Math 253 2017: Homework 3

1. Laplace's equation. Indicate with a "yes" or "no" whether each of the following functions is a solution of Laplace's equation $u_{xx} + u_{yy} = 0$.

(a)
$$u = x^2 + y^2$$

(b)
$$u = x^2 - y^2$$

(c)
$$u = x^3 + 3xy^2$$

(d)
$$u = \ln \sqrt{x^2 + y^2}$$

(e)
$$u = \sin x \cosh y + \cos x \sinh y$$

(f)
$$u = e^{-x} \cos y - e^{-y} \cos x$$

2. Ch-ch-ch-Chain Rule. Consider f(x, y), where x and y are functions of r and θ : $x(r, \theta) = r \cos \theta$ and $y(r, \theta) = r \sin \theta$. The chain rule expresses $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ in terms of f_x and f_y ; it can be written in matrix form:

$$\begin{bmatrix} \frac{\partial f}{\partial r} \\ \frac{\partial f}{\partial \theta} \end{bmatrix} = J \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

(a) Give the 2×2 matrix J explicitly. Each entry may depend on r and/or θ .

(b) What is det(J)? What is J^{-1} ? (The matrix inverse, entries should depend on r and/or θ).

(c) Now suppose $g(r, \theta)$, with r(x, y) and $\theta(x, y)$. These satisfy

$$(r(x,y))^2 = x^2 + y^2, \qquad \tan(\theta(x,y)) = y/x.$$

Work out the four partials $\frac{\partial r}{\partial x}$, $\frac{\partial \theta}{\partial x}$, $\frac{\partial r}{\partial y}$, and $\frac{\partial \theta}{\partial y}$, expressing your answers in (only) r and θ . Hint: implicit differentiation is your friend. Hint 2: keep track of who is an independent variable and who is a dependent variable. Hint 3: if the tan θ formula is difficult, it might be easier to use $r \cos \theta = x$.

(d) Use the chain rule to express $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$ in terms of the $\frac{\partial g}{\partial r}$ and $\frac{\partial g}{\partial \theta}$. Write this chain rule for g in a matrix form, using a 2 × 2 matrix B. Express entries of B as functions of r and/or θ .

(e) The Liebniz notation $\frac{\partial x}{\partial r}$ makes it tempting to think $\frac{\partial x}{\partial r} = \frac{1}{\frac{\partial r}{\partial x}}$. Is this so?

(f) Compute det(B).

(g) How does this relate to det J? How does B relate to J^{-1} ?

- 3. A mixed-partial roof is better than a mixed partial-roof. UBC's First Nations Longhouse has an interesting roof. Let's reverse engineer it. Suppose the Longhouse occupies a rectangle in the xy-plane, $-1 \le x \le 1$ and $-2 \le y \le 2$. The roof is supported by long straight beams across the narrower width of the building; we can represent a beam using an equation z = mx + b.
 - (a) Let's suppose the beam at y = -2 has equation $z = -\frac{1}{2}x + 1$. Make a sketch in the *xz*-plane showing this beam and the wall of the Longhouse. At the opposite end of the Longhouse at y = 2, the beam is $z = \frac{1}{2}x + 1$. Make another sketch showing this wall and beam in the *xz*-plane. Label your sketches with y = -2 and y = 2.

(b) What should we do with the beams in between? Each one has an equation like $z = m_i x + 2$, but maybe that's a tad too discrete for this course. How about m(y): different m for different y values. What is the simplest function m(y) with $m(-2) = -\frac{1}{2}$ and $m(2) = \frac{1}{2}$?

(c) Hence, give an expression for the roof surface z = f(x, y).

(d) Compute the partial derivatives f_x , f_y , f_{xx} , f_{yy} , f_{xy} (and f_{yx} if you don't yet trust Signore Professore Fubini).

Now would be an appropriate time to contemplate the meaning of $\frac{\partial}{\partial y} f_x$, also known as f_{xy} . Share your "aha!" moment with a drink and a friend. (e) Make an attractive computer plot—or an *extremely attractive* sketch—of the surface f(x, y).

(f) Consider the surface z = g(x, y) with g(x, y) = cxy + D(x) + E(y) + F where D, E are any differentiable functions of one variable and F is a constant. Show that expressions of this form satisfy $g_{xy} = c$.

(g) Postulate (guess) a general solution to the system of partial differential equations given by

$$g_{xy} = c, \qquad g_{xx} = 0, \qquad g_{yy} = 0.$$

These sorts of calculations are related to *minimal energy surfaces*, such as soap bubbles. And, it would seem, to constrained creativity in architecture.