
Math 405: Numerical Methods for Differential Equations 2016 W1

Topic 3: Lagrange Interpolation

This lecture adapted from chapter 6 of the numerical analysis textbook by Süli and Mayers.

Notation: Πn = {real polynomials of degree ≤ n}
Setup: given data fi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 < · · · < xn, can we find a

polynomial pn such that pn(xi) = fi? Such a polynomial is said to interpolate the data.

E.g.:

constant n = 0 linear n = 1 quadratic n = 2

Theorem. ∃pn ∈ Πn such that pn(xi) = fi for i = 0, 1, . . . , n.

Proof. (Constructive!) Consider, for k = 0, 1, . . . , n, the “cardinal polynomial”

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1)

Then

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =
n∑

k=0

fkLn,k(x) ∈ Πn (2)

=⇒

pn(xi) =
n∑

k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. 2

The polynomial (2) is the Lagrange interpolating polynomial.

The cardinal polynomials for n = 3 look like:

Theorem. The interpolating polynomial of degree ≤ n (through n+ 1 points) is unique.

Proof. “One root too many”. Consider two interpolating polynomials pn, qn ∈ Πn. Dif-

ference dn = pn − qn ∈ Πn satisfies dn(xk) = 0 for k = 0, 1, . . . , n, i.e., dn is a polynomial
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of degree at most n but has at least n + 1 distinct roots. Fundam. Thm. Algebra =⇒
dn ≡ 0 =⇒ pn = qn. 2

Demos: See demo 03 lagrange.m and demo 03 lagrange construct.m. Here is the out-

put of lagrange([1 2 3], [2 4 8]) and lagrange([1 1.2 1.3 1.4], [3 3.5 3 0]):

Data from an underlying smooth function: Suppose that f(x) has at least n + 1

smooth derivatives in the interval (x0, xn). Let fk = f(xk) for k = 0, 1, . . . , n, and let pn
be the Lagrange interpolating polynomial for the data (xk, fk), k = 0, 1, . . . , n.

Error: how large can the error f(x)− pn(x) be on the interval [x0, xn]?

Theorem. For every x ∈ [x0, xn] there exists ξ = ξ(x) ∈ (x0, xn) such that

e(x)
def
= f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)

f (n+1)(ξ)

(n+ 1)!
,

where f (n+1) is the (n+ 1)-st derivative of f .

Proof. Trivial for x = xk, k = 0, 1, . . . , n as e(x) = 0 by construction. So suppose x 6= xk.

Let

φ(t)
def
= e(t)− e(x)

π(x)
π(t),

where
π(t)

def
= (t− x0)(t− x1) · · · (t− xn)

= tn+1 + · · · ∈ Πn+1.

Now note that φ vanishes at n + 2 points x and xk, k = 0, 1, . . . , n. =⇒ φ′ vanishes at

n + 1 points ξ0, . . . , ξn between these points =⇒ φ′′ vanishes at n points between these

new points, and so on until φ(n+1) vanishes at an (unknown) point ξ in (x0, xn). But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p
(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+1. The result then

follows immediately from this identity since φ(n+1)(ξ) = 0. 2

Example: f(x) = log(1 + x) on [0, 1]. Here, |f (n+1)(ξ)| = n!/(1 + ξ)n+1 < n! on (0, 1).

So |e(x)| < |π(x)|n!/(n+ 1)! ≤ 1/(n+ 1) since |x− xk| ≤ 1 for each x, xk, k = 0, 1, . . . , n,
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in [0, 1] =⇒ |π(x)| ≤ 1. This is probably pessimistic for many x, e.g. for x = 1
2
,

π( 1
2
) ≤ 2−(n+1) as | 1

2
− xk| ≤ 1

2
.

This shows the important fact that the error can be large at the end points, an effect

known as the “Runge phenomena” (Carl Runge, 1901). There is a famous example due

to Runge, where the error from the interpolating polynomial approximation to f(x) =

(1+x2)−1 for n+1 equally-spaced points on [−5, 5] diverges near ±5 as n tends to infinity:

try demo 03 runge.m from the website.

Building Lagrange interpolating polynomials from lower degree ones.

Notation: Let Qi,j be the interpolating polynomial at xk, k = i, . . . , j.

Theorem.

Qi,j(x) =
(x− xi)Qi+1,j(x)− (x− xj)Qi,j−1(x)

xj − xi
(3)

Proof. Let s(x) denote the right-hand side of (3). Because of uniqueness, we wish to show

that s(xk) = fk and that the s(x) is of the correct degree; left as exercises. 2

Comment: this can be used as the basis for constructing interpolating polynomials. In

books: may find topics such as the Newton form and divided differences.

Generalisation: given data fi and gi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 < · · · <
xn, can we find a polynomial p such that p(xi) = fi and p′(xi) = gi?

Theorem. There is a unique polynomial p2n+1 ∈ Π2n+1 such that p2n+1(xi) = fi and

p′2n+1(xi) = gi for i = 0, 1, . . . , n.

Construction: given Ln,k(x) in (1), let

Hn,k(x) = [Ln,k(x)]2(1− 2(x− xk)L′n,k(xk))

and Kn,k(x) = [Ln,k(x)]2(x− xk).

Then

p2n+1(x) =
n∑

k=0

[fkHn,k(x) + gkKn,k(x)] (4)

interpolates the data as required. The polynomial (4) is called the Hermite interpolating

polynomial.

Theorem. Let p2n+1 be the Hermite interpolating polynomial in the case where fi = f(xi)

and gi = f ′(xi) and f has at least 2n+2 smooth derivatives. Then, for every x ∈ [x0, xn],

f(x)− p2n+1(x) = [(x− x0)(x− x1) · · · (x− xn)]2
f (2n+2)(ξ)

(2n+ 2)!
,

where ξ ∈ (x0, xn) and f (2n+2) is the (2n+ 2)nd derivative of f .
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