Topic 02: Root Finding

Part of "Numerical Methods for Differential Equations", Colin Macdonald, cbm@math.ubc.ca.

Rooting Finding

Iterative techniques for solving $f(x)=0$ for x.
Bisection: start with an interval $[a, b]$ bracketing the root. Evaluate the midpoint. Replace one end, maintaining a root bracket. Linear convergence. Slow but robust.

Newton's Method: $x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$. Faster, quadratic convergence (number of correct decimals places doubles each iteration).

Downsides of Newton's Method: need derivative info, and additional smoothness. Convergence usually not guaranteed unless "sufficiently close": not robust.

Systems

$f(x)=0$, but now $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
This is a system of nonlinear equations. Denote a solution as $\alpha \in \mathbb{R}^{n}$.
Derivation: Taylor expansion about x

$$
0=f(\alpha)=f(x)+J(x)(\alpha-x)+\text { h.o.t. }
$$

where $J(x)$ is the Jacobian matrix. . .
Pretend h.o.t. are 0 , so instead of α we find x_{k+1} :

$$
0=f\left(x_{k}\right)+J\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)
$$

In principle, can rearrange to solve for x_{k} but better to solve

$$
J_{k} \delta=-f\left(x_{k}\right)
$$

That is, solve " $A x=b$ ". Then update:

$$
x_{k+1}:=x_{k}+\delta
$$

Optimization

A huge area, but to get started, consider calculus: finding min/max points by setting the derivative equal to zero.

