HOMEWORK ASSIGNMENT \#1, Math 253

1. Sketch the curve $r=1+\cos \theta, 0 \leq \theta \leq 2 \pi$, and find the area it encloses.
2. Find the dot product $\vec{a} \cdot \vec{b}$ in the following cases:
(a) $\vec{a}=<1,0,-2>, \vec{b}=<2,0,1>$. Are these vectors orthogonal?
(b) $\vec{a}=<x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}>, \vec{b}=<x_{1}, x_{2}, x_{3}>$, where the x_{i}, y_{i} are any real numbers. Are these vectors orthogonal?
(c) \vec{a} is a unit vector having the same direction as $\vec{i}+\vec{j}$ and \vec{b} is a vector of magnitude 2 in the direction of $\vec{i}+\vec{j}-\vec{k}$.
3. Use cross products to find the following areas:
(a) the area of the triangle through the points $P=(1,1,0), Q=(1,0,1), R=(0,1,1)$.
(b) the area of the parallelogram spanned by the vectors $\vec{u}=<1,2,0>, \vec{v}=<a, b, c>$.
(c) the areas of all 4 faces of the tetrahedron whose vertices are $(0,0,0),(a, 0,0),(0, b, 0)$ and $(0,0, c)$, where a, b, c are positive numbers.
4. Suppose \vec{a} is a vector in 3 -space. Show that $\left(\frac{\vec{a} \cdot \vec{i}}{|\vec{a}|}\right)^{2}+\left(\frac{\vec{a} \cdot \vec{j}}{|\vec{a}|}\right)^{2}+\left(\frac{\vec{a} \cdot \vec{k}}{|\vec{a}|}\right)^{2}=1$.

Remark: The direction cosines of the vector \vec{a} are by definition

$$
\cos \alpha=\frac{\vec{a} \cdot \vec{i}}{|\vec{a}|}, \cos \beta=\frac{\vec{a} \cdot \vec{j}}{|\vec{a}|}, \cos \gamma=\frac{\vec{a} \cdot \vec{k}}{|\vec{a}|} .
$$

The angles α, β, γ are the angles \vec{a} makes with the positive directions of the x, y, z axes respectively.
5. (a) Find all vectors of length 2 that make equal angles with the positive directions of the 3 co-ordinate axes.
(b) Find all unit vectors $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$ making respective angles of $\pi / 3, \pi / 4$ with the positive directions of the x, y axes.
(c) Find the angles of the triangle whose vertices are $(1,0,0),(0,2,0),(0,0,3)$.
(d) Find the angle(s) between a diagonal of a cube and one of its edges.
6. A straight river 400 m wide flows due west at a constant speed of $3 \mathrm{~km} / \mathrm{hr}$. If you can row your boat at $5 \mathrm{~km} / \mathrm{hr}$ in still water, what direction should you row in if you wish to go from a point A on the south shore to the point B directly opposite on the north shore? How long will the trip take?
7. Find equations of the planes satisfying the following conditions:
(a) Passing through the point $(0,2,-3)$ and normal to the vector $4 \vec{i}-\vec{j}-2 \vec{k}$.
(b) Passing through the point $(1,2,3)$ and parallel to the plane $3 x+y-2 z=15$.
(c) Passing through the 3 points $(\lambda, 0,0),(0, \mu, 0),(0,0, \nu)$, where λ, μ, ν are non-zero real numbers.
(d) Passing through the point $(-2,0,-1)$ and containing the line which is the intersection of the 2 planes $2 x+3 y-z=0$ and $x-4 y+2 z=-5$.
8. Let $v_{1}=(0,-1,0), v_{2}=(0,1,0), v_{3}, v_{4}$ be the 4 vertices of a regular tetrahedron. Suppose $v_{3}=(x, 0,0)$ for some positive x and v_{4} has a positive z component. Find v_{3} and v_{4}.

SOLUTIONS TO HOMEWORK ASSIGNMENT \#1

1. Sketch the curve $r=1+\cos \theta, 0 \leq \theta \leq 2 \pi$, and find the area it encloses.

Figure 1: The curve $r=1+\cos \theta, 0 \leq \theta \leq 2 \pi$

The area is given by

$$
\begin{aligned}
A & =\frac{1}{2} \int_{\theta=0}^{2 \pi}(1+\cos \theta)^{2} d \theta=\frac{1}{2} \int_{\theta=0}^{2 \pi}\left(1+2 \cos \theta+\cos ^{2} \theta\right) \\
& =\frac{1}{2}(2 \pi+0+\pi)=\frac{3 \pi}{2}
\end{aligned}
$$

2. Find the dot product $\vec{a} \cdot \vec{b}$ in the following cases:
(a) $\vec{a}=<1,0,-2>, \vec{b}=<2,0,1>$. Are these vectors orthogonal?
(b) $\vec{a}=<x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}>, \vec{b}=<x_{1}, x_{2}, x_{3}>$, where the x_{i}, y_{i} are any real numbers. Are these vectors orthogonal?
(c) \vec{a} is a unit vector having the same direction as $\vec{i}+\vec{j}$ and \vec{b} is a vector of magnitude 2 in the direction of $\vec{i}+\vec{j}-\vec{k}$.
Solution:
(a) $\vec{a} \cdot \vec{b}=2-2=0$. These vectors are orthogonal.
(b) $\vec{a} \cdot \vec{b}=\left(x_{2} y_{3}-x_{3} y_{2}\right) x_{1}+\left(x_{3} y_{1}-x_{1} y_{3}\right) x_{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right) x_{3}=0$. These vectors are orthogonal.
(c) $\vec{a}=\frac{1}{\sqrt{2}}(\vec{i}+\vec{j})$ and $\vec{b}=\frac{2}{\sqrt{3}}(\vec{i}+\vec{j}-\vec{k})$ and therefore $\vec{a} \cdot \vec{b}=\frac{2 \sqrt{2}}{\sqrt{3}}$.
3. Use cross products to find the following areas:
(a) the area of the triangle through the points $P=(1,1,0), Q=(1,0,1), R=(0,1,1)$.
(b) the area of the parallelogram spanned by the vectors $\vec{u}=<1,2,0>, \vec{v}=<a, b, c>$.
(c) the areas of all 4 faces of the tetrahedron whose vertices are $(0,0,0),(a, 0,0),(0, b, 0)$ and $(0,0, c)$, where a, b, c are positive numbers.
Solution:
(a) Let $\vec{a}=Q-P=-\vec{j}+\vec{k}, \vec{b}=R-P=-\vec{i}+\vec{k}$. Then the area of the triangle is $\frac{1}{2}|\vec{a} \times \vec{b}|=\frac{1}{2}|(-\vec{j}+\vec{k}) \times(-\vec{i}+\vec{k})|=\frac{1}{2}|-\vec{k}-\vec{i}-\vec{j}|=\frac{\sqrt{3}}{2}$.
(b) $\vec{u} \times \vec{v}=(\vec{i}+2 \vec{j}) \times(a \vec{i}+b \vec{j}+c \vec{k})=2 c \vec{i}-c \vec{j}+(b-2 a) \vec{k}$. Thus the area is

$$
\sqrt{5 c^{2}+(b-2 a)^{2}}=\sqrt{4 a^{2}-4 a b+b^{2}+5 c^{2}}
$$

(c) The areas of the faces in the co-ordinate planes (i.e. the x, y plane, the y, z plane and the z, x plane) are $\frac{a b}{2}, \frac{b c}{2}, \frac{c a}{2}$ respectively. To find the area of the sloping face we compute the cross product of the vectors $\vec{u}=-a \vec{i}+c \vec{k}, \vec{v}=-a \vec{i}+b \vec{j}$:

$$
\vec{u} \times \vec{v}=(-a \vec{i}+c \vec{k}) \times(-a \vec{i}+b \vec{j})=-b c \vec{i}-c a \vec{j}-a b \vec{k} .
$$

Thus the area of the sloping face is $\frac{1}{2} \sqrt{(b c)^{2}+(c a)^{2}+(a b)^{2}}$.
4. Suppose \vec{a} is a vector in 3 -space. Show that $\left(\frac{\vec{a} \cdot \vec{i}}{|\vec{a}|}\right)^{2}+\left(\frac{\vec{a} \cdot \vec{j}}{|\vec{a}|}\right)^{2}+\left(\frac{\vec{a} \cdot \vec{k}}{|\vec{a}|}\right)^{2}=1$.

Remark: The direction cosines of the vector \vec{a} are by definition

$$
\cos \alpha=\frac{\vec{a} \cdot \vec{i}}{|\vec{a}|}, \cos \beta=\frac{\vec{a} \cdot \vec{j}}{|\vec{a}|}, \cos \gamma=\frac{\vec{a} \cdot \vec{k}}{|\vec{a}|} .
$$

The angles α, β, γ are the angles \vec{a} makes with the positive directions of the x, y, z axes respectively.

Solution:
Suppose $\vec{a}=<a_{1}, a_{2}, a_{3}>$. Then

$$
\left(\frac{\vec{a} \cdot \vec{i}}{|\vec{a}|}\right)^{2}+\left(\frac{\vec{a} \cdot \vec{j}}{|\vec{a}|}\right)^{2}+\left(\frac{\vec{a} \cdot \vec{k}}{|\vec{a}|}\right)^{2}=\left(\frac{a_{1}}{|\vec{a}|}\right)^{2}+\left(\frac{a_{2}}{|\vec{a}|}\right)^{2}+\left(\frac{a_{3}}{|\vec{a}|}\right)^{2}=\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}=1 .
$$

5. (a) Find all vectors of length 2 that make equal angles with the positive directions of the x, y, z axes respectively.
(b) Find all unit vectors $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$ making respective angles of $\pi / 3, \pi / 4$ with the positive directions of the x, y axes.
(c) Find the angles of the triangle whose vertices are $(1,0,0),(0,2,0),(0,0,3)$.
(d) Find the angle(s) between a diagonal of a cube and one of its edges.

Solution:
(a) If $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$ has length 2 and makes equal angles with respect to the positive directions of the 3 co-ordinate axes then
$v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=4$ and $v_{1}=v_{2}=v_{3}=\lambda$. Therefore $\vec{v}= \pm \frac{2}{\sqrt{3}}<1,1,1>= \pm \frac{2}{\sqrt{3}}(\vec{i}+\vec{j}+\vec{k})$.
(b) If $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$ is a unit vector making angles $\pi / 3, \pi / 4$ with the positive directions of the x, y axes respectively then

$$
v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=1, v_{1}=\cos (\pi / 3)=1 / 2 \text { and } v_{2}=\cos (\pi / 4)=1 / \sqrt{2}
$$

Therefore $v_{3}^{2}=1-1 / 4-1 / 2=1 / 4$, that is $v_{3}= \pm 1 / 2$. Hence $\vec{v}=(1 / 2,1 / \sqrt{2}, \pm 1 / 2)$.
(c) Let $P=(1,0,0), Q=(0,2,0), R=(0,0,3)$ and let α, β, γ be the 3 angles at P, Q, R respectively. Then

$$
\cos \alpha=\frac{\overrightarrow{P Q} \cdot \overrightarrow{P R}}{|\overrightarrow{P Q}||\overrightarrow{P R}|}=\frac{1}{\sqrt{50}}, \cos \beta=\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=\frac{4}{\sqrt{65}}, \cos \gamma=\frac{\overrightarrow{R P} \cdot \overrightarrow{R Q}}{|\overrightarrow{R P}||\overrightarrow{R Q}|}=\frac{9}{\sqrt{130}}
$$

Therefore $\alpha \approx 1.428899272, \beta \approx 1.051650212, \gamma \approx 0.6610431690$, all angles measured in radians. Note that $\alpha+\beta+\gamma=\pi$.
(d) One of the diagonals of a (unit) cube is $\vec{v}=\vec{i}+\vec{j}+\vec{k}$. The common angle θ between \vec{v} and any of $\vec{i}, \vec{j}, \vec{k}$ satisfies $\cos \theta=\frac{\vec{v} \cdot \vec{i}}{\sqrt{3}}=\frac{1}{\sqrt{3}}$. Therefore $\theta \approx 0.9553166180$. The other possibility is the complementary angle, namely $\pi-\theta \approx 2.186276036$.
6. A straight river 400 m wide flows due west at a constant speed of $3 \mathrm{~km} / \mathrm{hr}$. If you can row your boat at $5 \mathrm{~km} / \mathrm{hr}$ in still water, what direction should you row in if you wish to go from a point A on the south shore to the point B directly opposite on the north shore? How long will the trip take?

Solution: We can take the velocity vector of the river to be $\vec{v}=-3 \vec{i}$ and the "rowing" vector to be $\vec{u}=5(\cos \theta \vec{i}+\sin \theta \vec{j})$, where θ is the angle of inclination with respect to the east. We want $\vec{v}+\vec{u}=(-3+5 \cos \theta) \vec{i}+(5 \sin \theta) \vec{j}$ to be a positive multiple of \vec{j}. Therefore $\cos \theta=3 / 5$ and $\sin \theta=4 / 5$. That is $\theta=\arccos (3 / 5) \approx 0.9272952180$. With this choice of θ our net velocity is $4 \vec{j}$. Therefore it will take $\frac{1}{10} h r=6$ minutes to get to the opposite shore.
7. Find equations of the planes satisfying the following conditions:
(a) Passing through the point $(0,2,-3)$ and normal to the vector $4 \vec{i}-\vec{j}-2 \vec{k}$.
(b) Passing through the point $(1,2,3)$ and parallel to the plane $3 x+y-2 z=15$.
(c) Passing through the 3 points $(\lambda, 0,0),(0, \mu, 0),(0,0, \nu)$, where λ, μ, ν are non-zero real numbers.
(d) Passing through the point $(-2,0,-1)$ and containing the line which is the intersection of the 2 planes $2 x+3 y-z=0$ and $x-4 y+2 z=-5$.

Solution:
(a) The equation is $4(x-0)-(y-2)-2(z+3)=0$, that is $4 x-y-2 z=4$.
(b) The equation is $3(x-1)+(y-2)-2(z-3)=0$, that is $3 x+y-2 z=-1$.
(c) The equation is $\frac{x}{\lambda}+\frac{y}{\mu}+\frac{z}{\nu}=1$.
(d) The equation will have the form $\mu(2 x+3 y-z)+\nu(x-4 y+2 z+5)=0$ for an appropriate choice of μ, ν. Putting $x=-2, y=0, z=-1$ into this equation gives $-3 \mu+\nu=0$. Choosing $\mu=1, \nu=3$ gives $5 x-9 y+5 z=-15$.
8. Let $v_{1}=(0,-1,0), v_{2}=(0,1,0), v_{3}, v_{4}$ be the 4 vertices of a regular tetrahedron. Suppose $v_{3}=(x, 0,0)$ for some positive x and v_{4} has a positive z component. Find v_{3} and v_{4}.
Solution: v_{1}, v_{2}, v_{3} must form an equilateral triangle in the x, y plane with each side having length 2 . Therefore $v_{3}=(\sqrt{3}, 0,0)$. The vertex v_{4} must lie over $\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right)=$ $\left(\frac{1}{\sqrt{3}}, 0,0\right)$. Therefore $v_{4}=\left(\frac{1}{\sqrt{3}}, 0, z\right)$, where z is that positive number chosen such that the distance from $(0,1,0)$ to $\left(\frac{1}{\sqrt{3}}, 0, z\right)$ is 2 . Solving we get $v_{4}=\left(\frac{1}{\sqrt{3}}, 0,2 \sqrt{\frac{2}{3}}\right)$.

