HOMEWORK ASSIGNMENT #2, Math 253

- 1. Find the equation of a sphere if one of its diameters has end points (1,0,5) and (5,-4,7).
- 2. Find vector, parametric, and symmetric equations of the following lines.
 - (a) the line passing through the points $(3, 1, \frac{1}{2})$ and (4, -3, 3)
 - (b) the line passing through the origin and perpendicular to the plane 2x 4y = 9
 - (c) the line lying on the planes x + y z = 2 and 3x 4y + 5z = 6
- 3. Find the equation of the following planes.
 - (a) the plane passing through the points (-1, 1, -1), (1, -1, 2), and (4, 0, 3)
 - (b) the plane passing through the point (0, 1, 2) and containing the line x = y = z
 - (c) the plane containing the lines

$$L_1: x = 1 + t, \quad y = 2 - t, \quad z = 4t$$

 $L_2: x = 2 - s, \quad y = 1 + 2s, \quad z = 4 + s$

- 4. Find the intersection of the line x = t, y = 2t, z = 3t, and the plane x + y + z = 1.
- 5. Find the distance between the point (2, 8, 5) and the plane x 2y 2z = 1.
- 6. Show that the lines

$$L_1: \frac{x-4}{2} = \frac{y+5}{4} = \frac{z-1}{-3}$$
$$L_2: \frac{x-2}{1} = \frac{y+1}{3} = \frac{z}{2}$$

are skew. Find the distance between the two lines.

7. Identify and sketch the following surfaces.

(a)
$$4x^2 + 9y^2 + 36z^2 = 36$$

(b) $4z^2 - x^2 - y^2 = 1$
(c) $y^2 = x^2 + z^2$
(d) $x^2 + 4z^2 - y = 0$
(e) $y^2 + 9z^2 = 9$
(f) $y = z^2 - x^2$

8. Find the polar equation for the curve represented by the following Cartesian equation.

(a)
$$x = 4$$

(b) $x^2 + y^2 = -2x$ (c) $x^2 - y^2 = 1$

9. Sketch the curve of the following polar equations.

- (a) r = 5
- (b) $\theta = \frac{3\pi}{4}$
- (c) $r = 2\sin\theta$
- (d) $r = 3(1 \cos \theta)$
- 10. (a) Change $(3, \frac{\pi}{3}, 1)$ from cylindrical to rectangular coordinates
 - (b) Change $(\sqrt{3}, 1, 4)$ from rectangular to cylindrical coordinates
 - (c) Change $(\sqrt{3}, 1, 2\sqrt{3})$ from rectangular to spherical coordinates
 - (d) Change $(4, \frac{\pi}{4}, \frac{\pi}{3})$ from spherical to cylindrical coordinates

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

1. Find the equation of a sphere if one of its diameters has end points (1,0,5) and (5,-4,7).

Solution:

The length of the diameter is $\sqrt{(5-1)^2 + (-4-0)^2 + (7-5)^2} = \sqrt{36} = 6$, so the radius is 3. The centre is at the midpoint $(\frac{1+5}{2}, \frac{0-4}{2}, \frac{5+7}{2}) = (3, -2, 6)$. Hence, the sphere is given as $(x-3)^2 + (y+2)^2 + (z-6)^2 = 9$.

- 2. Find vector, parametric, and symmetric equations of the following lines.
 - (a) the line passing through the points $(3, 1, \frac{1}{2})$ and (4, -3, 3)

Solution:

The vector between two points is $\vec{v} = \langle 4 - 3, -3 - 1, 3 - \frac{1}{2} \rangle = \langle 1, -4, \frac{5}{2} \rangle$. Hence the equation of the line is Vector form: $\vec{r} = \vec{r_0} + t\vec{v} = \langle 4, -3, 3 \rangle + t\langle 1, -4, \frac{5}{2} \rangle = \langle 4 + t, -3 - 4t, 3 + \frac{5}{2}t \rangle$ Parametric form: x = 4 + t, y = -3 - 4t, $z = 3 + \frac{5}{2}t$ Symmetric from: Solving the parametric form for t gives $x - 4 = \frac{y+3}{-4} = \frac{z-3}{5/2}$

(b) the line passing through the origin and perpendicular to the plane 2x - 4y = 9Solution:

Perpendicular to the plane \Rightarrow parallel to the normal vector $\vec{n} = \langle 2, -4, 0 \rangle$. Hence Vector form: $\vec{r} = \langle 0, 0, 0 \rangle + t \langle 2, -4, 0 \rangle = \langle 2t, -4t, 0 \rangle$ Parametric from : $x = 2t, \quad y = -4t, \quad z = 0$ Symmetric form $\frac{x}{2} = \frac{y}{-4}, \quad z = 0$

(c) the line lying on the planes x + y - z = 2 and 3x - 4y + 5z = 6Solution:

We can find the intersection (the line) of the two planes by solving z in terms of x, and in terms of y.

(1)
$$x + y - z = 2$$

(2) $3x - 4y + 5z = 6$

Solve z in terms of y: $3 \times (1) - (2) \Rightarrow 7y - 8z = 0 \Rightarrow z = \frac{7}{8}y$ Solve z in terms of x: $4 \times (1) + (2) \Rightarrow 7x + z = 14 \Rightarrow z = 14 - 7x$ Hence, symmetric form: $14 - 7x = \frac{7}{8}y = z$ Set the symmetric form = t, we have parametric form: $x = \frac{14-t}{7}, y = \frac{8}{7}t, z = t$ Vector form: $\vec{r} = \langle \frac{14-t}{7}, \frac{8}{7}t, t \rangle$

- 3. Find the equation of the following planes.
 - (a) the plane passing through the points (-1, 1, -1), (1, -1, 2), and (4, 0, 3)Solution:

Name the points P(-1, 1, -1), Q(1, -1, 2), and R(4, 0, 3). Set up two vectors:

$$\vec{v}_1 = \overrightarrow{PQ} = \langle 1+1, -1-1, 2+1 \rangle = \langle 2, -2, 3 \rangle$$
 (1)

$$\vec{v}_2 = \overrightarrow{PR} = \langle 5, -1, 4 \rangle \tag{2}$$

Choose the normal vector $\vec{n} = \vec{v_1} \times \vec{v_2} = \langle -5, 7, 8 \rangle$. Hence the equation of the plane is $\boxed{-5(x+1) + 7(y-1) + 4(z+1) = 0}$ using point *P*.

(b) the plane passing through the point (0, 1, 2) and containing the line x = y = zSolution:

Name Q(0, 1, 2). The line can be represented as $\vec{r} = \langle t, t, t \rangle$, which crosses the point P(0, 0, 0) and is parallel to $\vec{v} = \langle 1, 1, 1 \rangle$. Set $\vec{b} = \overrightarrow{PQ} = \langle 0, 1, 2 \rangle$. Choose $\vec{n} = \vec{v} \times \vec{b} = \langle 1, -2, 1 \rangle$ and hence the equation of the plane is x - 2y + z = 0 using point P.

(c) the plane containing the lines

$$L_1: x = 1 + t, \quad y = 2 - t, \quad z = 4t$$

 $L_2: x = 2 - s, \quad y = 1 + 2s, \quad z = 4 + s$

Solution:

From L_1 and L_2 , $\vec{v}_1 = \langle 1, -1, 4 \rangle$ and $\vec{v}_2 = \langle -1, 2, 1 \rangle$. Choose $\vec{n} = \vec{v}_1 \times \vec{v}_2 = \langle -9, -5, 1 \rangle$. Since L_1 crosses the point (1,2,0), the equation of the plane is $\boxed{-9(x-1) - 5(y-2) + z = 0}$.

4. Find the intersection of the line x = t, y = 2t, z = 3t, and the plane x + y + z = 1.

Solution:

Substitute the line into the plane: $t + 2t + 3t = 1 \Rightarrow t = \frac{1}{6}$. Put t back to the line: $x = \frac{1}{6}, y = \frac{1}{3}, z = \frac{1}{2}$. Hence the intersection point is $(\frac{1}{6}, \frac{1}{3}, \frac{1}{2})$.

5. Find the distance between the point (2, 8, 5) and the plane x - 2y - 2z = 1. Solution:

Name Q(2,8,5). Choose any point on the plane, say a convenient one (x,0,0). So $x-2(0)-2(0) = 1 \Rightarrow x = 1 \Rightarrow P(1,0,0)$. Then $\vec{b} = \overrightarrow{PQ} = \langle 1,8,5 \rangle$. The normal vector of the plane is $\vec{n} = \langle 1, -2, -2 \rangle$. The distance between the plane and the point is given as

distance =
$$\left| \text{proj}_{\vec{n}} \vec{b} \right| = \frac{\left| \vec{n} \cdot \vec{b} \right|}{\left| \vec{n} \right|} = \frac{\left| -25 \right|}{\left| 3 \right|} = \boxed{\frac{25}{3}}$$

6. Show that the lines

$$L_1: \frac{x-4}{2} = \frac{y+5}{4} = \frac{z-1}{-3}$$
$$L_2: \frac{x-2}{1} = \frac{y+1}{3} = \frac{z}{2}$$

are skew.

Solution:

Write the equation in parametric form.

L1:
$$x = 2t + 4$$
, $y = 4t - 5$, $z = -3t + 1$
L2: $x = s + 2$, $y = 3s - 1$, $z = 2s$

The lines are not parallel since the vectors $\vec{v}_1 = \langle 2, 4, -3 \rangle$ and $\vec{v}_2 = \langle 1, 3, 2 \rangle$ are not parallel. Next we try to find intersection point by equating x, y, and z.

(1)
$$2t + 4 = s + 2$$

(2) $4t - 5 = 3s - 1$
(3) $-3t + 1 = 2s$

(1) gives s = 2t + 2. Substituting into (2) gives $4t - 5 = 3(2t + 2) - 1 \Rightarrow t = -5$. Then s = -8. However, this contradicts with (3). So there is no solution for s and t. Since the two lines are neither parallel nor intersecting, they are skew lines.

7. Identify and sketch the following surfaces.

(c) $y^2 = x^2 + z^2$ Solution: xy-plane: $y^2 = x^2$ cross xz-plane: $0 = x^2 + z^2$ point at origin, try y = constants y = c: $c^2 = x^2 + z^2$ circles yz-plane: $y^2 = z^2$ cross \Rightarrow cone

(d) $x^2 + 4z^2 - y = 0$

Solution:

xy-plane: $x^2 - y = 0 \Rightarrow y = x^2$ parabola opening in +y-direction xz-plane: $x^2 + 4z^2 = 0$ point at origin, try y = constantsy = c: $x^2 + 4z^2 - c = 0 \Rightarrow x^2 + 4z^2 = c$ ellipses when c > 0yz-plane: $4z^2 - y = 0 \Rightarrow y = 4z^2$ parabola opening in +y-direction \Rightarrow elliptic paraboloid

(e) $y^2 + 9z^2 = 9$

Solution:

x missing: cylinder along x-direction yz-plane: $y^2 + 9z^2 = 9$ ellipse \Rightarrow elliptic cylinder

(f)
$$y = z^2 - x^2$$

Solution:

xy-plane: $y = z^2$ parabola opening in +y-direction xz-plane: $0 = z^2 - x^2 \Rightarrow z^2 = x^2$ cross, try y = constantsy = c: $c = z^2 - x^2$ hyperbola opening in z-direction when c > 0, in x-direction when c < 0yz-plane: $y = -x^2$ parabola opening in -y-direction \Rightarrow [hyperbolic paraboloid]

8. Find the polar equation for the curve represented by the following Cartesian equation.

(a)
$$x = 4$$

Solution:
 $x = 4 \Rightarrow r \cos \theta = 4 \Rightarrow recercline recerclin$

- (c) $x^2 y^2 = 1$ Solution: $x^2 - y^2 = 1 \Rightarrow r^2 \cos^2 \theta - r^2 \sin^2 \theta = 1 \Rightarrow r^2 (\cos^2 \theta - \sin^2 \theta) = 1 \Rightarrow r^2 \cos 2\theta = 1$ $\Rightarrow r^2 = \sec 2\theta \Rightarrow \boxed{r = \pm \sqrt{\sec 2\theta}}$
- 9. Sketch the curve of the following polar equations.
 - (a) r = 5
 - (b) $\theta = \frac{3\pi}{4}$
 - (c) $r = 2\sin\theta$
 - (d) $r = 3(1 \cos \theta)$
- 10. (a) Change (3, π/3, 1) from cylindrical to rectangular coordinates Solution:
 x = r cos θ = 3 cos π/3 = 3/2, y = r sin θ = 3 sin π/3 = 3√3/2, z = 1. Hence (x, y, z) = (3/2, 3√3/2, 1)

 (b) Change (√3, 1, 4) from rectangular to cylindrical coordinates
 - Solution: $r = \sqrt{x^2 + y^2} = \sqrt{3+1} = 2$, $\tan \theta = \frac{y}{x} = \frac{1}{\sqrt{3}} \Rightarrow \theta = \frac{\pi}{6}$ in first quadrant, z = 4. Hence $(r, \theta, z) = \boxed{(2, \frac{\pi}{6}, 4)}$

Figure 7: Q9(a) Figure 8: Q9(b) Figure 9: Q9(c) Figure 10: Q9(d)

(c) Change $(\sqrt{3}, 1, 2\sqrt{3})$ from rectangular to spherical coordinates **Solution:** $\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{3 + 1 + 12} = 4$, $\tan \theta = \frac{y}{x} = \frac{1}{\sqrt{3}} \Rightarrow \theta = \frac{\pi}{6}$ in f

 $\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{3 + 1 + 12} = 4, \ \tan \theta = \frac{y}{x} = \frac{1}{\sqrt{3}} \Rightarrow \theta = \frac{\pi}{6} \text{ in first}$ quadrant, $\phi = \cos^{-1} \frac{z}{\rho} = \cos^{-1} \frac{2\sqrt{3}}{4} = \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}.$ Hence $(\rho, \theta, \phi) = \boxed{(4, \frac{\pi}{6}, \frac{\pi}{6})}$

(d) Change $(4, \frac{\pi}{4}, \frac{\pi}{3})$ from spherical to cylindrical coordinates **Solution:** $r = \rho \sin \phi = 4 \sin \frac{\pi}{2} = 2\sqrt{3}, \ \theta = \frac{\pi}{2}, \ z = \rho \cos \phi = 4 \cos \frac{\pi}{2} = 2$. Hence $(r, \theta, z) =$

$$\frac{r = \rho \sin \phi = 4 \sin \frac{\pi}{3} = 2\sqrt{3}, \ \theta = \frac{\pi}{4}, \ z = \rho \cos \phi = 4 \cos \frac{\pi}{3} = 2. \text{ Hence } (r, \theta, z) = 0$$