between these new points, and so on until $\phi^{(n+1)}$ vanishes at an (unknown) point ξ in (x_0, x_n) . But

$$\phi^{(n+1)}(t) = e^{(n+1)}(t) - \frac{e(x)}{\pi(x)}\pi^{(n+1)}(t) = f^{(n+1)}(t) - \frac{e(x)}{\pi(x)}(n+1)!$$

since $p_n^{(n+1)}(t) \equiv 0$ and because $\pi(t)$ is a monic polynomial of degree n+1. The result then follows immediately from this identity since $\phi^{(n+1)}(\xi) = 0$.

Example: $f(x) = \log(1+x)$ on [0,1]. Here, $|f^{(n+1)}(\xi)| = n!/(1+\xi)^{n+1} < n!$ on (0,1). So $|e(x)| < |\pi(x)|n!/(n+1)! \le 1/(n+1)$ since $|x - x_k| \le 1$ for each $x, x_k, k = 0, 1, ..., n$, in $[0,1] \implies |\pi(x)| \le 1$. This is probably pessimistic for many x, e.g. for $x = \frac{1}{2}$, $\pi(\frac{1}{2}) \le 2^{-(n+1)}$ as $|\frac{1}{2} - x_k| \le \frac{1}{2}$.

This shows the important fact that the error can be large at the end points, an effect known as the "Runge phenomena" (Carl Runge, 1901). There is a famous example due to Runge, where the error from the interpolating polynomial approximation to $f(x) = (1+x^2)^{-1}$ for n+1 equally-spaced points on [-5,5] diverges near ± 5 as n tends to infinity: try demo_03_runge.m from the website.

Building Lagrange interpolating polynomials from lower degree ones.

Notation: Let $Q_{i,j}$ be the interpolating polynomial at $x_k, k = i, ..., j$. Theorem.

$$Q_{i,j}(x) = \frac{(x - x_i)Q_{i+1,j}(x) - (x - x_j)Q_{i,j-1}(x)}{x_j - x_i}$$
(3)

Proof. Let s(x) denote the right-hand side of (3). Because of uniqueness, we wish to show that $s(x_k) = f_k$ and that the s(x) is of the correct degree; left as exercises. \Box

Comment: this can be used as the basis for constructing interpolating polynomials. In books: may find topics such as the Newton form and divided differences.

Generalisation: given data f_i and g_i at distinct x_i , i = 0, 1, ..., n, with $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p such that $p(x_i) = f_i$ and $p'(x_i) = g_i$?

Theorem. There is a unique polynomial $p_{2n+1} \in \Pi_{2n+1}$ such that $p_{2n+1}(x_i) = f_i$ and $p'_{2n+1}(x_i) = g_i$ for $i = 0, 1, \ldots, n$.

Construction: given $L_{n,k}(x)$ in (1), let

$$H_{n,k}(x) = [L_{n,k}(x)]^2 (1 - 2(x - x_k)L'_{n,k}(x_k))$$

and $K_{n,k}(x) = [L_{n,k}(x)]^2 (x - x_k).$

Then

$$p_{2n+1}(x) = \sum_{k=0}^{n} [f_k H_{n,k}(x) + g_k K_{n,k}(x)]$$
(4)

interpolates the data as required. The polynomial (4) is called the **Hermite interpolating polynomial**.

Theorem. Let p_{2n+1} be the Hermite interpolating polynomial in the case where $f_i = f(x_i)$ and $g_i = f'(x_i)$ and f has at least 2n+2 smooth derivatives. Then, for every $x \in [x_0, x_n]$,

$$f(x) - p_{2n+1}(x) = [(x - x_0)(x - x_1) \cdots (x - x_n)]^2 \frac{f^{(2n+2)}(\xi)}{(2n+2)!},$$

where $\xi \in (x_0, x_n)$ and $f^{(2n+2)}$ is the (2n+2)nd derivative of f.