Math 253 Notes on Moments of Inertia

November 14, 2017

(c) 2016-2017 Colin B. Macdonald, CC-BY licensed. Supplementary notes for UBC's Math 253, to follow Section 13.4 "Center of Mass" of our text APEX Calculus 3, version 3.0.

1 Moments of Inertia

We've previously seen *moments* when calculating centre of mass of a lamina. This involved two double integrals:

$$M_{y} = \int \int_{D} x\rho(x,y) dA$$
$$M_{x} = \int \int_{D} y\rho(x,y) dA$$

These can also be called the "first moments"; here we look at the "second moments" or "moments of inertia".

1.1 Kinetic Energy of a spinning lamina

Suppose our lamina (which lies in the *x*-*y* plane) is rotating around the *z*-axis (note this is orthogonal to the lamina) at a constant angular rotational speed ω radians/s. (E.g., 60 rpm = 1 rev/s = 2π rad/s). Find the *Kinetic Energy* of the lamina. [Draw diagram!]

Riemann sum idea: as before, we consider a small rectangular piece R_{ij} with area $\Delta x \Delta y$. The kinetic energy of a point mass is $\frac{1}{2}mv^2$. Its going to be small in the limit so we use this to get:

$$\frac{1}{2}\rho(x_i,y_j)\Delta x\Delta y|\vec{v}_{ij}|^2.$$

The piece R_{ij} moves faster the further it is from the axis of rotation (*z*-axis, (*x*, *y*) = (0, 0)). Different pieces move at different speeds. Our piece has kinetic energy:

$$\frac{1}{2}\rho(x_i,y_j)\Delta x\Delta y\omega^2\left(x_i^2+y_j^2\right)\right).$$

So take the Riemann sum over all pieces of the lamina and we get:

$$K = \frac{1}{2}\omega^2 \int \int_D (x^2 + y^2)\rho(x, y)dA$$

We define I_0 the **moment of inertia** about the *z*-axis as just the integral part:

$$I_0 = \int \int_D (x^2 + y^2) \rho(x, y) dA.$$

Larger I_0 means more energy (work) to rotate the lamina about the *z*-axis.

1.2 About some other axis?

A similar argument shows how to compute the moment of inertia about some other axis parallel to the *z*-axis, centred at (x, y) = (a, b):

$$I_0 = \int \int_D ((x-a)^2 + (y-b)^2) \rho(x,y) dA.$$

And in particular about the centre of mass $(x, y) = (\bar{x}, \bar{y})$, this would be:

 $I_{0,c} =$

1.3 Rotation around *x* or *y* axes

What about rotating around the *x*-axis and *y*-axis? This gives the moment of inertia about the *y*-axis denoted I_y and the moment of inertia about the *x*-axis denoted I_x . [Draw diagrams]

 $I_y =$

 $I_x =$

Note relationship to previous,

 $I_0 =$

1.4 Changing the axis of rotation

Suppose we have $I_{0,c}$ and want rotation around *z*-axis? Let *M* be overall mass of lamina. We get:

 $I_0 =$

1.5 Examples

- 1. Find moment of inertia about the *z*-axis of a uniform circular disc of radius *R* and total mass *M*, centred at the origin.
- 2. Find same, but with disc centred at point (*a*, *b*).
- 3. Find same, for a uniform rectangular plate, mass *M*, axis through centre, size $a \times b$.