HOMEWORK ASSIGNMENT \#5, Math 253

1. For what values of the constant k does the function $f(x, y)=k x^{3}+x^{2}+2 y^{2}-4 x-4 y$ have
(a) no critical points;
(b) exactly one critical point;
(c) exactly two critical points?

Hint: Consider $k=0$ and $k \neq 0$ separately.
2. Find and classify all critical points of the following functions.
(a) $f(x, y)=x^{3}-y^{3}-2 x y+6$
(b) $f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}-8$
(c) $f(x, y)=\frac{1}{x^{2}+y^{2}-1}$
(d) $f(x, y)=y \sin x$
3. Suppose $f(x, y)$ satisfies the Laplace's equation $f_{x x}(x, y)+f_{y y}(x, y)=0$ for all x and y in \mathbb{R}^{2}. If $f_{x x}(x, y) \neq 0$ for all x and y, explain why $f(x, y)$ must not have any local minimum or maximum.
4. Find all absolute maxima and minima of the following functions on the given domains.
(a) $f(x, y)=2 x^{2}-4 x+y^{2}-4 y+1$ on the closed triangular plate with vertices $(0,0)$, $(2,0)$, and $(2,2)$
(b) $f(x, y)=x^{2}+x y+3 x+2 y+2$ on the domain $D=\left\{(x, y) \mid x^{2} \leq y \leq 4\right\}$
(c) $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ on the domain $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 16\right\}$
5. Use Lagrange multipliers to find the maximum and minimum values of the following functions subject to the given constraint(s).
(a) $f(x, y)=x y^{2}$ subject to $x^{2}+2 y^{2}=1$
(b) $f(x, y, z)=x y+z^{2}$ subject to $y-x=0$ and $x^{2}+y^{2}+z^{2}=4$

SOLUTIONS TO HOMEWORK ASSIGNMENT \#5, Math 253

1. For what values of the constant k does the function $f(x, y)=k x^{3}+x^{2}+2 y^{2}-4 x-4 y$ have
(a) no critical points;
(b) exactly one critical point;
(c) exactly two critical points?

Hint: Consider $k=0$ and $k \neq 0$ separately.

Solution:

Set $f_{x}=0$ and $f_{y}=0$ to find critical points:

$$
\begin{array}{r}
f_{x}=3 k x^{2}+2 x-4=0 \\
f_{y}=4 y-4=0 \tag{2}
\end{array}
$$

(2) gives $y=1$. For (1), consider $k=0$ and $k \neq 0$ separately.

For $k=0$, (1) becomes $2 x-4=0$, or $x=2$. So one critical point at $(2,1)$.
For $k \neq 0$, use quadratic formula to solve for x.

$$
x=\frac{-2 \pm \sqrt{4+48 k}}{6 k}=\frac{-1 \pm \sqrt{1+12 k}}{3 k}
$$

So critical points are $\left(\frac{-1 \pm \sqrt{1+12 k}}{3 k}, 1\right)$ if they exist.
Conclusion:

```
\(k<-1 / 12\) : no critical points.
\(k=-1 / 12\) : one critical point \((4,1)\).
\(k>-1 / 12\) and \(k \neq 0\) : two critical points \(\left(\frac{-1 \pm \sqrt{1+12 k}}{3 k}, 1\right)\).
\(k=0\) : one critical point \((2,1)\).
```

2. Find and classify all critical points of the following functions.
(a) $f(x, y)=x^{3}-y^{3}-2 x y+6$

Solution:

Step 1: find critical points

$$
\begin{array}{r}
f_{x}=3 x^{2}-2 y=0 \\
f_{y}=-3 y^{2}-2 x=0 \tag{2}
\end{array}
$$

(1) gives $y=\frac{3}{2} x^{2}$. Substituting into (2) becomes $-3\left(\frac{3}{2} x^{2}\right)^{2}-2 x=0$, or simplified $-x\left(27 x^{3}+8\right)=0$. Hence $x=0$ or $-2 / 3$.
If $x=0$, then by (1) $y=0 \Rightarrow(0,0)$
If $x=-2 / 3$, then by (1) again $y=2 / 3 \Rightarrow(-2 / 3,2 / 3)$.
Hence, critical points at $(0,0)$ and $(-2 / 3,2 / 3)$.

Step 2: apply second derivative test

$$
f_{x x}=6 x \quad f_{y y}=-6 y \quad f_{x y}=-2
$$

At $(0,0), f_{x x}=0, f_{y y}=0, f_{x y}=-2$. So $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=-4<0 \Rightarrow$ saddle At $(-2 / 3,2 / 3), f_{x x}=-4<0, f_{y y}=-4, f_{x y}=-2$. So $D=12>0 \Rightarrow$ local max

Hence, local max at $(-2 / 3,2 / 3)$, saddle point at $(0,0)$
(b) $f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}-8$

Solution:

Step 1: find critical points

$$
\begin{array}{r}
f_{x}=3 x^{2}+6 x=0 \\
f_{y}=3 y^{2}-6 y=0 \tag{2}
\end{array}
$$

We can solve the two equations separately. (1) gives $x=0$ and -2 . (2) gives $y=0$ and 2. Hence, there are four critical points at $(0,0),(0,2),(-2,0)$, and $(-2,2)$.
Step 2: apply second derivative test

$$
f_{x x}=6 x+6 \quad f_{y y}=6 y-6 \quad f_{x y}=0
$$

At $(0,0), f_{x x}=6, f_{y y}=-6, f_{x y}=0$, so $D=-36<0 \Rightarrow$ saddle
At $(0,2), f_{x x}=6>0, f_{y y}=6, f_{x y}=0$, so $D=36>0 \Rightarrow$ local min
At $(-2,0), f_{x x}=-6<0, f_{y y}=-6, f_{x y}=0$, so $D=36>0 \Rightarrow$ local max
At $(-2,2), f_{x x}=-6, f_{y y}=6, f_{x y}=0$, so $D=-36<0 \Rightarrow$ saddle
Hence, local max at $(-2,0)$, local min at $(0,2)$, saddle at $(0,0)$ and $(-2,2)$
(c) $f(x, y)=\frac{1}{x^{2}+y^{2}-1}$

Solution:

Step 1: find critical points

$$
\begin{align*}
& f_{x}=-\frac{2 x}{\left(x^{2}+y^{2}-1\right)^{2}}=0 \tag{1}\\
& f_{y}=-\frac{2 y}{\left(x^{2}+y^{2}-1\right)^{2}}=0 \tag{2}
\end{align*}
$$

(1) gives $x=0$ and (2) gives $y=0$. The critical point is at $(0,0)$.

Step 2: apply second derivative test

$$
\begin{gathered}
f_{x x}=-\frac{2\left(x^{2}+y^{2}-1\right)^{2}-2 x\left[2\left(x^{2}+y^{2}-1\right)(2 x)\right]}{\left(x^{2}+y^{2}-1\right)^{4}} \\
f_{y y}=-\frac{2\left(x^{2}+y^{2}-1\right)^{2}-2 y\left[2\left(x^{2}+y^{2}-1\right)(2 y)\right]}{\left(x^{2}+y^{2}-1\right)^{4}} \\
f_{x y}=\frac{2 x(2)(2 y)}{\left(x^{2}+y^{2}-1\right)^{3}}
\end{gathered}
$$

At $(0,0) f_{x x}=-2<0, f_{y y}=-2, f_{x y}=0$, So $D=4>0 \Rightarrow$ local max Hence, local max at $(0,0)$
(d) $f(x, y)=y \sin x$

Solution:

Step 1: find critical points

$$
\begin{array}{r}
f_{x}=y \cos x=0 \\
f_{y}=\sin x=0 \tag{2}
\end{array}
$$

(2) gives $x=n \pi$ for all $n \in \mathbb{Z}$, i.e. integers. Substituting to (1) gives $\pm y=0$, or $y=0$. The critical points are $(n \pi, 0)$ for all $n \in \mathbb{Z}$.
Step 2: apply second derivative test

$$
f_{x x}=-y \sin x \quad f_{y y}=0 \quad f_{x y}=\cos x
$$

At all $(n \pi, 0), f_{x x}=0, f_{y y}=0, f_{x y}= \pm 1$, so $D=-1<0 \Rightarrow$ saddle Hence, saddle points at $(n \pi, 0)$ for all $n \in \mathbb{Z}$
3. Suppose $f(x, y)$ satisfies the Laplace's equation $f_{x x}(x, y)+f_{y y}(x, y)=0$ for all x and y in \mathbb{R}^{2}. If $f_{x x}(x, y) \neq 0$ for all x and y, explain why $f(x, y)$ must not have any local minimum or maximum.

Solution:

Since the second derivatives exists, the first derivatives must be continuous and $f(x, y)$ must be differentiable. Also, since there is no boundary on \mathbb{R}^{2}, local max/min must occur at critical points.
Suppose there is a critical point, then by second derivative test, $D=f_{x x} f_{y y}-f_{x y}^{2}$. But $f_{x x}+f_{y y}=0 \Rightarrow f_{y y}=-f_{x x}$. It follows that $D=-f_{x x}^{2}-f_{x y}^{2}<0$ when it is given that $f_{x x} \neq 0$. Therefore all critical points are saddle points.
4. Find all absolute maxima and minima of the following functions on the given domains.
(a) $f(x, y)=2 x^{2}-4 x+y^{2}-4 y+1$ on the closed triangular plate with vertices $(0,0)$, $(2,0)$, and $(2,2)$

Solution:

Step 1: find interior critical points

$$
\begin{array}{r}
f_{x}=4 x-4=0 \\
f_{y}=2 y-4=0 \tag{2}
\end{array}
$$

(1) gives $x=1$. (2) gives $y=2$. Critical point at $(1,2)$, but not in region.

Step 2: find boundary critical points and endpoints
Bottom side $y=0 \Rightarrow f(x, 0)=2 x^{2}-4 x+1$.
$\frac{d f}{d y}=4 x-4=0 \Rightarrow x=1$. Critical point at $\underline{(1,0)}$
Right side $x=2 \Rightarrow f(2, y)=8-8+y^{2}-4 \overline{y+1}=y^{2}-4 y+1$.
$\frac{d f}{d x}=2 y-4=0 \Rightarrow y=2$. Critical point at $(2,2)$.
Hypotenuse $y=x \Rightarrow f(x, x)=2 x^{2}-4 x+\overline{x^{2}-4} x+1=3 x^{2}-8 x+1$
$\frac{d f}{d x}=6 x-8=0 \Rightarrow x=4 / 3$. So $y=4 / 3$. Critical point at $(4 / 3,4 / 3)$.
Together with the endpoints of all sides $(0,0),(2,0),(2,2)$.

Step 3: compare the values of $f(x, y)$
$f(1,0)=-1$
$f(2,2)=-3$
$f(4 / 3,4 / 3)=-13 / 3 \Leftarrow$ absolute min
$f(0,0)=1 \Leftarrow$ absolute max
$f(2,0)=1 \Leftarrow$ absolute max
Hence, abs max at $f(2,0)=f(0,0)=1$, abs min at $f(4 / 3,4 / 3)=-13 / 3$
(b) $f(x, y)=x^{2}+x y+3 x+2 y+2$ on the domain $D=\left\{(x, y) \mid x^{2} \leq y \leq 4\right\}$

Solution:

Step 1: find interior critical points

$$
\begin{array}{r}
f_{x}=2 x+y+3=0 \\
f_{y}=x+2=0 \tag{2}
\end{array}
$$

(2) gives $x=-2$. Substituting to (1) gives $y=1$. Critical point at $(-2,1)$ but not in region.
Step 2: find boundary critical points
Top side: $y=4 \Rightarrow f(x, 4)=x^{2}+4 x+3 x+8+2=x^{2}+7 x+10$
$\frac{d f}{d x}=2 x+7=0 \Rightarrow x=-7 / 2$ but not in region
Parabola: $y=x^{2} \Rightarrow f\left(x, x^{2}\right)=x^{2}+x^{3}+3 x+2 x^{2}+2=x^{3}+3 x^{2}+3 x+2$
$\frac{d f}{d x}=3 x^{2}+6 x+3=3(x+1)^{2}=0 \Rightarrow x=-1$, then $y=(-1)^{2}=1$. Critical point $(-1,1)$.
Together with the endpoints of the two sides $\underline{(-2,4)}, \underline{(2,4)}$.
Step 3: Compare the values of $f(x, y)$
$f(-1,1)=1$
$f(-2,4)=0 \Leftarrow$ absolute min
$f(2,4)=28 \Leftarrow$ absolute max
Hence, absolute min at $f(-2,4)=0$, absolute max at $f(2,4)=28$
(c) $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ on the domain $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 16\right\}$.

Solution:

Step 1: find interior critical points

$$
\begin{array}{r}
f_{x}=4 x-4=0 \\
f_{y}=6 y=0 \tag{2}
\end{array}
$$

(1) gives $x=1$. (2) gives $y=0$. Critical point (1,0).

Step 2: find boundary critical points
Rewrite the boundary $y^{2}=16-x^{2}$ or $y= \pm \sqrt{16-x^{2}}$, which the endpoints are $(4,0)$ and $(-4,0)$.
$\overline{\text { Then }} f$ becomes $f=2 x^{2}+3\left(16-x^{2}\right)-4 x-5=-x^{2}-4 x+43$.
$\frac{d f}{d x}=-2 x-4=0 \Rightarrow x=-2, y^{2}=16-(-2)^{2} \Rightarrow y= \pm \sqrt{12}$
Critical points at $(-2, \sqrt{12})$ and $(-2,-\sqrt{12})$.
Step 3: compare the values of $f \overline{(x, y)}$
$f(1,0)=-7 \Leftarrow$ absolute min
$f(4,0)=11$

Figure 1: Q4(a)

Figure 2: Q4(b)

Figure 3: Q4(c)
$f(-4,0)=43$
$f(-2, \sqrt{12})=47 \Leftarrow$ absolute \max
$f(-2,-\sqrt{12})=47 \Leftarrow$ absolute max
Hence, abs min at $f(1,0)=-7$, abs max at $f(-2, \sqrt{12})=f(-2,-\sqrt{12})=47$
5. Use Lagrange multipliers to find the maximum and minimum values of the following functions subject to the given constraint(s).
(a) $f(x, y)=x y$ subject to $x^{2}+2 y^{2}=1$

Solution:

Step 1: Find critical points on constraint
$f(x, y)=x y, f_{x}=y, f_{y}=x$
$g(x, y)=x^{2}+2 y^{2}=1, g_{x}=2 x, g_{y}=4 y$

$$
\begin{align*}
y & =2 \lambda x \tag{1}\\
x & =4 \lambda y \tag{2}\\
x^{2}+2 y^{2} & =1 \tag{3}
\end{align*}
$$

Substituting (1) into (2) gives $x=4 \lambda(2 \lambda x)$, or $x\left(8 \lambda^{2}-1\right)=0 \Rightarrow x=0$ or $\lambda= \pm 1 \sqrt{8}$.
For $\boldsymbol{x}=\mathbf{0},(2)$ gives $y=0$, but contradicts with (3). No solution in this case.
For $\boldsymbol{\lambda}=\mathbf{1} / \sqrt{\mathbf{8}},(2)$ gives $x=\sqrt{2} y$. Substituting into (3) gives $2 y^{2}+2 y^{2}=1 \Rightarrow$ $y= \pm 1 / 2$. So $x= \pm 1 / \sqrt{2}$. Critical points at $(1 / \sqrt{2}, 1 / 2), \underline{(-1 / \sqrt{2},-1 / 2)}$.
For $\boldsymbol{\lambda}=-\mathbf{1} / \sqrt{\mathbf{8}},(2)$ gives $x=-\sqrt{2} y$. Substituting into (3) gives $2 y^{2}+2 y^{2}=$ $1 \Rightarrow y= \pm 1 / 2$. So $x=\mp 1 / \sqrt{2}$. Critical points at $(-1 / \sqrt{2}, 1 / 2),(1 / \sqrt{2},-1 / 2)$.
Step 2: Compare the values of $f(x, y)$
$f(1 / \sqrt{2}, 1 / 2)=1 / 2 \sqrt{2} \Leftarrow$ absolute \max
$f(-1 / \sqrt{2},-1 / 2)=1 / 2 \sqrt{2} \Leftarrow$ absolute \max
$f(-1 / \sqrt{2}, 1 / 2)=-1 / 2 \sqrt{2} \Leftarrow$ absolute min
$f(1 / \sqrt{2},-1 / 2)=-1 / 2 \sqrt{2} \Leftarrow$ absolute min
Hence, abs max at $f(1 / \sqrt{2}, 1 / 2)=f(-1 / \sqrt{2},-1 / 2)=1 / 2 \sqrt{2}$,
abs min at $f(-1 / \sqrt{2}, 1 / 2)=f(1 / \sqrt{2},-1 / 2)=-1 / 2 \sqrt{2}$.
(b) $f(x, y, z)=x y+z^{2}$ subject to $y-x=0$ and $x^{2}+y^{2}+z^{2}=4$

Solution:

Step 1: Find critical points on constraints

$$
\begin{align*}
& f(x, y)=x y+z^{2}, f_{x}=y, f_{y}=x, f_{z}=2 z \\
& g(x, y)=y-x=0, g_{x}=-1, g_{y}=1, g_{z}=0 \\
& h(x, y)=x^{2}+y^{2}+z^{2}=4, h_{x}=2 x, h_{y}=2 y, h_{z}=2 z \\
& y=-\lambda+2 \mu x \tag{1}\\
& x=\lambda+2 \mu y \tag{2}\\
& 2 z=2 \mu z \tag{3}\\
& y-x=0 \tag{4}\\
& x^{2}+y^{2}+z^{2}=4 \tag{5}
\end{align*}
$$

(4) gives $y=x$. Substitute into (1) and (2)

$$
\begin{align*}
& x=-\lambda+2 \mu x \tag{1a}\\
& x=\lambda+2 \mu x \tag{2a}
\end{align*}
$$

(1a) $-(2 a)$ gives $\lambda=0$. (1) and (2) becomes

$$
\begin{align*}
& x=2 \mu x \tag{1b}\\
& y=2 \mu y \tag{2b}
\end{align*}
$$

(1b) and (2b) gives either $x=y=0$ or $\mu=1 / 2$.
For $\boldsymbol{x}=\boldsymbol{y}=\mathbf{0},(5)$ gives $z= \pm 2$, and (3) gives $\mu=1$. Critical points at $\underline{(0,0,2)}$ and $(0,0,-2)$
For $\boldsymbol{\mu}=\mathbf{1} / \mathbf{2}$, (3) gives $z=0$. (5) becomes $x^{2}+x^{2}=4 \Rightarrow x= \pm \sqrt{2}$, then $y= \pm \sqrt{2}$. Critical points at $(\sqrt{2}, \sqrt{2}, 0)$ and $(-\sqrt{2},-\sqrt{2}, 0)$
Step 2: Compare the values of $f(x, y)$
$f(0,0,2)=4 \Leftarrow$ absolute max
$f(0,0,-2)=4 \Leftarrow$ absolute \max
$f(\sqrt{2}, \sqrt{2}, 0)=2 \Leftarrow$ absolute min
$f(-\sqrt{2},-\sqrt{2}, 0)=2 \Leftarrow$ absolute min
Hence, absolute max at $f(0,0,2)=f(0,0,-2)=4$,
absolute min at $f(\sqrt{2}, \sqrt{2}, 0)=f(-\sqrt{2},-\sqrt{2}, 0)=2$.

