HOMEWORK ASSIGNMENT \#4, MATH 253

1. Prove that the following differential equations are satisfied by the given functions:
(a) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$, where $u=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$.
(b) $x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}+z \frac{\partial w}{\partial z}=-2 w$, where $w=\left(x^{2}+y^{2}+z^{2}\right)^{-1}$.
2. Show that the function $u=t^{-1} e^{-\left(x^{2}+y^{2}\right) / 4 t}$ satisfies the two dimensional heat equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$.
3. (a) Find an equation of the tangent plane to the surface $x^{2}+y^{2}+z^{2}=9$ at the point $(2,2,1)$.
(b) At what points (x, y, z) on the surface in part (a) are the tangent planes parallel to $2 x+2 y+z=1$?
4. Find the points on the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=1$ where the tangent plane is parallel to the plane $3 x-y+3 z=1$.
5. (a) Find an equation for the tangent line to the curve of intersection of the surfaces

$$
x^{2}+y^{2}+z^{2}=9 \text { and } 4 x^{2}+4 y^{2}-5 z^{2}=0 \text { at the point }(1,2,2) .
$$

(b) Find the radius of the sphere whose center is $(-1,-1,0)$ and which is tangent to the plane $x+y+z=1$.
6. Find the point(s) on the surface $z=x y$ that are nearest to the point $(0,0,2)$.
7. Let $f(x, y, z)$ be the function defined by $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Determine an equation for the normal line of the surface $f(x, y, z)=3$ at the point $(-1,2,2)$.
8. Let $f(x, y, z)=\frac{x y}{z}$. Measurements are made and it is found that $x=10, y=10, z=2$. If the maximum error made in each measurement is 1% find the approximate percentage error made in computing the value of $f(10,10,2)$.
9. Find all points on the surface given by

$$
(x-y)^{2}+(x+y)^{2}+3 z^{2}=1
$$

where the tangent plane is perpendicular to the plane $2 x-2 y=13$.
10. Find all points at which the direction of fastest change of $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $\vec{i}+\vec{j}$.
11. The surface $x^{4}+y^{4}+z^{4}+x y z=17$ passes through $(0,1,2)$, and near this point the surface determines x as a function, $x=F(y, z)$, of y and z.
(a) Find F_{y} and F_{z} at $(x, y, z)=(0,1,2)$.
(b) Use the tangent plane approximation (otherwise known as linear, first order or differential approximation) to find the approximate value of x (near 0) such that $(x, 1.01,1.98)$ lies on the surface.
12. Let $f(x, y)$ be a differentiable function, and let $u=x+y$ and $v=x-y$. Find a constant α such that

$$
\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}=\alpha\left(\left(f_{u}\right)^{2}+\left(f_{v}\right)^{2}\right)
$$

13. Find the directional derivative $D_{\vec{u}} f$ at the given point in the direction indicated by the angle
(a) $f(x, y)=\sqrt{5 x-4 y},(2,1), \theta=-\pi / 6$.
(b) $f(x, y)=x \sin (x y),(2,0), \theta=\pi / 3$.
14. Compute the directional derivatives $D_{\vec{u}} f$, where:
(a) $f(x, y)=\ln \left(x^{2}+y^{2}\right), \vec{u}$ is the unit vector pointing from $(0,0)$ to $(1,2)$.
(b) $f(x, y, z)=\frac{1}{\sqrt{x^{2}+2 y^{2}+3 z^{2}}}, \vec{u}=<1 / \sqrt{2}, 1 / \sqrt{2}, 0>$.
15. Find all points (x, y, z) such that $D_{\vec{u}} f(x, y, z)=0$, where $\vec{u}=<a, b, c>$ is a unit vector and $f(x, y, z)=\sqrt{\alpha x^{2}+\beta y^{2}+\gamma z^{2}}$.
16. Compute the cosine of the angle between the gradient ∇f and the positive direction of the z-axis, where $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
17. The temperature at a point (x, y, z) is given by $T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}$.
(a) Find the rate of change of temperature at the point $P(2,-1,2)$ in the direction towards the point $(3,-3,3)$.
(b) In which direction does the temperature increase the fastest at P ?
(c) Find the maximum rate of increase at P.

SOLUTIONS TO HOMEWORK ASSIGNMENT \#4, MATH 253

1. Prove that the following differential equations are satisfied by the given functions:
(a) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$, where $u=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$.
(b) $x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}+z \frac{\partial w}{\partial z}=-2 w$, where $w=\left(x^{2}+y^{2}+z^{2}\right)^{-1}$.

Solution:
(a) $\frac{\partial u}{\partial x}=-x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}$ and $\frac{\partial^{2} u}{\partial x^{2}}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+3 x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}$.

By symmetry we see that

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial y^{2}}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+3 y^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2} \\
& \frac{\partial^{2} u}{\partial z^{2}}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+3 z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}
\end{aligned}
$$

Adding up clearly gives 0 .
(b) $x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}+z \frac{\partial w}{\partial z}=-2 x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-2}-2 y^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-2}-2 z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-2}=$ $-2 w$.
2. Show that the function $u=t^{-1} e^{-\left(x^{2}+y^{2}\right) / 4 t}$ satisfies the two dimensional heat equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$.

Solution:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =-t^{-2} e^{-\left(x^{2}+y^{2}\right) / 4 t}+\frac{x^{2}+y^{2}}{4 t^{3}} e^{-\left(x^{2}+y^{2}\right) / 4 t} \\
\frac{\partial u}{\partial x} & =-\frac{x}{2 t^{2}} e^{-\left(x^{2}+y^{2}\right) / 4 t}, \frac{\partial u}{\partial y}=-\frac{y}{2 t^{2}} e^{-\left(x^{2}+y^{2}\right) / 4 t} \\
\frac{\partial^{2} u}{\partial x^{2}} & =-\frac{1}{2 t^{2}} e^{-\left(x^{2}+y^{2}\right) / 4 t}+\frac{x^{2}}{4 t^{3}} e^{-\left(x^{2}+y^{2}\right) / 4 t} \\
\frac{\partial^{2} u}{\partial y^{2}} & =-\frac{1}{2 t^{2}} e^{-\left(x^{2}+y^{2}\right) / 4 t}+\frac{y^{2}}{4 t^{3}} e^{-\left(x^{2}+y^{2}\right) / 4 t}
\end{aligned}
$$

It is now clear that $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$.
3. (a) Find an equation of the tangent plane to the surface $x^{2}+y^{2}+z^{2}=9$ at the point $(2,2,1)$.
(b) At what points (x, y, z) on the surface in part (a) are the tangent planes parallel to $2 x+2 y+z=1$?
Solution:
(a) If $f(x, y, z)=x^{2}+y^{2}+z^{2}$ then a normal of the surface $x^{2}+y^{2}+z^{2}=9$ at $(2,2,1)$ is given by the gradient $\left.\boldsymbol{\nabla} f(x, y, z)\right|_{(2,2,1)}=\left.(2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k})\right|_{\{x=2, y=2, z=1\}}=4 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$. Actually we will take the normal to be $\mathbf{n}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$. The extra factor 2 is not needed. Thus the equation of the tangent plane to the surface $x^{2}+y^{2}+z^{2}=9$ at the point $(2,2,1)$ is $2(x-2)+2(y-2)+(z-1)=0$, that is $2 x+2 y+z=9$.
(b) The point here is that the family of planes $2 x+2 y+z=\lambda$ forms a complete family of parallel planes as λ varies, $-\infty<\lambda<\infty$. Thus the points on the sphere $x^{2}+y^{2}+z^{2}=9$ where the tangent plane is parallel to $2 x+2 y+z=1$ are $\pm(2,2,1)$. From part (a) we see that one of the points is $(2,2,1)$. The diametrically opposite point $-(2,2,1)$ is the only other point. This follows from the geometry of the sphere.
4. Find the points on the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=1$ where the tangent plane is parallel to the plane $3 x-y+3 z=1$.

Solution:
We want (x, y, z) such that $x^{2}+2 y^{2}+3 z^{2}=1$ and $<2 x, 4 y, 6 z>=\lambda<3,-1,3>$, for some λ, that is $x=3 \lambda / 2, y=-\lambda / 4, z=\lambda / 2$. Thus we must have

$$
x^{2}+2 y^{2}+3 z^{2}=(9 / 4+1 / 8+3 / 4) \lambda^{2}=1 \Longrightarrow \lambda= \pm \frac{2 \sqrt{2}}{5} .
$$

Therefore $(x, y, z)= \pm\left(\frac{3 \sqrt{2}}{5},-\frac{\sqrt{2}}{10}, \frac{\sqrt{2}}{5}\right)$.
5. (a) Find an equation for the tangent line to the curve of intersection of the surfaces

$$
x^{2}+y^{2}+z^{2}=9 \text { and } 4 x^{2}+4 y^{2}-5 z^{2}=0 \text { at the point }(1,2,2) .
$$

(b) Find the radius of the sphere whose center is $(-1,-1,0)$ and which is tangent to the plane $x+y+z=1$.
Solution:
(a) By taking gradients (up to constant multiples) we see that the respective normals at $(1,2,2)$ are $\mathbf{n}_{\mathbf{1}}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{n}_{\mathbf{2}}=2 \mathbf{i}+4 \mathbf{j}-5 \mathbf{k}$. Thus a direction vector at $(1,2,2)$ for the curve of intersection is $\mathbf{n}=\mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{2}}=-18 \mathbf{i}+9 \mathbf{j}$. Removing a factor of 9 we see that a direction vector is $\mathbf{v}=-2 \mathbf{i}+\mathbf{j}$, and therefore the equation of the tangent line is $x=1-2 t, y=2+t, z=2$.
(b) The sphere will have the equation $(x+1)^{2}+(y+1)^{2}+z^{2}=r^{2}$ for some r. In order for this sphere to be tangent to the plane $x+y+z=1$ it is necessary
that the "radius vector" be proportional to the normal vector to the plane, that is $(x+1, y+1, z)=\lambda(1,1,1)$ for some λ. But we must also have $x+y+z=1$ and therefore $\lambda=1$. It follows that $r=\sqrt{3}$.
6. Find the point(s) on the surface $z=x y$ that are nearest to the point $(0,0,2)$.

Solution:
Let $F(x, y, z)=z-x y$. Thus the surface is the level surface $F(x, y, z)=0$. We want to find all points (x, y, z) on the surface where the gradient $\nabla F(x, y, z)$ is parallel to the vector pointing from $(0,0,2)$ to (x, y, z). Therefore

$$
x=-\lambda y, y=-\lambda x, z-2=\lambda, \text { and } z=x y
$$

The solutions are

$$
(x, y, z)=(0,0,0), \lambda=-2 ;(x, y, z)=(1,1,1), \lambda=-1 ;(x, y, z)=(-1,-1,1), \lambda=-1
$$

Clearly \exists closest point(s). They are $(1,1,1)$ and $(-1,-1,1)$.
7. Let $f(x, y, z)$ be the function defined by $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Determine an equation for the normal line of the surface $f(x, y, z)=3$ at the point $(-1,2,2)$.
Solution:
A normal to the surface $f(x, y, z)=3$ at $(-1,2,2)$ is $\vec{n}=<-1 / 3,2 / 3,2 / 3>$. Thus an equation for the normal line is

$$
x=-1-\frac{1}{3} t, y=2+\frac{2}{3} t, z=2+\frac{2}{3} t,-\infty<t<\infty .
$$

8. Let $f(x, y, z)=\frac{x y}{z}$. Measurements are made and it is found that $x=10, y=10, z=2$. If the maximum error made in each measurement is 1% find the approximate percentage error made in computing the value of $f(10,10,2)$.

Solution: The calculated value is $f(10,10,2)=50$, with errors

$$
-0.1 \leq \Delta x \leq 0.1,-0.1 \leq \Delta y \leq 0.1 \text { and }-0.02 \leq \Delta z \leq 0.02
$$

The approximate error made is

$$
\begin{aligned}
& f(10+\Delta x, 10+\Delta y, 2+\Delta z)-f(10,10,2) \approx \frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y+\frac{\partial f}{\partial z} \Delta x \\
& =5 \Delta x+5 \Delta y-25 \Delta z
\end{aligned}
$$

Then we have $-1.5 \leq 5 \Delta x+5 \Delta y-25 \Delta z \leq 1.5$, and so the approximate percentage error is $\frac{1.5}{50} \times 100 \%=3 \%$.
9. Find all points on the surface given by

$$
(x-y)^{2}+(x+y)^{2}+3 z^{2}=1
$$

where the tangent plane is perpendicular to the plane $2 x-2 y=13$.
Solution:
A normal to the surface $(x-y)^{2}+(x+y)^{2}+3 z^{2}=1$ is $\vec{n}=<4 x, 4 y, 6 z>$. Thus we want to solve simultaneously the equations $(x-y)^{2}+(x+y)^{2}+3 z^{2}=1$ and $<4 x, 4 y, 6 z>\cdot<2,-2,0>=0$. Thus the points are (x, x, z), where x, z lie on the ellipse $4 x^{2}+3 z^{2}=1$.
10. Find all points at which the direction of fastest change of $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $\vec{i}+\vec{j}$.
Solution:
The direction of fastest change is in the direction of $\nabla f=<2 x-2,2 y-4>$. Therefore we want $\nabla f=<2 x-2,2 y-4>=(\lambda, \lambda)$, that is $2 x-2=2 y-4$. Therefore the points are $(x, y)=(x, x+1),-\infty<x<\infty$.
11. The surface $x^{4}+y^{4}+z^{4}+x y z=17$ passes through $(0,1,2)$, and near this point the surface determines x as a function, $x=F(y, z)$, of y and z.
(a) Find F_{y} and F_{z} at $(x, y, z)=(0,1,2)$.
(b) Use the tangent plane approximation (otherwise known as linear, first order or differential approximation) to find the approximate value of x (near 0) such that $(x, 1.01,1.98)$ lies on the surface.
Solution:
(a) To find $\frac{\partial x}{\partial y}$ and $\frac{\partial x}{\partial z}$ at $(y, z)=(1,2)$ we differentiate the equation

$$
x^{4}+y^{4}+z^{4}+x y z=17 \text { with respect to } y, z ;
$$

then put $x=0, y=1, z=2$, and finally solve for $\frac{\partial x}{\partial y}$ and $\frac{\partial x}{\partial z}$:

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(x^{4}+y^{4}+z^{4}+x y z\right)=0 \Longrightarrow 4 x^{3} \frac{\partial x}{\partial y}+4 y^{3}+\frac{\partial x}{\partial y} y z+x z=0 \Longrightarrow \frac{\partial x}{\partial y}=-2 \\
& \frac{\partial}{\partial z}\left(x^{4}+y^{4}+z^{4}+x y z\right)=0 \Longrightarrow 4 x^{3} \frac{\partial x}{\partial z}+4 z^{3}+\frac{\partial x}{\partial z} y z+x y=0 \Longrightarrow \frac{\partial x}{\partial z}=-16
\end{aligned}
$$

(b) The tangent plane approximation is

$$
F(y+\Delta y, z+\Delta z) \approx F(y, z)+\frac{\partial F}{\partial y} \Delta y+\frac{\partial F}{\partial z} \Delta z
$$

In this case $F(1,2)=0$ and thus $F(1.01,1.98) \approx 0-2 \times 0.01+16 \times 0.02=0.3$.
12. Let $f(x, y)$ be a differentiable function, and let $u=x+y$ and $v=x-y$. Find a constant α such that

$$
\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}=\alpha\left(\left(f_{u}\right)^{2}+\left(f_{v}\right)^{2}\right)
$$

Solution: By the chain rule

$$
\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}=\left(f_{u}+f_{v}\right)^{2}+\left(f_{u}-f_{v}\right)^{2}=2\left(\left(f_{u}\right)^{2}+\left(f_{v}\right)^{2}\right) . \text { Thus } \alpha=2 \text {. }
$$

13. Find the directional derivative $D_{\vec{u}} f$ at the given point in the direction indicated by the angle
(a) $f(x, y)=\sqrt{5 x-4 y},(2,1), \theta=-\pi / 6$.
(b) $f(x, y)=x \sin (x y),(2,0), \theta=\pi / 3$.

Solution:
(a) $D_{\vec{u}} f=\left(\frac{5}{2 \sqrt{6}} \vec{i}-\frac{2}{\sqrt{6} \vec{j}}\right) \cdot\left(\frac{\sqrt{3}}{2} \vec{i}-\frac{1}{2} \vec{j}\right)=\frac{5}{4 \sqrt{2}}+\frac{1}{\sqrt{6}}$.
(b) $D_{\vec{u}} f=4 \vec{j} \cdot\left(\frac{1}{2} \vec{i}+\frac{\sqrt{3}}{2} \vec{j}\right)=2 \sqrt{3}$.
14. Compute the directional derivatives $D_{\vec{u}} f$, where:
(a) $f(x, y)=\ln \left(x^{2}+y^{2}\right), \vec{u}$ is the unit vector pointing from $(0,0)$ to $(1,2)$.
(b) $f(x, y, z)=\frac{1}{\sqrt{x^{2}+2 y^{2}+3 z^{2}}}, \vec{u}=<1 / \sqrt{2}, 1 / \sqrt{2}, 0>$.

Solution:
(a) $D_{\vec{u}} f=\frac{2 x}{x^{2}+y^{2}} \frac{1}{\sqrt{5}}+\frac{2 y}{x^{2}+y^{2}} \frac{2}{\sqrt{5}}=\frac{1}{\sqrt{5}} \frac{2 x+4 y}{x^{2}+y^{2}}$.
(b)

$$
\begin{aligned}
D_{\vec{u}} f & =-\frac{1}{\sqrt{2}} \frac{x}{\left(x^{2}+2 y^{2}+3 z^{2}\right)^{3 / 2}}-\frac{1}{\sqrt{2}} \frac{2 y}{\left(x^{2}+2 y^{2}+3 z^{2}\right)^{3 / 2}} \\
& =-\frac{1}{\sqrt{2}} \frac{x+2 y}{\left(x^{2}+2 y^{2}+3 z^{2}\right)^{3 / 2}}
\end{aligned}
$$

15. Find all points (x, y, z) such that $D_{\vec{u}} f(x, y, z)=0$, where $\vec{u}=<a, b, c>$ is a unit vector and $f(x, y, z)=\sqrt{\alpha x^{2}+\beta y^{2}+\gamma z^{2}}$.
Solution:
$D_{\vec{u}} f=\frac{a \alpha x+b \beta y+c \gamma z}{\sqrt{\alpha x^{2}+\beta y^{2}+\gamma z^{2}}}=0 \Longleftrightarrow a \alpha x+b \beta y+c \gamma z=0$.
16. Compute the cosine of the angle between the gradient ∇f and the positive direction of the z-axis, where $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
Solution: For $\cos \theta=\frac{(\nabla f) \cdot \vec{k}}{|\nabla f|}=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
17. The temperature at a point (x, y, z) is given by $T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}$.
(a) Find the rate of change of temperature at the point $P(2,-1,2)$ in the direction towards the point $(3,-3,3)$.
(b) In which direction does the temperature increase the fastest at P ?
(c) Find the maximum rate of increase at P.

Solution:
(a)

$$
\begin{aligned}
D_{\vec{u}} T & \left.=\nabla T \cdot \frac{1}{\sqrt{6}}<1,-2,1\right\rangle=-\frac{400}{e^{x^{2}+3 y^{2}+9 z^{2}}}\left\langle x, 3 y, 9 z>\cdot \frac{1}{\sqrt{6}}<1,-2,1>\right. \\
& =-\frac{400}{e^{43} \sqrt{6}}(x-6 y+9 z)=-\frac{400 \times 26}{e^{43} \sqrt{6}}=-\frac{-10400}{e^{43} \sqrt{6}}
\end{aligned}
$$

(b) In the direction of the gradient. A unit vector pointing in the direction of ∇T at the point $(2,-1,2)$ is $\vec{u}=-\frac{1}{\sqrt{337}}<2,-3,18>$.
(c) The maximum rate of increase of $T(x, y, z)$ at the point $(2,-1,2)$ is

$$
|\nabla T|=\frac{400 \times \sqrt{337}}{e^{43}}
$$

