HOMEWORK ASSIGNMENT 3, Math 253

1. Calculate the following limits, or discuss why they do not exist:
(a) $\lim _{(x, y) \rightarrow 0} \frac{y}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow 0} \frac{y^{3}}{x^{2}+y^{2}} \quad\left[\right.$ hint: $\left.\left|y^{2}\right| \leq\left|x^{2}+y^{2}\right|\right]$
2. For each of the following functions, give its domain and calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$:
(a) $f(x, y)=e^{3 x} \cos (3 y)$
(b) $f(x, y)=\ln \left(1+x y^{2}\right)$
(c) $f(x, y)=\frac{y}{x^{2}+y^{2}}$
(d) $f(x, y)=x^{y}$
(e) $f(x, y)=\cosh (x) \cos (y)$
(f) $f(x, y)=x^{3} \arcsin y^{2}$
3. Which of the above functions satisfies the Laplace equation: $f_{x x}+f_{y y}=0$?
4. Give an equation for the tangent plane to the graph of $f(x, y)=\frac{y}{x^{2}+y^{3}}$ at the point $(0,1,1)$. What is the normal vector at that point?
5. Find the coordinates of all points at which the surface with the following equation has a horizontal tangent plane: $z=x^{4}-4 x y^{3}+6 y^{2}-2$.
6. The equation $x^{3} y^{4}+x z^{2}-y z^{3}=1$ defines a surface which passes through the point $(1,1,1)$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at that point.
7. The radius and height of a right circular-conical tank are measured and found to be 25 ft and 21 ft respectively. Each measurement is accurate to within 0.5 in . By about how much can the calculated volume of the tank be in error?
8. Write an appropriate version of the chain rule for $\frac{\partial z}{\partial u}$, if $z=g(x, y), y=f(x)$ and $x=h(u, v)$.
9. Use two different methods to calculate $\frac{\partial z}{\partial x}$ given that

$$
z=\arctan (u / v), \quad u=2 x+y, \quad v=3 x-y
$$

10. Calculate $\frac{\partial}{\partial x} f\left(y^{2}, x^{2}\right)$, assuming f has continuous partial derivatives.

SOLUTIONS TO HOMEWORK ASSIGNMENT 3, Math 253

1. Calculate the following limits, or discuss why they do not exist:
(a) $\lim _{(x, y) \rightarrow 0} \frac{y}{x^{2}+y^{2}}$

Solution: The limit does not exist. If (x, y) approaches $(0,0)$ along the x-axis, we have $y=0, x \neq 0$ and the expression is identically zero, and so the limit in that direction is zero. On the other hand, approaching (0,0) along the y-axis, the expression becomes $1 / y$, which increases without bound as $y \rightarrow 0$, so the limit cannot exist (even as ∞).
(b) $\lim _{(x, y) \rightarrow 0} \frac{y^{3}}{x^{2}+y^{2}} \quad\left[\right.$ hint: $\left.\left|y^{2}\right| \leq\left|x^{2}+y^{2}\right|\right]$

Solution: Note that $0 \leq\left|\frac{y^{3}}{x^{2}+y^{2}}\right|=\frac{\left|y^{2}\right|}{\left|x^{2}+y^{2}\right|}|y| \leq|y|$, the latter inequality following from the hint. Since $|y| \rightarrow 0$, the same must be true of $\left|\frac{y^{3}}{x^{2}+y^{2}}\right|$, so $\lim _{(x, y) \rightarrow 0} \frac{y^{3}}{x^{2}+y^{2}}=0$.
2. For each of the following functions, give its domain and calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$:
(a) $f(x, y)=e^{3 x} \cos (3 y)$

Solution: The domain is all of \mathbb{R}^{2}.
$\frac{\partial f}{\partial x}=3 e^{3 x} \cos (3 y)$ and $\frac{\partial f}{\partial y}=-3 e^{3 x} \sin (3 y)$.
(b) $f(x, y)=\ln \left(1+x y^{2}\right)$

Solution: Since the logarithm requires a positive input, we must have $x y^{2}>-1$, or equivalently $x>-\frac{1}{y^{2}}$. The graph of $x>-\frac{1}{y^{2}}$ has 2 branches, one in the third quadrant and one in the fourth. The domain of definition is everything between these graphs together the set of all points (x, y) such that $x \geq 0$, i.e.

$$
\begin{aligned}
& \qquad\{(x, y) \mid x<0,-\sqrt{-1 / x}<y<\sqrt{-1 / x}\} \cup\{(x, y) \mid x \geq 0\} \\
& \frac{\partial f}{\partial x}=y^{2} /\left(1+x y^{2}\right) \text { and } \frac{\partial f}{\partial y}=2 x y /\left(1+x y^{2}\right) \\
& \text { (c) } f(x, y)=\frac{y}{x^{2}+y^{2}}
\end{aligned}
$$

Solution: The domain is $\mathbb{R} \backslash(0,0) . \frac{\partial f}{\partial x}=-2 x y /\left(x^{2}+y^{2}\right)^{2}$ and $\frac{\partial f}{\partial y}=\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)^{2}$ (d) $f(x, y)=x^{y}$

Solution: The standard definition is $x^{y}=e^{(y \ln x)}$, which requires $x>0$, so the domain is the open right half-plane. $\frac{\partial f}{\partial x}=y x^{y-1}$ and $\frac{\partial f}{\partial y}=x^{y} \ln x$.
(e) $f(x, y)=\cosh (x) \cos (y)$

Solution: The domain is all of \mathbb{R}^{2}. $\frac{\partial f}{\partial x}=\sinh (x) \cos (y)$ and $\frac{\partial f}{\partial y}=-\cosh (x) \sin (y)$
(f) $f(x, y)=x^{3} \arcsin y^{2}$

Solution: The arcsin requires the input y^{2} between -1 and +1 , which is equivalent to $-1 \leq y \leq 1$. So the range is the infinite horizontal strip between the lines $y=-1$ and $y=1 . \frac{\partial f}{\partial x}=3 x^{2} \arcsin y^{2}$ and $\frac{\partial f}{\partial y}=2 x^{3} y / \sqrt{1-y^{4}}$.
3. Which of the above functions satisfies the Laplace equation: $f_{x x}+f_{y y}=0$?

Solution: (a), (c) and (e).
For (a): $f_{x x}=9 e^{x} \cos 3 y=-f_{y y}$.
For (c): $f_{x x}=\left(6 x^{2} y-2 y^{3}\right) /\left(x^{2}+y^{2}\right)^{3}=-f_{y y}$.
For (e): $f_{x x}=\cosh (x) \cos (y)=-f_{y y}$.
4. Give an equation for the tangent plane to the graph of $f(x, y)=\frac{y}{x^{2}+y^{3}}$ at the point $(0,1,1)$. What is the normal vector at that point?
Solution: Since $f_{x}(0,1)=0$ and $f_{y}(0,1)=-2$, the tangent plane has equation $z=1+(-2)(y-1)$ or $2 y+z=3$. A normal vector at $(0,1,1)$ is $\langle 0,2,1\rangle$.
5. Find the coordinates of all points at which the surface with the following equation has a horizontal tangent plane: $z=x^{4}-4 x y^{3}+6 y^{2}-2$.
Solution: There is a horizontal tangent plane when $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}=0$. This gives $4 x^{3}-$ $4 y^{3}=0$ and $-12 x y^{2}+12 y=0$. The first equation implies $x=y$. The second can be rewritten $y\left(1-y^{2}\right)=0$, and so $y=0$ or $y= \pm 1$. Thus there are three points at which the surface has a horizontal tangent plane: $(0,0,-2) ;(1,1,1)$ and $(-1,-1,1)$.
6. The equation $x^{3} y^{4}+x z^{2}-y z^{3}=1$ defines a surface which passes through the point $(1,1,1)$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at that point.
Solution: We can find the partials by implicit differentiation. Holding y fixed and taking the derivative with respect to x (regarding z as function of x) gives

$$
3 x^{2} y^{4}+z^{2}+2 x z \frac{\partial z}{\partial x}-3 y z^{2} \frac{\partial z}{\partial x}=0
$$

At the point $(1,1,1)$ this becomes $3+1+2 \frac{\partial z}{\partial x}-3 \frac{\partial z}{\partial x}=0$, so $\frac{\partial z}{\partial x}(1,1)=4$. Similarly, holding x fixed and taking the y-derivative gives

$$
4 x^{3} y^{3}+2 x z \frac{\partial z}{\partial y}-z^{3}-3 y z^{2} \frac{\partial z}{\partial y}=0
$$

which becomes $4+2 \frac{\partial z}{\partial y}-1-3 \frac{\partial z}{\partial y}=0$, and we find $\frac{\partial z}{\partial y}(1,1)=3$.
7. The radius and height of a right circular-conical tank are measured and found to be 25 ft and 21 ft respectively. Each measurement is accurate to within 0.5 in . By about how much can the calculated volume of the tank be in error?
Solution: The volume of a right circular cone of radius r and height h is $V=\pi r^{2} h / 3$. Then

$$
d V=\frac{2 \pi}{3} r h d r+\frac{\pi}{3} r^{2} d h=\frac{2 \pi}{3} \times 25 \times 21 \times \frac{1}{24}+\frac{\pi}{3}(25)^{2} \frac{1}{24}=1675 \pi / 24 \approx 73\left(f t^{3}\right)
$$

8. Write an appropriate version of the chain rule for $\frac{\partial z}{\partial u}$, if $z=g(x, y), y=f(x)$ and $x=h(u, v)$.
Solution: $\frac{\partial z}{\partial u}=g_{1} h_{1}+g_{2} f^{\prime} h_{2}$, or in Leibniz notation $\frac{\partial z}{\partial u}=\frac{\partial g}{\partial x} \frac{\partial h}{\partial u}+\frac{\partial g}{\partial y} \frac{d f}{d x} \frac{\partial h}{\partial u}$.
9. Use two different methods to calculate $\frac{\partial z}{\partial x}$ given that

$$
z=\arctan (u / v), \quad u=2 x+y, \quad v=3 x-y
$$

Solution: Using either direct substitution or the chain rule results in the answer

$$
\frac{\partial z}{\partial x}=\frac{-5 y}{13 x^{2}-2 x y+2 y^{2}}
$$

10. Calculate $\frac{\partial}{\partial x} f\left(y^{2}, x^{2}\right)$, assuming f has continuous partial derivatives.

Solution: $2 x f_{2}\left(y^{2}, x^{2}\right)$.

