Math 253 Homework assignment 6

1. Consider the integral $\int_{R} x y^{2} d A$, where A is the rectangle $[0,1] \times[0,1]$.
(a) Calculate the Riemann sum corresponding to this integral, with the subdivision corresponding to $\Delta x=\Delta y=0.2$ and using the centre of each small rectangle as the sample point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$.
(b) Using an iterated integral, calculate the value exactly.
2. Find the volume of the solid bounded by the planes $x=1, x=2, y=0, y=\pi / 2$, $z=0$ and the surface $z=x \cos y$.
3. Calculate $\iint_{R} \sqrt{x+y} d A$, where $R=[0,1] \times[0,3]$.
4. Find $\iint_{R}\left(x^{2}+y^{2}\right) d A$, where R is the rectangle $0 \leq x \leq a, \quad 0 \leq y \leq b$.
5. Calculate the iterated integral $\int_{0}^{\pi} \int_{-x}^{x} \cos y d y d x$.
6. Find the volume under the surface $z=\frac{1}{x+y}$ and above the region in the $x y$-plane bounded by $x=1, x=2, y=0$ and $y=x$.
7. Using a double integral, calculate the volume of the tetrahedron in the first quadrant bounded by the coordinate planes and the plane which intersects the x - y - and z-axes at a, b and c, respectively, where a, b, c are positive numbers.
8. Calculate the integral $I=\int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x$.

Math 253 Homework assignment 6

1. Consider the integral $\int_{R} x y^{2} d A$, where A is the rectangle $[0,1] \times[0,1]$.
(a) Calculate the Riemann sum corresponding to this integral, with the subdivision corresponding to $\Delta x=\Delta y=0.2$ and using the centre of each small rectangle as the sample point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$.
Solution: The Riemann sum has 25 terms: $\left((.1)(.1)^{2}+(.1)(.3)^{2}+(.1)(.5)^{2}+\right.$ $\left.(.1)(.7)^{2}+(.1)(.9)^{2}+(.3)(.1)^{2}+(.3)(.3)^{2}+\ldots\right)(.2)(.2)=0.16500$.
(b) Using an iterated integral, calculate the value exactly.

$$
\begin{aligned}
& \text { Solution: } \int_{0}^{1} \int_{0}^{1} x y^{2} d y d x=\int_{0}^{1}\left[x y^{3} / 3\right]_{y=0}^{1} d x=\frac{1}{3} \int_{0}^{1} x d x= \\
& =\frac{1}{3}\left[x^{2} / 2\right]_{0}^{1}=\frac{1}{6}=0.16666 \ldots
\end{aligned}
$$

2. Find the volume of the solid bounded by the planes $x=1, x=2, y=0, y=\pi / 2$, $z=0$ and the surface $z=x \cos y$.
Solution: $\mathrm{Vol}=\int_{0}^{\pi / 2} \int_{1}^{2} x \cos y d x d y=\int_{0}^{\pi / 2}\left[\frac{x^{2} \cos y}{2}\right]_{x=1}^{2} d y=\frac{3}{2} \int_{0}^{\pi / 2} \cos y d y=$ $\frac{3}{2}[\sin y]_{0}^{\pi / 2}=\frac{3}{2}$
3. Calculate $\iint_{R} \sqrt{x+y} d A$, where $R=[0,1] \times[0,3]$.

Solution: $\iint_{R} \sqrt{x+y} d A=\int_{0}^{3} \int_{0}^{1} \sqrt{x+y} d x d y=\int_{0}^{3}\left[\frac{2}{3}(x+y)^{3 / 2}\right]_{x=0}^{1} d y=$
$=\frac{2}{3} \int_{0}^{3}\left((1+y)^{3 / 2}-y^{3 / 2}\right) d y=\frac{4}{15}\left[(1+y)^{5 / 2}-y^{5 / 2}\right]_{0}^{3}=\frac{4}{15}\left[\left(4^{5 / 2}-3^{5 / 2}\right)-1\right]=$ $\frac{4}{15}[31-9 \sqrt{3}]$
4. Find $\iint_{R}\left(x^{2}+y^{2}\right) d A$, where R is the rectangle $0 \leq x \leq a, \quad 0 \leq y \leq b$.

Solution: $\iint_{R}\left(x^{2}+y^{2}\right) d A=\int_{0}^{a} \int_{0}^{b}\left(x^{2}+y^{2}\right) d y d x=\int_{0}^{a}\left[x^{2} y+\frac{y^{3}}{3}\right]_{y=0}^{b} d x=$
$=\int_{0}^{a}\left(b x^{2}+\frac{b^{3}}{3}\right) d x=\left[\frac{b x^{3}}{3}+\frac{b^{3} x}{3}\right]_{0}^{a}=\frac{a^{3} b+a b^{3}}{3}$
5. Calculate the iterated integral $\int_{0}^{\pi} \int_{-x}^{x} \cos y d y d x$.

Solution: $\int_{0}^{\pi} \int_{-x}^{x} \cos y d y d x=\int_{0}^{\pi}[\sin y]_{y=-x}^{x}=2 \int_{0}^{\pi} \sin x d x=-2[\cos x]_{0}^{\pi}=4$.
6. Find the volume under the surface $z=\frac{1}{x+y}$ and above the region in the $x y$-plane bounded by $x=1, x=2, y=0$ and $y=x$.

Solution: Vol $=\int_{1}^{2} \int_{0}^{x} \frac{1}{x+y} d y d x=\int_{1}^{2}[\ln (x+y)]_{y=0}^{y=x}=\int_{1}^{2}(\ln (2 x)-\ln (x)) d x=$ $\int_{1}^{2} \ln (2) d x=\ln 2$
7. Using a double integral, calculate the volume of the tetrahedron in the first quadrant bounded by the coordinate planes and the plane which intersects the x - y - and z-axes at a, b and c, respectively, where a, b, c are positive numbers.
Solution: The plane has equation $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, and it intersects the $x y$-plane in the triangle bounded by the axes and the line $\frac{{ }_{c}}{a}+\frac{y}{b}=1$, or $y=b\left(1-\frac{b}{a} x\right)$. So we may compute the volume as

$$
\int_{0}^{a} \int_{0}^{b\left(1-\frac{x}{a}\right)} c\left(1-\frac{x}{a}-\frac{y}{b}\right) d y d x=c \int_{0}^{a}\left[y-\frac{x y}{a}-\frac{y^{2}}{2 b}\right]_{y=0}^{b\left(1-\frac{x}{a}\right)} d x=
$$

$b c \int_{0}^{a}\left(1-\frac{x}{a}-\frac{x}{a}\left(1-\frac{x}{a}\right)-\frac{1}{2}\left(1-\frac{x}{a}\right)^{2}\right) d x=b c \int_{0}^{a}\left(\frac{1}{2}-\frac{x}{a}+\frac{x^{2}}{2 a^{2}}\right) d x=$
$b c\left[\frac{x}{2}-\frac{x^{2}}{2 a}+\frac{x^{3}}{6 a^{2}}\right]_{0}^{a}=\frac{a b c}{6}$
8. Calculate the integral $I=\int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x$.

Solution: There is no nice expression for the antiderivative of $e^{y^{3}}$, which by convention means $e^{\left(y^{3}\right)}$, so we solve this problem by reversing the order of integration. Notice that the region of integration is the set in \mathbb{R}^{2} defined by the inequalities $0 \leq x \leq 1$ and $\sqrt{x} \leq y \leq 1$, or in other words, the region bounded by the y-axis, the line $y=1$ and the curve $x=y^{2}$. Thus we can calculate the double integral with the order of integration reversed:

$$
I=\int_{0}^{1} \int_{0}^{y^{2}} e^{y^{3}} d x d y=\int_{0}^{1} y^{2} e^{y^{3}} d y=\left[\frac{e^{y^{3}}}{3}\right]_{0}^{1}=\frac{e-1}{3}
$$

