HOMEWORK ASSIGNMENT \#7

1. The iterated integral $I=\int_{x=0}^{x=1}\left(\int_{y=0}^{y=\sqrt{x}} \sin \left(\frac{\pi\left(y^{3}-3 y\right)}{2}\right) d y\right) d x$ is equal to the double integral $\iint_{R} \sin \left(\frac{\pi\left(y^{3}-3 y\right)}{2}\right) d A$ for a region R in the x, y plane.
(a) Sketch R.
(b) Write the integral with the order of integration reversed.
(c) Compute I.
2. Let D be the region bounded by $y=x$ and $y=6-x^{2}$.
(a) Sketch D.
(b) Find $\iint_{D} x^{2} d A$.
3. Let D be the region, described in polar coordinates by, $0 \leq \theta \leq \pi, 0 \leq r \leq 1+\cos \theta$.
(a) Sketch D.
(b) Compute the area of D.
(c) Find the average value of distances of points in D from the origin.
4. Determine the following integrals:
(a) $\iint_{D}(|x|+|y|) d A$, where D is the region $x^{2}+y^{2} \leq a^{2}$ and a is a positive constant.
(b) $\iint_{T} \sqrt{a^{2}-x^{2}} d A$, where T is the triangle with vertices $(0,0),(a, 0),(a, a)$.
(c) $\iint_{D} \frac{1}{x^{2}+y^{2}} d A$, where D is the region in the first quadrant bounded by

$$
y=0, y=x, x^{2}+y^{2}=1 / 4, x^{2}+y^{2}=1
$$

(d) $\iint_{R}\left(\sin x y+x^{2}-y^{2}+3\right) d x d y$, where R is the region inside the circle $x^{2}+y^{2}=$ a^{2} and outside the circle $x^{2}+y^{2}=b^{2}$, and a, b are constants satisfying $0<b<a$.
5. Find the volume above the x, y plane, below the surface $z=e^{-\left(x^{2}+y^{2}\right)}$ and inside the cylinder $x^{2}+y^{2}=4$.
6. Find the volume above the x, y plane and below the surface $z=e^{-\left(x^{2}+y^{2}\right)}$.
7. Compute the double integral $\iint_{D}(x+y) d A$, where D is the domain that lies to the right of the y-axis and between the circles $x^{2}+y^{2}=1, x^{2}+y^{2}=4$.
8. Find the area that is common to the polar curves $r=\cos \theta, r=\sin \theta$.
9. Find the area that is inside the polar curve $r=4 \sin \theta$ and outside the circle $r=2$.
10. Find the volume that is above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=$ 1.
11. A cylindrical hole of radius a is drilled through a sphere of radius $b(a<b)$. Find the volume of the solid that remains.

SOLUTIONS TO ASSIGNMENT \#7

1. The iterated integral $I=\int_{x=0}^{x=1}\left(\int_{y=0}^{y=\sqrt{x}} \sin \left(\frac{\pi\left(y^{3}-3 y\right)}{2}\right) d y\right) d x$ is equal to the double integral $\iint_{R} \sin \left(\frac{\pi\left(y^{3}-3 y\right)}{2}\right) d A$ for a region R in the x, y plane.
(a) Sketch R.
(b) Write the integral with the order of integration reversed.
(c) Compute I.

Solution:
(a) See diagram at the end.
(b) $I=\int_{y=0}^{y=1}\left(\int_{x=y^{2}}^{x=1} \sin \left(\frac{\pi\left(y^{3}-3 y\right)}{2}\right) d x\right) d y$.
(c)

$$
I=\int_{y=0}^{y=1} \sin \left(\frac{\pi\left(y^{3}-3 y\right)}{2}\right)\left(1-y^{2}\right) d y=\left.\frac{2}{3 \pi} \cos \left(\frac{\pi\left(y^{3}-3 y\right)}{2}\right)\right|_{0} ^{1}=-\frac{4}{3 \pi}
$$

2. Let D be the region bounded by $y=x$ and $y=6-x^{2}$.
(a) Sketch D.
(b) Find $\iint_{D} x^{2} d A$.

Solution:
(a) See the diagram at the end. Note that $6-x^{2}=x \Longleftrightarrow x=-3,2$.
(b)

$$
\begin{aligned}
\iint_{D} x^{2} d A & =\int_{x=-3}^{x=2} d x \int_{y=x}^{y=6-x^{2}} x^{2} d y=\int_{-3}^{2} x^{2}\left(6-x^{2}-x\right) d x \\
& =-\left.\frac{x^{5}}{5}\right|_{-3} ^{2}-\left.\frac{x^{4}}{4}\right|_{-3} ^{2}+\left.2 x^{3}\right|_{-3} ^{2}=\frac{125}{4}
\end{aligned}
$$

3. Let D be the region, described in polar coordinates by, $0 \leq \theta \leq \pi, 0 \leq r \leq 1+\cos \theta$.
(a) Sketch D.
(b) Compute the area of D.
(c) Find the average value of distances of points in D from the origin.

Solution:
(a) See the diagram at the end.
(b) The area of D is

$$
\begin{aligned}
A & =\int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=1+\cos \theta} r d r d \theta=\int_{0}^{\pi} \frac{(1+\cos \theta)^{2}}{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi}\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta=\frac{1}{2}(\pi+\pi / 2)=\frac{3 \pi}{4}
\end{aligned}
$$

(c) By definition, the average value of a function $f(x, y)$ over a domain D is

$$
\text { average value }=\frac{1}{\operatorname{area}(D)} \iint_{D} f(x, y) d x d y
$$

In this case we have

$$
\begin{aligned}
\text { average value } & =\frac{4}{3 \pi} \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=1+\cos \theta} r^{2} d r=\frac{4}{3 \pi} \int_{\theta=0}^{\theta=\pi} \frac{(1+\cos \theta)^{3}}{3} d \theta \\
& =\frac{4}{9 \pi} \int_{\theta=0}^{\theta=\pi}\left(1+3 \cos \theta+3 \cos ^{2} \theta+\cos ^{3} \theta\right) d \theta \\
& =\frac{4}{9 \pi}(\pi+3 \pi / 2)=\frac{10}{9}
\end{aligned}
$$

4. Determine the following integrals:
(a) $\iint_{D}(|x|+|y|) d A$, where D is the region $x^{2}+y^{2} \leq a^{2}$ and a is a positive constant.
(b) $\iint_{T} \sqrt{a^{2}-x^{2}} d A$, where T is the triangle with vertices $(0,0),(a, 0),(a, a)$.
(c) $\iint_{D} \frac{1}{x^{2}+y^{2}} d A$, where D is the region in the first quadrant bounded by

$$
y=0, y=x, x^{2}+y^{2}=1 / 4, x^{2}+y^{2}=1 .
$$

(d) $\iint_{R}\left(\sin x y+x^{2}-y^{2}+3\right) d x d y$, where R is the region inside the circle $x^{2}+y^{2}=$ a^{2} and outside the circle $x^{2}+y^{2}=b^{2}$, and a, b are constants satisfying $0<b<a$.

Solution:
(a)

$$
\begin{aligned}
\iint_{D}(|x|+|y|) d A & =4 \int_{\theta=0}^{\theta=\pi / 2} d \theta \int_{r=0}^{r=a}(r \cos \theta+r \sin \theta) r d r \\
& =\frac{4 a^{3}}{3} \int_{\theta=0}^{\theta=\pi / 2}(\cos \theta+\sin \theta) d \theta=\frac{8 a^{3}}{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\iint_{T} \sqrt{a^{2}-x^{2}} d A & =\int_{x=0}^{x=a} d x \int_{y=0}^{y=x} \sqrt{a^{2}-x^{2}} d y=\int_{x=0}^{x=a} x \sqrt{a^{2}-x^{2}} d x \\
& =-\left.\frac{1}{3}\left(a^{2}-x^{2}\right)^{3 / 2}\right|_{0} ^{a}=\frac{a^{3}}{3}
\end{aligned}
$$

(c) $\iint_{D} \frac{1}{x^{2}+y^{2}} d A=\int_{\theta=0}^{\theta=\pi / 4} \int_{r=1 / 2}^{r=1} \frac{1}{r} d r d \theta=\frac{\pi \ln 2}{4}$.
(d) By symmetry $\iint_{R} \sin x y d x d y=0$ and $\iint_{R} x^{2} d x d y=\iint_{R} y^{2} d x d y$, and therefore $\iint_{R}\left(\sin x y+x^{2}-y^{2}+3\right) d x d y=3$ area $R=3 \pi\left(a^{2}-b^{2}\right)$.
5. Find the volume above the x, y plane, below the surface $z=e^{-\left(x^{2}+y^{2}\right)}$ and inside the cylinder $x^{2}+y^{2}=4$.
Solution: The volume is $V=\int_{\theta=0}^{\theta=2 \pi} d \theta \int_{r=0}^{r=2} e^{-r^{2}} r d r=\left.2 \pi \frac{e^{-r^{2}}}{-2}\right|_{r=0} ^{r=2}=\pi\left(1-e^{-4}\right)$.
6. Find the volume above the x, y plane and below the surface $z=e^{-\left(x^{2}+y^{2}\right)}$.

Solution: The volume is $V=\int_{\theta=0}^{\theta=2 \pi} d \theta \int_{r=0}^{r=\infty} e^{-r^{2}} r d r=\left.2 \pi \frac{e^{-r^{2}}}{-2}\right|_{r=0} ^{r=\infty}=\pi$.
7. The iterated integral $\int_{x=0}^{x=4}\left(\int_{y=\sqrt{x}}^{y=2} e^{y^{3}} d y\right) d x$ can be written in the form $\iint_{D} e^{y^{3}} d A$ for a region D.
(a) Sketch D.
(b) Evaluate $\int_{x=0}^{x=4}\left(\int_{y=\sqrt{x}}^{y=2} e^{y^{3}} d y\right) d x$.

Solution:
(a) See the diagram at the end.
(b) $\int_{x=0}^{x=4}\left(\int_{y=\sqrt{x}}^{y=2} e^{y^{3}} d y\right) d x=\int_{y=0}^{y=2} d y \int_{x=0}^{x=y^{2}} e^{y^{3}} d x=\int_{y=0}^{y=2} y^{2} e^{y^{3}} d y=\left.\frac{e^{y^{3}}}{3}\right|_{0} ^{2}=\frac{e^{8}-1}{3}$
8. Compute the double integral $\iint_{D}(x+y) d A$, where D is the domain that lies to the right of the y-axis and between the circles $x^{2}+y^{2}=1, x^{2}+y^{2}=4$.
Solution:

$$
\begin{aligned}
\iint_{D}(x+y) d A & =\int_{\theta=-\pi / 2}^{\theta=\pi / 2} \int_{r=1}^{r=2}(r \cos \theta+r \sin \theta) r d r d \theta \\
& =\frac{7}{3} \int_{\theta=-\pi / 2}^{\theta=\pi / 2}(\cos \theta+\sin \theta) d \theta=\frac{14}{3}
\end{aligned}
$$

9. Find the area that is common to the polar curves $r=\cos \theta, r=\sin \theta$.

Solution: The area is

$$
A=2 \int_{\theta=0}^{\theta=\pi / 4} \int_{r=0}^{r=\sin \theta} r d r d \theta=\int_{\theta=0}^{\theta=\pi / 4} \sin ^{2} \theta d \theta=\pi / 8
$$

10. Find the area that is inside the polar curve $r=4 \sin \theta$ and outside the circle $r=2$.

Solution:

$$
\begin{aligned}
A & =\int_{\theta=\pi / 6}^{\theta=5 \pi / 6} \int_{r=2}^{r=4 \sin \theta} r d r d \theta=\int_{\theta=\pi / 6}^{\theta=5 \pi / 6}\left(8 \sin ^{2} \theta-2\right) d \theta \\
& =\int_{\theta=\pi / 6}^{\theta=5 \pi / 6}(4(1-\cos 2 \theta)-2) d \theta=\int_{\theta=\pi / 6}^{\theta=5 \pi / 6}(2-4 \cos 2 \theta) d \theta \\
& =\frac{4 \pi}{3}-\left.2 \sin 2 \theta\right|_{\theta=\pi / 6} ^{\theta=5 \pi / 6}=\frac{4 \pi}{3}-2\left(\sin \frac{5 \pi}{3}-\sin \frac{2 \pi}{3}\right)=\frac{4 \pi}{3}+2 \sqrt{3}
\end{aligned}
$$

11. Find the volume that is above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+$ $z^{2}=1$.
Solution:

$$
\begin{aligned}
V & =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=1 / \sqrt{2}}\left(\sqrt{1-r^{2}}-r\right) r d r d \theta=2 \pi \int_{r=0}^{r=1 / \sqrt{2}}\left(\sqrt{1-r^{2}}-r\right) r d r \\
& =2 \pi\left(-\left.\frac{1}{3}\left(1-r^{2}\right)^{3 / 2}\right|_{r=0} ^{r=1 / \sqrt{2}}-\left.\frac{r^{3}}{3}\right|_{r=0} ^{r=1 / \sqrt{2}}\right)=\frac{2 \pi}{3}(1-1 / \sqrt{2})
\end{aligned}
$$

12. A cylindrical hole of radius a is drilled through a sphere of radius $b(a<b)$. Find the volume of the solid that remains.
Solution:
The volume of the drilled out piece is

$$
V=2 \int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=a} \sqrt{b^{2}-r^{2}} r d r d \theta=-\left.\frac{4 \pi}{3}\left(b^{2}-r^{2}\right)^{3 / 2}\right|_{r=0} ^{r=a}=\frac{4 \pi}{3}\left(b^{3}-\left(b^{2}-a^{2}\right)^{3 / 2}\right)
$$

Therefore the volume of the remaining piece is $\frac{4 \pi}{3}\left(b^{2}-a^{2}\right)^{3 / 2}$.

Figure 1: Question 1(a), $0 \leq x \leq 1,0 \leq y \leq \sqrt{x}$

Figure 2: Question 2(a), the region bounded by $y=x, y=6-x^{2}$

Figure 3: Question 3(a), $0 \leq \theta \leq \pi, 0 \leq r \leq 1+\cos \theta$

Figure 4: Question 7(a), $0 \leq x \leq 4, \sqrt{x} \leq y \leq 2$

