CHAPTER VIII

SECOND FUNDAMENTAL INEQUALITY

Kummer extensions. Let **k** contain the *n*-th roots of unity, and let ζ be a primitive *n*-root of unity. A *Kummer extension* is an extension of **k** generated by the roots of $x^n - \alpha$ where α is a non-zero element of **k**. If one root is denoted $\sqrt[n]{\alpha}$ then the other roots are $\zeta \sqrt[n]{\alpha}, \zeta^2 \sqrt[n]{\alpha}, \ldots, \zeta^{n-1} \sqrt[n]{\alpha}$. If α and β are elements of **k**^{*}, then we write $\alpha \simeq_n \beta$ if $\alpha = \beta \gamma^n$ for some $\gamma \in \mathbf{k}^*$. Elements $\alpha_1, \ldots, \alpha_r$ of **k** are independent modulo $(\mathbf{k}^*)^n$ means $\alpha_1^{a_1} \ldots \alpha_r^{a_r} \simeq_n 1$ only if $a_1 = \cdots = a_r = 0 \pmod{n}$.

LEMMA 8.1. Let n_0 be the smallest positive power of α so that $\alpha^{n_0} \simeq_n 1$. Then n_0 divides n. There is an element α_0 so that $\alpha = \alpha_0^d$, where $n = n_0 d$, and $\mathbf{k} \left(\sqrt[n]{\alpha} \right) = \mathbf{k} \left(\sqrt[n]{\alpha_0} \right)$.

PROOF. The set of integers a such that $\alpha^a \simeq_n 1$ is an ideal, so take n_0 to be the positive integer which generates the ideal. Since $\alpha^n \simeq_n 1$ then n is in the ideal, so $n = n_0 d$ for some positive integer d. We have $\alpha^{n_0} = \gamma^n = \gamma^{n_0 d}$ for some γ in \mathbf{k}^* . If ζ is a primitive *n*-th root of unity, then

$$0 = \alpha^{n_0} - \gamma^{n_0 d} = \prod_{i=0}^{n_0 - 1} \left(\alpha - \zeta^{i d} \gamma^d \right).$$

For some $0 \leq i < n_0$, we have $\alpha = \zeta^{id}\gamma^d = (\zeta^i\gamma)^d$, so take $\alpha_0 = \zeta^i\gamma$. Then $\alpha = \alpha_o^d = \alpha_0^{n/n_0} = (\sqrt[n_0]{\alpha_0})^n$. This show $\sqrt[n_0]{\alpha_0}$ is a root of $x^n - \alpha$, so $\mathbf{k}(\sqrt[n_0]{\alpha_0}) = \mathbf{k}(\sqrt[n_0]{\alpha_0})$.

LEMMA 8.2. Let n_0 be the smallest positive power of α so that $\alpha^{n_0} \simeq_n 1$. Then $[\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k}] = n_0$. For $\sigma \in G(\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k})$, let ζ_{σ} be the n-root of unity so that $\sigma(\sqrt[n]{\alpha}) = \zeta_{\sigma}(\sqrt[n]{\alpha})$. Then $\sigma \to \zeta_{\sigma}$ defines an isomorphism of $G(\mathbf{k}(\sqrt[n]{\alpha}): \mathbf{k})$ onto the n_0 -th roots of unity.

PROOF. (Galois automorphisms will applied on the left when radical notation is used.) By lemma 8.1, $\alpha = \alpha_0^d$ where $n = n_0 d$, and $\mathbf{k} \left(\sqrt[n]{\alpha} \right) = \mathbf{k} \left(\sqrt[n]{\alpha_0} \right)$. We need to show that $x^{n_0} - \alpha_0$ is irreducible over \mathbf{k} . The factorization of $x^{n_0} - \alpha_0$ into linear

factors over $\mathbf{k} \left(\sqrt[n]{\alpha} \right)$ is

(8.1)
$$x^{n_0} - \alpha_0 = \prod_{i=0}^{n_0-1} \left(x - \zeta^{id} \sqrt[n_0]{\alpha_0} \right)$$

Any non-trivial factor of $x^{n_0} - \alpha_0$ over **k** would be a product of ν linear factors with $0 < \nu \leq n_0$, and the constant term would be $\pm \zeta_0 \left(\sqrt[n_0/\alpha_0)^{\nu} \right)^{\nu}$, where $\zeta_0^{n_0} = 1$. Since **k** contains the *n*-th roots of unity then $\left(\sqrt[n_0/\alpha_0)^{\nu} \right)^{\nu}$ is in **k**. Let *c* be the greatest common divisor of ν and n_0 , and put $c = an_0 + b\nu$. Then

$$\left(\sqrt[n_0]{\alpha_0}\right)^c = \left(\sqrt[n_0]{\alpha_0}\right)^{an_0+b\nu} = \alpha_0^a \left(\left(\sqrt[n_0]{\alpha_0}\right)^{\nu}\right)^b.$$

Therefore $\left(\sqrt[n_0]{\alpha_0}\right)^c$ is in **k**, and

$$\alpha^{c} = \alpha^{n_{0}(c/n_{0})} = \alpha_{0}^{n(c/n_{0})} = \left(\left(\sqrt[n_{0}]{\alpha_{0}} \right)^{c} \right)^{n},$$

so $\alpha^c \simeq_n 1$. But this is impossible if $0 < c < n_0$, so we must have $\nu = n_0$. This shows that $x^{n_0} - \alpha_0$ is irreducible over \mathbf{k} and $[\mathbf{k}(\sqrt[n]{\alpha}) : \mathbf{k}] = n_0$.

If $\sigma(\sqrt[n]{\alpha}) = \zeta_{\sigma}(\sqrt[n]{\alpha})$ then ζ_{σ} does not depend on $\sqrt[n]{\alpha}$ because if $\zeta^{i}\sqrt[n]{\alpha}$ is another root of $x^{n} - \alpha$ then

$$\sigma\left(\zeta^{i}\sqrt[n]{\alpha}\right) = \zeta^{i}\sigma\left(\sqrt[n]{\alpha}\right) = \zeta^{i}\zeta_{\sigma}\left(\sqrt[n]{\alpha}\right) = \zeta_{\sigma}\left(\zeta^{i}\sqrt[n]{\alpha}\right).$$

Therefore we may take $\sqrt[n]{\alpha} = \sqrt[n]{\sqrt{\alpha_0}}$. The map $\sigma \to \zeta_{\sigma}$ is certainly a homomorphism. Since $[\mathbf{k} (\sqrt[n]{\alpha}) : \mathbf{k}] = n_0$ then $\sqrt[n]{\alpha}$ has n_0 distinct conjugates over \mathbf{k} . This shows that the image of $G(\mathbf{k} (\sqrt[n]{\alpha}) : \mathbf{k})$ is the group of n_0 -th roots of unity.

LEMMA 8.3. $\mathbf{k} \left(\sqrt[n]{\beta} \right) \subset \mathbf{k} \left(\sqrt[n]{\alpha} \right)$ if and only if $\beta \simeq_n \alpha^{\nu}$ for some ν , $0 \leq \nu < n_0$.

PROOF. If $\beta = \alpha^{\nu} \gamma^n$ then $(\sqrt[n]{\alpha})^{\nu}$ is an *n*-th root of β , so $\mathbf{k} (\sqrt[n]{\beta}) \subset \mathbf{k} (\sqrt[n]{\alpha})$. Conversely, suppose $\mathbf{k} (\sqrt[n]{\beta}) \subset \mathbf{k} (\sqrt[n]{\alpha})$. Let $\alpha = \alpha_0^d$ so that $\mathbf{k} (\sqrt[n]{\alpha}) = \mathbf{k} (\sqrt[n]{\alpha_0})$ and $[\mathbf{k} (\sqrt[n]{\alpha}) : \mathbf{k}] = n_0$. There exist $\gamma_0, \ldots, \gamma_{n_0-1}$ in \mathbf{k} so that

(8.2)
$$\sqrt[n]{\beta} = \sum_{i=0}^{n_0-1} \gamma_i \left(\sqrt[n_0]{\alpha_0}\right)^i.$$

Choose σ in $G(\mathbf{k}(\sqrt[n]{\alpha}):\mathbf{k})$ so that ζ_{σ} is a primitive n_0 -th root of unity. Let ζ be an n-th root of unity so that $\sigma(\sqrt[n]{\beta}) = \zeta \sqrt[n]{\beta}$. Applying σ to both sides of (8.2) gives

$$\zeta \sqrt[n]{\beta} = \sum_{i=0}^{n_0-1} \gamma_i \left(\zeta_\sigma \sqrt[n_0]{\alpha_0} \right)^i,$$

or

(8.3)
$$\sqrt[n]{\beta} = \sum_{i=0}^{n_0-1} \gamma_i \zeta^{-1} \zeta^i_\sigma \left(\sqrt[n_0]{\alpha_0}\right)^i.$$

The coefficients in (8.2) and (8.3) must coincide, so if $\gamma_i \neq 0$ then $\zeta^{-1}\zeta_{\sigma}^i = 1$. The values of the $\zeta^{-1}\zeta_{\sigma}^i = 1$ are all different, so γ_i cannot be non-zero for two different value of *i*. Therefore

$$\sqrt[n]{\beta} = \gamma_{i_0} \left(\sqrt[n_0]{\alpha_0} \right)^{i_0},$$

so we have $\beta = \gamma_{i_0}^n \alpha_0^{i_0 d} = \gamma_{i_0}^n \alpha^{i_0}$, or $\beta \simeq_n \alpha^{i_0}$ where $\nu = i_0$ satisfies $0 \le \nu < n_0$.

LEMMA 8.4. Every extension of **k** contained in $\mathbf{k}(\sqrt[n]{\alpha})$ is of the form $\mathbf{k}(\sqrt[n]{\beta})$ where $\beta = \alpha^y$ for some y.

PROOF. Suppose $\mathbf{k} \subset \mathbf{K} \subset \mathbf{k}(\sqrt[n]{\alpha})$. Let σ generate $G(\mathbf{k}(\sqrt[n]{\alpha}) : \mathbf{k})$. Let the subgroup fixing \mathbf{K} be generated by σ^x where x divides $n_0 = [\mathbf{k}(\sqrt[n]{\alpha}) : \mathbf{k}]$. Let $\sqrt[n]{\alpha} = \sqrt[n]{\alpha_0}$. A typical element of $\mathbf{k}(\sqrt[n]{\alpha})$ is

(8.4)
$$\sum_{i=0}^{n_0-1} \gamma_i \left(\sqrt[n_0]{\alpha_0}\right)^i.$$

Applying σ^x to (8.4) yields

(8.5)
$$\sum_{i=0}^{n_0-1} \gamma_i \zeta_{\sigma}^{xi} \left(\sqrt[n_0]{\alpha_0} \right)^i.$$

An element is in **K** if and only if (8.4) and (8.5) coincide, which is equivalent to $\gamma_i = \gamma_i \zeta_{\sigma}^{x_i}$ for $0 \le i < n_0$. Therefore an element of $\mathbf{k}(\sqrt[n]{\alpha})$ is in **K** if and only if either $\gamma_i = 0$ or x_i is divisible by n_0 for $0 \le i < n_0$. Since x divides n_0 then γ_i may be non-zero only for $i = jn_0/x$, $0 \le j < x$, so elements of **K** are of the form

$$\sum_{j=0}^{x-1} \gamma_{jn_0/x} \zeta_{\sigma}^{jn_0} \left(\sqrt[n_0]{\alpha_0} \right)^{jn_0/x} = \sum_{j=0}^{x-1} \gamma_{jn_0/x} \zeta_{\sigma}^{jn_0} \left(\sqrt[x]{\alpha_0} \right)^j.$$

Then $\mathbf{K} = \mathbf{k}(\sqrt[x]{\alpha_0})$. Putting $n_0 = xy$ then $\sqrt[x]{\alpha_0} = \sqrt[n_0]{\alpha_0^y} = \sqrt[n]{\alpha^y}$, so $\mathbf{K} = \mathbf{k}(\sqrt[n]{\alpha^y})$.

82

LEMMA 8.5. Suppose that $\alpha_1, \ldots, \alpha_r$ are independent elements modulo $(\mathbf{k}^*)^n$. Then $\mathbf{K} = \mathbf{k} \left(\sqrt[n]{\alpha_1}, \ldots, \sqrt[n]{\alpha_r} \right)$ has degree n^r over \mathbf{k} . Every cyclic subfield is of the form $\mathbf{k} \left(\sqrt[n]{\alpha_1^{x_1} \ldots \alpha_r^{x_r}} \right)$. Galois group $G(\mathbf{K} : \mathbf{k})$ is canonically isomorphic to the product of the n-th roots of unity with itself r times, where $\sigma \in G$ corresponds to $(\zeta_1, \ldots, \zeta_r)$ if $\sigma \left(\sqrt[n]{\alpha_i} \right) = \zeta_i \left(\sqrt[n]{\alpha_i} \right)$.

PROOF. The case for r = 1 is established by lemma 8.2 and lemma 8.4. The general case will be proved by induction. Suppose that the conclusion holds for r-1. Then $[\mathbf{k} \left(\sqrt[n]{\alpha_2}, \ldots, \sqrt[n]{\alpha_r}\right) : \mathbf{k}] = n^{r-1}$, and every subfield of $\mathbf{k} \left(\sqrt[n]{\alpha_2}, \ldots, \sqrt[n]{\alpha_r}\right)$ is of the form $\mathbf{k} \left(\sqrt[n]{\alpha_2^{x_2} \ldots \alpha_r^{x_r}}\right)$. Let $\mathbf{L} = \mathbf{k} \left(\sqrt[n]{\alpha_2}, \ldots, \sqrt[n]{\alpha_r}\right) \cap \mathbf{k}(\sqrt[n]{\alpha_1})$. Then

$$\mathbf{L} = \mathbf{k} \left(\sqrt[n]{\alpha_2^{x_2} \dots \alpha_r^{x_r}} \right) = \mathbf{k} \left(\sqrt[n]{\alpha_1^{x_1}} \right).$$

By lemma 8.3 we have $\alpha_2^{x_2} \dots \alpha_r^{x_r} \simeq_n \alpha_1^{x_{x_1}}$, or $\alpha_1^{-xx_1} \alpha_2^{x_2} \dots \alpha_r^{x_r} \simeq_n 1$. Since $\alpha_1, \dots, \alpha_r$ are independent modulo $(\mathbf{k}^*)^n$, we have

$$-xx_1 = x_2 = \dots = x_r = 0 \pmod{n}.$$

This shows $\alpha_2^{x_2} \dots \alpha_r^{x_r} \simeq_n 1$, so $\mathbf{k} \left(\sqrt[n]{\alpha_2^{x_2} \dots \alpha_r^{x_r}} \right) = \mathbf{k}$. By lemma 2.10, we have $[\mathbf{K} : \mathbf{k}] = n^r$, establishing the first claim. By lemma 2.11, there is an isomorphism $\sigma \to (\sigma_1, \sigma')$ of Galois groups

$$G(\mathbf{k}(\sqrt[n]{\alpha_1},\ldots,\sqrt[n]{\alpha_r}):\mathbf{k}) \simeq G(\mathbf{k}(\sqrt[n]{\alpha_1}):\mathbf{k}) \times G(\mathbf{k}(\sqrt[n]{\alpha_2},\ldots,\sqrt[n]{\alpha_r}):\mathbf{k}).$$

By lemma 8.2, $G(\mathbf{k}(\sqrt[n]{\alpha_1}) : \mathbf{k})$ is isomorphic to the group of *n*-th roots of unity with $\sigma_1 \to \zeta_1$ if $\sigma_1(\sqrt[n]{\alpha_1}) = \zeta_1(\sqrt[n]{\alpha_1})$. By the induction hypothesis, Galois group $G(\mathbf{k}(\sqrt[n]{\alpha_2}, \ldots, \sqrt[n]{\alpha_r}) : \mathbf{k})$ is isomorphic to the product of r - 1 copies of the *n*-th roots of unity with $\sigma' \to (\zeta_2, \ldots, \zeta_r)$ if $\sigma'(\sqrt[n]{\alpha_i}) = \zeta_i(\sqrt[n]{\alpha_i})$. The composite map $\sigma \to (\zeta_1, \zeta_2, \ldots, \zeta_r)$ is an isomorphism between $G(\mathbf{k}(\sqrt[n]{\alpha_1}, \ldots, \sqrt[n]{\alpha_r}) : \mathbf{k})$ and the product of *r* copies of the *n*-th roots of unity.

It remains to prove the claim about cyclic subfields. Suppose that $\mathbf{k} \subset \mathbf{L} \subset \mathbf{k} \left(\sqrt[n]{\alpha_1}, \ldots, \sqrt[n]{\alpha_r} \right)$ and $G(\mathbf{L} : \mathbf{k})$ is cyclic. Let τ generate $G(\mathbf{L} : \mathbf{k})$. Choose ζ to be some primitive *n*-th root of unity. For each $i = 1, \ldots, r$, let σ_i be the element of $G(\mathbf{k} \left(\sqrt[n]{\alpha_1}, \ldots, \sqrt[n]{\alpha_r} \right) : \mathbf{k})$ corresponding to $(1, \ldots, \zeta, \ldots, 1)$. Every element of $G(\mathbf{k} \left(\sqrt[n]{\alpha_1}, \ldots, \sqrt[n]{\alpha_r} \right) : \mathbf{k})$ is of the form $\prod_{i=1}^r \sigma_i^{y_i}$. Let the restriction of σ_i to \mathbf{L} be τ^{x_i} . Then $\prod_{i=1}^r \sigma_i^{y_i}$ leaves elements of \mathbf{L} fixed if and only if $\prod_{i=1}^r \tau^{x_i y_i} = 1$, or

(8.6)
$$\sum_{i=1}^{r} x_i y_i = 0 \pmod{m} \quad \text{where } m = [\mathbf{L} : \mathbf{k}].$$

Every element α of $\mathbf{k} \left(\sqrt[n]{\alpha_1}, \ldots, \sqrt[n]{\alpha_r} \right)$ may be uniquely represented as

(8.7)
$$\alpha = \sum_{k_1=1}^{n-1} \cdots \sum_{k_r=1}^{n-1} \gamma_{k_1 \dots k_r} \left(\sqrt[n]{\alpha_1}\right)^{k_1} \dots \left(\sqrt[n]{\alpha_r}\right)^{k_r}$$

The result of applying $\sigma = \prod_{i=1}^r \sigma_i^{y_i}$ to α is

$$\sigma(\alpha) = \sum_{k_1=1}^{n-1} \cdots \sum_{k_r=1}^{n-1} \gamma_{k_1 \dots k_r} \zeta^{y_1 k_1 + \dots + y_r k_r} \left(\sqrt[n]{\alpha_1}\right)^{k_1} \dots \left(\sqrt[n]{\alpha_r}\right)^{k_r}.$$

Then α is in **L** if and only if $\gamma_{k_1...k_r} = \gamma_{k_1...k_r} \zeta^{y_1k_1+\cdots+y_rk_r}$ for all (y_1,\ldots,y_r) satisfying (8.6), which is equivalent to

either
$$\gamma_{k_1\dots k_r} = 0$$
, or $\sum_{i=1}^r x_i y_i = 0 \pmod{m} \Longrightarrow \sum_{i=1}^r y_i k_i = 0 \pmod{n}$.

Therefore elements of \mathbf{L} have the form

(8.8)
$$\alpha = \sum_{(k_1, \dots, k_r) \in S} \gamma_{k_1 \dots k_r} \left(\sqrt[n]{\alpha_1} \right)^{k_1} \dots \left(\sqrt[n]{\alpha_r} \right)^{k_r}$$

where

$$S = \left\{ (k_1, \dots, k_r) \mid \sum_{i=1}^r x_i y_i = 0 \pmod{m} \Longrightarrow \sum_{i=1}^r y_i k_i = 0 \pmod{n} \right\}.$$

Since $G(\mathbf{L} : \mathbf{k})$ is cyclic of order m and $G[\mathbf{K} : \mathbf{k}]$ is the product of r copies of cyclic groups of order n, it follows that m must divide n. Let md = n. Since $\sum_{i=1}^{r} x_i y_i = 0 \pmod{m}$ if and only if $\sum_{i=1}^{r} dx_i y_i = 0 \pmod{n}$, the condition for set S is

$$S = \left\{ (k_1, \dots, k_r) \mid \sum_{i=1}^r dx_i y_i = 0 \pmod{n} \Longrightarrow \sum_{i=1}^r y_i k_i = 0 \pmod{n} \right\}.$$

We claim that if (k_1, \ldots, k_r) is in S then there is an integer a so that $k_i = adx_i \pmod{n}$ for $1 \le i \le n$. Assuming this for the moment, then for (k_1, \ldots, k_r) in S we have

$$\left(\sqrt[n]{\alpha_1}\right)^{k_1} \dots \left(\sqrt[n]{\alpha_r}\right)^{k_r} = \left(\left(\sqrt[n]{\alpha_1}\right)^{dx_1} \dots \left(\sqrt[n]{\alpha_r}\right)^{dx_r}\right)^a \alpha_1^{b_1} \dots \alpha_r^{b_r}$$
$$= \left(\sqrt[n]{\alpha_1^{dx_1} \dots \alpha_r^{dx_r}}\right)^a \alpha_1^{b_1} \dots \alpha_r^{b_r}.$$

We therefore have

$$\mathbf{L} \subset \mathbf{k} \left(\sqrt[n]{\alpha_1^{dx_1} \dots \alpha_r^{dx_r}} \right).$$

Note that (dx_1, \ldots, dx_r) is in the set S, so $\alpha = \sqrt[n]{\alpha_1^{dx_1} \ldots \alpha_r^{dx_r}}$ is an element of **L**, and we have

$$\mathbf{L} = \mathbf{k} \left(\sqrt[n]{\alpha_1^{dx_1} \dots \alpha_r^{dx_r}} \right).$$

We still need to establish the claim about the existence of integer a, which is established by the following lemma.

LEMMA 8.6. If (dx_1, \ldots, dx_r) and (k_1, \ldots, k_r) satisfy the condition

$$\sum_{i=1}^{r} dx_i y_i = 0 \pmod{n} \Longrightarrow \sum_{i=1}^{r} y_i k_i = 0 \pmod{n},$$

then there exists an integer a so that $k_i = adx_i \pmod{n}$ for $1 \leq i \leq r$.

PROOF. The proof is by induction. Take r = 1. The hypothesis is that given dx_1 and k_1 , if $dx_1y_1 = 0 \pmod{n}$ then $y_1k_1 = 0 \pmod{n}$. Let c be the greatest common divisor of dx_1 and n. Then $(n/c)dx_1 = 0 \pmod{n}$, so $(n/c)k_1 = 0 \pmod{n}$. Therefore c divides k_1 . Since dx_1/c and n/c are relatively prime, then dx_1/c has an inverse modulo n/c, so there exists an integer a such that $a(dx_1/c) = (k_1/c) \pmod{n/c}$, or $adx_1 = k_1 \pmod{n}$.

Suppose that the lemma holds for the case r-1. If (dx_2, \ldots, dx_r) and (k'_2, \ldots, k'_r) satisfy the condition that if $\sum_{i=2}^r dx_i y_i = 0 \pmod{n}$ implies $\sum_{i=2}^r y_i k'_i = 0 \pmod{n}$, then there exists an integer a_2 so that $k'_i = a_2 dx_i \pmod{n}$ for $2 \le i \le r$. Now suppose that (dx_1, \ldots, dx_r) and (k_1, \ldots, k_r) satisfy the condition that $\sum_{i=1}^r dx_i y_i = 0 \pmod{n}$.

Let y_1 be such that $dx_1y_1 = 0 \pmod{n}$. Take $(y_1, \ldots, y_r) = (y_1, 0, \ldots, 0)$. Then $\sum_{i=1}^r dx_i y_i = 0 \pmod{n}$, so $\sum_{i=1}^r y_i k_i = y_1 k_1 = 0 \pmod{n}$. Since dx_1 and k_1 satisfy the hypothesis for r = 1, then there exists an integer a_1 so that $k_1 = a_1 dx_1 \pmod{n}$. Put

$$(8.8) k_1' = k_1 - a_1 dx_1 \\ k_2' = k_2 - a_1 dx_2 \\ \vdots \\ k_r' = k_r - a_1 dx_r$$

Let c be the greatest common divisor of dx_1 and n. We want to show that $((nd/c)x_2, \ldots, (nd/c)x_r)$ and (k'_2, \ldots, k'_r) satisfy the hypothesis for the case r-1. Suppose that $\sum_{i=2}^r (nd/c)x_iy_i = 0 \pmod{n}$. Then $\sum_{i=2}^r dx_iy_i = 0 \pmod{c}$. Put $c = \lambda_1 dx_1 + \lambda_2 n$. Then

$$\sum_{i=2}^{r} dx_i y_i = c\lambda_3 = \lambda_1 \lambda_3 dx_1 + \lambda_2 \lambda_3 n,$$

or

$$-\lambda_1\lambda_3 dx_1 + \sum_{i=2}^r dx_i y_i = 0 \pmod{n}.$$

Putting $y_1 = -\lambda_1 \lambda_3$, we have

$$\sum_{i=1}^{r} dx_i y_i = 0 \pmod{n}.$$

Then

$$\sum_{i=1}^{r} y_i k'_i = \sum_{i=1}^{r} y_i (k_i - a_1 dx_i) = \sum_{i=1}^{r} y_i k_i - a_1 \sum_{i=1}^{r} dx_i y_i = 0 - 0 = 0 \pmod{n}.$$

We have $k'_1 = 0 \pmod{n}$ by (8.8), so the term i = 1 may be deleted to obtain

$$\sum_{i=2}^r k_i' y_i = 0 \pmod{n}.$$

The hypothesis for the case r-1 is satisfied, so there exists an integer a_2 so that $k'_i = a_2(nd/c)x_i \pmod{n}$ for $2 \le i \le r$. For i = 1, we have $k'_1 = 0 = a_2(nd/c)x_1 \pmod{n}$ because c divides dx_1 , so

$$k'_i = a_2 \frac{n}{c} dx_i \pmod{n}$$
 for $1 \le i \le r$.

Finally, we have

$$k_i = k'_i + a_1 dx_i = a_2 \frac{n}{c} dx_i + a_1 dx_i = \left(a_2 \frac{n}{c} + a_1\right) dx_i \pmod{n} \text{ for } 1 \le i \le r.$$

Put $a = a_2 n/c + a_1$. Then $k_i = a dx_i \pmod{n}$ for $1 \le i \le n$. This completes the proof of lemma 8.6 and also of lemma 8.5.

LEMMA 8.7. Suppose that n is prime and k contains the n-th roots of unity. If \mathbf{K}/\mathbf{k} is an extension of degree n, then there is an element α in k so that $\mathbf{K} = \mathbf{k}(\sqrt[n]{\alpha})$.

PROOF. Let θ be an element of **K** that is not in **k**. Then $\mathbf{K} = \mathbf{k}(\theta)$ since there are no intermediate subfields. Let σ be a generator of $G(\mathbf{K} : \mathbf{k})$, which is cyclic of order *n*. Then $\theta, \theta^{\sigma}, \ldots, \theta^{\sigma^{n-1}}$ are all distinct. The matrix

$$\Theta = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \theta & \theta^{\sigma} & \dots & \theta^{\sigma^{n-1}} \\ \vdots & & & \vdots \\ \theta^{n-1} & (\theta^{\sigma})^{n-1} & \dots & (\theta^{\sigma^{n-1}})^{n-1} \end{pmatrix}$$

is a non-singular Vandermonde matrix. Let $\zeta \neq 1$ be an *n*-th root of unity. Θ does not annihilate column vector $Z = (1, \zeta, \dots, \zeta^{n-1})^t$, so if $(\beta_0, \dots, \beta_{n-1})^t = \Theta Z$ then not all of the β_j are zero. Choosing j so that $\beta_j \neq 0$, we have

$$\beta_j = \theta^j + \dots + \left(\theta^{\sigma^i}\right)^j \zeta^i + \dots + \left(\theta^{\sigma^{n-1}}\right)^j \zeta^{n-1} \neq 0.$$

Apply σ to both sides to obtain

$$\beta_j^{\sigma} = (\theta^{\sigma})^j + \dots + (\theta^{\sigma^{i+1}})^j \zeta^i + \dots + (\theta^{\sigma^n})^j \zeta^{n-1}$$
$$= (\theta^j) \zeta^{-1} + \dots + (\theta^{\sigma^i})^j \zeta^{i-1} + \dots + (\theta^{\sigma^{n-1}})^j \zeta^{n-2}$$
$$= \beta_j \zeta^{-1}.$$

Therefore $\beta_j \notin \mathbf{k}$ and $(\beta_j^n)^{\sigma} = (\beta_j^{\sigma})^n = \beta_j^n$, so β_j^n is in \mathbf{k} . Take $\alpha = \beta_j^n$. Then $\mathbf{K} = \mathbf{k}(\sqrt[n]{\alpha})$.

LEMMA 8.8. Suppose that **k** contain the n-th roots of unity, and let $\zeta \neq 1$ be an n-th root of unity. If $\zeta = 1 \pmod{p}$ then p must divide (n).

PROOF. If $\zeta \neq 1$ then ζ is a root of $x^{n-1} + \cdots + x + 1$, so

$$\zeta^{n-1} + \dots + \zeta + 1 = 0.$$

If $\zeta = 1 \pmod{p}$ then $n = 0 \pmod{p}$.

LEMMA 8.9. Let p be a prime of **k** such that p does not divide n and p does not divide element α of **k**. Then p does not ramify in $\mathbf{k}(\sqrt[n]{\alpha})$.

PROOF. Let $\mathbf{K} = \mathbf{k} \left(\sqrt[n]{\alpha} \right)$. Let \wp be a prime of \mathbf{K} dividing p. Element α is not divisible by p, so α is a unit in \mathbf{o}_p . We have $|\sqrt[n]{\alpha}|_{\wp}^n = |\alpha|_{\wp} = |\alpha|_p^{ef} = 1$, so $\sqrt[n]{\alpha}$

is a unit in \mathbf{O}_{\wp} . If σ is in $G(\mathbf{K} : \mathbf{k})$ then there is an *n*-root of unity ζ so that $\sigma(\sqrt[n]{\alpha}) = \zeta \sqrt[n]{\alpha}$. Suppose that σ is in the inertial group of \wp . Then

$$\sigma\left(\sqrt[n]{\alpha}\right) = \sqrt[n]{\alpha} \pmod{\wp}.$$

Then $\zeta \sqrt[n]{\alpha} = \sqrt[n]{\alpha} \pmod{\wp}$. Since $\sqrt[n]{\alpha}$ is a unit in \mathbf{O}_{\wp} , we have $\zeta = 1 \pmod{\wp}$. Then $\zeta = 1$ by lemma 8.8, which shows that the inertial group is trivial. Therefore p does not ramify in $\mathbf{k} (\sqrt[n]{\alpha})$.

LEMMA 8.10. The p-adic field \mathbf{k}_p contains only a finite number of roots of unity.

PROOF. If N > b/(p-1) as defined in lemma 4.12 then there is an isomorphism between subgroups $W = \{\alpha \in \mathbf{k}^* \mid \operatorname{ord}_p(\alpha - 1) > N\}$ and $\{y \in \mathbf{o}_p \mid \operatorname{ord}_p(y) > N\}$. W contains no root of unity other than $\alpha = 1$. Therefore the only root of unity in the kernel of the homomorphism $\mathbf{o}_p^* \to \mathbf{o}_p^*/W$ is $\alpha = 1$. The number of roots of unity in \mathbf{o}_p^* cannot be greater than $[\mathbf{o}_p^* : W] < Np^{N+1}$.

LEMMA 8.11. If the p-adic field contains the n-th roots of unity then

$$[\mathbf{k}_p^*: (\mathbf{k}_p^*)^n] = n^2 (Np)^a \text{ and } [\mathbf{u}_p: \mathbf{u}_p^n] = n (Np)^a$$

where $n\mathbf{o}_p = p^a$.

PROOF. If $p = (\pi)$ then \mathbf{k}_p^* is the direct product $\langle \pi \rangle \mathbf{u}_p$, so

$$[\mathbf{k}_p^*: (\mathbf{k}^*)^n] = n[\mathbf{u}_p: (\mathbf{u}_p)^n].$$

Let V be the group of roots of unity in \mathbf{k}_p . Then V is a cyclic group of order divisible by n. Then

$$[\mathbf{u}_p:(\mathbf{u}_p)^n] = [\mathbf{u}_p:V(\mathbf{u}_p)^n][V(\mathbf{u}_p)^n:(\mathbf{u}_p)^n]$$

and

$$[V(\mathbf{u}_p)^n : (\mathbf{u}_p)^n] = [V : V \cap (\mathbf{u}_p)^n] = [V : V^n] = n,$$

 \mathbf{so}

(8.9)
$$[\mathbf{k}_p^* : (\mathbf{k}^*)^n] = n^2 [\mathbf{u}_p : V(\mathbf{u}_p)^n].$$

Suppose N is sufficiently large so that $\log(x)$ is defined on $W = 1 + p^N$. Then $[\mathbf{u}_p: W]$ is finite. Let m be an integer divisible by $[\mathbf{u}_p: W]$ and by the order of V. Consider the map $\alpha \to \alpha^m \to \alpha^m \mathbf{u}_p^{nm}$.

$$\mathbf{u}_p o (\mathbf{u}_p)^m o (\mathbf{u}_p)^m / (\mathbf{u}_p)^{nm}$$

The kernel contains $V\mathbf{u}_p^n$. Also, suppose α is in the kernel. Then $\alpha^m \in \mathbf{u}_p^{nm}$, so $\alpha^m = \beta^{nm}$, or $(\alpha\beta^{-n})^m = 1$. We have $\alpha\beta^{-n} = \zeta \in V$, or $\alpha = \zeta\beta^n \in V\mathbf{u}_p^n$, so the kernel is exactly $V\mathbf{u}_p^n$. This shows

(8.10)
$$[\mathbf{u}_p: V\mathbf{u}_p^n] = [\mathbf{u}_p^m: \mathbf{u}_p^{mn}].$$

The map $x \to \log(x)$ maps W isomorphically onto p^N . Let M be the image of \mathbf{u}_p^m . (We have $\mathbf{u}_p^m \subset W$ since m is divisible by $[\mathbf{u}_p : W]$.) We claim that M is a \mathbf{Z}_q module where $q = \mathbf{Z} \cap p$ is the rational prime which p divides. Let $A = \sum_{i=0}^{\infty} a_i q^i$ be an element of \mathbf{Z}_q , and put

$$A_k = a_0 + a_1 q + \dots + a_k q^k, \quad 0 \le a_i < q.$$

If $y \in M$, let $y = \log(x)$ where $x \in \mathbf{u}_p^m$. The $x = x_1^m$ where $x \in \mathbf{u}_p$. Since $x \in W = 1 + p^N$ then $x = 1 + \beta_0 \pi^N$ with $b \in \mathbf{u}_p$. Let $(q) = p^e$ in \mathbf{o}_p . Then

$$x^{q} = (1 + \beta_{0}\pi^{N})^{q} = 1 + q\beta_{0}\pi^{N} + \dots = 1 + \beta_{1}\pi^{N+1}$$
$$x^{q^{2}} = (1 + \beta_{1}\pi^{N+1})^{q} = 1 + q\beta_{1}\pi^{N+1} + \dots = 1 + \beta_{2}\pi^{N+2}$$

There exist elements $\beta_0, \beta_1, \beta_2, \ldots$, in \mathbf{u}_p depending only on x so that

$$x^{A_k} = \prod_{i=0}^k \left(1 + a_i \beta_i \pi^{N+i} \right).$$

This shows that the sequence x^{A_k} converges to an element X of \mathbf{u}_p . We have $\log(\lim_{i\to\infty} x^{A_k}) = \lim_{i\to\infty} \log(x^{A_k}) = \lim_{i\to\infty} A_k \log(x)$, so $\log(X) = A \log(x)$. We need to show that X is an *m*-th power. Let z be an element in \mathbf{u}_p so that $z^m = x$. Then $(z^{A_k})^m = x^{A_k}$. There exists a convergent subsequence $z^{A_{k_j}}$ since \mathbf{u}_p is compact. Then

$$\left(\lim_{j \to \infty} z^{A_{k_j}}\right)^m = \lim_{j \to \infty} \left(z^{A_{k_j}}\right)^m = \lim_{j \to \infty} x^{A_{k_j}} = X.$$

This shows that Ay is the image of an *m*-power, so Ay is in *M*. This shows *M* is an \mathbb{Z}_q -module.

Next, by lemma 4.13, if $a = \operatorname{ord}_p(n)$ then every element x in $1 + p^{N+a}$ is the *n*-th power of an element in $1 + p^N$. Therefore, $p^{N+a} \subset M$. This shows that M contains $[\mathbf{k}_p : \mathbf{Q}_q]$ independent elements, i.e., M is a free \mathbf{Z}_p module of the same dimension as \mathbf{o}_p . Therefore $M \simeq \mathbf{o}_p$, and $nM \simeq n\mathbf{o}_p$. Then

$$[\mathbf{u}_p^m : \mathbf{u}_p^{nm}] = [M : nM] = [\mathbf{o}_p : n\mathbf{o}_p] = [\mathbf{o}_p : p^a] = (Np)^a.$$

Using the above formula in (8.9) and (8.10) completes the proof of the lemma.

LEMMA 8.12. Let **k** be an algebraic number field containing the n-th roots of unity. Let E be a finite set of primes containing all infinite primes and all primes dividing n, and let $\mathbf{I}_{\mathbf{k}}^{n}(E) = \prod_{p \in E} (\mathbf{k}_{p}^{*})^{n} \times \prod_{p \notin E} \mathbf{u}_{p}$. If E contains s+1 primes then

$$[\mathbf{I}_{\mathbf{k}}(E):\mathbf{I}_{\mathbf{k}}^{n}(E)] = n^{2(s+1)}$$

PROOF. We have $\mathbf{I}_{\mathbf{k}}(E) = \prod_{p \in E} \mathbf{k}_p^* \times \prod_{p \notin E} \mathbf{u}_p$, so

$$\left[\mathbf{I}_{\mathbf{k}}(E):\mathbf{I}_{\mathbf{k}}^{n}(E)\right] = \prod_{p \in E} \left[\mathbf{k}_{p}^{*}: \left(\mathbf{k}_{p}^{*}\right)^{n}\right].$$

If p is a complex infinite prime of **k** then $[\mathbf{k}_p^* : (\mathbf{k}_p^*)^n] = 1$; if p is a real infinite prime then n = 1 or n = 2, so $[\mathbf{k}_p^* : (\mathbf{k}_p^*)^n] = n$. If p is a finite prime then by lemma 8.11 we have $[\mathbf{k}_p^* : (\mathbf{k}_p^*)^n] = n^2 N p^{\text{ord}_p(n)}$. Let E contain r_0 finite primes, r_1 real primes and r_2 complex primes. Let E_0 be the set of finite primes in E. We have

(8.11)
$$[\mathbf{I}_{\mathbf{k}}(E) : \mathbf{I}_{\mathbf{k}}^{n}(E)] = \left(n^{2r_{0}} \prod_{p \in E_{0}} \operatorname{N}p^{\operatorname{ord}_{p}(n)} \right) n^{r_{1}}.$$

Each prime p in E_0 divides some rational prime q, and we have $Np = Nq^f$ and $\operatorname{ord}_p(n) = e \operatorname{ord}_q(n)$. Since E_0 contains all primes dividing n, and $efg = [\mathbf{k} : \mathbf{Q}] = r_1 + 2r_2$, we have

$$\prod_{p \in E_0} \mathrm{N}p^{\mathrm{ord}_p(n)} = \prod_{q|n} \prod_{p|q} \mathrm{N}p^{\mathrm{ord}_p(n)} = \prod_{q|n} \prod_{p|q} \mathrm{N}q^{ef \operatorname{ord}_q(n)} = \prod_{q|n} \mathrm{N}q^{efg \operatorname{ord}_q(n)} = n^{r_1 + 2r_2}$$

Using this result in (8.11) produces $n^{2r_0+2r_1+2r_2} = n^{2(s+1)}$.

Reduction to the case of extensions of prime degree n. Every finite abelian group G contains a decomposition $G = G_0 \supset G_1 \supset \cdots \supset G_r = \{1\}$ such that G_i/G_{i+1} is cyclic of prime index, so if \mathbf{K} is an abelian extension of \mathbf{k} then there exist extensions $\mathbf{k} = \mathbf{k}_0 \subset \mathbf{k}_1 \subset \cdots \subset \mathbf{k}_r = \mathbf{K}$ such that $\mathbf{k}_{i+1}/\mathbf{k}_i$ is cyclic of prime degree. Lemma 8.14 will show that if the second inequality holds for each extension $\mathbf{k}_{i+1}/\mathbf{k}$ then it will hold for \mathbf{K}/\mathbf{k} , after which it will be enough to prove the second inequality for cyclic extensions of prime degree.

LEMMA 8.13. Suppose that **K** is a finite abelian extension of \mathbf{K}_1 and \mathbf{K}_1 is a finite abelian extension of \mathbf{k} . Then

$$\begin{bmatrix} \mathbf{k}^* \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}} \end{bmatrix} \text{ divides } \begin{bmatrix} \mathbf{I}_{\mathbf{K}_1} : \mathbf{K}_1^* \mathbf{N}_{\mathbf{K}/\mathbf{K}_1} \mathbf{I}_{\mathbf{K}} \end{bmatrix}.$$

PROOF. We have We have

$$(8.12) \quad \begin{bmatrix} \mathbf{k}^* \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}} \end{bmatrix} = \begin{bmatrix} \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{k}} \cap \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \left(\mathbf{N}_{\mathbf{K}/\mathbf{K}_1} \mathbf{I}_{\mathbf{k}} \right) \cap \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} : \left(\mathbf{k}^* \cap \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} \right) \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \left(\mathbf{N}_{\mathbf{K}/\mathbf{K}_1} \mathbf{I}_{\mathbf{K}} \right) \end{bmatrix}.$$

Since $\mathbf{k}^* \cap \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} \supset \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{K}_1^*$, the rightmost term of (8.12) divides (8.13).

(8.13)
$$\left[\mathbf{N}_{\mathbf{K}_{1}/\mathbf{k}}\mathbf{I}_{\mathbf{K}_{1}}:\mathbf{N}_{\mathbf{K}_{1}/\mathbf{k}}\left(\mathbf{K}_{1}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{K}_{1}}\mathbf{I}_{\mathbf{K}}\right)\right]$$

The kernel of the homomorphism in (8.14) contains $\mathbf{K}_{1}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{K}_{1}}\mathbf{I}_{\mathbf{K}}$.

(8.14)
$$\mathbf{I}_{\mathbf{K}_1} \xrightarrow{\mathbf{N}_{\mathbf{K}_1/\mathbf{k}}} \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{K}_1 \xrightarrow{\mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{K}_1} \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} (\mathbf{K}_1^* \mathbf{N}_{\mathbf{K}/\mathbf{K}_1} \mathbf{I}_{\mathbf{K}})$$

Therefore the homomorphism

$$\frac{\mathbf{I}_{\mathbf{K}_1}}{\mathbf{K}_1^* \mathbf{N}_{\mathbf{K}/\mathbf{K}_1} \mathbf{I}_{\mathbf{K}}} \xrightarrow{} \frac{\mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{K}_1}{\mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \left(\mathbf{K}_1^* \mathbf{N}_{\mathbf{K}/\mathbf{K}_1} \mathbf{I}_{\mathbf{K}}\right)}$$

is a surjection, so (8.13) must divide $[\mathbf{I}_{\mathbf{K}_1} : \mathbf{K}_1^* \mathbf{N}_{\mathbf{K}/\mathbf{K}_1} \mathbf{I}_{\mathbf{K}}]$ proving the lemma.

LEMMA 8.14. Suppose that \mathbf{K} is a finite abelian extension of \mathbf{K}_1 and \mathbf{K}_1 is a finite abelian extension of \mathbf{k} such that the second inequality is valid for \mathbf{K}/\mathbf{K}_1 and \mathbf{K}_1/\mathbf{k} . Then the second inequality is valid for \mathbf{K}/\mathbf{K}_1 .

PROOF. We have

(8.15)
$$\left[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}} \right] = \left[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} \right] \left[\mathbf{k}^* \mathbf{N}_{\mathbf{K}_1/\mathbf{k}} \mathbf{I}_{\mathbf{K}_1} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}} \right].$$

If the second fundamental inequality holds for \mathbf{K}_1/\mathbf{k} then first factor of (8.12) divides $[\mathbf{K}_1 : \mathbf{k}]$, By lemma 8.13, the second factor divides $[\mathbf{I}_{\mathbf{K}_1} : \mathbf{K}_1^* \mathbf{N}_{\mathbf{K}/\mathbf{K}_1} \mathbf{I}_{\mathbf{K}}]$, which divides $[\mathbf{K} : \mathbf{K}_1]$ if the second fundamental inequality holds for \mathbf{K}/\mathbf{K}_1 . This shows that the right side of (8.15) divides $[\mathbf{K} : \mathbf{K}_1][\mathbf{K}_1 : \mathbf{k}]$, so $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$ divides $[\mathbf{K} : \mathbf{k}]$, proving the second inequality for \mathbf{K}/\mathbf{k} .

Reduction to extensions of fields containing *n*-th roots of unity.

LEMMA 8.15. If the second fundamental inequality holds for abelian extensions of prime degree n where the ground field contains the n-th roots of unity, then it also holds for any abelian extension of degree n.

PROOF. Put $\mathbf{Z} = \mathbf{k}(\zeta)$, where ζ is a primitive *n*-th root of unity. Let \mathbf{K}/\mathbf{k} be an abelian extension of degree *n*. Since $\mathbf{N}_{\mathbf{KZ}/\mathbf{k}}\mathbf{I}_{\mathbf{KZ}}$ is a subgroup of $\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}$ then $[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}]$ divides $[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{N}_{\mathbf{KZ}/\mathbf{k}}\mathbf{I}_{\mathbf{KZ}}]$, and for that term we have

(8.16)
$$\left[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}\mathbf{Z}/\mathbf{k}} \mathbf{I}_{\mathbf{K}\mathbf{Z}} \right] = \left[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{Z}/\mathbf{k}} \mathbf{I}_{\mathbf{Z}} \right] \left[\mathbf{k}^* \mathbf{N}_{\mathbf{Z}/\mathbf{k}} \mathbf{I}_{\mathbf{Z}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}\mathbf{Z}/\mathbf{k}} \mathbf{I}_{\mathbf{K}\mathbf{Z}} \right].$$

By lemma 8.13, the second factor on the right side divides $[\mathbf{I}_{\mathbf{Z}} : \mathbf{Z}^* \mathbf{N}_{\mathbf{K}\mathbf{Z}/\mathbf{Z}} \mathbf{I}_{\mathbf{K}\mathbf{Z}}]$. Therefore $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$ divides $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{Z}/\mathbf{k}} \mathbf{I}_{\mathbf{Z}}] [\mathbf{I}_{\mathbf{Z}} : \mathbf{Z}^* \mathbf{N}_{\mathbf{K}\mathbf{Z}/\mathbf{Z}} \mathbf{I}_{\mathbf{K}\mathbf{Z}}]$. We have $[\mathbf{K}\mathbf{Z} : \mathbf{Z}] = [\mathbf{K} : \mathbf{Z} \cap \mathbf{K}]$, and the later divides $[\mathbf{K} : \mathbf{k}] = n$, so $[\mathbf{K}\mathbf{Z} : \mathbf{Z}]$ is either 1 or n. By hypothesis, the second inequality holds for $\mathbf{K}\mathbf{Z}/\mathbf{Z}$, so $[\mathbf{I}_{\mathbf{Z}} : \mathbf{Z}^* \mathbf{N}_{\mathbf{K}\mathbf{Z}/\mathbf{Z}} \mathbf{I}_{\mathbf{K}\mathbf{Z}}]$ divides $[\mathbf{K}\mathbf{Z} : \mathbf{Z}]$, which divides n.

If we can show that $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$ and $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{Z}/\mathbf{k}} \mathbf{I}_{\mathbf{Z}}]$ are relatively prime, then $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$ must divide $[\mathbf{I}_{\mathbf{Z}} : \mathbf{Z}^* \mathbf{N}_{\mathbf{K}\mathbf{Z}/\mathbf{Z}} \mathbf{I}_{\mathbf{K}\mathbf{Z}}]$. If p is a prime of \mathbf{k} and \wp a prime of \mathbf{K} dividing p, then every element of $(\mathbf{k}_p^*)^n$ is in $\mathbf{N}_{\mathbf{K}_p^*/\mathbf{k}_p^*} \mathbf{K}_{\wp}^*$. By lemma 7.5, every element of $(\mathbf{I}_{\mathbf{k}})^n$ is in $\mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}$. Therefore every element in $\mathbf{I}_{\mathbf{k}}/\mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}$ has order dividing n, so n is the only prime dividing $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$. We apply the same argument to \mathbf{Z}/\mathbf{k} . The degree of $\mathbf{Z} = \mathbf{k}(\zeta)$ over \mathbf{k} is a divisor of n - 1, so every element of $(\mathbf{I}_{\mathbf{k}})^{n-1}$ is in $\mathbf{N}_{\mathbf{Z}/\mathbf{k}} \mathbf{I}_{\mathbf{Z}}$. Therefore only primes dividing n - 1can divide $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{Z}/\mathbf{k}} \mathbf{I}_{\mathbf{Z}}]$. This show $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$ and $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{Z}/\mathbf{k}} \mathbf{I}_{\mathbf{Z}}]$ are relatively prime, which completes the proof.

Proof for extensions of prime degree n **containing the** n**-th roots of unity.** Suppose that \mathbf{K}/\mathbf{k} is an extension of prime degree n, and \mathbf{k} contains the n-th roots of unity. By lemma 8.7, $\mathbf{K} = \mathbf{k}(\sqrt[n]{\beta_0})$ where β_0 is in \mathbf{K} but not in $(\mathbf{k}^*)^n$. Let E be a finite set of primes of \mathbf{k} containing all primes dividing β_0 , all primes dividing n, all infinite primes, and such that $\mathbf{I}_{\mathbf{k}} = \mathbf{k}^* \mathbf{I}_{\mathbf{k}}(E)$ (lemma 7.11). Let $\mathbf{I}_{\mathbf{k}}^n(E)$ be the set

$$\mathbf{I}_{\mathbf{k}}^{n}(E) = \left\{ \mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid \mathbf{i}_{p} \in \mathbf{u}_{p} \text{ if } p \notin E; \ \mathbf{i}_{p} \in \left(\mathbf{k}_{p}^{*}\right)^{n} \text{ if } p \in E \right\}.$$

By lemma 4.7 (every unit in an unramified extension is a norm) and lemma 7.5 (an idele is a norm if every coordinate is a local norm), we have $\mathbf{I}_{\mathbf{k}}^{n}(E) \subset \mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}$. Therefore

(8.17)
$$\left[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}\right] = \frac{\left[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{I}_{\mathbf{k}}^{n}(E)\right]}{\left[\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}:\mathbf{k}^{*}\mathbf{I}_{\mathbf{k}}^{n}(E)\right]}$$

The next two lemmas compute the right side of (8.17).

LEMMA 8.16. $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)] = n^{s+1}.$

PROOF. We have

$$\begin{aligned} (8.18) \quad \left[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right] &= \left[\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E) : \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E)\right] = \left[\mathbf{I}_{\mathbf{k}}(E) : \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}^{n}(E) \cap \mathbf{I}_{k}(E)\right] \\ &= \left[\mathbf{I}_{\mathbf{k}}(E) : \mathbf{k}^{*}(E) \mathbf{I}_{\mathbf{k}}^{n}(E)\right] = \frac{\left[\mathbf{I}_{\mathbf{k}}(E) : \mathbf{I}_{\mathbf{k}}^{n}(E)\right]}{\left[\mathbf{k}^{*}(E) \mathbf{I}_{\mathbf{k}}^{n}(E) : \mathbf{I}_{\mathbf{k}}^{n}(E)\right]} = \frac{\left[\mathbf{I}_{\mathbf{k}}(E) : \mathbf{I}_{\mathbf{k}}^{n}(E)\right]}{\left[\mathbf{k}^{*}(E) : \mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E)\right]} \\ &= \frac{\left[\mathbf{I}_{\mathbf{k}}(E) : \mathbf{I}_{\mathbf{k}}^{n}(E)\right]}{\left[\mathbf{k}^{*}(E) : \mathbf{k}^{*}(E)^{n}\right]} \left[\mathbf{k}^{*}(E) \cap \mathbf{I}_{\mathbf{k}}^{n}(E) : \mathbf{k}^{*}(E)^{n}\right]. \end{aligned}$$

The rightmost expression in (8.18) contains three subexpressions. As to the first, by lemma 8.13 we have

$$\mathbf{I}_{\mathbf{k}}(E):\mathbf{I}_{\mathbf{k}}^{n}(E)] = n^{2(s+1)}.$$

As to the second, by the unit theorem $\mathbf{k}^*(E)$ is the direct product of a finite group (order divisible by n) and s infinite cyclic groups, so $\mathbf{k}(E)/\mathbf{k}^n(E)$ is the direct product of s + 1 cyclic groups of order n. Therefore the index is

$$[\mathbf{k}(E):\mathbf{k}^n(E)] = n^{s+1}$$

Finally, we consider the third subexpression. Let θ be an element of $\mathbf{k}^*(E) \cap \mathbf{I}^n_{\mathbf{k}}(E)$. We will show that θ is in $\mathbf{k}^*(E)^n$. Suppose that \mathbf{i} is in $\mathbf{I}_{\mathbf{k}}(E)$. Let p be any prime of \mathbf{k} and \wp any prime of $\mathbf{K}' = \mathbf{k}(\sqrt[n]{\theta})$ dividing p. If p is in E then θ is an n-th power in \mathbf{k}_p^* so $\mathbf{K}'_{\wp} = \mathbf{k}_p$, and if p is not in E then $\mathbf{K}'_{\wp}/\mathbf{k}_p$ is unramified so \mathbf{i}_p is in $\mathbf{N}_{\mathbf{K}'_{\wp}/\mathbf{k}_p}(K'_{\wp})^*$ by lemma 4.7. Since \mathbf{i} is a norm everywhere locally then, by lemma 7.5, \mathbf{i} is in $\mathbf{N}_{\mathbf{k}}(\sqrt[n]{\theta})/\mathbf{k}\mathbf{I}_{\mathbf{k}}(\sqrt[n]{\theta})$. This show that $\mathbf{I}_{\mathbf{k}}(E)$ is contained in $\mathbf{N}_{\mathbf{k}}(\sqrt[n]{\theta})/\mathbf{k}\mathbf{I}_{\mathbf{k}}(\sqrt[n]{\theta})$. Since $\mathbf{I}_{\mathbf{k}} = \mathbf{k}^*\mathbf{I}_{\mathbf{k}}(E)$ then $\mathbf{I}_{\mathbf{k}}$ is contained in $\mathbf{k}^*\mathbf{N}_{\mathbf{k}}(\sqrt[n]{\theta})/\mathbf{k}\mathbf{I}_{\mathbf{k}}(\sqrt[n]{\theta})$, so

(8.19)
$$\left[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{N}_{\mathbf{k}\left(\sqrt[n]{\theta}\right)/\mathbf{k}}\mathbf{I}_{\mathbf{k}\left(\sqrt[n]{\theta}\right)}\right]=1.$$

Extension $\mathbf{k}(\sqrt[n]{\theta})/\mathbf{k}$ is cyclic so the first fundamental inequality applies, and we conclude that $[\mathbf{k}(\sqrt[n]{\theta}) : \mathbf{k}] = 1$ because of (8.19). We have $\mathbf{k}(\sqrt[n]{\theta}) = \mathbf{k}$, so θ is in $\mathbf{k}^*(E)^n$. This proves that $\mathbf{k}^*(E) \cap \mathbf{I}^n_{\mathbf{k}}(E) \subset \mathbf{k}^*(E)^n$, so

(8.19a)
$$[\mathbf{k}^*(E) \cap \mathbf{I}^n_{\mathbf{k}}(E) : \mathbf{k}^*(E)^n] = 1.$$

Applying these three results to (8.18), we obtain the desired result

$$[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)] = \frac{n^{2(s+1)}}{n^{s+1}} = n^{s+1}.$$

REMARK. By formula (8.17) and lemma 8.16, we know $[\mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}} : \mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)]$ divides n^{s+1} . If we can find ideles $\mathbf{i}_1, \ldots, \mathbf{i}_s$ in $\mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}$ so that $\mathbf{i}_1^{a_1} \ldots \mathbf{i}_s^{a_s}$ is in $\mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)$ only if the exponents a_i all satisfy $a_i = 0 \pmod{n}$, this would show that there are at least n^s distinct cosets of $\mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)$ in $\mathbf{k}^* \mathbf{N}_{\mathbf{k}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}$, which would show that $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{k}}]$ is either n or 1, proving the second fundamental inequality.

REMARK. The following two observations will be needed in chapter 11. First, we have

$$\begin{aligned} [\mathbf{k}^{*}(E)\mathbf{I}_{\mathbf{k}}^{n}(E):\mathbf{I}_{\mathbf{k}}^{n}(E)] &= [\mathbf{k}^{*}(E):\mathbf{k}^{*}(E)\cap\mathbf{I}_{\mathbf{k}}^{n}(E)] \\ &= \frac{[\mathbf{k}^{*}(E):\mathbf{k}^{*}(E)^{n}]}{[\mathbf{k}^{*}(E)\cap\mathbf{I}_{\mathbf{k}}^{n}(E):\mathbf{k}^{*}(E)^{n}]} = \frac{n^{s+1}}{1} = n^{s+1} \end{aligned}$$

Also, the kernel of the map $\mathbf{k}^*(E) \to \frac{\mathbf{k}^*(E)\mathbf{I}^n_{\mathbf{k}}(E)}{\mathbf{I}^n_{\mathbf{k}}(E)}$ is $\mathbf{k}^*(E) \cap \mathbf{I}^n_{\mathbf{k}}(E) = \mathbf{k}^*(E)^n$, so

$$\frac{\mathbf{k}^*(E)}{\mathbf{k}^*(E)^n} \simeq \frac{\mathbf{k}^*(E)\mathbf{I}^n_{\mathbf{k}}(E)}{\mathbf{I}^n_{\mathbf{k}}(E)}$$

LEMMA 8.17. $[\mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}} : \mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)]$ is either n^s or n^{s+1} .

PROOF. As stated in the proof of lemma 8.17, $\mathbf{k}^*(E)/\mathbf{k}^*(E)^n$ is the direct product of s + 1 cyclic groups of order n, so the group is a vector space of dimension s + 1 over finite field \mathbf{Z}_n . Element β_0 is in $\mathbf{k}^*(E)$ but not in $\mathbf{k}^*(E)^n$, so the element β_0 can be extended to a basis $\beta_0, \beta_1, \ldots, \beta_s$ of $\mathbf{k}^*(E)/\mathbf{k}^*(E)^n$. These elements are independent modulo $(\mathbf{k}^*)^n$ because if $\beta_0^{a_0} \ldots \beta_s^{a_s} = \gamma^n$ with γ in $(\mathbf{k}^*)^n$, then γ must be in $\mathbf{k}^*(E)$, so the exponents a_i must all be divisible by n. Put

$$\mathbf{T} = \mathbf{k} \left(\sqrt[n]{\beta_0}, \dots, \sqrt[n]{\beta_s} \right)$$
$$\mathbf{T}^{(j)} = \mathbf{k} \left(\sqrt[n]{\beta_0}, \dots, \sqrt[n]{\beta_{j-1}}, \sqrt[n]{\beta_{j+1}} \dots, \sqrt[n]{\beta_s} \right) \qquad 0 < j \le s$$

By lemma 8.5, we have $[\mathbf{T}:\mathbf{k}] = n^{s+1}$ and $[\mathbf{T}^{(j)}:\mathbf{k}] = n^s$.

There exist infinitely many primes of $\mathbf{T}^{(j)}$ which do not split completely in \mathbf{T} , because otherwise the Artin symbols for extension $\mathbf{T}/\mathbf{T}^{(j)}$ would be trivial except for a finite set of primes, so the trivial homomorphism would serve to extend $\phi_{\mathbf{T}/\mathbf{T}^{(j)}}$ By the corollary to the first fundamental inequality (Proposition 2.21), homomorphism $\phi_{\mathbf{T}/\mathbf{T}^{(j)}}$ maps onto $G(\mathbf{T}:\mathbf{T}^{(j)})$, so we would have $[\mathbf{T}:\mathbf{T}^{(j)}] = 1$, which is impossible.

For $1 \leq j \leq s$, choose a prime $q^{(j)}$ in $\mathbf{T}^{(j)}$ which does not split completely in \mathbf{T} , divides no prime in E and is not ramified in \mathbf{T} . Let \wp_j be a prime of \mathbf{T} dividing $q^{(j)}$, and let p_j be the prime of \mathbf{k} which $q^{(j)}$ divides. For prime $q^{(j)}$ we have $[\mathbf{T}:\mathbf{T}^{(j)}] = n = efg$ with e = 1 and g < n. Therefore g = 1 and f = n, so $[\mathbf{T}_{\wp_j}:\mathbf{T}^{(j)}_{q^{(j)}}] = ef = n$. Since $\mathbf{T} = \mathbf{T}^{(j)}(\sqrt[n]{\beta_j})$, this means β_j cannot be in $\mathbf{u}_{p_j}^n$. We have $[\mathbf{u}_{p_j}:\mathbf{u}_{p_j}^n] = n$ by lemma 8.11 (since all the primes of \mathbf{k} dividing n are in Eand p_j is not in E), so β_j generates $\mathbf{u}_{p_j}/\mathbf{u}_{p_j}^n$.

For the β_{ℓ} with $\ell \neq j$, $(0 \leq \ell \leq s)$, we must have $\beta_{\ell} \in \mathbf{u}_{p_j}^n$ because otherwise β_{ℓ} would also generate $\mathbf{u}_{p_j}/\mathbf{u}_{p_j}^n$ and we would have $\beta_j = \beta_{\ell}^x \gamma^n$ where γ is in \mathbf{u}_{p_j} , which would mean $\mathbf{T}_{\wp_j} = \mathbf{T}_{q_j}^{(j)}(\sqrt[n]{\beta_j})$ would be contained in $\mathbf{T}_{q_j}^{(j)}$, which is a contradiction. Therefore for $1 \leq j \leq s$, we have

$$\beta_j \notin \mathbf{u}_{p_j}^n \text{ and } \beta_\ell \in \mathbf{u}_{p_j}^n \text{ if } \ell \neq j, \qquad 0 \le \ell \le s$$

and

$$\mathbf{T}_{q_j}^{(j)} = \mathbf{k}_{p_j} (\sqrt[n]{\beta_0}, \sqrt[n]{\beta_1}, \dots, \sqrt[n]{\beta_{j-1}}, \sqrt[n]{\beta_{j+1}}, \dots, \sqrt[n]{\beta_s}) = \mathbf{k}_{p_j}.$$

The sets $\mathbf{u}_{p_1}^n, \ldots, \mathbf{u}_{p_s}^n$ are all distinct, so the primes p_1, \ldots, p_s are distinct. Choose a generator π_j in \mathbf{o}_{p_j} so that $p_j = (\pi_j)$. Define ideles $\mathbf{i}_1, \ldots, \mathbf{i}_s$ in $\mathbf{I}_{\mathbf{k}}(E)$ by

(8.20)
$$(\mathbf{i}_j)_p = \begin{cases} \pi_j & \text{if } p = p_j \\ 1 & \text{otherwise} \end{cases}$$

Since $\mathbf{T}_{q_j}^{(j)} = \mathbf{k}_{p_j}$ then \mathbf{i}_j is a norm from $\mathbf{I}_{\mathbf{T}^{(j)}}$ locally everywhere so $\mathbf{i}_j \in \mathbf{N}_{\mathbf{T}^{(j)}/\mathbf{k}}\mathbf{I}_{\mathbf{T}^{(j)}}$ by lemma 7.5. Since $\mathbf{k} \subset \mathbf{K} \subset \mathbf{T}^{(j)}$ we have $\mathbf{i}_j \in \mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}$. We will show that $\mathbf{i}_1, \ldots, \mathbf{i}_s$ satisfy the condition of the remark preceeding lemma 8.17. Suppose that $\mathbf{i}_1^{a_1} \ldots \mathbf{i}_s^{a_s}$ is in $\mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)$. Then we have

(8.21)
$$\mathbf{i}_1^{a_1} \dots \mathbf{i}_s^{a_s} = \alpha \mathbf{i} \quad \text{where } \alpha \in \mathbf{k}^* \text{ and } \mathbf{i} \in \mathbf{I}_{\mathbf{k}}^n(E).$$

With α defined by (8.21), we would like to compute $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{k}(\sqrt[n]{\alpha})/\mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\alpha})}]$. For a prime p of \mathbf{k} we consider the following three cases. First, suppose that $p \notin E$ and $p \neq p_j$ for $1 \leq j \leq s$. Evaluating (8.21) at component (p), we have $1 = \alpha \mathbf{i}_p$ with \mathbf{i}_p in \mathbf{u}_p . Therefore α is in \mathbf{u}_p so p does not divide α , and p does not divide n since E contains all primes dividing n. Therefore p does not ramify in $\mathbf{k} (\sqrt[n]{\alpha})/\mathbf{k}$, so every element of \mathbf{u}_p is in $\mathbf{N}_{\mathbf{k}_p}(\sqrt[n]{\alpha})/\mathbf{k}\mathbf{k}_p(\sqrt[n]{\alpha})$.

Second, suppose that $p = p_j$ where $1 \le j \le s$. Every element of \mathbf{u}_p^n is in $\mathbf{N}_{\mathbf{k}_p(\sqrt[n]{\alpha})/\mathbf{k}}\mathbf{k}_p(\sqrt[n]{\alpha})$.

Third, suppose that p is in E. Evaluating (8.21) at component (p), we have $1 = \alpha \mathbf{i}_p$ with \mathbf{i}_p in \mathbf{u}_p^n , so α is in \mathbf{u}_p^n . Then $\mathbf{k}_p (\sqrt[n]{\alpha}) = \mathbf{k}_p$, so every element of \mathbf{k}_p^* is in $\mathbf{N}_{\mathbf{k}_p}(\sqrt[n]{\alpha})/\mathbf{k}\mathbf{k}_p(\sqrt[n]{\alpha})$.

Let F be the set of primes of the first case $(p \notin E \text{ and } p \neq p_j \text{ for } 1 \leq j \leq s)$. Combining the three cases and using lemma 7.5, we have

(8.22)
$$\prod_{p \in F} \mathbf{u}_p \prod_{j=1}^s \mathbf{u}_p^n \prod_{p \in E} \mathbf{k}_p^* \subset \mathbf{N}_{\mathbf{k}(\sqrt[n]{\alpha})/\mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\alpha})}.$$

We already know that β_j generates $\mathbf{u}_{p_j}/\mathbf{u}_{p_j}^n$ for $1 \leq j \leq s$, so

$$\mathbf{u}_{p_j} = \left\{ \beta_j^r \mathbf{u}_{p_j}^n \mid 0 \le r < n \right\} \subset \mathbf{k}^*(E) \mathbf{u}_{p_j}^n,$$

and therefore

(8.22a)
$$\prod_{j=1}^{s} \mathbf{u}_{p_j} \subset \mathbf{k}^*(E) \prod_{j=1}^{s} \mathbf{u}_{p_j}^n$$

Applying (8.22a), we obtain

(8.22b)
$$\mathbf{I}_{\mathbf{k}}(E) = \prod_{p \in F} \mathbf{u}_p \prod_{j=1}^s \mathbf{u}_{p_j} \prod_{p \in E} \mathbf{k}_p^* \subset \mathbf{k}^*(E) \prod_{p \in F} \mathbf{u}_p \prod_{j=1}^s \mathbf{u}_{p_j}^n \prod_{p \in E} \mathbf{k}_p^*$$

Using the (8.22b) and (8.22), we have

$$\mathbf{I}_{\mathbf{k}} = \mathbf{k}^* \mathbf{I}_{\mathbf{k}}(E) \subset \mathbf{k}^* \prod_{p \in F} \mathbf{u}_p \prod_{j=1}^s \mathbf{u}_{p_j}^n \prod_{p \in E} \mathbf{k}_p^* \subset \mathbf{k}^* \mathbf{N}_{\mathbf{k}(\sqrt[n]{\alpha})/\mathbf{k}} \mathbf{I}_{\mathbf{k}(\sqrt[n]{\alpha})}.$$

This shows that

(8.23)
$$\left[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{N}_{\mathbf{k}(\sqrt[n]{\alpha})/\mathbf{k}}\mathbf{I}_{\mathbf{k}(\sqrt[n]{\alpha})}\right]=1.$$

Since $\mathbf{k}(\sqrt[n]{\alpha})/\mathbf{k}$ is cyclic, the first fundamental inequality applies, so $[\mathbf{k}(\sqrt[n]{\alpha}) : \mathbf{k}]$ divides $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{k}}(\sqrt[n]{\alpha})/\mathbf{k} \mathbf{I}_{\mathbf{k}}(\sqrt[n]{\alpha})]$, and then by (8.23) we have $[\mathbf{k}(\sqrt[n]{\alpha}) : \mathbf{k}] = 1$. Then $\mathbf{k}(\sqrt[n]{\alpha}) = \mathbf{k}$, so α is in $(\mathbf{k}^*)^n$. Taking components of (8.21) at p_j for $1 \le j \le s$, we obtain

$$\pi_j^{a_j} = \alpha \mathbf{i}_{p_j} \quad \text{where } \alpha \in (\mathbf{k}_p^*)^n, \text{ and } \mathbf{i}_{p_j} \in \mathbf{u}_{p_j}.$$

Then $p_j^{a_j} = (\pi_j^{a_j}) = (\beta)^n$ in \mathbf{o}_{p_j} , so $a_j = 0 \pmod{n}$ for $1 \leq j \leq s$. This proves that there are at least n^s distinct cosets of $\mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)$ in $\mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}$, which proves the lemma.

PROPOSITION 8.18. $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}] \text{ divides } [\mathbf{K} : \mathbf{k}].$

PROOF. By (8.17) and lemmas 8.16 and 8.17, $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$ is 1 or n.

PROPOSITION 8.19. The second fundamental inequality holds for any abelian extension.

PROOF. By Proposition 8.18, the second fundamental inequality holds for extensions of prime degree n where the ground field contains the n-th roots of unity. Lemma 8.15 removes the requirement that the ground field contain the n-th roots of unity. Lemma 8.14 and the remark preceeding it show that the second fundamental inequality holds for any abelian extension.

Corollary to theorem 1. Now that theorem 1 has been established, the following corollary will be of use in proving theorem 2. Let \mathbf{k} be an algebraic number field containing the *n*-th roots of unity where *n* is prime. Let *E* be a finite set of primes of \mathbf{k} containing the infinite primes, primes dividing *n*, and so that $\mathbf{I}_{\mathbf{k}} = \mathbf{k}^* \mathbf{I}_{\mathbf{k}}(E)$. If *E* contains s + 1 primes then $\mathbf{k}^*(E)/(\mathbf{k}^*(E))^n$ is the direct product of s + 1 cyclic groups of order *n*. Let β_0, \ldots, β_s be such that the cosets of $(\mathbf{k}^*(E))^n$ generate $\mathbf{k}^*(E)$. COROLLARY 8.20. The kernel of $\phi_{\mathbf{k}(\sqrt[n]{\beta_0},...,\sqrt[n]{\beta_s})/\mathbf{k}}$ is $\mathbf{k}^*\mathbf{I}^n_{\mathbf{k}}(E)$.

PROOF. Since the s + 1 elements β_0, \ldots, β_s are independent modulo $(\mathbf{k}^*)^n$ then $[\mathbf{k}(\sqrt[n]{\beta_0}, \ldots, \sqrt[n]{\beta_s}) : \mathbf{k}] = n^{s+1}$. For $0 \leq j \leq s$, let H_j be the kernel of $\phi_{\mathbf{k}}(\sqrt[n]{\beta_0})\mathbf{k}$. Since β_j is in $\mathbf{k}^*(E)$ then

$$\mathbf{I}^{n}_{\mathbf{k}}(E) \subset \mathbf{N}_{\mathbf{k}\left(\sqrt[n]{\beta_{j}}\right)\mathbf{k}} \mathbf{I}_{\mathbf{k}\left(\sqrt[n]{\beta_{j}}\right)}.$$

By Theorem I, we have

$$\mathbf{k}^* \mathbf{I}^n_{\mathbf{k}}(E) \subset \mathbf{k}^* \mathbf{N}_{\mathbf{k} \left(\sqrt[n]{\beta_j} \right) \mathbf{k}} \mathbf{I}_{\mathbf{k} \left(\sqrt[n]{\beta_j} \right)} = \ker \left(\phi_{\mathbf{k} \left(\sqrt[n]{\beta_j} \right) / \mathbf{k}} \right) = H_j,$$

 \mathbf{SO}

(8.24)
$$\mathbf{k}^* \mathbf{I}^n_{\mathbf{k}}(E) \subset H_0 \cap \dots \cap H_s.$$

By lemma 8.5 and formula (5.1), for \mathbf{i} in $\mathbf{I}_{\mathbf{k}}$, we have

$$\phi_{\mathbf{k}\left(\sqrt[n]{\beta_0},\ldots,\sqrt[n]{\beta_s}\right)/\mathbf{k}}(\mathbf{i}) = \left(\phi_{\mathbf{k}\left(\sqrt[n]{\beta_0}\right)/\mathbf{k}}(\mathbf{i}),\ldots,\phi_{\mathbf{k}\left(\sqrt[n]{\beta_s}\right)/\mathbf{k}}(\mathbf{i})\right).$$

The right side is 1 if and only if $\phi_{\mathbf{k}(\sqrt[n]{\beta_j})/\mathbf{k}}(\mathbf{i}) = 1$ for $0 \leq j \leq s$, that is, if and only if \mathbf{i} is in $H_0 \cap \cdots \cap H_s$. Therefore

(8.25)
$$\ker\left(\phi_{\mathbf{k}\left(\sqrt[n]{\beta_0},\dots,\sqrt[n]{\beta_s}\right)/\mathbf{k}}\right) = H_0 \cap \dots \cap H_s.$$

By theorem I, we have

(8.26)
$$[\mathbf{I}_{\mathbf{k}} : H_0 \cap \dots \cap H_s] = \left[\mathbf{I}_{\mathbf{k}} : \ker \left(\phi_{\mathbf{k} \left(\sqrt[n]{\beta_0}, \dots, \sqrt[n]{\beta_s} \right) / \mathbf{k}} \right) \right]$$
$$= \left[\mathbf{k} \left(\sqrt[n]{\beta_0}, \dots, \sqrt[n]{\beta_s} \right) : \mathbf{k} \right] = n^{s+1}$$

By lemma 8.16, we have $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)] = n^{s+1}$. By (8.24) and (8.26), we conclude that $H_0 \cap \cdots \cap H_s = \mathbf{k}^* \mathbf{I}_{\mathbf{k}}^n(E)$. Then by (8.25), we conclude

$$\ker\left(\phi_{\mathbf{k}\left(\sqrt[n]{\beta_{0}},\ldots,\sqrt[n]{\beta_{s}}\right)/\mathbf{k}}\right) = \mathbf{k}^{*}\mathbf{I}_{\mathbf{k}}^{n}(E).$$