Math 253 Notes on Moments of Inertia

November 14, 2017
(c) 2016-2017 Colin B. Macdonald, CC-BY licensed. Supplementary notes for UBC's Math 253, to follow Section 13.4 "Center of Mass" of our text APEX Calculus 3, version 3.0.

1 Moments of Inertia

We've previously seen moments when calculating centre of mass of a lamina. This involved two double integrals:

$$
\begin{aligned}
M_{y} & =\iint_{D} x \rho(x, y) d A \\
M_{x} & =\iint_{D} y \rho(x, y) d A
\end{aligned}
$$

These can also be called the "first moments"; here we look at the "second moments" or "moments of inertia".

1.1 Kinetic Energy of a spinning lamina

Suppose our lamina (which lies in the $x-y$ plane) is rotating around the z-axis (note this is orthogonal to the lamina) at a constant angular rotational speed ω radians $/ \mathrm{s}$. (E.g., $60 \mathrm{rpm}=1 \mathrm{rev} / \mathrm{s}=$ $2 \pi \mathrm{rad} / \mathrm{s})$. Find the Kinetic Energy of the lamina. [Draw diagram!]

Riemann sum idea: as before, we consider a small rectangular piece $R_{i j}$ with area $\Delta x \Delta y$. The kinetic energy of a point mass is $\frac{1}{2} m v^{2}$. Its going to be small in the limit so we use this to get:

$$
\frac{1}{2} \rho\left(x_{i}, y_{j}\right) \Delta x \Delta y\left|\vec{v}_{i j}\right|^{2}
$$

The piece $R_{i j}$ moves faster the further it is from the axis of rotation (z-axis, $(x, y)=(0,0)$). Different pieces move at different speeds. Our piece has kinetic energy:

$$
\left.\frac{1}{2} \rho\left(x_{i}, y_{j}\right) \Delta x \Delta y \omega^{2}\left(x_{i}^{2}+y_{j}^{2}\right)\right)
$$

So take the Riemann sum over all pieces of the lamina and we get:

$$
K=\frac{1}{2} \omega^{2} \iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A .
$$

We define I_{0} the moment of inertia about the z-axis as just the integral part:

$$
I_{0}=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A
$$

Larger I_{0} means more energy (work) to rotate the lamina about the z-axis.

1.2 About some other axis?

A similar argument shows how to compute the moment of inertia about some other axis parallel to the z-axis, centred at $(x, y)=(a, b)$:

$$
I_{0}=\iint_{D}\left((x-a)^{2}+(y-b)^{2}\right) \rho(x, y) d A .
$$

And in particular about the centre of mass $(x, y)=(\bar{x}, \bar{y})$, this would be:

$$
I_{0, c}=
$$

1.3 Rotation around x or y axes

What about rotating around the x-axis and y-axis? This gives the moment of inertia about the y-axis denoted I_{y} and the moment of inertia about the x-axis denoted I_{x}. [Draw diagrams]

$$
I_{y}=
$$

$$
I_{x}=
$$

Note relationship to previous,

$$
I_{0}=
$$

1.4 Changing the axis of rotation

Suppose we have $I_{0, c}$ and want rotation around z-axis? Let M be overall mass of lamina. We get:

$$
I_{0}=
$$

1.5 Examples

1. Find moment of inertia about the z-axis of a uniform circular disc of radius R and total mass M, centred at the origin.
2. Find same, but with disc centred at point (a, b).
3. Find same, for a uniform rectangular plate, mass M, axis through centre, size $a \times b$.
