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Chapter II. Smooth representations

The theory of representations of p­adic groups started off by looking at unitary representations on Hilbert
spaces. After [Jacquet­Langlands:1970] introduced the category of admissible representations, the subject

largely lost its analytical flavour and became quite algebraic—in many aspects not very different from the

theory of representations of finite groups.

In this chapter I’ll define smooth and admissible representations of arbitrary locally profinite groups and

prove their basic properties. I shall generally take the coefficient ring to be a commutative Noetherian ring
R, assumed to contain Q. The point of allowing representations with coefficients in a ring likeR is to allow

dealing with families of representations in a reasonable way. For example, suppose k to be a p­adic field and

G to be the multiplicative group k×. The unramified characters of G are those trivial on o×, and may be
identified with characters of Z. In this case it is useful to take R to be the ring C[z±1], the group algebra of

Z, whose maximal ideals parametrize its complex characters. The group acts on this through the left or right

regular representation.

Occasionally R will be taken to be a field. Often, it will be a field D, which I assume throughout to be an

algebraically closed field of characteristic 0. In places I shall take D to be C. There are good reasons, as we
shall see, for notmaking this choice always. Onemight be called philosophical—the theory of representations

of a locally profinite group is essentially a matter of algebra, and the choice of D emphasizes this.

Throughout this chapter, Gwill be a locally profinite group. At the beginning it will be more or less arbitrary.

However, I’ll assume always that it possesses a countable basis of neighbourhoods of the identity—i.e. that

it is what I call in [Casselman:2018] a König group. Also, it will be countable at infinity in the sense that the
discrete set G/K is countable for one, hence all, compact open subgroups K .

Thus this chapter will generally present results valid without significant assumptions about the structure
of G. This necessarily excludes almost everything interesting, but includes many basic items. The current

version incorporates parts of [Bernstein:1992].
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1. Admissible representations and the Hecke algebra [hecke.tex]

A smooth G module overR is a representation (π, V ) of G on anR­module V such that each v in V is fixed
by an open subgroup ofG. A smooth representation (π, V ) is said to be admissible if for each open subgroup

K in G the subspace V K of vectors fixed by elements of K is finitely generated over R. If R is a field, this

just means that V K has finite dimension.

The subspace of smooth vectors in any representation of G is stable under G, since if v lies in V K then π(g)v

lies in V gKg−1

.

The group G acts on functions on G by the left and right regular representations:

Rgf(x) = f(xg), Lgf(x) = f(g−1x) .

I’ll call a locally constant function f on G uniformly locally constant if there exists a compact open subgroup

K of G such that Rkf = Lkf for all k in K . The left and right actions of G commute, hence give rise to a

smooth representation L of G× G on the space of all locally constant functions that preserves the uniformly
locally constant ones.

The rational Hecke algebra HQ(G) is the ring of smooth rational measures of compact support on G, in
which multiplication is convolution. Let

HR = R⊗Q HQ .

Normally, the ring R will be implicit, and HR will be written as just H. It is a consequence of Proposition♥ [smooth-distribution]

I.6.6 that given a choice of rational Haar (right­invariant) measure dx, smooth R­valued functions may be

identified with smoothR­valued distributions:

ϕ 7−→ Dϕ = ϕ(x) dx ,

so that
〈Dϕ, f〉 = meas(K)

∑

G/K

ϕ(x)f(x)

if both f and ϕ are fixed on the right by elements of K .

Suppose that D1 and D2 are two smooth measures of compact support, corresponding to smooth functions
ϕ1 and ϕ2. Then

π(D1)π(D2)v =

∫

G

ϕ1(x)π(x)

(∫

G

ϕ2(y)π(y)v dy

)
dx

=

∫

G×G

ϕ1(x)ϕ(y)π(xy)v dx dy

=

∫

G

ϕ2(y)

(∫

G

ϕ1(x)π(xy)v dx

)
dy

=

∫

G

ϕ2(y)

(∫

G

ϕ1(zy−1)π(z)v dz

)
dy

=

∫

G

(∫

G

ϕ1(zy−1)ϕ2(y) dz

)
π(z)v dz

= π(Dϕ)v

where

ϕ(z) =

∫

G

ϕ1(zy−1)ϕ2(y) dy .

The measure Dϕ is also smooth and of compact support. It is the convolution D1 ∗D2. This product makes

H into a ring.
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The Hecke algebra H does not have a multiplicative unit unless G is compact. This is the source of some
technical problems.

There exists for every smooth representation (π, V ) of G a canonical homomorphism from the ring H to
EndR(V ). Fix for the moment a right­invariant Haar measure dx on G. Suppose D to be Dϕ. For v in V
define

π(D)v =

∫

G

ϕ(x)π(x)v dx .

If v is fixed by the elements of the compact open group K and ϕ is fixed by elements of K with respect to the
right regular representation, this is also

meas(K)
∑

G/K

ϕ(x)π(x)v .

This definition depends only on Dϕ. We can in fact characterize, if not define, π(D) solely in terms of the

distribution D. If F is a linear function on V , then Φ(x) = F
(
π(x)v

)
is a locally constant function on G, and

we may apply D to it. Then

F
(
π(D)v

)
=

∫

G

ϕ(x)F
(
π(x)v

)
dx = 〈D, Φ〉 .

IfK is a compact open subgroup ofG, theHecke algebraH contains the subalgebraH(G//K) of distributions
invariant under left and rightmultiplication by elementsofK . This algebra has as basis themeasuresµKgK/K

ofH:

〈µKgK/K , f〉 =
1

meas(K)

∫

KgK

f(x) dx

as g varies over K\G/K . In particular

π(µK/K) =
1

meas(K)

∫

K

π(k) dk

amounts to projection onto K­fixed vectors. If π is any smooth representation of G then every element of
H(G//K) takes V K into itself, and

(II.1.1)

π(µKgK/K ) =
∑

KgK/K

π(x)π(µK/K )

=
∑

K/K∩gKg−1

π(kg)π(µK/K)

= |KgK/K| ·π(µK/K)π(g)π(µK/K) .[kgk/k]

since the map from K/K ∩ gKg−1 to KgK/K , taking k to kg, is a bijection.

The projection µK/K is the unit ofH(G//K).

For every closed subgroup H of G, define V (H) to be the subspace of V generated by the π(h)v − v for h
in H . This subspace of V is characterized by the property that every H­equivariant linear map from V to a

vector space on which H acts trivially factors through V/V (H). If H is compact, something better happens:

II.1.2. Proposition. For any compact open subgroup K and smooth representation V , we have an equality[projection]

V (K) =
{
v ∈ V

∣∣π(µK/K)v = 0
}

and a direct sum decomposition
V = V (K) ⊕ V K .
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Proof. If v is fixed by K∗ then

π(µK/K)v =
1

[K: K∗]

∑

K/K∗

π(k)v

and

v =
1

[K: K∗]

∑

K/K∗

v .

If we subtract the first from the second, we get

v − π(µK/K)v =
−1

[K: K∗]

∑

K/K∗

(
π(k)v − v

)

II.1.3. Proposition. Suppose[abelian-smooth]

0 −→ U −→ V −→ W −→ 0

to be an exact sequence of G­representations. If the representation on V is smooth so is that on U and W ,
and for every compact open subgroup K the sequence

0 −→ UK −→ V K −→ WK −→ 0

is also exact.

II.1.4. Corollary. If V is smooth, it is admissible if and only if both U and W are.[exactness-cor]

Thus the categories of smooth and admissible representations are abelian.

II.1.5. Proposition. Suppose K to be a fixed compact open subgroup of G, and supposeR to be D. A smooth[restriction-to-K]

representation defined overR is admissible if and only if the restriction of π toK is a direct sum of irreducible
representations, each occurring with finite multiplicity.

One has to be a bit careful, because an irreducible representation over a field might become reducible over a

field extension. This is not a problem if the field is algebraically closed.

Proof. Choose a sequence of compact open subgroups Kn normal in K and with {1} as limit. Then

V = V (Kn) ⊕ V Kn . But every smooth finite­dimensional representation of K factors through some Kn.

As I remarked earlier, in many ways things do not behave here very differently from how they do for finite

groups.

The following is trivial, but best to state formally:

II.1.6. Proposition. If (πi, Vi) are two smooth representations of G over D, then[irr-hom]

HomG(V1, V2) =
{

D if π1 is isomorphic to π2

0 otherwise.

II.1.7. Lemma. Suppose that G possesses a countable basis {Kn} of compact open subgroups such that[fg-field]

HQ(G//Kn) is a finitely generated ring. Then every admissible representation (π, V ) may be defined over a
field F generated over Q by a countable set of generators.

We shall see eventually that this hypothesis holds when G is the group of rational points on a Zariski­

connected reductive group defined over a p­adic field.
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2. The centre of G [hecke.tex]

In this section, assume the coefficient ring to be D.

If (π, V ) is an admissible representation of G then each space V K is stable under the centre ZG of G. The

subgroup ZG ∩ K acts trivially on it.

II.2.1. Proposition. If (π, V ) is irreducible the centre acts as scalar multiplication by a single character.[schur-scalars]

Proof. Suppose V K 6= {0}. Since V K has finite dimension and D is algebraically closed, there exists a
character ω of ZG with values in D× such that the subspace

V K(ω) =
{
v ∈ V K

∣∣ π(z)v = ω(z) ·v for all z ∈ ZG

}
6= {0} .

IfU is the subspace of all v in V satisfying this equation, it is both non­trivial and stable underG, hence equal

to all of V .

In general, I call an admissible representation centrally simple if this occurs. If ZG acts through the character

ω then π is called an ω­representation. For any central character ω with values in D× the Hecke algebraHD,ω

is that of uniformly smooth functions on G compactly supported modulo ZG such that

f(zg) = ω(z)f(g) .

If π is centrally simple with central character ω it becomes a module over the Hecke algebraHω−1 :

π(f)v =

∫

G/ZG

f(x)π(x)v dx ,

which is well defined since f(zx)π(zx) = f(x)π(x).

But now I generalize this somewhat.

If C is a commuting set of linear operators acting on a vector space U of dimension n and γ a map from C to

D, let

U((γ)) =
{
v ∈ U

∣∣ (c − γ(c)
)n

v = 0 for some n and all c ∈ C
}

.

II.2.2. Lemma. Suppose C to be any commuting set of linear operators acting on the finite dimensional vector[commuting]

space U over D. There exists a direct sum decomposition of U into non­zero spaces U((γ)).

It is called the primary decomposition of U .

Proof. The slight technical problem is that no assumption is made on the size of C.

Suppose at first that C is made up of a single element c. Let P (x) =
∏

(x − γi)
mi be the characteristic

polynomial of c. For m larger than all mi

∏
i
(c − γi)

m = 0 .

Since there exist polynomials a(x) and b(x) such that

1 = a(x)(x − γ1)
m + b(x)

∏
i6=1

(x − γi)
m ,

a simple inductive argument implies that U is the direct sum of primary eigenspaces with respect to c.

If C is finite a similar inductive argument will imply the Lemma. For each finite subset of C the primary

decomposition ofU assigns to that subset a partition ofn = dim(U), that determined by the dimensions of its

subspaces U((γ)). There are only a finite number of these partitions; choose one of greatest length. Suppose
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it belongs to the subset S in C. Any larger subset must determine a refinement of the decomposition for S,
and hence must actually be the same. The decomposition for S is therefore one for all of C.

From this follows immediately:

II.2.3. Proposition. If (π, V ) is a finitely generated admissible representation of G, the restriction of π to ZG[centre]

is a direct sum of primary components V ((ω)), where the ω vary over a finite set of homomorphisms from
ZG to D×.

The characters ω occurring in this decomposition are called the central characters of π.

3. The contragredient [hecke.tex]

Suppose (π, V ) to be a smooth representation of G. Let

V̂ = HomR(V,R) .

The group G acts on V̂ according to the recipe

〈π̂(g)v̂, v〉 = 〈v̂, π(g−1)v〉 .

The point is that the canonical pairing is G­invariant. The contragredient representation (π̃, Ṽ ) is that on the

smooth vectors in V̂ .

II.3.1. Proposition. Suppose (π, V ) to be a smooth representation of G and K a compact open subgroup of[K-fixed-dual]

G. Restriction of f to V K is an isomorphism of Ṽ K with HomR(V K ,R).

Proof. Because V = V K ⊕ V (K) and the functions in Ṽ K are precisely those annihilating V (K).

From the exact sequence of R­modules

Rn −→ V K −→ 0

we deduce

0 −→ HomR(V K ,R) −→ HomR(Rn,R) ∼= Rn .

Therefore Ṽ K is finitely generated overR, and π̃ is again admissible.

In general, Ṽ may be very small. However, in special circumstances it will be sufficiently large. I’ll call (π, V )
free overR if each V K is free overR. There are many examples of such representations.

II.3.2. Lemma. If V is admissible and free over R, then the contragredient is also free over R, and the[free-c]

canonical map from V into the contragredient of its contragredient is an isomorphism.

Furthermore:

II.3.3. Corollary. Suppose U , V , W all to be free overR. If[contraexact]

0 → U → V → W → 0

is a short exact sequence of admissible representations, then so is

0 → W̃ → Ṽ → Ũ → 0 .

Suppose U and V both to be smooth representations. Given a G­equivariant map from U to V , we get by

duality one from V̂ to Û .
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II.3.4. Proposition. Suppose U smooth, V admissible, both free overR. The canonical map defined above:[dualdual]

HomG(U, V ) −→ HomG(Ṽ , Ũ)

is an isomorphism.

Proof. We can define an inverse. Dualizing once again we get an inverse map

HomG

( ˜̃
U,

˜̃
V

)
.

But U is canonically embedded in
˜̃
U and since V is admissible we know that V may be identified with

˜̃
V , so

we get an inverse map

HomG

(
Ṽ , Ũ

)
−→ HomG(U, V ) .

Remark. I am not completely happy with my treatment of the contragredient when the coefficient ring is not
a field, and I am not at all sure what the right approach should be. There are certainly some cases in which

the current treatment is entirely satisfactory.

4. Representations of a group and of its Hecke algebra [hecke.tex]

What is the relationship between a smooth representation ofG and the associated representation of its Hecke

algebraH?

II.4.1. Proposition. Suppose (πi, Vi) are two smooth representations of G. Then[hecke-same]

HomG(V1, V2) = HomH(V1, V2) .

Amild technical problem here is thatH has no multiplicative identity.

Proof. Any G­homomorphism is clearly a homomorphism of modules over the Hecke algebra as well. So
suppose now that one is given a map F of modules over the Hecke algebra. Suppose v in V1, g in G, and

choose a compact open subgroup K fixing v, π1(g)v, F (v), and π2(g)F (v). Then

F
(
π1(g)v

)
=

F
(
π1(µKgK)v

)

|KgK/K|

=
π2(µKgK)F (v)

|KgK/K|

= π2(g)F (v) .

A smooth representation is said to be co-generated by a subspace U if every non­zero G­stable subspace of
V intersects U non­trivially. This is dual to the condition of generation, in the following sense:

II.4.2. Lemma. SupposeR to be a field and K to be a compact open subgroup of G. An admissible represen­[co-generation]

tation (π, V ) is generated by V K if and only if its smooth contragredient is co­generated by Ṽ K .

Proof. Suppose that V is generated by V K , and suppose U to be a G­stable subspace of Ṽ with U ∩ Ṽ K =

UK = 0. If U⊥ is the annihilator of U in
˜̃
V = V , then

(
V/U⊥

)K
= ŨK = 0. Thus V K = (U⊥)K , and since

V K generates V , V = U⊥ and U = 0. The converse argument is similar.

II.4.3. Proposition. Suppose that (πi, Vi) are two smooth representations of G and that K is a compact open[two-hecke]

subgroup of G. If
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(a) the space V1 is generated as a G­space by V K
1 ;

(b) the space V2 is co­generated as a G­space by V K
2 .

Then the canonical map
HomG(V1, V2) −→ HomH(G//K)(V

K
1 , V K

2 )

is an isomorphism.

These conditions are satisfied if V1 = V2 is irreducible and K is small enough, for example.

Proof. If F lies in HomG(V1, V2) then for any f inH we have

F
(
π1(f)v

)
= π2(f)F (v)

for every f in H and v in V K
1 . Conversely, if we are given F in HomH(G//K)(V

K
1 , V K

2 ) then since V K
1

generates V1 this formula will serve to define a G­map from V1 to V2 once we know that

if v lies in V K
1 , f inH, and π1(f)v = 0 then π2(f)F (v) = 0.

But if π1(f)v = 0 then for every h inH

π1(µK/K ∗h)π1(f)v = π1(µK/K ∗h∗f ∗µK/K)v = 0 .

Since F is assumed to beH(G//K)­equivariant,

π2(µK/K ∗h∗f ∗µK/K)F (v) = π2(µK/K ∗h)π2(f)F (v) = 0

for every h inH. This means that the G­space U generated by π2(f)F (v) satisfies UK = {0}. This means by

assumption that it U = 0.

II.4.4. Proposition. Suppose R to be D and (π, V ) to be a smooth representation of G. Then[hk-irr]

(a) if π is irreducible then V K is an irreducible module overH(G//K) for all K ;
(b) if V satisfies conditions (a) and (b) of Proposition II.4.3 and V K is an irreducible module over♥ [two-hecke]

H(G//K) then π is irreducible.

Proof. Suppose (π, V ) to be irreducible, and let U be any non­trivialH(G//K)­stable subspace of V K . Since

V is irreducible, U must generate V as a G­space, so every v in V is of the form
∑

ciπ)giui with ui in U . But

then for v in V K

v = π(µK/K)v =
∑

ciπ(µK/K)π(gi)ui =
ci

|KgK/K|
π(KgiK)ui

which lies in U since U is assumed to be stable underH(G//K). So V K ⊆ U .

Conversely, assume conditions (a) and (b) of Proposition II.4.3 to hold for V , and assume V K irreducible. If♥ [two-hecke]

U is any non­zero G­stable subspace of V then by (b) UK 6= 0 must be a submodule of V K , but will equal it

because of irreducibility. But (a) implies that then U = V .

II.4.5. Proposition. Suppose R to be D and (π, V ) to be an irreducible admissible representation of G, K[hk-irr-jacobson]

compact and open in G. The homomorphism from H(G//K) to EndD(V K) is surjective.

Proof. This follows from Theorem II.12.1 in the Appendix to this Chapter.♥ [density]

Does every finite­dimensional module over H(G//K) arise as the space V K for some admissible V ? And

more particularly one satisfying the conditions (a) and (b) of Proposition II.4.3? We can obtain a partial♥ [two-hecke]

answer to these questions. It is motivated by a simple observation. Let V be an admissible representation of

G, U = V K . To each v in V we can assign the function

Fv: G −→ U, g 7−→ π(µK/K)π(g)v
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Then f ∗Fv = π(f)Fv for every f inH(G//K), and the map from V to C∞(G, U) is equivariant with respect
to the right regular action of G.

Conversely, if U is a finite­dimensional representation ofH(G//K), define IU to be the space of all functions
F : G → U such that f ∗F = π(f)F for all f in the Hecke algebra. There is a canonical embedding of U itself

into this, and let V be the subspace of IU generated by this copy. It is not hard to verify that V K = U , and

that V is also co­generated by U . But whether this representation of G is admissible presumably depends on
G.

5. Characters [characters.tex]

In this section, suppose R = D.

If (π, V ) is admissible then for every f inH(G) the trace of π(f) is well defined since it may be identifiedwith

an operator on some V K , which is finite­dimensional. This defines the character of π as a linear functional
on the Hecke algebra.

II.5.1. Proposition. If the (πi, Vi) make up a finite set of inequivalent irreducible admissible representations[character]

of G then their characters are linearly independent.

Proof. Choose K so small that V K
i 6= 0 for all i. They then form, according to Proposition II.4.4 and♥ [hk-irr]

Proposition II.4.3, inequivalent modules overH(G//K). Because the πi are all distinct as well as irreducible,♥ [two-hecke]

Theorem II.12.1 implies that the map from the Hecke algebra into
∏

End(Ui) is surjective. Suppose now that♥ [density]

∑
ci ·TRi = 0 ,

which means that ∑
ci ·TR

(
πi(f)

)
= 0

for all f in the Hecke algebra. But then we can choose f in the Hecke algebra such that πi(f) = I but all the

other πj(f) = 0, which implies that ci = 0.

The following is a consequence of Proposition II.1.3:♥ [abelian-smooth]

II.5.2. Proposition. If[char-exact]

0 −→ U −→ V −→ W −→ 0

is an exact sequence of admissible G­spaces, then the character of V is the sum of the characters of U and
V .

It implies easily one half of this refinement:

II.5.3. Corollary. Two admissible representations of finite G­length have the same Jordan­Hölder factors if[jh]

and only if they have the same characters.

Proof. It remains to be seen that if U and V have the same characters then they have the same Jordan­Hölder

factors. But for this, by the previous result, it suffices to see that the semi­simplifications of U and V are

isomorphic. But this follows from Proposition II.5.1 and an induction argument.♥ [character]
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6. Tensor products [characters.tex]

Suppose the (π, Vi) (i = 1, 2) to be smooth representations of Gi, with D = R. The group G1 ×G2 then acts

on the tensor product:
(π1 ⊗R π2)(g1, g2): v1 ⊗ v2 7−→ π(g1)v1 ⊗ π(g2)v2 .

II.6.1. Proposition. If the πi are irreducible, so is π1 ⊗R π2. Every irreducible representation of G1 ×G2 is of[tensor-prod]

this form.

Proof. Let G = G1 × G2. Suppose V 6= 0 to be any G­stable subspace of V1 ⊗ V2, and U 6= 0 an irreducible
G1­stable subspace of V . As a representation of G1, V is a direct sum of copies of V1, so that by Proposition♥ [irr-hom]

II.1.6 the representation on U is isomorphic to that on V1, and we may as well assume that U = V1. and the

canonical map fromU ⊗HomR(U, V ) to V is an isomorphism. For the same reasons, the canonical map from
U ⊗HomG(U, W ) toW is an isomorphism. For the same reasons again V is isomorphic toU ⊗HomG(U, V ).
But the embedding of W into V induces an embedding of HomG(U, W ) into HomG(U, V ). The second is

isomorphic to V2 as a representation of G2, and since V2 is irreducible this embedding is an isomorphism.
Hence W = V .

Similarly, if V is any irreducible representation of G1 ×G2 and U 6= 0 is any irreducible G1­stable subspace,
then V is isomorphic to U ⊗ HomR(U, V ), and Hom(U, V ) is an irreducible representation of G2.

The group G1 × G2 also acts on the space HomD(V1, V2). The pair (g1, g2) takes f to

π2(g1) ·f ·π1(g
−1
2 ) .

(Confusing right and left is an inherent problem in this business.) The subspace of homomorphisms invariant

with respect to the diagonal copy of G is just HomG(V1, V2). There is a canonical map from V2 ⊗ V̂1 to the
space HomD(V1, V2) taking v2 ⊗ v̂1 to the linear map

u 7−→ 〈v̂, u〉v .

The image consists of the maps of finite rank.

7. Matrix coefficients [matrix-c.tex]

If (π, V ) is an admissible representation the matrix coefficient associated to the pair v in V , ṽ in Ṽ is the

R­valued function

Fṽ,v = 〈ṽ, π(g)v〉 ,

which is uniformly smooth. LetA(π) be the space of smooth functions spanned by the matrix coefficients of

π. It is a smooth representation of G × G (one factor acting on the left, one on the right), and the map from

Ṽ ⊗ V to C(G) is G × G­equivariant. In particular, for any fixed ṽ the map

Fṽ: v 7−→ Fṽ,v

is equivariant from V to C(G), with respect to the right regular action.

Now suppose that R = D. Let A(G) = AD(G) be the space of uniformly smooth functions on G contained
in a G × G­stable admissible subrepresentation of C∞(G). This is what Harish­Chandra called the space of

automorphic forms on G.

II.7.1. Proposition. Suppose F to be a smooth function on G fixed on left and right by elements of some[mc]

compact open subgroup. The following are equivalent:
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(a) the function F is contained in someA(π) with π admissible;
(b) the space AL(F ) spanned by all LgF is an admissible LG­representation;
(c) the space AR(F ) spanned by all RgF is an admissible RG­representation;
(d) the function F lies in A(G).

Proof. Suppose that V = AR(F ) is an admissible representation of G. We want to find to see ṽ in Ṽ and v in

V such that

F (g) = 〈ṽ, Rgv〉 .

It is natural to take v = F , and which case this equation can be written as

[RgF ](1) = 〈ṽ, RgF 〉 .

This suggests defining
〈ṽ, f〉 = f(1)

for all f in V . Then

〈Rkṽ, f〉 = 〈ṽ, Rk−1f〉 = f(k−1) = [Lkf ](1)

for all f in V . But the left action of G commutes with the right action, so if LkF = F for all k in the compact

open subgroup K then Lkv = v for all v in ARF , and Rkṽ = v, so that ṽ lies in Ṽ .

8. Compact representations [matrix-c.tex]

In this section, suppose R = D.

Suppose (π, V ) to be a smooth representation of G possessing a central character ω. All of its matrix
coefficients are then eigenfunctions for ZG. Using terminology introduced by [Bernstein:1992], I’ll call π

compact if all of its matrix coefficients 〈ṽ, π(g)v〉 (ṽ in Ṽ , v in V ) have compact support modulo ZG. We’ll
see later that, according to a theorem of [Jacquet:1971], that these can be characterized as super-cuspidal
representations (in the terminology of Harish­Chandra) when G is reductive. The following result is implicit

in the proof of Theorem I.6 in [Bernstein:1992].

II.8.1. Proposition. Suppose (π, V ) to be compact, K a compact open subgroup of G, v in V . Then the space[compact-fd]

{
π(µK/K)π(g)v

∣∣ g ∈ G
}

has finite dimension.

Proof. Suppose that it did not have finite dimension. Suppose v fixed by the compact open subgroup K◦.

One could then choose an infinite number of linearly dependent vectors vi = π(µK/K)π(gi)v. The union⋃
giK◦ must then be infinite modulo ZG. The vi are all in V K , so we may find ṽ in Ṽ K such that 〈ṽ, vi〉 = 1

for all i. This contradicts the assumption that the support of matrix coefficients is compact modulo ZG.

II.8.2. Corollary. A smooth ω­central representation is compact if and only if the function π(µK/K)π(g)v has[B-eq]

compact support on G.

II.8.3. Corollary. A finitely generated compact representation is admissible.[compact-admissible]

II.8.4. Proposition. Suppose R = D. An irreducible compact representation is projective and injective in the[cuspidals-projective]

category of smooth representation of G with the same central character.

Proof. I’ll begin the proof here but postpone part of it to a later section. It is motivated by the analogous

case of modules over a commutative ring with unit, in proving that a module is projective if and only if it is
a summand of a free module. But in our case there are some minor difficulties because the Hecke algebra is

not commutative and does not possess a unit.

Let ω be the central character of π. By definition, the representation (π, V ) embeds into the right regular

representation of G onHω . Identify V with its image. I’ll prove later that
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there exists an equivariant projection from Hω onto V , which is to say an equivariant surjection P
such that P(v) = v for v in V .

It will be of the form
P(f) = Rf∨v0

for some particular v0 6= 0 in V . Here f∨(g) = f(g−1). Given this, we now know V to be a summand ofHω .

Suppose now that (σ, U) is an arbitrary smooth representation ofG and that we are given a surjectionU → V
of smooth representations. Choose u0 in U mapping to v0. Let Π be the map from Hω to U taking f to

σ(f∨)u0. This is G­equivariant. The diagram

Hω

U V

Π P

F

images/h.eps

is commutative, and the restriction of Π to the image of V inHω amounts to a splitting of the surjection. This

shows that V is projective.

Injectivity follows from the projectivity of its contragredient, since according to Corollary II.8.3π is admissible♥ [compact-admissible]

and hence the smooth dual of Ṽ is the same as V .

9. Unitary representations [unitary.tex]

In this section I takeR to be C.

If V is a vector space over C, its conjugate V is the same additive group, but with the new complex

multiplication

c◦v = c v .

By definition, an element of V̂ is a function f : V → C such that f(cv) = c f(v), whereas the space V̂ is that

of all C­linear maps from V to C, but with the multiplication [c◦f ](v) = cf(v).

II.9.1. Lemma. The map taking f to f is an isomorphism of V̂ with V̂ .[conj-dual]

A Hermitian pairing of two spaces U and V is a C­linear function H : U ⊗ V → C. Equivalently, it is an

R­linear function taking u ⊗ v to u • v such that

(cu) • v = u ⊗ (c v) = c(u • v) .

It is also equivalent to a linear map ι = ιH : U → V̂ :

ι: u 7−→ [v 7−→ u • v]

characterized by the equation

u • v = 〈ι(v), u〉 .

A Hermitian form on a complex vector space U is a Hermitian pairing of U with itself. If H takes u ⊗ v to

u • v then the map
tH : u ⊗ v 7−→ v •u

is also a Hermitian form, and this defines an involution on the space of Hermitian forms on U . The form is

called symmetric if tH = H , or in other words

v •u = u • v
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for all u, v. Thsi involution is a linear transformation over R. The space of all Hermitian forms is the direct
sum of±1 eigenspaces. These are isomorphic, since H 7→ iH swaps them. A form is symmetric when it lies

in the +1­eigenspace.

II.9.2. Lemma. A form is symmetric if and only if u •u is real for all u.[symmetric-cond]

Proof. The well known polarization identity asserts that

y •x = (1/4)
((

(x + y) • (x + y) − (x − y) • (x − y)
)
− i

(
(x + iy) • (x + iy) − (x − iy) • (x − iy)

))
.

Verifying this is straightforward. Swapping x and y, it implies that

y •x = x • y

if every u •u is real.

I’ll call the form non-degenerate if ι is an injection. Of course if V is finite­dimensional this happens if and

only if ι is an isomorphism.

Suppose that the form is non­degenerate, that V is finite­dimensional, and that the form is symmetric. The

map ι satisfies the equation

(II.9.3) 〈ι(v), ι−1(ṽ)〉 = 〈ṽ, v〉 .[iota-symm]

Also in these circumstances the form on V gives rise to one on V̂ :

(II.9.4) û • v̂ = ι−1(v̂) • ι−1(û) = 〈û, ι−1(v)〉 = 〈v̂, ι−1(u)〉, .[vdotv-conj]

If c 6= 0 is real, and ι is replaced by c · ι, then u • v is replaced by c(u • v), and ι−1 is replaced by (1/c)ι−1.

(II.9.5) (û ⊗ u) • (v̂ ⊗ v) = 〈û, ι−1(v̂)〉 · 〈ι(v), u〉[vxv-conj]

is therefore canonical.

A unitary representation ofG is one with a positive definiteG­invariant Hermitian inner product. According

to Lemma II.9.2, it is necessarily symmetric. This implies also that ι isG­equivariant. Unitary representations♥ [symmetric-cond]

are important in our subject because they are the ones that appear in orthogonal decompositions of arithmetic

quotients, and this has arithmetic consequences. In one classic example, unitarity is related to Ramanujan’s

conjecture.

If (π, V ) is admissible, then any G­invariant form on V induces Hermitian forms on each V K and the image

of ι in V̂ K . Therefore we may apply the previous discussion to V itself.

II.9.6. Lemma. If (π, U) and (ρ, V ) are both irreducible unitary admissible representations, then[schurs-unitary]

Hom(U, V̂ ) =
{

C if π is isomorphic to ρ
0 otherwise.

II.9.7. Proposition. Every admissible unitary representation is a countable direct sum of irreducible unitary[unitary-sum]

representations, each occurring with finite multiplicity.

This requires the assumption that G possesses a countable basis of neighbourhoods of the identity.

It is easy to see that thematrix coefficients of a unitary representation are bounded. Amuch stronger condition
on matrix coefficients is fundamental. Suppose π to be an irreducible representation with central character

ω. It is said to be square-integrable modulo the centre ZG of G if |ω| = 1 (i.e. its central character is unitary)
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and every matrix coefficient is square­integrable on G/ZG. A compact representation with unitary central
character is square­integrable modulo the centre, for example.

II.9.8. Proposition. If π is an irreducible admissible representation of G, then it is square­integrable if and[irr-sqint]

only if a single non­zero matrix coefficient is square­integrable.

A square­integrable representation may be embedded into L2(G), and it is unitary. More precisely:

II.9.9. Proposition. Suppose (π, V ) to be an irreducible, square­integrable, admissible representation. For[sqint-unitary]

ṽ0 6= 0 in Ṽ the pairing

u • v =

∫

G/ZG

〈π(g)u, ṽ0〉〈π(g)v, ṽ0〉 dg

defines a G­invariant positive definite inner product on V .

10. Schur orthogonality [schur.tex]

Throughout this section,R will be a field. At the beginning it will be C. Assume also:

Restriction to ZG induces an isomorphism of Hom(G, R×
>0) with Hom(ZG, R×

>0).

This is true, for example, if G is the group of rational points on a Zariski­connected reductive group defined

over a local field. As a consequence of this assumption:

II.10.1. Lemma. (1) If χ is any character of ZG, there exists a character ρ of G such that χ ·ρ is unitary on ZG.[assumption-cor]

(2) The group G is unimodular.

The following is the basic version of Schur orthogonality:

II.10.2. Proposition. (Unitary Schur orthogonality) If π is square integrable modulo ZG then for some γπ > 0[schur-unitary-2]

∫

G/ZG

〈ũ, π(g)u〉〈ṽ, π(g)v〉 dg = γπ(ũ ⊗ u) • (ṽ ⊗ v) .

The term on the right is the canonical inner product defined earlier.

Proof. An immediate consequence of Lemma II.9.6.♥ [schurs-unitary]

This has more general consequences. Suppose now that R = D. Suppose (π, V ) to be any irreducible
admissible representation ofG, with central characterω. Matrix coefficients define an equivariant embedding

of π̃ ⊗ π into C(G):
Φv̂⊗v(g) = 〈ṽ, π(g)v〉 .

Dually, if f is any function inHω−1 Then the integral

(II.10.3)

∫

G/ZG

f(g)Φv̂⊗v(g) dg
[mc-int]

defines a map fromHω−1 to the dual of π̃ ⊗π, which is (canonically) π⊗ π̃. This last space may be identified
with the linear operators in End(V ) of finite rank, and it is easy to see:

II.10.4. Lemma. The image of f with respect to the map fromHω−1 to End(V ) is the same as π(f).[endo-int]

This image is in some sense the Fourier transform of f evaluated at the representation π. Of course this

depends on the particular realization of π. More canonically, one might choose the Fourier transform to be

in the image of π(f), considered as an element of V ⊗ Ṽ , with respect to the matrix coefficient map. Directly

in terms of an element of End(V ) this is the function

trace (π(g−1)f) .
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From this discussion follows the first part of:

II.10.5. Proposition. If (π, U) and (ρ, V ) are irreducible, compact representations of G with the same central[schurs-cuspidal]

character, then ∫

G

〈ũ, π(g)u〉〈π̃(g)ṽ, v〉dg

is equal to 0 if π and ρ are not isomorphic, and equal to

cπ〈ṽ, u〉〈ũ, v〉

for some constant cπ 6= 0 if they are isomorphic.

Proof. It remains to prove that cπ 6= 0.

This can be reduced to the unitary case. Because of Lemma II.1.7, the representation π may be defined over♥ [fg-field]

a field with a countable number of elements. As is well known, it may then be embedded into C. The proof

that cπ 6= 0 depends on this, and in the rest of this section I’ll prove the theorem whenR = C.

The formula remains the same if π and ρ are replaced by π·χ and ρ·χ, where χ is a character ofG. According

to Lemma II.10.1, we may therefore assume the comon central character to be unitary, and both become♥ [assumption-cor]

square­integrable modulo ZG.

We may now apply Proposition II.10.2, and we may assume that π = ρ. This gives us♥ [schur-unitary-2]

∫

G

〈ũ, π(g)u〉〈ṽ, π(g)v〉 dg = γπ(ũ ⊗ u) • (ṽ ⊗ v) .

for all ũ etc. What we want now is to transform this to

∫

G

〈ũ, π(g)u〉〈π̃(g)w̃, w〉 dg = γπ〈ṽ, w〉〈ũ, w〉 .

For this, in order to get the right hand sides to look similar we must set ṽ = ι(w), v = ι−1(w̃). But then one
of the terms in the first integral becomes (since π is unitary)

〈π̃(g)ι(w), ι−1(w̃〉 = 〈ι(π(g)w), ι−1(w̃〉 .

But by (II.9.4) this is the same as♥ [vdotv-conj]

〈w̃, π(g)w〉 .

It is good to keep in mind:

II.10.6. Proposition. Suppose G compact with total measure 1, and let (π, V ) be an irreducible admissible[degree-is-dim]

representation. Then cπ = 1/ dim(π).

The representation is necessarily of finite dimension. For this reason, the positive constant 1/cπ is called the

formal degree of π.

Proof. Let (ei) be a basis of V , êj the dual. Apply Proposition II.10.5:♥ [schurs-cuspidal]

∫

G

〈êi, π(g)ej〉 〈êj , π(g−1)ek〉 dg = cπ〈êi, ek〉〈êj , ej〉 = cπ〈êi, ek〉 .

for all i, j, k. Sum over j, set i = k. We are looking at a diagonal entry of the matrix product π(k)π(k−1).
We deduce that cπ dim(π) = 1.



Chapter II. Smooth representations (9:17 p.m. June 16, 2019) 16

Now to conclude the proof of Proposition II.8.4.♥ [cuspidals-projective]

We are given an irreducible compact representation (π, V ), and a vector ṽ0 in Ṽ . Fix v0 in V such that
〈ṽ0, v0〉 = dπ . Map f inHω to

Pf = Rf∨v0 .

This is a G­equivariant map fromHω to V . We compute

Pγv = Rγ∨

v
v0

=

∫

G/Z

γ∨

v (x)π(x)v0 dx

=

∫

G/Z

〈π(x−1)v, ṽ0〉π(x)v0 dx .

This last is an element of V . But according to Schur orthogonality

〈∫

G/Z

〈π(x−1)v, ṽ0〉π(x)v0 dx, ṽ
〉

=

∫

G/Z

〈π(x−1)v, ṽ0〉〈π(x)v0, ṽ〉 dx =
1

dπ
〈v, ṽ〉〈v0, ṽ0〉 .

11. Induced representations [induced.tex]

If H is a closed subgroup of G and (σ, U) is a smooth representation of H , the unnormalized smooth

representation Ind(σ |H, G) induced byσ is the right regular representation ofG on the space of all uniformly
smooth functions f : G → U such that

f(hg) = σ(h)f(g)

for all h in H , g in G. Let
δH\G = δH\δG .

The normalized induced representation is

Ind(σ |H, G) = Ind
(
σδ

−1/2
H\G

∣∣ H, G
)

.

Why the δ­factor? Well, Ind(δ
1/2
H\G) is the space of smooth functions on H\G. The normalization is moti­

vated by Corollary I.7.7, which asserts that Ind(δ
−1/2
H\G ) is isomorphic to that of smooth one­densities. The♥ [one-densities]

symmmetry between δ±1/2 suggests a useful duality.

The compactly supported induced representation Indc is on the analogous space of functions of compact

support on G modulo H .

II.11.1. Proposition. If H\G is compact and (σ, U) admissible then Ind(σ |H, G) is an admissible represen­[induced-admissible]

tation of G.

The hypothesis holds when G is a reductive p­adic group and H a parabolic subgroup.

Proof. If H\G/K is the disjoint union of cosets HxK (for x in a finite set X), then the map

f 7−→
(
f(x)

)

is a linear isomorphism

(II.11.2) . Indc(σ |H, G)K ∼= ⊕x∈XUH∩xKx−1

[ind-restr-K]
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Suppose (π, V ) to be a smooth representation of G, (σ, U) one of H . The map

Λ: Ind(σ |H, G) → U

taking f to f(1) is an H­morphism from Ind(σ) to σδ
1/2
H δ

−1/2
G . If we are given a G­morphism from V to

Ind(σ |H, G) then composition with Λ induces an H­morphism from V to σδ
1/2
H δ

−1/2
G .

II.11.3. Proposition. (Frobenius reciprocity) If π is a smooth representation of G and σ one of H then[frobenius]

evaluation at 1 induces a canonical isomorphism

HomG

(
π, Ind(σ |H, G)

)
→ HomH

(
π, σδ

1/2
H δ

−1/2
G

)
.

For F in Ind(σ̃ |H, G) and f in Indc(σ |H, G) the product 〈F (g), f(g)〉 lies in Indc(δ
−1/2
H\G ). On this space, fix

a positive G­invariant integral ∫

H\G

ϕ(x) dx .

II.11.4. Proposition. The pairing[ind-duality]

〈F, f〉 =

∫

H\G

〈F (x), f(x)〉 dx

defines an isomorphism of Ind(σ̃ |H, G) with the smooth dual of Indc(σ |H, G).

In particular, ifR = C and σ is unitary so is Ind(σ |H, G).

12. Appendix. Semi-simple algebra [induced.tex]

In this section I summarize relevant results from [Bourbaki:1958]. Suppose R to be any algebra over D. The

main item is this:

II.12.1. Theorem. Suppose given a finite collection of irreducible, finite­dimensional R­modules Vi that are[density]

pair­wise non­isomorphic. The canonical map from R to
∏

i EndD(Vi) is surjective.

This is Corollaire 1 to Proposition 4 of §4.3 in [Bourbaki:2011]. It is (as we shall see) elementary, but it is not
easy to extract a succinct account from the literature. The proof I give here proceeds in several steps.

A semi-simple module over R is any direct sum of irreducible modules.

II.12.2. Lemma. A finite­dimensional R­module V is semi­simple if and only if every submodule is a sum­[semi-simple]

mand.

Proof. The only non­trivial thing to prove is that any submodule U is a summand. This will be shown by

induction on the codimension of U . If it is 0, there is nothing to prove.

Suppose V to be the sum
⊕

Vi of irreducibles. If all the Vi are contained in U then V = U . Otherwise, say

V1 is not contained in U . Since it is irreducible, we must have V1 ∩ U = {0}. The projection

U −→ V/V1 =
⊕

i6=1

Vi

is then injective. The codimension of the image ofU has smaller codimension than that ofU inV , so induction
U possesses an R­stable complement W in V/V1. But W may be identified with a submodule in V , and

W ⊕ V1 is a complement in V .

The commutant R′ of R in EndD(V ) is the ring of operators commuting with it. The bicommutant R′′ is the

commutant of the commutant. It contains R.
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II.12.3. Lemma. Given a finite collection of irreducible R­modules Vi of finite dimension that are pair­wise[bicommutant]

non­isomorphic. If V =
⊕

Vi, the canonical map from the bicommutant of R to
∏

i EndD(Vi) is surjective.

Proof. This is because the commutant is the direct product of copies of D, one for each representation.

Theorem II.12.1 will now follow from:♥ [density]

II.12.4. Lemma. Given any semi­simple R­module V of finite dimension, the image of the bicommutant in[bicommutant-density]

EndD(V ) is the same as that of R.

Proof. Suppose (ei) (for 1 ≤ i ≤ m) to be a basis of V . It must be shown that if ρ lies in the bicommutant,

there exists r in R such that r(ei) = ρ(ei) for all i.

The representation of R on W = V m is also semisimple. Let e = (ei) be diagonally embedded. By Lemma♥ [semi-simple]

II.12.2 the submoduleU = R·e is a direct summand ofW . The projection fromV ontoU lies in the commutant

R′ of W , so the bicommutant R′′ takes W into itself. But this means that R′′ · e = R · e, which implies that
there for every ρ in R′′ there exists r in R such that r(e) = ρ(e).

13. References [induced.tex]

1. Joseph Bernstein, Representations of p-adic groups , preprint based on lectures at Harvard, 1992.

2. N. Bourbaki, Modules et anneaux semi-simples , Chapter 8 of Alg èbres . Hermann, 1958.
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