HOMEWORK ASSIGNMENT \#2, Math 253

1. Find the equation of a sphere if one of its diameters has end points $(1,0,5)$ and $(5,-4,7)$.
2. Find vector, parametric, and symmetric equations of the following lines.
(a) the line passing through the points $\left(3,1, \frac{1}{2}\right)$ and $(4,-3,3)$
(b) the line passing through the origin and perpendicular to the plane $2 x-4 y=9$
(c) the line lying on the planes $x+y-z=2$ and $3 x-4 y+5 z=6$
3. Find the equation of the following planes.
(a) the plane passing through the points $(-1,1,-1),(1,-1,2)$, and $(4,0,3)$
(b) the plane passing through the point $(0,1,2)$ and containing the line $x=y=z$
(c) the plane containing the lines

$$
\begin{gathered}
L_{1}: x=1+t, \quad y=2-t, \quad z=4 t \\
L_{2}: x=2-s, \quad y=1+2 s, \quad z=4+s
\end{gathered}
$$

4. Find the intersection of the line $x=t, y=2 t, z=3 t$, and the plane $x+y+z=1$.
5. Find the distance between the point $(2,8,5)$ and the plane $x-2 y-2 z=1$.
6. Show that the lines

$$
\begin{gathered}
L_{1}: \frac{x-4}{2}=\frac{y+5}{4}=\frac{z-1}{-3} \\
\quad L_{2}: \frac{x-2}{1}=\frac{y+1}{3}=\frac{z}{2}
\end{gathered}
$$

are skew. Find the distance between the two lines.
7. Identify and sketch the following surfaces.
(a) $4 x^{2}+9 y^{2}+36 z^{2}=36$
(b) $4 z^{2}-x^{2}-y^{2}=1$
(c) $y^{2}=x^{2}+z^{2}$
(d) $x^{2}+4 z^{2}-y=0$
(e) $y^{2}+9 z^{2}=9$
(f) $y=z^{2}-x^{2}$
8. Find the polar equation for the curve represented by the following Cartesian equation.
(a) $x=4$
(b) $x^{2}+y^{2}=-2 x$
(c) $x^{2}-y^{2}=1$
9. Sketch the curve of the following polar equations.
(a) $r=5$
(b) $\theta=\frac{3 \pi}{4}$
(c) $r=2 \sin \theta$
(d) $r=3(1-\cos \theta)$
10. (a) Change ($3, \frac{\pi}{3}, 1$) from cylindrical to rectangular coordinates
(b) Change $(\sqrt{3}, 1,4)$ from rectangular to cylindrical coordinates
(c) Change $(\sqrt{3}, 1,2 \sqrt{3})$ from rectangular to spherical coordinates
(d) Change ($4, \frac{\pi}{4}, \frac{\pi}{3}$) from spherical to cylindrical coordinates

SOLUTIONS TO HOMEWORK ASSIGNMENT \#2, Math 253

1. Find the equation of a sphere if one of its diameters has end points $(1,0,5)$ and ($5,-4,7$).

Solution:

The length of the diameter is $\sqrt{(5-1)^{2}+(-4-0)^{2}+(7-5)^{2}}=\sqrt{36}=6$, so the radius is 3 . The centre is at the midpoint $\left(\frac{1+5}{2}, \frac{0-4}{2}, \frac{5+7}{2}\right)=(3,-2,6)$. Hence, the sphere is given as $(x-3)^{2}+(y+2)^{2}+(z-6)^{2}=9$.
2. Find vector, parametric, and symmetric equations of the following lines.
(a) the line passing through the points $\left(3,1, \frac{1}{2}\right)$ and $(4,-3,3)$

Solution:

The vector between two points is $\vec{v}=\left\langle 4-3,-3-1,3-\frac{1}{2}\right\rangle=\left\langle 1,-4, \frac{5}{2}\right\rangle$. Hence the equation of the line is
Vector form: $\vec{r}=\vec{r}_{0}+t \vec{v}=\langle 4,-3,3\rangle+t\left\langle 1,-4, \frac{5}{2}\right\rangle=\left\langle 4+t,-3-4 t, 3+\frac{5}{2} t\right\rangle$
Parametric form: $x=4+t, \quad y=-3-4 t, \quad z=3+\frac{5}{2} t$
Symmetric from: Solving the parametric form for t gives $x-4=\frac{y+3}{-4}=\frac{z-3}{5 / 2}$
(b) the line passing through the origin and perpendicular to the plane $2 x-4 y=9$

Solution:

Perpendicular to the plane \Rightarrow parallel to the normal vector $\vec{n}=\langle 2,-4,0\rangle$. Hence
Vector form: $\vec{r}=\langle 0,0,0\rangle+t\langle 2,-4,0\rangle=\langle 2 t,-4 t, 0\rangle$
Parametric from : $x=2 t, \quad y=-4 t, \quad z=0$
Symmetric form $\frac{x}{2}=\frac{y}{-4}, \quad z=0$
(c) the line lying on the planes $x+y-z=2$ and $3 x-4 y+5 z=6$

Solution:

We can find the intersection (the line) of the two planes by solving z in terms of x, and in terms of y.

$$
\begin{aligned}
& \text { (1) } x+y-z=2 \\
& \text { (2) } 3 x-4 y+5 z=6
\end{aligned}
$$

Solve z in terms of $y: 3 \times(1)-(2) \Rightarrow 7 y-8 z=0 \Rightarrow z=\frac{7}{8} y$
Solve z in terms of $x: 4 \times(1)+(2) \Rightarrow 7 x+z=14 \Rightarrow z=14-7 x$
Hence, symmetric form: $14-7 x=\frac{7}{8} y=z$
Set the symmetric form $=t$, we have parametric form: $x=\frac{14-t}{7}, \quad y=\frac{8}{7} t, \quad z=t$
Vector form: $\vec{r}=\left\langle\frac{14-t}{7}, \frac{8}{7} t, t\right\rangle$
3. Find the equation of the following planes.
(a) the plane passing through the points $(-1,1,-1),(1,-1,2)$, and $(4,0,3)$

Solution:

Name the points $P(-1,1,-1), Q(1,-1,2)$, and $R(4,0,3)$. Set up two vectors:

$$
\begin{align*}
& \vec{v}_{1}=\overrightarrow{P Q}=\langle 1+1,-1-1,2+1\rangle=\langle 2,-2,3\rangle \tag{1}\\
& \vec{v}_{2}=\overrightarrow{P R}=\langle 5,-1,4\rangle \tag{2}
\end{align*}
$$

Choose the normal vector $\vec{n}=\vec{v}_{1} \times \vec{v}_{2}=\langle-5,7,8\rangle$. Hence the equation of the plane is $-5(x+1)+7(y-1)+4(z+1)=0$ using point P.
(b) the plane passing through the point $(0,1,2)$ and containing the line $x=y=z$

Solution:

Name $Q(0,1,2)$. The line can be represented as $\vec{r}=\langle t, t, t\rangle$, which crosses the point $P(0,0,0)$ and is parallel to $\vec{v}=\langle 1,1,1\rangle$. Set $\vec{b}=\overrightarrow{P Q}=\langle 0,1,2\rangle$. Choose $\vec{n}=\vec{v} \times \vec{b}=\langle 1,-2,1\rangle$ and hence the equation of the plane is $x-2 y+z=0$ using point P.
(c) the plane containing the lines

$$
\begin{gathered}
L_{1}: x=1+t, \quad y=2-t, \quad z=4 t \\
L_{2}: x=2-s, \quad y=1+2 s, \quad z=4+s
\end{gathered}
$$

Solution:

From L_{1} and $L_{2}, \vec{v}_{1}=\langle 1,-1,4\rangle$ and $\vec{v}_{2}=\langle-1,2,1\rangle$. Choose $\vec{n}=\vec{v}_{1} \times \vec{v}_{2}=$ $\langle-9,-5,1\rangle$. Since L_{1} crosses the point $(1,2,0)$, the equation of the plane is $-9(x-1)-5(y-2)+z=0$.
4. Find the intersection of the line $x=t, y=2 t, z=3 t$, and the plane $x+y+z=1$.

Solution:

Substitute the line into the plane: $t+2 t+3 t=1 \Rightarrow t=\frac{1}{6}$.
Put t back to the line: $x=\frac{1}{6}, y=\frac{1}{3}, z=\frac{1}{2}$.
Hence the intersection point is $\left(\frac{1}{6}, \frac{1}{3}, \frac{1}{2}\right)$.
5. Find the distance between the point $(2,8,5)$ and the plane $x-2 y-2 z=1$.

Solution:

Name $Q(2,8,5)$. Choose any point on the plane, say a convenient one $(x, 0,0)$. So $x-2(0)-2(0)=1 \Rightarrow x=1 \Rightarrow P(1,0,0)$. Then $\vec{b}=\overrightarrow{P Q}=\langle 1,8,5\rangle$. The normal vector of the plane is $\vec{n}=\langle 1,-2,-2\rangle$. The distance between the plane and the point is given as

$$
\text { distance }=\left|\operatorname{proj}_{\vec{n}} \vec{b}\right|=\frac{|\vec{n} \cdot \vec{b}|}{|\vec{n}|}=\frac{|-25|}{|3|}=\frac{25}{3}
$$

6. Show that the lines

$$
\begin{aligned}
L_{1} & : \frac{x-4}{2}=\frac{y+5}{4}=\frac{z-1}{-3} \\
& L_{2}: \frac{x-2}{1}=\frac{y+1}{3}=\frac{z}{2}
\end{aligned}
$$

are skew.

Solution:

Write the equation in parametric form.

$$
\begin{gathered}
L 1: x=2 t+4, \quad y=4 t-5, \quad z=-3 t+1 \\
L 2: x=s+2, \quad y=3 s-1, \quad z=2 s
\end{gathered}
$$

The lines are not parallel since the vectors $\vec{v}_{1}=\langle 2,4,-3\rangle$ and $\vec{v}_{2}=\langle 1,3,2\rangle$ are not parallel. Next we try to find intersection point by equating x, y, and z.

$$
\begin{aligned}
& \text { (1) } 2 t+4=s+2 \\
& \text { (2) } 4 t-5=3 s-1 \\
& \text { (3) }-3 t+1=2 s
\end{aligned}
$$

(1) gives $s=2 t+2$. Substituting into (2) gives $4 t-5=3(2 t+2)-1 \Rightarrow t=-5$. Then $s=-8$. However, this contradicts with (3). So there is no solution for s and t. Since the two lines are neither parallel nor intersecting, they are skew lines.
7. Identify and sketch the following surfaces.
(a) $4 x^{2}+9 y^{2}+36 z^{2}=36$

Solution:

$x y$-plane: $4 x^{2}+9 y^{2}=36$ ellipse
$x z$-plane: $4 x^{2}+36 z^{2}=36$ ellipse
$y z$-plane: $9 y^{2}+36 z^{2}=36$ ellipse
\Rightarrow ellipsoid
(b) $4 z^{2}-x^{2}-y^{2}=1$

Solution:

$x y$-plane: $-x^{2}-y^{2}=1$ nothing, try $z=$ constants
$z=c:-x^{2}-y^{2}=1-4 c^{2} \Rightarrow x^{2}+y^{2}=4 c^{2}-1$ circles when $4 c^{2}-1>0$
$x z$-plane: $4 z^{2}-x^{2}=1$ hyperbola opening in z-direction
$y z$-plane: $4 z^{2}-y^{2}=1$ hyperbola opening in z-direction
\Rightarrow hyperboloid of two sheets
(c) $y^{2}=x^{2}+z^{2}$

Solution:

$x y$-plane: $y^{2}=x^{2}$ cross
$x z$-plane: $0=x^{2}+z^{2}$ point at origin, try $y=$ constants
$y=c: c^{2}=x^{2}+z^{2}$ circles
$y z$-plane: $y^{2}=z^{2}$ cross
\Rightarrow cone
(d) $x^{2}+4 z^{2}-y=0$

Solution:

$x y$-plane: $x^{2}-y=0 \Rightarrow y=x^{2}$ parabola opening in $+y$-direction
$x z$-plane: $x^{2}+4 z^{2}=0$ point at origin, try $y=$ constants
$y=c: x^{2}+4 z^{2}-c=0 \Rightarrow x^{2}+4 z^{2}=c$ ellipses when $c>0$
$y z$-plane: $4 z^{2}-y=0 \Rightarrow y=4 z^{2}$ parabola opening in $+y$-direction
\Rightarrow elliptic paraboloid
(e) $y^{2}+9 z^{2}=9$

Solution:

x missing: cylinder along x-direction
$y z$-plane: $y^{2}+9 z^{2}=9$ ellipse
\Rightarrow elliptic cylinder
(f) $y=z^{2}-x^{2}$

Solution:
$x y$-plane: $y=z^{2}$ parabola opening in $+y$-direction
$x z$-plane: $0=z^{2}-x^{2} \Rightarrow z^{2}=x^{2}$ cross, try $y=$ constants
$y=c: c=z^{2}-x^{2}$ hyperbola opening in z-direction when $c>0$, in x-direction
when $c<0$
$y z$-plane: $y=-x^{2}$ parabola opening in $-y$-direction
\Rightarrow hyperbolic paraboloid
8. Find the polar equation for the curve represented by the following Cartesian equation.
(a) $x=4$

Solution:

$x=4 \Rightarrow r \cos \theta=4 \Rightarrow r=4 \sec \theta$
(b) $x^{2}+y^{2}=-2 x$

Solution:

$x^{2}+y^{2}=-2 x \Rightarrow r^{2}=-2 r \cos \theta \Rightarrow r=-2 \cos \theta$

Figure 1: Q7(a)

Figure 4: Q7(d)

Figure 2: Q7(b)

Figure 3: Q7(c)

Figure 5: Q7(e)

Figure 6: Q7(f)
(c) $x^{2}-y^{2}=1$

Solution:

$$
\begin{aligned}
& x^{2}-y^{2}=1 \Rightarrow r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta=1 \Rightarrow r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=1 \Rightarrow r^{2} \cos 2 \theta=1 \\
& \Rightarrow r^{2}=\sec 2 \theta \Rightarrow r= \pm \sqrt{\sec 2 \theta}
\end{aligned}
$$

9. Sketch the curve of the following polar equations.
(a) $r=5$
(b) $\theta=\frac{3 \pi}{4}$
(c) $r=2 \sin \theta$
(d) $r=3(1-\cos \theta)$
10. (a) Change ($3, \frac{\pi}{3}, 1$) from cylindrical to rectangular coordinates

Solution:

$x=r \cos \theta=3 \cos \frac{\pi}{3}=\frac{3}{2}, y=r \sin \theta=3 \sin \frac{\pi}{3}=\frac{3 \sqrt{3}}{2}, z=1$. Hence $(x, y, z)=$ $\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}, 1\right)$
(b) Change ($\sqrt{3}, 1,4$) from rectangular to cylindrical coordinates

Solution:

$r=\sqrt{x^{2}+y^{2}}=\sqrt{3+1}=2, \tan \theta=\frac{y}{x}=\frac{1}{\sqrt{3}} \Rightarrow \theta=\frac{\pi}{6}$ in first quadrant, $z=4$.
Hence $(r, \theta, z)=\left(2, \frac{\pi}{6}, 4\right)$

Figure 7: Q9(a)

Figure 8: Q9(b)
(201

Figure 9: Q9(c)

Figure 10: Q9(d)
(c) Change $(\sqrt{3}, 1,2 \sqrt{3})$ from rectangular to spherical coordinates

Solution:

$\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{3+1+12}=4, \tan \theta=\frac{y}{x}=\frac{1}{\sqrt{3}} \Rightarrow \theta=\frac{\pi}{6}$ in first quadrant, $\phi=\cos ^{-1} \frac{z}{\rho}=\cos ^{-1} \frac{2 \sqrt{3}}{4}=\cos ^{-1} \frac{\sqrt{3}}{2}=\frac{\pi}{6}$. Hence $(\rho, \theta, \phi)=\left(4, \frac{\pi}{6}, \frac{\pi}{6}\right)$
(d) Change ($4, \frac{\pi}{4}, \frac{\pi}{3}$) from spherical to cylindrical coordinates

Solution:

$r=\rho \sin \phi=4 \sin \frac{\pi}{3}=2 \sqrt{3}, \theta=\frac{\pi}{4}, z=\rho \cos \phi=4 \cos \frac{\pi}{3}=2$. Hence $(r, \theta, z)=$ $\left(2 \sqrt{3}, \frac{\pi}{4}, 2\right)$

