CHAPTER VIII

SECOND FUNDAMENTAL INEQUALITY

Kummer extensions. Let \mathbf{k} contain the n-th roots of unity, and let ζ be a primitive n-root of unity. A Kummer extension is an extension of \mathbf{k} generated by the roots of $x^{n}-\alpha$ where α is a non-zero element of \mathbf{k}. If one root is denoted $\sqrt[n]{\alpha}$ then the other roots are $\zeta \sqrt[n]{\alpha}, \zeta^{2} \sqrt[n]{\alpha}, \ldots, \zeta^{n-1} \sqrt[n]{\alpha}$. If α and β are elements of \mathbf{k}^{*}, then we write $\alpha \simeq_{n} \beta$ if $\alpha=\beta \gamma^{n}$ for some $\gamma \in \mathbf{k}^{*}$. Elements $\alpha_{1}, \ldots, \alpha_{r}$ of \mathbf{k} are independent modulo $\left(\mathbf{k}^{*}\right)^{n}$ means $\alpha_{1}^{a_{1}} \ldots \alpha_{r}^{a_{r}} \simeq_{n} 1$ only if $a_{1}=\cdots=a_{r}=0(\bmod n)$.

Lemma 8.1. Let n_{0} be the smallest positive power of α so that $\alpha^{n_{0}} \simeq_{n} 1$. Then n_{0} divides n. There is an element α_{0} so that $\alpha=\alpha_{0}^{d}$, where $n=n_{0} d$, and $\mathbf{k}(\sqrt[n]{\alpha})=$ $\mathbf{k}\left(\sqrt[n]{\alpha_{0}}\right)$.

Proof. The set of integers a such that $\alpha^{a} \simeq_{n} 1$ is an ideal, so take n_{0} to be the positive integer which generates the ideal. Since $\alpha^{n} \simeq_{n} 1$ then n is in the ideal, so $n=n_{0} d$ for some positive integer d. We have $\alpha^{n_{0}}=\gamma^{n}=\gamma^{n_{0} d}$ for some γ in \mathbf{k}^{*}. If ζ is a primitive n-th root of unity, then

$$
0=\alpha^{n_{0}}-\gamma^{n_{0} d}=\prod_{i=0}^{n_{0}-1}\left(\alpha-\zeta^{i d} \gamma^{d}\right)
$$

For some $0 \leq i<n_{0}$, we have $\alpha=\zeta^{i d} \gamma^{d}=\left(\zeta^{i} \gamma\right)^{d}$, so take $\alpha_{0}=\zeta^{i} \gamma$. Then $\alpha=\alpha_{o}^{d}=\alpha_{0}^{n / n_{0}}=\left(\sqrt[n]{\alpha_{0}}\right)^{n}$. This show $\sqrt[n]{\alpha_{0}}$ is a root of $x^{n}-\alpha$, so $\mathbf{k}(\sqrt[n]{\alpha})=$ $\mathbf{k}\left(\sqrt[n]{\alpha_{0}}\right)$.

Lemma 8.2. Let n_{0} be the smallest positive power of α so that $\alpha^{n_{0}} \simeq_{n} 1$. Then $[\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k}]=n_{0}$. For $\sigma \in G(\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k})$, let ζ_{σ} be the n-root of unity so that $\sigma(\sqrt[n]{\alpha})=\zeta_{\sigma}(\sqrt[n]{\alpha})$. Then $\sigma \rightarrow \zeta_{\sigma}$ defines an isomorphism of $G(\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k})$ onto the n_{0}-th roots of unity.

Proof. (Galois automorphisms will applied on the left when radical notation is used.) By lemma 8.1, $\alpha=\alpha_{0}^{d}$ where $n=n_{0} d$, and $\mathbf{k}(\sqrt[n]{\alpha})=\mathbf{k}\left(\sqrt[n]{\alpha_{0}}\right)$. We need to show that $x^{n_{0}}-\alpha_{0}$ is irreducible over \mathbf{k}. The factorization of $x^{n_{0}}-\alpha_{0}$ into linear
factors over $\mathbf{k}(\sqrt[n]{\alpha})$ is

$$
\begin{equation*}
x^{n_{0}}-\alpha_{0}=\prod_{i=0}^{n_{0}-1}\left(x-\zeta \sqrt[i d]{\sqrt[n_{0}]{\alpha_{0}}}\right) . \tag{8.1}
\end{equation*}
$$

Any non-trivial factor of $x^{n_{0}}-\alpha_{0}$ over \mathbf{k} would be a product of ν linear factors with $0<\nu \leq n_{0}$, and the constant term would be $\pm \zeta_{0}\left(\sqrt[n]{\alpha_{0}}\right)^{\nu}$, where $\zeta_{0}^{n_{0}}=1$. Since \mathbf{k} contains the n-th roots of unity then $\left(\sqrt[n]{\alpha_{0}}\right)^{\nu}$ is in \mathbf{k}. Let c be the greatest common divisor of ν and n_{0}, and put $c=a n_{0}+b \nu$. Then

$$
\left(\sqrt[n]{\alpha_{0}}\right)^{c}=\left(\sqrt[n]{\alpha_{0}}\right)^{a n_{0}+b \nu}=\alpha_{0}^{a}\left(\left(\sqrt[n]{\alpha_{0}}\right)^{\nu}\right)^{b} .
$$

Therefore $\left(\sqrt[n]{\alpha_{0}}\right)^{c}$ is in \mathbf{k}, and

$$
\alpha^{c}=\alpha^{n_{0}\left(c / n_{0}\right)}=\alpha_{0}^{n\left(c / n_{0}\right)}=\left(\left(\sqrt[n_{0}]{\alpha_{0}}\right)^{c}\right)^{n}
$$

so $\alpha^{c} \simeq_{n} 1$. But this is impossible if $0<c<n_{0}$, so we must have $\nu=n_{0}$. This shows that $x^{n_{0}}-\alpha_{0}$ is irreducible over \mathbf{k} and $[\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k}]=n_{0}$.

If $\sigma(\sqrt[n]{\alpha})=\zeta_{\sigma}(\sqrt[n]{\alpha})$ then ζ_{σ} does not depend on $\sqrt[n]{\alpha}$ because if $\zeta^{i} \sqrt[n]{\alpha}$ is another root of $x^{n}-\alpha$ then

$$
\sigma\left(\zeta^{i} \sqrt[n]{\alpha}\right)=\zeta^{i} \sigma(\sqrt[n]{\alpha})=\zeta^{i} \zeta_{\sigma}(\sqrt[n]{\alpha})=\zeta_{\sigma}\left(\zeta^{i} \sqrt[n]{\alpha}\right)
$$

Therefore we may take $\sqrt[n]{\alpha}=\sqrt[n]{\alpha}$. The map $\sigma \rightarrow \zeta_{\sigma}$ is certainly a homomorphism. Since $[\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k}]=n_{0}$ then $\sqrt[n]{\alpha}$ has n_{0} distinct conjugates over \mathbf{k}. This shows that the image of $G(\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k})$ is the group of n_{0}-th roots of unity.

Lemma 8.3. $\mathbf{k}(\sqrt[n]{\beta}) \subset \mathbf{k}(\sqrt[n]{\alpha})$ if and only if $\beta \simeq_{n} \alpha^{\nu}$ for some $\nu, 0 \leq \nu<n_{0}$.
Proof. If $\beta=\alpha^{\nu} \gamma^{n}$ then $(\sqrt[n]{\alpha})^{\nu}$ is an n-th root of β, so $\mathbf{k}(\sqrt[n]{\beta}) \subset \mathbf{k}(\sqrt[n]{\alpha})$. Conversely, suppose $\mathbf{k}(\sqrt[n]{\beta}) \subset \mathbf{k}(\sqrt[n]{\alpha})$. Let $\alpha=\alpha_{0}^{d}$ so that $\mathbf{k}(\sqrt[n]{\alpha})=\mathbf{k}\left(\sqrt[n]{\alpha_{0}}\right)$ and $[\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k}]=n_{0}$. There exist $\gamma_{0}, \ldots, \gamma_{n_{0}-1}$ in \mathbf{k} so that

$$
\begin{equation*}
\sqrt[n]{\beta}=\sum_{i=0}^{n_{0}-1} \gamma_{i}\left(\sqrt[n_{0}]{\alpha_{0}}\right)^{i} \tag{8.2}
\end{equation*}
$$

Choose σ in $G(\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k})$ so that ζ_{σ} is a primitive n_{0}-th root of unity. Let ζ be an n-th root of unity so that $\sigma(\sqrt[n]{\beta})=\zeta \sqrt[n]{\beta}$. Applying σ to both sides of (8.2) gives

$$
\zeta \sqrt[n]{\beta}=\sum_{i=0}^{n_{0}-1} \gamma_{i}\left(\zeta_{\sigma} \sqrt[n_{0}]{\alpha_{0}}\right)^{i}
$$

or

$$
\begin{equation*}
\sqrt[n]{\beta}=\sum_{i=0}^{n_{0}-1} \gamma_{i} \zeta^{-1} \zeta_{\sigma}^{i}\left(\sqrt[n_{0}]{\alpha_{0}}\right)^{i} \tag{8.3}
\end{equation*}
$$

The coefficients in (8.2) and (8.3) must coincide, so if $\gamma_{i} \neq 0$ then $\zeta^{-1} \zeta_{\sigma}^{i}=1$. The values of the $\zeta^{-1} \zeta_{\sigma}^{i}=1$ are all different, so γ_{i} cannot be non-zero for two different value of i. Therefore

$$
\sqrt[n]{\beta}=\gamma_{i_{0}}\left(\sqrt[n]{\alpha_{0}}\right)^{i_{0}}
$$

so we have $\beta=\gamma_{i_{0}}^{n} \alpha_{0}^{i_{0} d}=\gamma_{i_{0}}^{n} \alpha^{i_{0}}$, or $\beta \simeq_{n} \alpha^{i_{0}}$ where $\nu=i_{0}$ satisfies $0 \leq \nu<n_{0}$.
Lemma 8.4. Every extension of \mathbf{k} contained in $\mathbf{k}(\sqrt[n]{\alpha})$ is of the form $\mathbf{k}(\sqrt[n]{\beta})$ where $\beta=\alpha^{y}$ for some y.

Proof. Suppose $\mathbf{k} \subset \mathbf{K} \subset \mathbf{k}(\sqrt[n]{\alpha})$. Let σ generate $G(\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k})$. Let the subgroup fixing \mathbf{K} be generated by σ^{x} where x divides $n_{0}=[\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k}]$. Let $\sqrt[n]{\alpha}=\sqrt[n]{\alpha_{0}}$. A typical element of $\mathbf{k}(\sqrt[n]{\alpha})$ is

$$
\begin{equation*}
\sum_{i=0}^{n_{0}-1} \gamma_{i}\left(\sqrt[n_{0}]{\alpha_{0}}\right)^{i} \tag{8.4}
\end{equation*}
$$

Applying σ^{x} to (8.4) yields

$$
\begin{equation*}
\sum_{i=0}^{n_{0}-1} \gamma_{i} \zeta_{\sigma}^{x i}\left(\sqrt[n]{\alpha_{0}}\right)^{i} \tag{8.5}
\end{equation*}
$$

An element is in \mathbf{K} if and only if (8.4) and (8.5) coincide, which is equivalent to $\gamma_{i}=\gamma_{i} \zeta_{\sigma}^{x i}$ for $0 \leq i<n_{0}$. Therefore an element of $\mathbf{k}(\sqrt[n]{\alpha})$ is in \mathbf{K} if and only if either $\gamma_{i}=0$ or $x i$ is divisible by n_{0} for $0 \leq i<n_{0}$. Since x divides n_{0} then γ_{i} may be non-zero only for $i=j n_{0} / x, 0 \leq j<x$, so elements of \mathbf{K} are of the form

$$
\sum_{j=0}^{x-1} \gamma_{j n_{0} / x} \zeta_{\sigma}^{j n_{0}}\left(\sqrt[n]{\alpha_{0}}\right)^{j n_{0} / x}=\sum_{j=0}^{x-1} \gamma_{j n_{0} / x} \zeta_{\sigma}^{j n_{0}}\left(\sqrt[x]{\alpha_{0}}\right)^{j}
$$

Then $\mathbf{K}=\mathbf{k}\left(\sqrt[x]{\alpha_{0}}\right)$. Putting $n_{0}=x y$ then $\sqrt[x]{\alpha_{0}}=\sqrt[n]{\alpha_{0}^{y}}=\sqrt[n]{\alpha^{y}}$, so $\mathbf{K}=\mathbf{k}\left(\sqrt[n]{\alpha^{y}}\right)$.

Lemma 8.5. Suppose that $\alpha_{1}, \ldots, \alpha_{r}$ are independent elements modulo $\left(\mathbf{k}^{*}\right)^{n}$. Then $\mathbf{K}=\mathbf{k}\left(\sqrt[n]{\alpha_{1}}, \ldots, \sqrt[n]{\alpha_{r}}\right)$ has degree n^{r} over \mathbf{k}. Every cyclic subfield is of the form $\mathbf{k}\left(\sqrt[n]{\alpha_{1}^{x_{1}} \ldots \alpha_{r}^{x_{r}}}\right)$. Galois group $G(\mathbf{K}: \mathbf{k})$ is canonically isomorphic to the product of the n-th roots of unity with itself r times, where $\sigma \in G$ corresponds to $\left(\zeta_{1}, \ldots, \zeta_{r}\right)$ if $\sigma\left(\sqrt[n]{\alpha_{i}}\right)=\zeta_{i}\left(\sqrt[n]{\alpha_{i}}\right)$.

Proof. The case for $r=1$ is established by lemma 8.2 and lemma 8.4. The general case will be proved by induction. Suppose that the conclusion holds for $r-1$. Then $\left[\mathbf{k}\left(\sqrt[n]{\alpha_{2}}, \ldots, \sqrt[n]{\alpha_{r}}\right): \mathbf{k}\right]=n^{r-1}$, and every subfield of $\mathbf{k}\left(\sqrt[n]{\alpha_{2}}, \ldots, \sqrt[n]{\alpha_{r}}\right)$ is of the form $\mathbf{k}\left(\sqrt[n]{\alpha_{2}^{x_{2}} \ldots \alpha_{r}^{x_{r}}}\right)$. Let $\mathbf{L}=\mathbf{k}\left(\sqrt[n]{\alpha_{2}}, \ldots, \sqrt[n]{\alpha_{r}}\right) \cap \mathbf{k}\left(\sqrt[n]{\alpha_{1}}\right)$. Then

$$
\mathbf{L}=\mathbf{k}\left(\sqrt[n]{\alpha_{2}^{x_{2}} \ldots \alpha_{r}^{x_{r}}}\right)=\mathbf{k}\left(\sqrt[n]{\alpha_{1}^{x_{1}}}\right)
$$

By lemma 8.3 we have $\alpha_{2}^{x_{2}} \ldots \alpha_{r}^{x_{r}} \simeq_{n} \alpha_{1}^{x x_{1}}$, or $\alpha_{1}^{-x x_{1}} \alpha_{2}^{x_{2}} \ldots \alpha_{r}^{x_{r}} \simeq_{n} 1$. Since $\alpha_{1}, \ldots, \alpha_{r}$ are independent modulo ($\left.\mathbf{k}^{*}\right)^{n}$, we have

$$
-x x_{1}=x_{2}=\cdots=x_{r}=0(\bmod n)
$$

This shows $\alpha_{2}^{x_{2}} \ldots \alpha_{r}^{x_{r}} \simeq_{n} 1$, so $\mathbf{k}\left(\sqrt[n]{\alpha_{2}^{x_{2}} \ldots \alpha_{r}^{x_{r}}}\right)=\mathbf{k}$. By lemma 2.10, we have $[\mathbf{K}: \mathbf{k}]=n^{r}$, establishing the first claim. By lemma 2.11, there is an isomorphism $\sigma \rightarrow\left(\sigma_{1}, \sigma^{\prime}\right)$ of Galois groups

$$
G\left(\mathbf{k}\left(\sqrt[n]{\alpha_{1}}, \ldots, \sqrt[n]{\alpha_{r}}\right): \mathbf{k}\right) \simeq G\left(\mathbf{k}\left(\sqrt[n]{\alpha_{1}}\right): \mathbf{k}\right) \times G\left(\mathbf{k}\left(\sqrt[n]{\alpha_{2}}, \ldots, \sqrt[n]{\alpha_{r}}\right): \mathbf{k}\right)
$$

By lemma 8.2, $G\left(\mathbf{k}\left(\sqrt[n]{\alpha_{1}}\right): \mathbf{k}\right)$ is isomorphic to the group of n-th roots of unity with $\sigma_{1} \rightarrow \zeta_{1}$ if $\sigma_{1}\left(\sqrt[n]{\alpha_{1}}\right)=\zeta_{1}\left(\sqrt[n]{\alpha_{1}}\right)$. By the induction hypothesis, Galois group $G\left(\mathbf{k}\left(\sqrt[n]{\alpha_{2}}, \ldots, \sqrt[n]{\alpha_{r}}\right): \mathbf{k}\right)$ is isomorphic to the product of $r-1$ copies of the n-th roots of unity with $\sigma^{\prime} \rightarrow\left(\zeta_{2}, \ldots, \zeta_{r}\right)$ if $\sigma^{\prime}\left(\sqrt[n]{\alpha_{i}}\right)=\zeta_{i}\left(\sqrt[n]{\alpha_{i}}\right)$. The composite map $\sigma \rightarrow\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{r}\right)$ is an isomorphism between $G\left(\mathbf{k}\left(\sqrt[n]{\alpha_{1}}, \ldots, \sqrt[n]{\alpha_{r}}\right): \mathbf{k}\right)$ and the product of r copies of the n-th roots of unity.

It remains to prove the claim about cyclic subfields. Suppose that $\mathbf{k} \subset \mathbf{L} \subset$ $\mathbf{k}\left(\sqrt[n]{\alpha_{1}}, \ldots, \sqrt[n]{\alpha_{r}}\right)$ and $G(\mathbf{L}: \mathbf{k})$ is cyclic. Let τ generate $G(\mathbf{L}: \mathbf{k})$. Choose ζ to be some primitive n-th root of unity. For each $i=1, \ldots, r$, let σ_{i} be the element of $G\left(\mathbf{k}\left(\sqrt[n]{\alpha_{1}}, \ldots, \sqrt[n]{\alpha_{r}}\right): \mathbf{k}\right)$ corresponding to $(1, \ldots, \zeta, \ldots, 1)$. Every element of $G\left(\mathbf{k}\left(\sqrt[n]{\alpha_{1}}, \ldots, \sqrt[n]{\alpha_{r}}\right): \mathbf{k}\right)$ is of the form $\prod_{i=1}^{r} \sigma_{i}^{y_{i}}$. Let the restriction of σ_{i} to \mathbf{L} be $\tau^{x_{i}}$. Then $\prod_{i=1}^{r} \sigma_{i}^{y_{i}}$ leaves elements of \mathbf{L} fixed if and only if $\prod_{i=1}^{r} \tau^{x_{i} y_{i}}=1$, or

$$
\begin{equation*}
\sum_{i=1}^{r} x_{i} y_{i}=0(\bmod m) \quad \text { where } m=[\mathbf{L}: \mathbf{k}] . \tag{8.6}
\end{equation*}
$$

Every element α of $\mathbf{k}\left(\sqrt[n]{\alpha_{1}}, \ldots, \sqrt[n]{\alpha_{r}}\right)$ may be uniquely represented as

$$
\begin{equation*}
\alpha=\sum_{k_{1}=1}^{n-1} \cdots \sum_{k_{r}=1}^{n-1} \gamma_{k_{1} \ldots k_{r}}\left(\sqrt[n]{\alpha_{1}}\right)^{k_{1}} \ldots\left(\sqrt[n]{\alpha_{r}}\right)^{k_{r}} \tag{8.7}
\end{equation*}
$$

The result of applying $\sigma=\prod_{i=1}^{r} \sigma_{i}^{y_{i}}$ to α is

$$
\sigma(\alpha)=\sum_{k_{1}=1}^{n-1} \cdots \sum_{k_{r}=1}^{n-1} \gamma_{k_{1} \ldots k_{r}} \zeta^{y_{1} k_{1}+\cdots+y_{r} k_{r}}\left(\sqrt[n]{\alpha_{1}}\right)^{k_{1}} \cdots\left(\sqrt[n]{\alpha_{r}}\right)^{k_{r}}
$$

Then α is in \mathbf{L} if and only if $\gamma_{k_{1} \ldots k_{r}}=\gamma_{k_{1} \ldots k_{r}} \zeta^{y_{1} k_{1}+\cdots+y_{r} k_{r}}$ for all $\left(y_{1}, \ldots, y_{r}\right)$ satisfying (8.6), which is equivalent to

$$
\text { either } \gamma_{k_{1} \ldots k_{r}}=0 \text {, or } \sum_{i=1}^{r} x_{i} y_{i}=0(\bmod m) \Longrightarrow \sum_{i=1}^{r} y_{i} k_{i}=0(\bmod n)
$$

Therefore elements of \mathbf{L} have the form

$$
\begin{equation*}
\alpha=\sum_{\left(k_{1}, \ldots, k_{r}\right) \in S} \gamma_{k_{1} \ldots k_{r}}\left(\sqrt[n]{\alpha_{1}}\right)^{k_{1}} \ldots\left(\sqrt[n]{\alpha_{r}}\right)^{k_{r}} \tag{8.8}
\end{equation*}
$$

where

$$
S=\left\{\left(k_{1}, \ldots, k_{r}\right) \mid \sum_{i=1}^{r} x_{i} y_{i}=0(\bmod m) \Longrightarrow \sum_{i=1}^{r} y_{i} k_{i}=0(\bmod n)\right\} .
$$

Since $G(\mathbf{L}: \mathbf{k})$ is cyclic of order m and $G[\mathbf{K}: \mathbf{k}]$ is the product of r copies of cyclic groups of order n, it follows that m must divide n. Let $m d=n$. Since $\sum_{i=1}^{r} x_{i} y_{i}=0(\bmod m)$ if and only if $\sum_{i=1}^{r} d x_{i} y_{i}=0(\bmod n)$, the condition for set S is

$$
S=\left\{\left(k_{1}, \ldots, k_{r}\right) \mid \sum_{i=1}^{r} d x_{i} y_{i}=0(\bmod n) \Longrightarrow \sum_{i=1}^{r} y_{i} k_{i}=0(\bmod n)\right\}
$$

We claim that if $\left(k_{1}, \ldots, k_{r}\right)$ is in S then there is an integer a so that $k_{i}=$ $a d x_{i}(\bmod n)$ for $1 \leq i \leq n$. Assuming this for the moment, then for $\left(k_{1}, \ldots, k_{r}\right)$ in S we have

$$
\begin{aligned}
&\left(\sqrt[n]{\alpha_{1}}\right)^{k_{1}} \ldots\left(\sqrt[n]{\alpha_{r}}\right)^{k_{r}}=\left(\left(\sqrt[n]{\alpha_{1}}\right)^{d x_{1}} \ldots\left(\sqrt[n]{\alpha_{r}}\right)^{d x_{r}}\right)^{a} \alpha_{1}^{b_{1}} \ldots \alpha_{r}^{b_{r}} \\
&=\left(\sqrt[n]{\alpha_{1}^{d x_{1}} \ldots \alpha_{r}^{d x_{r}}}\right)^{a} \alpha_{1}^{b_{1}} \ldots \alpha_{r}^{b_{r}}
\end{aligned}
$$

We therefore have

$$
\mathbf{L} \subset \mathbf{k}\left(\sqrt[n]{\alpha_{1}^{d x_{1}} \ldots \alpha_{r}^{d x_{r}}}\right)
$$

Note that $\left(d x_{1}, \ldots, d x_{r}\right)$ is in the set S, so $\alpha=\sqrt[n]{\alpha_{1}^{d x_{1}} \ldots \alpha_{r}^{d x_{r}}}$ is an element of \mathbf{L}, and we have

$$
\mathbf{L}=\mathbf{k}\left(\sqrt[n]{\alpha_{1}^{d x_{1} \ldots \alpha_{r}^{d x_{r}}}}\right)
$$

We still need to establish the claim about the existence of integer a, which is established by the following lemma.

Lemma 8.6. If $\left(d x_{1}, \ldots, d x_{r}\right)$ and $\left(k_{1}, \ldots, k_{r}\right)$ satisfy the condition

$$
\sum_{i=1}^{r} d x_{i} y_{i}=0(\bmod n) \Longrightarrow \sum_{i=1}^{r} y_{i} k_{i}=0(\bmod n)
$$

then there exists an integer a so that $k_{i}=a d x_{i}(\bmod n)$ for $1 \leq i \leq r$.
Proof. The proof is by induction. Take $r=1$. The hypothesis is that given $d x_{1}$ and k_{1}, if $d x_{1} y_{1}=0(\bmod n)$ then $y_{1} k_{1}=0(\bmod n)$. Let c be the greatest common divisor of $d x_{1}$ and n. Then $(n / c) d x_{1}=0(\bmod n)$, so $(n / c) k_{1}=0(\bmod n)$. Therefore c divides k_{1}. Since $d x_{1} / c$ and n / c are relatively prime, then $d x_{1} / c$ has an inverse modulo n / c, so there exists an integer a such that $a\left(d x_{1} / c\right)=\left(k_{1} / c\right)(\bmod n / c)$, or $a d x_{1}=k_{1}(\bmod n)$.

Suppose that the lemma holds for the case $r-1$. If $\left(d x_{2}, \ldots, d x_{r}\right)$ and $\left(k_{2}^{\prime}, \ldots, k_{r}^{\prime}\right)$ satisfy the condition that if $\sum_{i=2}^{r} d x_{i} y_{i}=0(\bmod n)$ implies $\sum_{i=2}^{r} y_{i} k_{i}^{\prime}=0(\bmod n)$, then there exists an integer a_{2} so that $k_{i}^{\prime}=a_{2} d x_{i}(\bmod n)$ for $2 \leq i \leq r$. Now suppose that $\left(d x_{1}, \ldots, d x_{r}\right)$ and $\left(k_{1}, \ldots, k_{r}\right)$ satisfy the condition that $\sum_{i=1}^{r} d x_{i} y_{i}=$ $0(\bmod n)$ implies $\sum_{i=1}^{r} y_{i} k_{i}=0(\bmod n)$.

Let y_{1} be such that $d x_{1} y_{1}=0(\bmod n)$. Take $\left(y_{1}, \ldots, y_{r}\right)=\left(y_{1}, 0, \ldots, 0\right)$. Then $\sum_{i=1}^{r} d x_{i} y_{i}=0(\bmod n)$, so $\sum_{i=1}^{r} y_{i} k_{i}=y_{1} k_{1}=0(\bmod n)$. Since $d x_{1}$ and k_{1} satisfy the hypothesis for $r=1$, then there exists an integer a_{1} so that $k_{1}=a_{1} d x_{1}(\bmod n)$. Put

$$
\begin{align*}
& k_{1}^{\prime}=k_{1}-a_{1} d x_{1} \tag{8.8}\\
& k_{2}^{\prime}=k_{2}-a_{1} d x_{2} \\
& \vdots \\
& k_{r}^{\prime}=k_{r}-a_{1} d x_{r}
\end{align*}
$$

Let c be the greatest common divisor of $d x_{1}$ and n. We want to show that $\left((n d / c) x_{2}, \ldots,(n d / c) x_{r}\right)$ and $\left(k_{2}^{\prime}, \ldots, k_{r}^{\prime}\right)$ satisfy the hypothesis for the case $r-1$. Suppose that $\sum_{i=2}^{r}(n d / c) x_{i} y_{i}=0(\bmod n)$. Then $\sum_{i=2}^{r} d x_{i} y_{i}=0(\bmod c)$. Put $c=\lambda_{1} d x_{1}+\lambda_{2} n$. Then

$$
\sum_{i=2}^{r} d x_{i} y_{i}=c \lambda_{3}=\lambda_{1} \lambda_{3} d x_{1}+\lambda_{2} \lambda_{3} n
$$

or

$$
-\lambda_{1} \lambda_{3} d x_{1}+\sum_{i=2}^{r} d x_{i} y_{i}=0(\bmod n)
$$

Putting $y_{1}=-\lambda_{1} \lambda_{3}$, we have

$$
\sum_{i=1}^{r} d x_{i} y_{i}=0(\bmod n)
$$

Then

$$
\sum_{i=1}^{r} y_{i} k_{i}^{\prime}=\sum_{i=1}^{r} y_{i}\left(k_{i}-a_{1} d x_{i}\right)=\sum_{i=1}^{r} y_{i} k_{i}-a_{1} \sum_{i=1}^{r} d x_{i} y_{i}=0-0=0(\bmod n)
$$

We have $k_{1}^{\prime}=0(\bmod n)$ by (8.8), so the term $i=1$ may be deleted to obtain

$$
\sum_{i=2}^{r} k_{i}^{\prime} y_{i}=0(\bmod n)
$$

The hypothesis for the case $r-1$ is satisfied, so there exists an integer a_{2} so that $k_{i}^{\prime}=$ $a_{2}(n d / c) x_{i}(\bmod n)$ for $2 \leq i \leq r$. For $i=1$, we have $k_{1}^{\prime}=0=a_{2}(n d / c) x_{1}(\bmod n)$ because c divides $d x_{1}$, so

$$
k_{i}^{\prime}=a_{2} \frac{n}{c} d x_{i}(\bmod n) \text { for } 1 \leq i \leq r .
$$

Finally, we have

$$
k_{i}=k_{i}^{\prime}+a_{1} d x_{i}=a_{2} \frac{n}{c} d x_{i}+a_{1} d x_{i}=\left(a_{2} \frac{n}{c}+a_{1}\right) d x_{i}(\bmod n) \text { for } 1 \leq i \leq r .
$$

Put $a=a_{2} n / c+a_{1}$. Then $k_{i}=a d x_{i}(\bmod n)$ for $1 \leq i \leq n$. This completes the proof of lemma 8.6 and also of lemma 8.5.

Lemma 8.7. Suppose that n is prime and \mathbf{k} contains the n-th roots of unity. If \mathbf{K} / \mathbf{k} is an extension of degree n, then there is an element α in \mathbf{k} so that $\mathbf{K}=\mathbf{k}(\sqrt[n]{\alpha})$.

Proof. Let θ be an element of \mathbf{K} that is not in \mathbf{k}. Then $\mathbf{K}=\mathbf{k}(\theta)$ since there are no intermediate subfields. Let σ be a generator of $G(\mathbf{K}: \mathbf{k})$, which is cyclic of order n. Then $\theta, \theta^{\sigma}, \ldots, \theta^{\sigma^{n-1}}$ are all distinct. The matrix

$$
\Theta=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\theta & \theta^{\sigma} & \cdots & \theta^{\sigma^{n-1}} \\
\vdots & & & \vdots \\
\theta^{n-1} & \left(\theta^{\sigma}\right)^{n-1} & \ldots & \left(\theta^{\sigma^{n-1}}\right)^{n-1}
\end{array}\right)
$$

is a non-singular Vandermonde matrix. Let $\zeta \neq 1$ be an n-th root of unity. Θ does not annihilate column vector $Z=\left(1, \zeta, \ldots, \zeta^{n-1}\right)^{t}$, so if $\left(\beta_{0}, \ldots, \beta_{n-1}\right)^{t}=\Theta Z$ then not all of the β_{j} are zero. Choosing j so that $\beta_{j} \neq 0$, we have

$$
\beta_{j}=\theta^{j}+\cdots+\left(\theta^{\sigma^{i}}\right)^{j} \zeta^{i}+\cdots+\left(\theta^{\sigma^{n-1}}\right)^{j} \zeta^{n-1} \neq 0
$$

Apply σ to both sides to obtain

$$
\begin{aligned}
\beta_{j}^{\sigma} & =\left(\theta^{\sigma}\right)^{j}+\cdots+\left(\theta^{\sigma^{i+1}}\right)^{j} \zeta^{i}+\cdots+\left(\theta^{\sigma^{n}}\right)^{j} \zeta^{n-1} \\
& =\left(\theta^{j}\right) \zeta^{-1}+\cdots+\left(\theta^{\sigma^{i}}\right)^{j} \zeta^{i-1}+\cdots+\left(\theta^{\sigma^{n-1}}\right)^{j} \zeta^{n-2} \\
& =\beta_{j} \zeta^{-1} .
\end{aligned}
$$

Therefore $\beta_{j} \notin \mathbf{k}$ and $\left(\beta_{j}^{n}\right)^{\sigma}=\left(\beta_{j}^{\sigma}\right)^{n}=\beta_{j}^{n}$, so β_{j}^{n} is in \mathbf{k}. Take $\alpha=\beta_{j}^{n}$. Then $\mathbf{K}=\mathbf{k}(\sqrt[n]{\alpha})$.

Lemma 8.8. Suppose that \mathbf{k} contain the n-th roots of unity, and let $\zeta \neq 1$ be an n-th root of unity. If $\zeta=1(\bmod p)$ then p must divide (n).

Proof. If $\zeta \neq 1$ then ζ is a root of $x^{n-1}+\cdots+x+1$, so

$$
\zeta^{n-1}+\cdots+\zeta+1=0
$$

If $\zeta=1(\bmod p)$ then $n=0(\bmod p)$.
Lemma 8.9. Let p be a prime of \mathbf{k} such that p does not divide n and p does not divide element α of \mathbf{k}. Then p does not ramify in $\mathbf{k}(\sqrt[n]{\alpha})$.

Proof. Let $\mathbf{K}=\mathbf{k}(\sqrt[n]{\alpha})$. Let \wp be a prime of \mathbf{K} dividing p. Element α is not divisible by p, so α is a unit in \mathbf{o}_{p}. We have $|\sqrt[n]{\alpha}|_{\wp}^{n}=|\alpha|_{\wp}=|\alpha|_{p}^{e f}=1$, so $\sqrt[n]{\alpha}$
is a unit in \mathbf{O}_{\wp}. If σ is in $G(\mathbf{K}: \mathbf{k})$ then there is an n-root of unity ζ so that $\sigma(\sqrt[n]{\alpha})=\zeta \sqrt[n]{\alpha}$. Suppose that σ is in the inertial group of \wp. Then

$$
\sigma(\sqrt[n]{\alpha})=\sqrt[n]{\alpha}(\bmod \wp)
$$

Then $\zeta \sqrt[n]{\alpha}=\sqrt[n]{\alpha}(\bmod \wp)$. Since $\sqrt[n]{\alpha}$ is a unit in \mathbf{O}_{\wp}, we have $\zeta=1(\bmod \wp)$. Then $\zeta=1$ by lemma 8.8, which shows that the inertial group is trivial. Therefore p does not ramify in $\mathbf{k}(\sqrt[n]{\alpha})$.

Lemma 8.10. The p-adic field \mathbf{k}_{p} contains only a finite number of roots of unity.
Proof. If $N>b /(p-1)$ as defined in lemma 4.12 then there is an isomorphism between subgroups $W=\left\{\alpha \in \mathbf{k}^{*} \mid \operatorname{ord}_{p}(\alpha-1)>N\right\}$ and $\left\{y \in \mathbf{o}_{p} \mid \operatorname{ord}_{p}(y)>N\right\}$. W contains no root of unity other than $\alpha=1$. Therefore the only root of unity in the kernel of the homomorphism $\mathbf{o}_{p}^{*} \rightarrow \mathbf{o}_{p}^{*} / W$ is $\alpha=1$. The number of roots of unity in \mathbf{o}_{p}^{*} cannot be greater than $\left[\mathbf{o}_{p}^{*}: W\right]<\mathrm{N} p^{N+1}$.

Lemma 8.11. If the p-adic field contains the n-th roots of unity then

$$
\left[\mathbf{k}_{p}^{*}:\left(\mathbf{k}_{p}^{*}\right)^{n}\right]=n^{2}(\mathrm{~N} p)^{a} \text { and }\left[\mathbf{u}_{p}: \mathbf{u}_{p}^{n}\right]=n(\mathrm{~N} p)^{a}
$$

where $n \mathbf{o}_{p}=p^{a}$.
Proof. If $p=(\pi)$ then \mathbf{k}_{p}^{*} is the direct product $\langle\pi\rangle \mathbf{u}_{p}$, so

$$
\left[\mathbf{k}_{p}^{*}:\left(\mathbf{k}^{*}\right)^{n}\right]=n\left[\mathbf{u}_{p}:\left(\mathbf{u}_{p}\right)^{n}\right] .
$$

Let V be the group of roots of unity in \mathbf{k}_{p}. Then V is a cyclic group of order divisible by n. Then

$$
\left[\mathbf{u}_{p}:\left(\mathbf{u}_{p}\right)^{n}\right]=\left[\mathbf{u}_{p}: V\left(\mathbf{u}_{p}\right)^{n}\right]\left[V\left(\mathbf{u}_{p}\right)^{n}:\left(\mathbf{u}_{p}\right)^{n}\right]
$$

and

$$
\left[V\left(\mathbf{u}_{p}\right)^{n}:\left(\mathbf{u}_{p}\right)^{n}\right]=\left[V: V \cap\left(\mathbf{u}_{p}\right)^{n}\right]=\left[V: V^{n}\right]=n
$$

so

$$
\begin{equation*}
\left[\mathbf{k}_{p}^{*}:\left(\mathbf{k}^{*}\right)^{n}\right]=n^{2}\left[\mathbf{u}_{p}: V\left(\mathbf{u}_{p}\right)^{n}\right] \tag{8.9}
\end{equation*}
$$

Suppose N is sufficiently large so that $\log (x)$ is defined on $W=1+p^{N}$. Then $\left[\mathbf{u}_{p}: W\right]$ is finite. Let m be an integer divisible by $\left[\mathbf{u}_{p}: W\right]$ and by the order of V. Consider the map $\alpha \rightarrow \alpha^{m} \rightarrow \alpha^{m} \mathbf{u}_{p}^{n m}$.

$$
\mathbf{u}_{p} \rightarrow\left(\mathbf{u}_{p}\right)^{m} \rightarrow\left(\mathbf{u}_{p}\right)^{m} /\left(\mathbf{u}_{p}\right)^{n m}
$$

The kernel contains $V \mathbf{u}_{p}^{n}$. Also, suppose α is in the kernel. Then $\alpha^{m} \in \mathbf{u}_{p}^{n m}$, so $\alpha^{m}=\beta^{n m}$, or $\left(\alpha \beta^{-n}\right)^{m}=1$. We have $\alpha \beta^{-n}=\zeta \in V$, or $\alpha=\zeta \beta^{n} \in V \mathbf{u}_{p}^{n}$, so the kernel is exactly $V \mathbf{u}_{p}^{n}$. This shows

$$
\begin{equation*}
\left[\mathbf{u}_{p}: V \mathbf{u}_{p}^{n}\right]=\left[\mathbf{u}_{p}^{m}: \mathbf{u}_{p}^{m n}\right] . \tag{8.10}
\end{equation*}
$$

The map $x \rightarrow \log (x)$ maps W isomorphically onto p^{N}. Let M be the image of \mathbf{u}_{p}^{m}. (We have $\mathbf{u}_{p}^{m} \subset W$ since m is divisible by $\left[\mathbf{u}_{p}: W\right]$.) We claim that M is a \mathbf{Z}_{q} module where $q=\mathbf{Z} \cap p$ is the rational prime which p divides. Let $A=\sum_{i=0}^{\infty} a_{i} q^{i}$ be an element of \mathbf{Z}_{q}, and put

$$
A_{k}=a_{0}+a_{1} q+\cdots+a_{k} q^{k}, \quad 0 \leq a_{i}<q
$$

If $y \in M$, let $y=\log (x)$ where $x \in \mathbf{u}_{p}^{m}$. The $x=x_{1}^{m}$ where $x \in \mathbf{u}_{p}$. Since $x \in W=1+p^{N}$ then $x=1+\beta_{0} \pi^{N}$ with $b \in \mathbf{u}_{p}$. Let $(q)=p^{e}$ in \mathbf{o}_{p}. Then

$$
\begin{aligned}
x^{q} & =\left(1+\beta_{0} \pi^{N}\right)^{q}=1+q \beta_{0} \pi^{N}+\ldots=1+\beta_{1} \pi^{N+1} \\
x^{q^{2}} & =\left(1+\beta_{1} \pi^{N+1}\right)^{q}=1+q \beta_{1} \pi^{N+1}+\ldots=1+\beta_{2} \pi^{N+2}
\end{aligned}
$$

There exist elements $\beta_{0}, \beta_{1}, \beta_{2}, \ldots$, in \mathbf{u}_{p} depending only on x so that

$$
x^{A_{k}}=\prod_{i=0}^{k}\left(1+a_{i} \beta_{i} \pi^{N+i}\right) .
$$

This shows that the sequence $x^{A_{k}}$ converges to an element X of \mathbf{u}_{p}. We have $\log \left(\lim _{i \rightarrow \infty} x^{A_{k}}\right)=\lim _{i \rightarrow \infty} \log \left(x^{A_{k}}\right)=\lim _{i \rightarrow \infty} A_{k} \log (x)$, so $\log (X)=A \log (x)$. We need to show that X is an m-th power. Let z be an element in \mathbf{u}_{p} so that $z^{m}=x$. Then $\left(z^{A_{k}}\right)^{m}=x^{A_{k}}$. There exists a convergent subsequence $z^{A_{k_{j}}}$ since \mathbf{u}_{p} is compact. Then

$$
\left(\lim _{j \rightarrow \infty} z^{A_{k_{j}}}\right)^{m}=\lim _{j \rightarrow \infty}\left(z^{A_{k_{j}}}\right)^{m}=\lim _{j \rightarrow \infty} x^{A_{k_{j}}}=X .
$$

This shows that $A y$ is the image of an m-power, so $A y$ is in M. This shows M is an \mathbf{Z}_{q}-module.

Next, by lemma 4.13, if $a=\operatorname{ord}_{p}(n)$ then every element x in $1+p^{N+a}$ is the n-th power of an element in $1+p^{N}$. Therefore, $p^{N+a} \subset M$. This shows that M contains $\left[\mathbf{k}_{p}: \mathbf{Q}_{q}\right]$ independent elements, i.e., M is a free \mathbf{Z}_{p} module of the same dimension as \mathbf{o}_{p}. Therefore $M \simeq \mathbf{o}_{p}$, and $n M \simeq n \mathbf{o}_{p}$. Then

$$
\left[\mathbf{u}_{p}^{m}: \mathbf{u}_{p}^{n m}\right]=[M: n M]=\left[\mathbf{o}_{p}: n \mathbf{o}_{p}\right]=\left[\mathbf{o}_{p}: p^{a}\right]=(\mathrm{N} p)^{a} .
$$

Using the above formula in (8.9) and (8.10) completes the proof of the lemma.

Lemma 8.12. Let \mathbf{k} be an algebraic number field containing the n-th roots of unity. Let E be a finite set of primes containing all infinite primes and all primes dividing n, and let $\mathbf{I}_{\mathbf{k}}^{n}(E)=\prod_{p \in E}\left(\mathbf{k}_{p}^{*}\right)^{n} \times \prod_{p \notin E} \mathbf{u}_{p}$. If E contains $s+1$ primes then

$$
\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=n^{2(s+1)}
$$

Proof. We have $\mathbf{I}_{\mathbf{k}}(E)=\prod_{p \in E} \mathbf{k}_{p}^{*} \times \prod_{p \notin E} \mathbf{u}_{p}$, so

$$
\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=\prod_{p \in E}\left[\mathbf{k}_{p}^{*}:\left(\mathbf{k}_{p}^{*}\right)^{n}\right]
$$

If p is a complex infinite prime of \mathbf{k} then $\left[\mathbf{k}_{p}^{*}:\left(\mathbf{k}_{p}^{*}\right)^{n}\right]=1$; if p is a real infinite prime then $n=1$ or $n=2$, so $\left[\mathbf{k}_{p}^{*}:\left(\mathbf{k}_{p}^{*}\right)^{n}\right]=n$. If p is a finite prime then by lemma 8.11 we have $\left[\mathbf{k}_{p}^{*}:\left(\mathbf{k}_{p}^{*}\right)^{n}\right]=n^{2} \mathrm{~N} p^{\operatorname{ord}_{p}(n)}$. Let E contain r_{0} finite primes, r_{1} real primes and r_{2} complex primes. Let E_{0} be the set of finite primes in E. We have

$$
\begin{equation*}
\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=\left(n^{2 r_{0}} \prod_{p \in E_{0}} \mathrm{~N} p^{\operatorname{ord}_{p}(n)}\right) n^{r_{1}} \tag{8.11}
\end{equation*}
$$

Each prime p in E_{0} divides some rational prime q, and we have $\mathrm{N} p=\mathrm{N} q^{f}$ and $\operatorname{ord}_{p}(n)=e \operatorname{ord}_{q}(n)$. Since E_{0} contains all primes dividing n, and efg $=[\mathbf{k}: \mathbf{Q}]=$ $r_{1}+2 r_{2}$, we have

$$
\prod_{p \in E_{0}} \mathrm{~N} p^{\operatorname{ord}_{p}(n)}=\prod_{q \mid n} \prod_{p \mid q} \mathrm{~N} p^{\operatorname{ord}_{p}(n)}=\prod_{q \mid n} \prod_{p \mid q} \mathrm{~N} q^{e f \operatorname{ord}_{q}(n)}=\prod_{q \mid n} \mathrm{~N} q^{e f g \operatorname{ord}_{q}(n)}=n^{r_{1}+2 r_{2}}
$$

Using this result in (8.11) produces $n^{2 r_{0}+2 r_{1}+2 r_{2}}=n^{2(s+1)}$.
Reduction to the case of extensions of prime degree n. Every finite abelian group G contains a decomposition $G=G_{0} \supset G_{1} \supset \cdots \supset G_{r}=\{1\}$ such that G_{i} / G_{i+1} is cyclic of prime index, so if \mathbf{K} is an abelian extension of \mathbf{k} then there exist extensions $\mathbf{k}=\mathbf{k}_{0} \subset \mathbf{k}_{1} \subset \cdots \subset \mathbf{k}_{r}=\mathbf{K}$ such that $\mathbf{k}_{i+1} / \mathbf{k}_{i}$ is cyclic of prime degree. Lemma 8.14 will show that if the second inequality holds for each extension $\mathbf{k}_{i+1} / \mathbf{k}$ then it will hold for \mathbf{K} / \mathbf{k}, after which it will be enough to prove the second inequality for cyclic extensions of prime degree.

Lemma 8.13. Suppose that \mathbf{K} is a finite abelian extension of \mathbf{K}_{1} and \mathbf{K}_{1} is a finite abelian extension of \mathbf{k}. Then

$$
\left[\mathbf{k}^{*} \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right] \text { divides }\left[\mathbf{I}_{\mathbf{K}_{1}}: \mathbf{K}_{1}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{K}}\right]
$$

Proof. We have We have

$$
\begin{align*}
& {\left[\mathbf{k}^{*} \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=\left[\mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{k}} \cap \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}\right]} \tag{8.12}\\
& =\left[\mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{k}}\right) \cap \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}\right] \\
& \quad=\left[\mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}:\left(\mathbf{k}^{*} \cap \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}\right) \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{K}}\right)\right] .
\end{align*}
$$

Since $\mathbf{k}^{*} \cap \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}} \supset \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{K}_{1}^{*}$, the rightmost term of (8.12) divides (8.13).

$$
\begin{equation*}
\left[\mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}: \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}}\left(\mathbf{K}_{1}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{K}}\right)\right] \tag{8.13}
\end{equation*}
$$

The kernel of the homomorphism in (8.14) contains $\mathbf{K}_{1}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{K}}$.

$$
\begin{equation*}
\mathbf{I}_{\mathbf{K}_{1}} \xrightarrow{\mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}}} \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{K}_{1} \longrightarrow \frac{\mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{K}_{1}}{\mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}}\left(\mathbf{K}_{1}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{K}}\right)} \tag{8.14}
\end{equation*}
$$

Therefore the homomorphism

$$
\frac{\mathbf{I}_{\mathbf{K}_{1}}}{\mathbf{K}_{1}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{K}}} \longrightarrow \frac{\mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{K}_{1}}{\mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}}\left(\mathbf{K}_{1}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{K}}\right)}
$$

is a surjection, so (8.13) must divide $\left[\mathbf{I}_{\mathbf{K}_{1}}: \mathbf{K}_{1}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{K}}\right]$ proving the lemma.
Lemma 8.14. Suppose that \mathbf{K} is a finite abelian extension of \mathbf{K}_{1} and \mathbf{K}_{1} is a finite abelian extension of \mathbf{k} such that the second inequality is valid for $\mathbf{K} / \mathbf{K}_{1}$ and $\mathbf{K}_{1} / \mathbf{k}$. Then the second inequality is valid for \mathbf{K} / \mathbf{k}.

Proof. We have

$$
\begin{equation*}
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}\right]\left[\mathbf{k}^{*} \mathbf{N}_{\mathbf{K}_{1} / \mathbf{k}} \mathbf{I}_{\mathbf{K}_{1}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right] \tag{8.15}
\end{equation*}
$$

If the second fundamental inequality holds for $\mathbf{K}_{1} / \mathbf{k}$ then first factor of (8.12) divides $\left[\mathbf{K}_{1}: \mathbf{k}\right]$, By lemma 8.13, the second factor divides $\left[\mathbf{I}_{\mathbf{K}_{1}}: \mathbf{K}_{1}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{K}_{1}} \mathbf{I}_{\mathbf{K}}\right]$, which divides $\left[\mathbf{K}: \mathbf{K}_{1}\right]$ if the second fundamental inequality holds for $\mathbf{K} / \mathbf{K}_{1}$. This shows that the right side of (8.15) divides $\left[\mathbf{K}: \mathbf{K}_{1}\right]\left[\mathbf{K}_{1}: \mathbf{k}\right]$, so $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ divides $[\mathbf{K}: \mathbf{k}$], proving the second inequality for \mathbf{K} / \mathbf{k}.

Reduction to extensions of fields containing n-th roots of unity.
Lemma 8.15. If the second fundamental inequality holds for abelian extensions of prime degree n where the ground field contains the n-th roots of unity, then it also holds for any abelian extension of degree n.

Proof. Put $\mathbf{Z}=\mathbf{k}(\zeta)$, where ζ is a primitive n-th root of unity. Let \mathbf{K} / \mathbf{k} be an abelian extension of degree n. Since $\mathbf{N}_{\mathbf{K Z} / \mathbf{k}} \mathbf{I}_{\mathbf{K Z}}$ is a subgroup of $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$ then $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ divides $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K Z} / \mathbf{k}} \mathbf{I}_{\mathbf{K Z}}\right]$, and for that term we have

$$
\begin{equation*}
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K Z} / \mathbf{k}} \mathbf{I}_{\mathbf{K Z}}\right]=\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}\right]\left[\mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K Z} / \mathbf{k}} \mathbf{I}_{\mathbf{K Z}}\right] \tag{8.16}
\end{equation*}
$$

By lemma 8.13, the second factor on the right side divides $\left[\mathbf{I}_{\mathbf{Z}}: \mathbf{Z}^{*} \mathbf{N}_{\mathbf{K Z} / \mathbf{Z}} \mathbf{I}_{\mathbf{K Z}}\right]$. Therefore $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ divides $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}\right]\left[\mathbf{I}_{\mathbf{Z}}: \mathbf{Z}^{*} \mathbf{N}_{\mathbf{K Z} / \mathbf{Z}} \mathbf{I}_{\mathbf{K Z}}\right]$. We have $[\mathbf{K Z}: \mathbf{Z}]=[\mathbf{K}: \mathbf{Z} \cap \mathbf{K}]$, and the later divides $[\mathbf{K}: \mathbf{k}]=n$, so $[\mathbf{K Z}: \mathbf{Z}]$ is either 1 or n. By hypothesis, the second inequality holds for $\mathbf{K Z} / \mathbf{Z}$, so $\left[\mathbf{I}_{\mathbf{Z}}: \mathbf{Z}^{*} \mathbf{N}_{\mathbf{K Z} / \mathbf{Z}} \mathbf{I}_{\mathbf{K Z}}\right]$ divides $[\mathbf{K Z}: \mathbf{Z}]$, which divides n.

If we can show that $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ and $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}\right]$ are relatively prime, then $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ must divide $\left[\mathbf{I}_{\mathbf{Z}}: \mathbf{Z}^{*} \mathbf{N}_{\mathbf{K Z} / \mathbf{Z}} \mathbf{I}_{\mathbf{K Z}}\right]$. If p is a prime of \mathbf{k} and \wp a prime of \mathbf{K} dividing p, then every element of $\left(\mathbf{k}_{p}^{*}\right)^{n}$ is in $\mathbf{N}_{\mathbf{K}_{\wp}^{*} / \mathbf{k}_{p}^{*}} \mathbf{K}_{\wp}^{*}$. By lemma 7.5, every element of $\left(\mathbf{I}_{\mathbf{k}}\right)^{n}$ is in $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$. Therefore every element in $\mathbf{I}_{\mathbf{k}} / \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$ has order dividing n, so n is the only prime dividing $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$. We apply the same argument to \mathbf{Z} / \mathbf{k}. The degree of $\mathbf{Z}=\mathbf{k}(\zeta)$ over \mathbf{k} is a divisor of $n-1$, so every element of $\left(\mathbf{I}_{\mathbf{k}}\right)^{n-1}$ is in $\mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}$. Therefore only primes dividing $n-1$ can divide $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}\right]$. This show $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ and $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}\right]$ are relatively prime, which completes the proof.

Proof for extensions of prime degree n containing the n-th roots of unity. Suppose that \mathbf{K} / \mathbf{k} is an extension of prime degree n, and \mathbf{k} contains the n-th roots of unity. By lemma $8.7, \mathbf{K}=\mathbf{k}\left(\sqrt[n]{\beta_{0}}\right)$ where β_{0} is in \mathbf{K} but not in $\left(\mathbf{k}^{*}\right)^{n}$. Let E be a finite set of primes of \mathbf{k} containing all primes dividing β_{0}, all primes dividing n, all infinite primes, and such that $\mathbf{I}_{\mathbf{k}}=\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E)$ (lemma 7.11). Let $\mathbf{I}_{\mathbf{k}}^{n}(E)$ be the set

$$
\mathbf{I}_{\mathbf{k}}^{n}(E)=\left\{\mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid \mathbf{i}_{p} \in \mathbf{u}_{p} \text { if } p \notin E ; \mathbf{i}_{p} \in\left(\mathbf{k}_{p}^{*}\right)^{n} \text { if } p \in E\right\} .
$$

By lemma 4.7 (every unit in an unramified extension is a norm) and lemma 7.5 (an idele is a norm if every coordinate is a local norm), we have $\mathbf{I}_{\mathbf{k}}^{n}(E) \subset \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$. Therefore

$$
\begin{equation*}
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=\frac{\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right]}{\left[\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}: \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right]} \tag{8.17}
\end{equation*}
$$

The next two lemmas compute the right side of (8.17).
Lemma 8.16. $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=n^{s+1}$.
Proof. We have

$$
\begin{array}{r}
\text { 18) } \begin{array}{r}
{\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=\left[\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E): \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E) \cap \mathbf{I}_{k}(E)\right]} \\
=\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{k}^{*}(E) \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=\frac{\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{I}_{\mathbf{k}}^{n}(E)\right]}{\left[\mathbf{k}^{*}(E) \mathbf{I}_{\mathbf{k}}^{n}(E): \mathbf{I}_{\mathbf{k}}^{n}(E)\right]}=\frac{\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{I}_{\mathbf{k}}^{n}(E)\right]}{\left[\mathbf{k}^{*}(E): \mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E)\right]} \\
=\frac{\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{I}_{\mathbf{k}}^{n}(E)\right]}{\left[\mathbf{k}^{*}(E): \mathbf{k}^{*}(E)^{n}\right]}\left[\mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E): \mathbf{k}^{*}(E)^{n}\right] .
\end{array} \tag{8.18}
\end{array}
$$

The rightmost expression in (8.18) contains three subexpressions. As to the first, by lemma 8.13 we have

$$
\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=n^{2(s+1)} .
$$

As to the second, by the unit theorem $\mathbf{k}^{*}(E)$ is the direct product of a finite group (order divisible by n) and s infinite cyclic groups, so $\mathbf{k}(E) / \mathbf{k}^{n}(E)$ is the direct product of $s+1$ cyclic groups of order n. Therefore the index is

$$
\left[\mathbf{k}(E): \mathbf{k}^{n}(E)\right]=n^{s+1}
$$

Finally, we consider the third subexpression. Let θ be an element of $\mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E)$. We will show that θ is in $\mathbf{k}^{*}(E)^{n}$. Suppose that \mathbf{i} is in $\mathbf{I}_{\mathbf{k}}(E)$. Let p be any prime of \mathbf{k} and \wp any prime of $\mathbf{K}^{\prime}=\mathbf{k}(\sqrt[n]{\theta})$ dividing p. If p is in E then θ is an n-th power in \mathbf{k}_{p}^{*} so $\mathbf{K}_{\wp}^{\prime}=\mathbf{k}_{p}$, and if p is not in E then $\mathbf{K}_{\wp}^{\prime} / \mathbf{k}_{p}$ is unramified so \mathbf{i}_{p} is in $\mathbf{N}_{\mathbf{K}_{\wp}^{\prime} / \mathbf{k}_{p}}\left(K_{\wp}^{\prime}\right)^{*}$ by lemma 4.7. Since \mathbf{i} is a norm everywhere locally then, by lemma $7.5, \mathbf{i}$ is in $\mathbf{N}_{\mathbf{k}(\sqrt[n]{\theta}) / \mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\theta})}$. This show that $\mathbf{I}_{\mathbf{k}}(E)$ is contained in $\mathbf{N}_{\mathbf{k}(\sqrt[n]{\theta}) / \mathbf{k}} \mathbf{I}_{\mathbf{k}}(\sqrt[n]{\theta})$. Since $\mathbf{I}_{\mathbf{k}}=\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E)$ then $\mathbf{I}_{\mathbf{k}}$ is contained in $\mathbf{k}^{*} \mathbf{N}_{\mathbf{k}(\sqrt[n]{\theta}) / \mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\theta})}$, so

$$
\begin{equation*}
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{k}}(\sqrt[n]{\theta}) / \mathbf{k} \mathbf{I}_{\mathbf{k}}(\sqrt[n]{\theta})\right]=1 \tag{8.19}
\end{equation*}
$$

Extension $\mathbf{k}(\sqrt[n]{\theta}) / \mathbf{k}$ is cyclic so the first fundamental inequality applies, and we conclude that $[\mathbf{k}(\sqrt[n]{\theta}): \mathbf{k}]=1$ because of (8.19). We have $\mathbf{k}(\sqrt[n]{\theta})=\mathbf{k}$, so θ is in $\mathbf{k}^{*}(E)^{n}$. This proves that $\mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E) \subset \mathbf{k}^{*}(E)^{n}$, so

$$
\begin{equation*}
\left[\mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E): \mathbf{k}^{*}(E)^{n}\right]=1 \tag{8.19a}
\end{equation*}
$$

Applying these three results to (8.18), we obtain the desired result

$$
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=\frac{n^{2(s+1)}}{n^{s+1}}=n^{s+1}
$$

Remark. By formula (8.17) and lemma 8.16, we know $\left[\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}: \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right]$ divides n^{s+1}. If we can find ideles $\mathbf{i}_{1}, \ldots, \mathbf{i}_{s}$ in $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$ so that $\mathbf{i}_{1}^{a_{1}} \ldots \mathbf{i}_{s}^{a_{s}}$ is in $\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)$ only if the exponents a_{i} all satisfy $a_{i}=0(\bmod n)$, this would show that there are at least n^{s} distinct cosets of $\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)$ in $\mathbf{k}^{*} \mathbf{N}_{\mathbf{k} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$, which would show that $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{k}}\right]$ is either n or 1 , proving the second fundamental inequality.

Remark. The following two observations will be needed in chapter 11. First, we have

$$
\begin{aligned}
& {\left[\mathbf{k}^{*}(E) \mathbf{I}_{\mathbf{k}}^{n}(E): \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=\left[\mathbf{k}^{*}(E): \mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E)\right] } \\
&=\frac{\left[\mathbf{k}^{*}(E): \mathbf{k}^{*}(E)^{n}\right]}{\left[\mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E): \mathbf{k}^{*}(E)^{n}\right]}=\frac{n^{s+1}}{1}=n^{s+1}
\end{aligned}
$$

Also, the kernel of the map $\mathbf{k}^{*}(E) \rightarrow \frac{\mathbf{k}^{*}(E) \mathbf{I}_{\mathbf{k}}^{n}(E)}{\mathbf{I}_{\mathbf{k}}^{n}(E)}$ is $\mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E)=\mathbf{k}^{*}(E)^{n}$, so

$$
\frac{\mathbf{k}^{*}(E)}{\mathbf{k}^{*}(E)^{n}} \simeq \frac{\mathbf{k}^{*}(E) \mathbf{I}_{\mathbf{k}}^{n}(E)}{\mathbf{I}_{\mathbf{k}}^{n}(E)}
$$

Lemma 8.17. $\left[\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}: \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right]$ is either n^{s} or n^{s+1}.
Proof. As stated in the proof of lemma $8.17, \mathbf{k}^{*}(E) / \mathbf{k}^{*}(E)^{n}$ is the direct product of $s+1$ cyclic groups of order n, so the group is a vector space of dimension $s+1$ over finite field \mathbf{Z}_{n}. Element β_{0} is in $\mathbf{k}^{*}(E)$ but not in $\mathbf{k}^{*}(E)^{n}$, so the element β_{0} can be extended to a basis $\beta_{0}, \beta_{1}, \ldots, \beta_{s}$ of $\mathbf{k}^{*}(E) / \mathbf{k}^{*}(E)^{n}$. These elements are independent modulo $\left(\mathbf{k}^{*}\right)^{n}$ because if $\beta_{0}^{a_{0}} \ldots \beta_{s}^{a_{s}}=\gamma^{n}$ with γ in $\left(\mathbf{k}^{*}\right)^{n}$, then γ must be in $\mathbf{k}^{*}(E)$, so the exponents a_{i} must all be divisible by n. Put

$$
\begin{aligned}
\mathbf{T} & =\mathbf{k}\left(\sqrt[n]{\beta_{0}}, \ldots, \sqrt[n]{\beta_{s}}\right) \\
\mathbf{T}^{(j)} & =\mathbf{k}\left(\sqrt[n]{\beta_{0}}, \ldots, \sqrt[n]{\beta_{j-1}}, \sqrt[n]{\beta_{j+1}} \ldots, \sqrt[n]{\beta_{s}}\right) \quad 0<j \leq s
\end{aligned}
$$

By lemma 8.5, we have $[\mathbf{T}: \mathbf{k}]=n^{s+1}$ and $\left[\mathbf{T}^{(j)}: \mathbf{k}\right]=n^{s}$.
There exist infinitely many primes of $\mathbf{T}^{(j)}$ which do not split completely in \mathbf{T}, because otherwise the Artin symbols for extension $\mathbf{T} / \mathbf{T}^{(j)}$ would be trivial except for a finite set of primes, so the trivial homomorphism would serve to extend $\phi_{\mathbf{T} / \mathbf{T}^{(j)}}$ By the corollary to the first fundamental inequality (Proposition 2.21), homomorphism $\phi_{\mathbf{T} / \mathbf{T}^{(j)}}$ maps onto $G\left(\mathbf{T}: \mathbf{T}^{(j)}\right)$, so we would have $\left[\mathbf{T}: \mathbf{T}^{(j)}\right]=1$, which is impossible.

For $1 \leq j \leq s$, choose a prime $q^{(j)}$ in $\mathbf{T}^{(j)}$ which does not split completely in \mathbf{T}, divides no prime in E and is not ramified in \mathbf{T}. Let \wp_{j} be a prime of \mathbf{T} dividing $q^{(j)}$, and let p_{j} be the prime of \mathbf{k} which $q^{(j)}$ divides. For prime $q^{(j)}$ we have $\left[\mathbf{T}: \mathbf{T}^{(j)}\right]=n=e f g$ with $e=1$ and $g<n$. Therefore $g=1$ and $f=n$, so $\left[\mathbf{T}_{\wp_{j}}: \mathbf{T}_{q^{(j)}}^{(j)}\right]=e f=n$. Since $\mathbf{T}=\mathbf{T}^{(j)}\left(\sqrt[n]{\beta_{j}}\right)$, this means β_{j} cannot be in $\mathbf{u}_{p_{j}}^{n}$. We have $\left[\mathbf{u}_{p_{j}}: \mathbf{u}_{p_{j}}^{n}\right]=n$ by lemma 8.11 (since all the primes of \mathbf{k} dividing n are in E and p_{j} is not in E), so β_{j} generates $\mathbf{u}_{p_{j}} / \mathbf{u}_{p_{j}}^{n}$.

For the β_{ℓ} with $\ell \neq j,(0 \leq \ell \leq s)$, we must have $\beta_{\ell} \in \mathbf{u}_{p_{j}}^{n}$ because otherwise β_{ℓ} would also generate $\mathbf{u}_{p_{j}} / \mathbf{u}_{p_{j}}^{n}$ and we would have $\beta_{j}=\beta_{\ell}^{x} \gamma^{n}$ where γ is in $\mathbf{u}_{p_{j}}$, which would mean $\mathbf{T}_{\wp_{j}}=\mathbf{T}_{q_{j}}^{(j)}\left(\sqrt[n]{\beta_{j}}\right)$ would be contained in $\mathbf{T}_{q_{j}}^{(j)}$, which is a contradiction. Therefore for $1 \leq j \leq s$, we have

$$
\beta_{j} \notin \mathbf{u}_{p_{j}}^{n} \text { and } \beta_{\ell} \in \mathbf{u}_{p_{j}}^{n} \text { if } \ell \neq j, \quad 0 \leq \ell \leq s
$$

and

$$
\mathbf{T}_{q_{j}}^{(j)}=\mathbf{k}_{p_{j}}\left(\sqrt[n]{\beta_{0}}, \sqrt[n]{\beta_{1}}, \ldots, \sqrt[n]{\beta_{j-1}}, \sqrt[n]{\beta_{j+1}}, \ldots, \sqrt[n]{\beta_{s}}\right)=\mathbf{k}_{p_{j}}
$$

The sets $\mathbf{u}_{p_{1}}^{n}, \ldots, \mathbf{u}_{p_{s}}^{n}$ are all distinct, so the primes p_{1}, \ldots, p_{s} are distinct. Choose a generator π_{j} in $\mathbf{o}_{p_{j}}$ so that $p_{j}=\left(\pi_{j}\right)$. Define ideles $\mathbf{i}_{1}, \ldots, \mathbf{i}_{s}$ in $\mathbf{I}_{\mathbf{k}}(E)$ by

$$
\left(\mathbf{i}_{j}\right)_{p}=\left\{\begin{align*}
\pi_{j} & \text { if } p=p_{j} \tag{8.20}\\
1 & \text { otherwise }
\end{align*}\right.
$$

Since $\mathbf{T}_{q_{j}}^{(j)}=\mathbf{k}_{p_{j}}$ then \mathbf{i}_{j} is a norm from $\mathbf{I}_{\mathbf{T}^{(j)}}$ locally everywhere so $\mathbf{i}_{j} \in \mathbf{N}_{\mathbf{T}^{(j)} / \mathbf{k}} \mathbf{I}_{\mathbf{T}^{(j)}}$ by lemma 7.5. Since $\mathbf{k} \subset \mathbf{K} \subset \mathbf{T}^{(j)}$ we have $\mathbf{i}_{j} \in \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$. We will show that $\mathbf{i}_{1}, \ldots, \mathbf{i}_{s}$ satisfy the condition of the remark preceeding lemma 8.17. Suppose that $\mathbf{i}_{1}^{a_{1}} \ldots \mathbf{i}_{s}^{a_{s}}$ is in $\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)$. Then we have

$$
\begin{equation*}
\mathbf{i}_{1}^{a_{1}} \ldots \mathbf{i}_{s}^{a_{s}}=\alpha \mathbf{i} \quad \text { where } \alpha \in \mathbf{k}^{*} \text { and } \mathbf{i} \in \mathbf{I}_{\mathbf{k}}^{n}(E) . \tag{8.21}
\end{equation*}
$$

With α defined by (8.21), we would like to compute $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{k}(\sqrt[n]{\alpha}) / \mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\alpha})}\right]$. For a prime p of \mathbf{k} we consider the following three cases. First, suppose that $p \notin E$ and $p \neq p_{j}$ for $1 \leq j \leq s$. Evaluating (8.21) at component (p), we have $1=\alpha \mathbf{i}_{p}$ with \mathbf{i}_{p} in \mathbf{u}_{p}. Therefore α is in \mathbf{u}_{p} so p does not divide α, and p does not divide n since E contains all primes dividing n. Therefore p does not ramify in $\mathbf{k}(\sqrt[n]{\alpha}) / \mathbf{k}$, so every element of \mathbf{u}_{p} is in $\mathbf{N}_{\mathbf{k}_{p}(\sqrt[n]{\alpha}) / \mathbf{k}} \mathbf{k}_{p}(\sqrt[n]{\alpha})$.

Second, suppose that $p=p_{j}$ where $1 \leq j \leq s$. Every element of \mathbf{u}_{p}^{n} is in $\mathbf{N}_{\mathbf{k}_{p}(\sqrt[n]{\alpha}) / \mathbf{k}} \mathbf{k}_{p}(\sqrt[n]{\alpha})$.

Third, suppose that p is in E. Evaluating (8.21) at component (p), we have $1=\alpha \mathbf{i}_{p}$ with \mathbf{i}_{p} in \mathbf{u}_{p}^{n}, so α is in \mathbf{u}_{p}^{n}. Then $\mathbf{k}_{p}(\sqrt[n]{\alpha})=\mathbf{k}_{p}$, so every element of \mathbf{k}_{p}^{*} is in $\mathbf{N}_{\mathbf{k}_{p}(\sqrt[n]{\alpha}) / \mathbf{k}} \mathbf{k}_{p}(\sqrt[n]{\alpha})$.

Let F be the set of primes of the first case ($p \notin E$ and $p \neq p_{j}$ for $\left.1 \leq j \leq s\right)$. Combining the three cases and using lemma 7.5 , we have

$$
\begin{equation*}
\prod_{p \in F} \mathbf{u}_{p} \prod_{j=1}^{s} \mathbf{u}_{p}^{n} \prod_{p \in E} \mathbf{k}_{p}^{*} \subset \mathbf{N}_{\mathbf{k}(\sqrt[n]{\alpha}) / \mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\alpha})} \tag{8.22}
\end{equation*}
$$

We already know that β_{j} generates $\mathbf{u}_{p_{j}} / \mathbf{u}_{p_{j}}^{n}$ for $1 \leq j \leq s$, so

$$
\mathbf{u}_{p_{j}}=\left\{\beta_{j}^{r} \mathbf{u}_{p_{j}}^{n} \mid 0 \leq r<n\right\} \subset \mathbf{k}^{*}(E) \mathbf{u}_{p_{j}}^{n}
$$

and therefore

$$
\begin{equation*}
\prod_{j=1}^{s} \mathbf{u}_{p_{j}} \subset \mathbf{k}^{*}(E) \prod_{j=1}^{s} \mathbf{u}_{p_{j}}^{n} \tag{8.22a}
\end{equation*}
$$

Applying (8.22a), we obtain

$$
\begin{equation*}
\mathbf{I}_{\mathbf{k}}(E)=\prod_{p \in F} \mathbf{u}_{p} \prod_{j=1}^{s} \mathbf{u}_{p_{j}} \prod_{p \in E} \mathbf{k}_{p}^{*} \subset \mathbf{k}^{*}(E) \prod_{p \in F} \mathbf{u}_{p} \prod_{j=1}^{s} \mathbf{u}_{p_{j}}^{n} \prod_{p \in E} \mathbf{k}_{p}^{*} \tag{8.22b}
\end{equation*}
$$

Using the (8.22b) and (8.22), we have

$$
\mathbf{I}_{\mathbf{k}}=\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E) \subset \mathbf{k}^{*} \prod_{p \in F} \mathbf{u}_{p} \prod_{j=1}^{s} \mathbf{u}_{p_{j}}^{n} \prod_{p \in E} \mathbf{k}_{p}^{*} \subset \mathbf{k}^{*} \mathbf{N}_{\mathbf{k}(\sqrt[n]{\alpha}) / \mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\alpha})}
$$

This shows that

$$
\begin{equation*}
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{k}(\sqrt[n]{\alpha}) / \mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\alpha})}\right]=1 \tag{8.23}
\end{equation*}
$$

Since $\mathbf{k}(\sqrt[n]{\alpha}) / \mathbf{k}$ is cyclic, the first fundamental inequality applies, so $[\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k}]$ divides $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{k}(\sqrt[n]{\alpha}) / \mathbf{k}} \mathbf{I}_{\mathbf{k}}(\sqrt[n]{\alpha})\right]$, and then by (8.23) we have $[\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k}]=1$. Then $\mathbf{k}(\sqrt[n]{\alpha})=\mathbf{k}$, so α is in $\left(\mathbf{k}^{*}\right)^{n}$. Taking components of (8.21) at p_{j} for $1 \leq j \leq s$, we obtain

$$
\pi_{j}^{a_{j}}=\alpha \mathbf{i}_{p_{j}} \quad \text { where } \alpha \in\left(\mathbf{k}_{p}^{*}\right)^{n}, \text { and } \mathbf{i}_{p_{j}} \in \mathbf{u}_{p_{j}} .
$$

Then $p_{j}^{a_{j}}=\left(\pi_{j}^{a_{j}}\right)=(\beta)^{n}$ in $\mathbf{o}_{p_{j}}$, so $a_{j}=0(\bmod n)$ for $1 \leq j \leq s$. This proves that there are at least n^{s} distinct cosets of $\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)$ in $\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$, which proves the lemma.

Proposition 8.18. $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ divides $[\mathbf{K}: \mathbf{k}]$.
Proof. By (8.17) and lemmas 8.16 and 8.17, $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ is 1 or n.
Proposition 8.19. The second fundamental inequality holds for any abelian extension.

Proof. By Proposition 8.18, the second fundamental inequality holds for extensions of prime degree n where the ground field contains the n-th roots of unity. Lemma 8.15 removes the requirement that the ground field contain the n-th roots of unity. Lemma 8.14 and the remark preceeding it show that the second fundamental inequality holds for any abelian extension.

Corollary to theorem 1. Now that theorem 1 has been established, the following corollary will be of use in proving theorem 2 . Let \mathbf{k} be an algebraic number field containing the n-th roots of unity where n is prime. Let E be a finite set of primes of \mathbf{k} containing the infinite primes, primes dividing n, and so that $\mathbf{I}_{\mathbf{k}}=\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E)$. If E contains $s+1$ primes then $\mathbf{k}^{*}(E) /\left(\mathbf{k}^{*}(E)\right)^{n}$ is the direct product of $s+1$ cyclic groups of order n. Let $\beta_{0}, \ldots, \beta_{s}$ be such that the cosets of $\left(\mathbf{k}^{*}(E)\right)^{n}$ generate $\mathbf{k}^{*}(E)$.

Corollary 8.20. The kernel of $\phi_{\mathbf{k}\left(\sqrt[n]{\beta_{0}}, \ldots, \sqrt[n]{\beta_{s}}\right) / \mathbf{k}}$ is $\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)$.
Proof. Since the $s+1$ elements $\beta_{0}, \ldots, \beta_{s}$ are independent modulo $\left(\mathbf{k}^{*}\right)^{n}$ then $\left[\mathbf{k}\left(\sqrt[n]{\beta_{0}}, \ldots, \sqrt[n]{\beta_{s}}\right): \mathbf{k}\right]=n^{s+1}$. For $0 \leq j \leq s$, let H_{j} be the kernel of $\phi_{\mathbf{k}}\left(\sqrt[n]{\beta_{0}}\right) \mathbf{k}$. Since β_{j} is in $\mathbf{k}^{*}(E)$ then

$$
\left.\mathbf{I}_{\mathbf{k}}^{n}(E) \subset \mathbf{N}_{\mathbf{k}\left(\sqrt[n]{\beta_{j}}\right) \mathbf{k}} \mathbf{I}_{\mathbf{k}\left(\sqrt[n]{\beta_{j}}\right.}\right)
$$

By Theorem I, we have

$$
\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E) \subset \mathbf{k}^{*} \mathbf{N}_{\mathbf{k}\left(\sqrt[n]{\beta_{j}}\right) \mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\theta})}=\operatorname{ker}\left(\phi_{\mathbf{k}\left(\sqrt[n]{\beta_{j}}\right) / \mathbf{k}}\right)=H_{j}
$$

so

$$
\begin{equation*}
\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E) \subset H_{0} \cap \cdots \cap H_{s} \tag{8.24}
\end{equation*}
$$

By lemma 8.5 and formula (5.1), for \mathbf{i} in $\mathbf{I}_{\mathbf{k}}$, we have

$$
\phi_{\mathbf{k}}\left(\sqrt[n]{\beta_{0}}, \ldots, \sqrt[n]{\beta_{s}}\right) / \mathbf{k}(\mathbf{i})=\left(\phi_{\mathbf{k}}\left(\sqrt[n]{\beta_{0}}\right) / \mathbf{k}(\mathbf{i}), \ldots, \phi_{\mathbf{k}}\left(\sqrt[n]{\beta_{s}}\right) / \mathbf{k}(\mathbf{i})\right)
$$

The right side is 1 if and only if $\phi_{\mathbf{k}}\left(\sqrt[n]{\beta_{j}}\right) / \mathbf{k}(\mathbf{i})=1$ for $0 \leq j \leq s$, that is, if and only if \mathbf{i} is in $H_{0} \cap \cdots \cap H_{s}$. Therefore

$$
\begin{equation*}
\operatorname{ker}\left(\phi_{\mathbf{k}}\left(\sqrt[n]{\beta_{0}}, \ldots, \sqrt[n]{\beta_{s}}\right) / \mathbf{k}\right)=H_{0} \cap \cdots \cap H_{s} \tag{8.25}
\end{equation*}
$$

By theorem I, we have

$$
\left.\left.\begin{array}{rl}
{\left[\mathbf{I}_{\mathbf{k}}: H_{0} \cap \cdots \cap H_{s}\right]=\left[\mathbf{I}_{\mathbf{k}}: \operatorname{ker}\left(\phi_{\mathbf{k}}\left(\sqrt[n]{\beta_{0}}, \ldots, \sqrt[n]{\beta_{s}}\right) / \mathbf{k}\right.\right.} \tag{8.26}
\end{array}\right)\right] .
$$

By lemma 8.16, we have $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right]=n^{s+1}$. By (8.24) and (8.26), we conclude that $H_{0} \cap \cdots \cap H_{s}=\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)$. Then by (8.25), we conclude

$$
\operatorname{ker}\left(\phi_{\mathbf{k}}\left(\sqrt[n]{\beta_{0}}, \ldots, \sqrt[n]{\beta_{s}}\right) / \mathbf{k}\right)=\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)
$$

