
CHAPTER VIII

SECOND FUNDAMENTAL INEQUALITY

Kummer extensions. Let k contain the n-th roots of unity, and let ζ be a
primitive n-root of unity. A Kummer extension is an extension of k generated by
the roots of xn − α where α is a non-zero element of k. If one root is denoted n

√
α

then the other roots are ζ n
√

α, ζ2 n
√

α, . . . , ζn−1 n
√

α. If α and β are elements of k∗,
then we write α 'n β if α = βγn for some γ ∈ k∗. Elements α1, . . . , αr of k are
independent modulo (k∗)n means αa1

1 . . . αar
r 'n 1 only if a1 = · · · = ar = 0(mod n).

Lemma 8.1. Let n0 be the smallest positive power of α so that αn0 'n 1. Then

n0 divides n. There is an element α0 so that α = αd
0, where n = n0d, and k ( n

√
α) =

k
(

n0
√

α0

)

.

Proof. The set of integers a such that αa 'n 1 is an ideal, so take n0 to be the
positive integer which generates the ideal. Since αn 'n 1 then n is in the ideal, so
n = n0d for some positive integer d. We have αn0 = γn = γn0d for some γ in k∗. If
ζ is a primitive n-th root of unity, then

0 = αn0 − γn0d =

n0−1
∏

i=0

(

α − ζidγd
)

.

For some 0 ≤ i < n0, we have α = ζidγd =
(

ζiγ
)d

, so take α0 = ζiγ. Then

α = αd
o = α

n/n0

0 =
(

n0
√

α0

)n
. This show n0

√
α0 is a root of xn − α, so k ( n

√
α) =

k
(

n0
√

α0

)

.

Lemma 8.2. Let n0 be the smallest positive power of α so that αn0 'n 1. Then

[k ( n
√

α) : k] = n0. For σ ∈ G (k ( n
√

α) : k), let ζσ be the n-root of unity so that

σ ( n
√

α) = ζσ ( n
√

α). Then σ → ζσ defines an isomorphism of G (k ( n
√

α) : k) onto

the n0-th roots of unity.

Proof. (Galois automorphisms will applied on the left when radical notation is
used.) By lemma 8.1, α = αd

0 where n = n0d, and k ( n
√

α) = k
(

n0
√

α0

)

. We need to
show that xn0 − α0 is irreducible over k. The factorization of xn0 − α0 into linear
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factors over k ( n
√

α) is

(8.1) xn0 − α0 =

n0−1
∏

i=0

(

x − ζid n0
√

α0

)

.

Any non-trivial factor of xn0 − α0 over k would be a product of ν linear factors
with 0 < ν ≤ n0, and the constant term would be ±ζ0

(

n0
√

α0

)ν
, where ζn0

0 = 1.

Since k contains the n-th roots of unity then
(

n0
√

α0

)ν
is in k. Let c be the greatest

common divisor of ν and n0, and put c = an0 + bν. Then

( n0
√

α0)
c

= ( n0
√

α0)
an0+bν

= αa
0

(

( n0
√

α0)
ν)b

.

Therefore
(

n0
√

α0

)c
is in k, and

αc = αn0(c/n0) = α
n(c/n0)
0 =

(

( n0
√

α0)
c)n

,

so αc 'n 1. But this is impossible if 0 < c < n0, so we must have ν = n0. This
shows that xn0 − α0 is irreducible over k and [k ( n

√
α) : k] = n0.

If σ ( n
√

α) = ζσ ( n
√

α) then ζσ does not depend on n
√

α because if ζi n
√

α is another
root of xn − α then

σ
(

ζi n
√

α
)

= ζiσ
(

n
√

α
)

= ζiζσ

(

n
√

α
)

= ζσ

(

ζi n
√

α
)

.

Therefore we may take n
√

α = n0
√

α0. The map σ → ζσ is certainly a homomorphism.
Since [k ( n

√
α) : k] = n0 then n

√
α has n0 distinct conjugates over k. This shows that

the image of G
(

k ( n
√

α) : k
)

is the group of n0-th roots of unity.

Lemma 8.3. k
(

n
√

β
)

⊂ k ( n
√

α) if and only if β 'n αν for some ν, 0 ≤ ν < n0.

Proof. If β = ανγn then ( n
√

α)
ν

is an n-th root of β, so k
(

n
√

β
)

⊂ k ( n
√

α).

Conversely, suppose k
(

n
√

β
)

⊂ k ( n
√

α). Let α = αd
0 so that k ( n

√
α) = k

(

n0
√

α0

)

and [k ( n
√

α) : k] = n0. There exist γ0, . . . , γn0−1 in k so that

(8.2) n
√

β =

n0−1
∑

i=0

γi ( n0
√

α0)
i
.

Choose σ in G
(

k ( n
√

α) : k
)

so that ζσ is a primitive n0-th root of unity. Let ζ be an

n-th root of unity so that σ( n
√

β) = ζ n
√

β. Applying σ to both sides of (8.2) gives

ζ n
√

β =

n0−1
∑

i=0

γi (ζσ
n0
√

α0)
i
,
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or

(8.3) n
√

β =

n0−1
∑

i=0

γiζ
−1ζi

σ ( n0
√

α0)
i
.

The coefficients in (8.2) and (8.3) must coincide, so if γi 6= 0 then ζ−1ζi
σ = 1. The

values of the ζ−1ζi
σ = 1 are all different, so γi cannot be non-zero for two different

value of i. Therefore
n
√

β = γi0 ( n0
√

α0)
i0 ,

so we have β = γn
i0

αi0d
0 = γn

i0
αi0 , or β 'n αi0 where ν = i0 satisfies 0 ≤ ν < n0.

Lemma 8.4. Every extension of k contained in k( n
√

α) is of the form k( n
√

β)
where β = αy for some y.

Proof. Suppose k ⊂ K ⊂ k( n
√

α). Let σ generate G(k( n
√

α) : k). Let the
subgroup fixing K be generated by σx where x divides n0 = [k( n

√
α) : k]. Let

n
√

α = n0
√

α0. A typical element of k( n
√

α) is

(8.4)

n0−1
∑

i=0

γi ( n0
√

α0)
i
.

Applying σx to (8.4) yields

(8.5)

n0−1
∑

i=0

γiζ
xi
σ ( n0

√
α0)

i
.

An element is in K if and only if (8.4) and (8.5) coincide, which is equivalent to
γi = γiζ

xi
σ for 0 ≤ i < n0. Therefore an element of k( n

√
α) is in K if and only if

either γi = 0 or xi is divisible by n0 for 0 ≤ i < n0. Since x divides n0 then γi may
be non-zero only for i = jn0/x, 0 ≤ j < x, so elements of K are of the form

x−1
∑

j=0

γjn0/xζjn0
σ ( n0

√
α0)

jn0/x
=

x−1
∑

j=0

γjn0/xζjn0
σ ( x

√
α0)

j
.

Then K = k( x
√

α0). Putting n0 = xy then x
√

α0 = n0
√

αy
0 = n

√
αy, so K = k( n

√
αy).
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Lemma 8.5. Suppose that α1, . . . , αr are independent elements modulo (k∗)n.

Then K = k
(

n
√

α1, . . . , n
√

αr

)

has degree nr over k. Every cyclic subfield is of the

form k
(

n
√

αx1
1 . . . αxr

r

)

. Galois group G(K : k) is canonically isomorphic to the

product of the n-th roots of unity with itself r times, where σ ∈ G corresponds to

(ζ1, . . . , ζr) if σ
(

n
√

αi

)

= ζi

(

n
√

αi

)

.

Proof. The case for r = 1 is established by lemma 8.2 and lemma 8.4. The
general case will be proved by induction. Suppose that the conclusion holds for r−1.
Then [k

(

n
√

α2, . . . , n
√

αr

)

: k] = nr−1, and every subfield of k
(

n
√

α2, . . . , n
√

αr

)

is of

the form k
(

n
√

αx2
2 . . . αxr

r

)

. Let L = k
(

n
√

α2, . . . , n
√

αr

)

∩ k( n
√

α1). Then

L = k

(

n

√

αx2
2 . . . αxr

r

)

= k

(

n

√

αx1
1

)

.

By lemma 8.3 we have αx2
2 . . . αxr

r 'n αxx1
1 , or α−xx1

1 αx2
2 . . . αxr

r 'n 1. Since
α1, . . . , αr are independent modulo (k∗)n, we have

−xx1 = x2 = · · · = xr = 0(mod n).

This shows αx2
2 . . . αxr

r 'n 1, so k
(

n
√

αx2
2 . . . αxr

r

)

= k. By lemma 2.10, we have

[K : k] = nr, establishing the first claim. By lemma 2.11, there is an isomorphism
σ → (σ1, σ

′) of Galois groups

G
(

k ( n
√

α1, . . . , n
√

αr) : k
)

' G
(

k ( n
√

α1) : k
)

× G
(

k ( n
√

α2, . . . , n
√

αr) : k
)

.

By lemma 8.2, G(k
(

n
√

α1

)

: k) is isomorphic to the group of n-th roots of unity

with σ1 → ζ1 if σ1

(

n
√

α1

)

= ζ1

(

n
√

α1

)

. By the induction hypothesis, Galois group

G
(

k
(

n
√

α2, . . . , n
√

αr

)

: k
)

is isomorphic to the product of r − 1 copies of the n-th

roots of unity with σ′ → (ζ2, . . . , ζr) if σ′ ( n
√

αi

)

= ζi

(

n
√

αi

)

. The composite map

σ → (ζ1, ζ2, . . . , ζr) is an isomorphism between G
(

k
(

n
√

α1, . . . , n
√

αr

)

: k
)

and the
product of r copies of the n-th roots of unity.

It remains to prove the claim about cyclic subfields. Suppose that k ⊂ L ⊂
k

(

n
√

α1, . . . , n
√

αr

)

and G(L : k) is cyclic. Let τ generate G(L : k). Choose ζ to
be some primitive n-th root of unity. For each i = 1, . . . , r, let σi be the element
of G

(

k
(

n
√

α1, . . . , n
√

αr

)

: k
)

corresponding to (1, . . . , ζ, . . . , 1). Every element of

G
(

k
(

n
√

α1, . . . , n
√

αr

)

: k
)

is of the form
∏r

i=1 σyi

i . Let the restriction of σi to L be

τxi . Then
∏r

i=1 σyi

i leaves elements of L fixed if and only if
∏r

i=1 τxiyi = 1, or

(8.6)
r

∑

i=1

xiyi = 0(mod m) where m = [L : k].
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Every element α of k
(

n
√

α1, . . . , n
√

αr

)

may be uniquely represented as

(8.7) α =

n−1
∑

k1=1

· · ·
n−1
∑

kr=1

γk1...kr
( n
√

α1)
k1 . . . ( n

√
αr)

kr .

The result of applying σ =
∏r

i=1 σyi

i to α is

σ(α) =

n−1
∑

k1=1

· · ·
n−1
∑

kr=1

γk1...kr
ζy1k1+···+yrkr ( n

√
α1)

k1 . . . ( n
√

αr)
kr .

Then α is in L if and only if γk1...kr
= γk1...kr

ζy1k1+···+yrkr for all (y1, . . . , yr)
satisfying (8.6), which is equivalent to

either γk1...kr
= 0, or

r
∑

i=1

xiyi = 0(mod m) =⇒
r

∑

i=1

yiki = 0(mod n).

Therefore elements of L have the form

(8.8) α =
∑

(k1,...,kr)∈S

γk1...kr
( n
√

α1)
k1 . . . ( n

√
αr)

kr

where

S =

{

(k1, . . . , kr)

∣

∣

∣

∣

r
∑

i=1

xiyi = 0(mod m) =⇒
r

∑

i=1

yiki = 0(mod n)

}

.

Since G(L : k) is cyclic of order m and G[K : k] is the product of r copies of
cyclic groups of order n, it follows that m must divide n. Let md = n. Since
∑r

i=1 xiyi = 0(mod m) if and only if
∑r

i=1 dxiyi = 0(mod n), the condition for set
S is

S =

{

(k1, . . . , kr)

∣

∣

∣

∣

r
∑

i=1

dxiyi = 0(mod n) =⇒
r

∑

i=1

yiki = 0(mod n)

}

.

We claim that if (k1, . . . , kr) is in S then there is an integer a so that ki =
adxi(mod n) for 1 ≤ i ≤ n. Assuming this for the moment, then for (k1, . . . , kr) in
S we have

( n
√

α1)
k1 . . . ( n

√
αr)

kr =
(

( n
√

α1)
dx1 . . . ( n

√
αr)

dxr

)a

αb1
1 . . . αbr

r

=

(

n

√

αdx1
1 . . . αdxr

r

)a

αb1
1 . . . αbr

r .
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We therefore have

L ⊂ k

(

n

√

αdx1
1 . . . αdxr

r

)

.

Note that (dx1, . . . , dxr) is in the set S, so α = n

√

αdx1
1 . . . αdxr

r is an element of L,

and we have

L = k

(

n

√

αdx1
1 . . . αdxr

r

)

.

We still need to establish the claim about the existence of integer a, which is estab-
lished by the following lemma.

Lemma 8.6. If (dx1, . . . , dxr) and (k1, . . . , kr) satisfy the condition

r
∑

i=1

dxiyi = 0(mod n) =⇒
r

∑

i=1

yiki = 0(mod n),

then there exists an integer a so that ki = adxi(mod n) for 1 ≤ i ≤ r.

Proof. The proof is by induction. Take r = 1. The hypothesis is that given dx1

and k1, if dx1y1 = 0(mod n) then y1k1 = 0(mod n). Let c be the greatest common
divisor of dx1 and n. Then (n/c)dx1 = 0(mod n), so (n/c)k1 = 0(mod n). Therefore
c divides k1. Since dx1/c and n/c are relatively prime, then dx1/c has an inverse
modulo n/c, so there exists an integer a such that a(dx1/c) = (k1/c)(mod n/c), or
adx1 = k1(mod n).

Suppose that the lemma holds for the case r−1. If (dx2, . . . , dxr) and (k′
2, . . . , k

′
r)

satisfy the condition that if
∑r

i=2 dxiyi = 0(mod n) implies
∑r

i=2 yik
′
i = 0(mod n),

then there exists an integer a2 so that k′
i = a2dxi(mod n) for 2 ≤ i ≤ r. Now

suppose that (dx1, . . . , dxr) and (k1, . . . , kr) satisfy the condition that
∑r

i=1 dxiyi =
0(mod n) implies

∑r
i=1 yiki = 0(mod n).

Let y1 be such that dx1y1 = 0(mod n). Take (y1, . . . , yr) = (y1, 0, . . . , 0). Then
∑r

i=1 dxiyi = 0(mod n), so
∑r

i=1 yiki = y1k1 = 0(mod n). Since dx1 and k1 satisfy
the hypothesis for r = 1, then there exists an integer a1 so that k1 = a1dx1(mod n).
Put

k′
1 = k1 − a1dx1(8.8)

k′
2 = k2 − a1dx2

...

k′
r = kr − a1dxr
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Let c be the greatest common divisor of dx1 and n. We want to show that
(

(nd/c)x2, . . . , (nd/c)xr

)

and (k′
2, . . . , k

′
r) satisfy the hypothesis for the case r − 1.

Suppose that
∑r

i=2(nd/c)xiyi = 0(mod n). Then
∑r

i=2 dxiyi = 0(mod c). Put
c = λ1dx1 + λ2n. Then

r
∑

i=2

dxiyi = cλ3 = λ1λ3dx1 + λ2λ3n,

or

−λ1λ3dx1 +
r

∑

i=2

dxiyi = 0(mod n).

Putting y1 = −λ1λ3, we have

r
∑

i=1

dxiyi = 0(mod n).

Then

r
∑

i=1

yik
′
i =

r
∑

i=1

yi(ki − a1dxi) =
r

∑

i=1

yiki − a1

r
∑

i=1

dxiyi = 0 − 0 = 0(mod n).

We have k′
1 = 0(mod n) by (8.8), so the term i = 1 may be deleted to obtain

r
∑

i=2

k′
iyi = 0(mod n).

The hypothesis for the case r−1 is satisfied, so there exists an integer a2 so that k′
i =

a2(nd/c)xi(mod n) for 2 ≤ i ≤ r. For i = 1, we have k′
1 = 0 = a2(nd/c)x1(mod n)

because c divides dx1, so

k′
i = a2

n

c
dxi(mod n) for 1 ≤ i ≤ r.

Finally, we have

ki = k′
i + a1dxi = a2

n

c
dxi + a1dxi =

(

a2
n

c
+ a1

)

dxi(mod n) for 1 ≤ i ≤ r.

Put a = a2n/c + a1. Then ki = adxi(mod n) for 1 ≤ i ≤ n. This completes the
proof of lemma 8.6 and also of lemma 8.5.
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Lemma 8.7. Suppose that n is prime and k contains the n-th roots of unity. If

K/k is an extension of degree n, then there is an element α in k so that K = k( n
√

α).

Proof. Let θ be an element of K that is not in k. Then K = k(θ) since there
are no intermediate subfields. Let σ be a generator of G(K : k), which is cyclic of

order n. Then θ, θσ, . . . , θσn−1

are all distinct. The matrix

Θ =











1 1 . . . 1
θ θσ . . . θσn−1

...
...

θn−1 (θσ)
n−1

. . .
(

θσn−1
)n−1











is a non-singular Vandermonde matrix. Let ζ 6= 1 be an n-th root of unity. Θ does
not annihilate column vector Z = (1, ζ, . . . , ζn−1)t, so if (β0, . . . , βn−1)

t = ΘZ then
not all of the βj are zero. Choosing j so that βj 6= 0, we have

βj = θj + · · ·+
(

θσi
)j

ζi + · · ·+
(

θσn−1
)j

ζn−1 6= 0.

Apply σ to both sides to obtain

βσ
j = (θσ)

j
+ · · ·+

(

θσi+1
)j

ζi + · · ·+
(

θσn
)j

ζn−1

=
(

θj
)

ζ−1 + · · · +
(

θσi
)j

ζi−1 + · · · +
(

θσn−1
)j

ζn−2

= βjζ
−1.

Therefore βj /∈ k and (βn
j )σ = (βσ

j )n = βn
j , so βn

j is in k. Take α = βn
j . Then

K = k( n
√

α).

Lemma 8.8. Suppose that k contain the n-th roots of unity, and let ζ 6= 1 be an

n-th root of unity. If ζ = 1(mod p) then p must divide (n).

Proof. If ζ 6= 1 then ζ is a root of xn−1 + · · ·+ x + 1, so

ζn−1 + · · ·+ ζ + 1 = 0.

If ζ = 1(mod p) then n = 0(mod p).

Lemma 8.9. Let p be a prime of k such that p does not divide n and p does not

divide element α of k. Then p does not ramify in k ( n
√

α).

Proof. Let K = k ( n
√

α). Let ℘ be a prime of K dividing p. Element α is not
divisible by p, so α is a unit in op. We have | n

√
α|n℘ = |α|℘ = |α|ef

p = 1, so n
√

α
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is a unit in O℘. If σ is in G(K : k) then there is an n-root of unity ζ so that
σ ( n

√
α) = ζ n

√
α. Suppose that σ is in the inertial group of ℘. Then

σ
(

n
√

α
)

= n
√

α(mod ℘).

Then ζ n
√

α = n
√

α(mod ℘). Since n
√

α is a unit in O℘, we have ζ = 1(mod ℘). Then
ζ = 1 by lemma 8.8, which shows that the inertial group is trivial. Therefore p does
not ramify in k ( n

√
α).

Lemma 8.10. The p-adic field kp contains only a finite number of roots of unity.

Proof. If N > b/(p− 1) as defined in lemma 4.12 then there is an isomorphism
between subgroups W = {α ∈ k∗ | ordp(α − 1) > N} and {y ∈ op | ordp(y) > N}.
W contains no root of unity other than α = 1. Therefore the only root of unity
in the kernel of the homomorphism o∗

p → o∗
p/W is α = 1. The number of roots of

unity in o∗
p cannot be greater than [o∗

p : W ] < NpN+1.

Lemma 8.11. If the p-adic field contains the n-th roots of unity then

[k∗
p : (k∗

p)
n] = n2(Np)a and [up : un

p ] = n(Np)a

where nop = pa.

Proof. If p = (π) then k∗
p is the direct product 〈π〉up, so

[k∗
p : (k∗)n] = n[up : (up)

n].

Let V be the group of roots of unity in kp. Then V is a cyclic group of order
divisible by n. Then

[up : (up)
n] = [up : V (up)

n][V (up)
n : (up)

n]

and
[V (up)

n : (up)
n] = [V : V ∩ (up)

n] = [V : V n] = n,

so

(8.9) [k∗
p : (k∗)n] = n2[up : V (up)

n].

Suppose N is sufficiently large so that log(x) is defined on W = 1 + pN . Then
[up : W ] is finite. Let m be an integer divisible by [up : W ] and by the order of V .
Consider the map α → αm → αmunm

p .

up → (up)
m → (up)

m/(up)
nm.
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The kernel contains V un
p . Also, suppose α is in the kernel. Then αm ∈ unm

p , so

αm = βnm, or (αβ−n)m = 1. We have αβ−n = ζ ∈ V , or α = ζβn ∈ V un
p , so the

kernel is exactly V un
p . This shows

(8.10) [up : V un
p ] = [um

p : umn
p ].

The map x → log(x) maps W isomorphically onto pN . Let M be the image of um
p .

(We have um
p ⊂ W since m is divisible by [up : W ].) We claim that M is a Zq

module where q = Z ∩ p is the rational prime which p divides. Let A =
∑∞

i=0 aiq
i

be an element of Zq, and put

Ak = a0 + a1q + · · ·+ akqk, 0 ≤ ai < q.

If y ∈ M , let y = log(x) where x ∈ um
p . The x = xm

1 where x ∈ up. Since

x ∈ W = 1 + pN then x = 1 + β0π
N with b ∈ up. Let (q) = pe in op. Then

xq = (1 + β0π
N )q = 1 + qβ0π

N + . . . = 1 + β1π
N+1

xq2

= (1 + β1π
N+1)q = 1 + qβ1π

N+1 + . . . = 1 + β2π
N+2

There exist elements β0, β1, β2, . . . , in up depending only on x so that

xAk =
k

∏

i=0

(

1 + aiβiπ
N+i

)

.

This shows that the sequence xAk converges to an element X of up. We have
log(limi→∞ xAk) = limi→∞ log(xAk) = limi→∞ Ak log(x), so log(X) = A log(x).
We need to show that X is an m-th power. Let z be an element in up so that

zm = x. Then
(

zAk
)m

= xAk . There exists a convergent subsequence zAkj since
up is compact. Then

(

lim
j→∞

zAkj

)m

= lim
j→∞

(

zAkj

)m

= lim
j→∞

xAkj = X.

This shows that Ay is the image of an m-power, so Ay is in M . This shows M is
an Zq-module.

Next, by lemma 4.13, if a = ordp(n) then every element x in 1+pN+a is the n-th
power of an element in 1+ pN . Therefore, pN+a ⊂ M . This shows that M contains
[kp : Qq] independent elements, i.e., M is a free Zp module of the same dimension
as op. Therefore M ' op, and nM ' nop. Then

[um
p : unm

p ] = [M : nM ] = [op : nop] = [op : pa] = (Np)a.

Using the above formula in (8.9) and (8.10) completes the proof of the lemma.
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Lemma 8.12. Let k be an algebraic number field containing the n-th roots of

unity. Let E be a finite set of primes containing all infinite primes and all primes

dividing n, and let In
k
(E) =

∏

p∈E(k∗
p)

n×
∏

p/∈E up. If E contains s+1 primes then

[Ik(E) : In
k(E)] = n2(s+1).

Proof. We have Ik(E) =
∏

p∈E k∗
p ×

∏

p/∈E up,so

[Ik(E) : In
k
(E)] =

∏

p∈E

[

k∗
p :

(

k∗
p

)n]

.

If p is a complex infinite prime of k then [k∗
p : (k∗

p)
n] = 1; if p is a real infinite prime

then n = 1 or n = 2, so [k∗
p : (k∗

p)
n] = n. If p is a finite prime then by lemma 8.11

we have [k∗
p : (k∗

p)
n] = n2Npordp(n). Let E contain r0 finite primes, r1 real primes

and r2 complex primes. Let E0 be the set of finite primes in E. We have

(8.11) [Ik(E) : In
k(E)] =



n2r0

∏

p∈E0

Npordp(n)



nr1 .

Each prime p in E0 divides some rational prime q, and we have Np = Nqf and
ordp(n) = e ordq(n). Since E0 contains all primes dividing n, and efg = [k : Q] =
r1 + 2r2, we have

∏

p∈E0

Npordp(n) =
∏

q|n

∏

p|q
Npordp(n) =

∏

q|n

∏

p|q
Nqef ordq(n) =

∏

q|n
Nqefg ordq(n) = nr1+2r2

Using this result in (8.11) produces n2r0+2r1+2r2 = n2(s+1).

Reduction to the case of extensions of prime degree n. Every finite
abelian group G contains a decomposition G = G0 ⊃ G1 ⊃ · · · ⊃ Gr = {1} such
that Gi/Gi+1 is cyclic of prime index, so if K is an abelian extension of k then
there exist extensions k = k0 ⊂ k1 ⊂ · · · ⊂ kr = K such that ki+1/ki is cyclic of
prime degree. Lemma 8.14 will show that if the second inequality holds for each
extension ki+1/k then it will hold for K/k, after which it will be enough to prove
the second inequality for cyclic extensions of prime degree.

Lemma 8.13. Suppose that K is a finite abelian extension of K1 and K1 is a

finite abelian extension of k. Then

[

k∗NK1/kIK1
: k∗NK/kIK

]

divides
[

IK1
: K∗

1NK/K1
IK

]

.
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Proof. We have We have

(8.12)
[

k∗NK1/kIK1
: k∗NK/kIK

]

=
[

NK1/kIK1
: k∗NK/kIk ∩ NK1/kIK1

]

=
[

NK1/kIK1
: k∗NK1/k

(

NK/K1
Ik

)

∩ NK1/kIK1

]

=
[

NK1/kIK1
:
(

k∗ ∩ NK1/kIK1

)

NK1/k

(

NK/K1
IK

)]

.

Since k∗ ∩NK1/kIK1
⊃ NK1/kK

∗
1, the rightmost term of (8.12) divides (8.13).

(8.13)
[

NK1/kIK1
: NK1/k

(

K∗
1NK/K1

IK
)]

The kernel of the homomorphism in (8.14) contains K∗
1NK/K1

IK.

(8.14) IK1

NK1/k−−−−→ NK1/kK1 −−−−→ NK1/kK1

NK1/k(K∗

1NK/K1
IK)

Therefore the homomorphism

IK1

K∗

1NK/K1
IK

−−−−→ NK1/kK1

NK1/k(K∗

1NK/K1
IK)

is a surjection, so (8.13) must divide
[

IK1
: K∗

1NK/K1
IK

]

proving the lemma.

Lemma 8.14. Suppose that K is a finite abelian extension of K1 and K1 is a

finite abelian extension of k such that the second inequality is valid for K/K1 and

K1/k. Then the second inequality is valid for K/k.

Proof. We have

(8.15)
[

Ik : k∗NK/kIK
]

=
[

Ik : k∗NK1/kIK1

] [

k∗NK1/kIK1
: k∗NK/kIK

]

.

If the second fundamental inequality holds for K1/k then first factor of (8.12)
divides [K1 : k], By lemma 8.13, the second factor divides

[

IK1
: K∗

1NK/K1
IK

]

,
which divides [K : K1] if the second fundamental inequality holds for K/K1. This
shows that the right side of (8.15) divides [K : K1][K1 : k], so

[

Ik : k∗NK/kIK
]

divides [K : k], proving the second inequality for K/k.

Reduction to extensions of fields containing n-th roots of unity.

Lemma 8.15. If the second fundamental inequality holds for abelian extensions

of prime degree n where the ground field contains the n-th roots of unity, then it

also holds for any abelian extension of degree n.

Proof. Put Z = k(ζ), where ζ is a primitive n-th root of unity. Let K/k be
an abelian extension of degree n. Since NKZ/kIKZ is a subgroup of NK/kIK then
[

Ik : k∗NK/kIK
]

divides
[

Ik : k∗NKZ/kIKZ

]

, and for that term we have

(8.16)
[

Ik : k∗NKZ/kIKZ

]

=
[

Ik : k∗NZ/kIZ
] [

k∗NZ/kIZ : k∗NKZ/kIKZ

]

.
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By lemma 8.13, the second factor on the right side divides
[

IZ : Z∗NKZ/ZIKZ

]

.

Therefore
[

Ik : k∗NK/kIK
]

divides
[

Ik : k∗NZ/kIZ
] [

IZ : Z∗NKZ/ZIKZ

]

. We have
[KZ : Z] = [K : Z ∩ K], and the later divides [K : k] = n, so [KZ : Z] is either 1
or n. By hypothesis, the second inequality holds for KZ/Z, so

[

IZ : Z∗NKZ/ZIKZ

]

divides [KZ : Z], which divides n.
If we can show that

[

Ik : k∗NK/kIK
]

and
[

Ik : k∗NZ/kIZ
]

are relatively prime,

then
[

Ik : k∗NK/kIK
]

must divide
[

IZ : Z∗NKZ/ZIKZ

]

. If p is a prime of k and ℘
a prime of K dividing p, then every element of (k∗

p)
n is in NK∗

℘/k∗

p
K∗

℘. By lemma

7.5, every element of (Ik)n is in NK/kIK. Therefore every element in Ik/k∗NK/kIK
has order dividing n, so n is the only prime dividing [Ik : k∗NK/kIK]. We apply
the same argument to Z/k. The degree of Z = k(ζ) over k is a divisor of n − 1,
so every element of (Ik)n−1 is in NZ/kIZ. Therefore only primes dividing n − 1

can divide [Ik : k∗NZ/kIZ]. This show
[

Ik : k∗NK/kIK
]

and
[

Ik : k∗NZ/kIZ
]

are
relatively prime, which completes the proof.

Proof for extensions of prime degree n containing the n-th roots of

unity. Suppose that K/k is an extension of prime degree n, and k contains the
n-th roots of unity. By lemma 8.7, K = k( n

√
β0) where β0 is in K but not in (k∗)n.

Let E be a finite set of primes of k containing all primes dividing β0, all primes
dividing n, all infinite primes, and such that Ik = k∗Ik(E) (lemma 7.11). Let In

k
(E)

be the set

In
k(E) =

{

i ∈ Ik | ip ∈ up if p /∈ E; ip ∈
(

k∗
p

)n
if p ∈ E

}

.

By lemma 4.7 (every unit in an unramified extension is a norm) and lemma 7.5
(an idele is a norm if every coordinate is a local norm), we have In

k
(E) ⊂ NK/kIK.

Therefore

(8.17)
[

Ik : k∗NK/kIK
]

=
[Ik : k∗In

k
(E)]

[

k∗NK/kIK : k∗In
k
(E)

] .

The next two lemmas compute the right side of (8.17).

Lemma 8.16. [Ik : k∗In
k
(E)] = ns+1.

Proof. We have

(8.18) [Ik : k∗In
k
(E)] = [k∗Ik(E) : k∗In

k
(E)] = [Ik(E) : k∗In

k
(E) ∩ Ik(E)]

= [Ik(E) : k∗(E)In
k
(E)] =

[Ik(E) : In
k
(E)]

[k∗(E)In
k
(E) : In

k
(E)]

=
[Ik(E) : In

k
(E)]

[k∗(E) : k∗(E) ∩ In
k
(E)]

=
[Ik(E) : In

k
(E)]

[k∗(E) : k∗(E)n]
[k∗(E) ∩ In

k(E) : k∗(E)n] .
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The rightmost expression in (8.18) contains three subexpressions. As to the first,
by lemma 8.13 we have

[Ik(E) : In
k
(E)] = n2(s+1).

As to the second, by the unit theorem k∗(E) is the direct product of a finite group
(order divisible by n) and s infinite cyclic groups, so k(E)/kn(E) is the direct
product of s + 1 cyclic groups of order n. Therefore the index is

[k(E) : kn(E)] = ns+1.

Finally, we consider the third subexpression. Let θ be an element of k∗(E)∩ In
k
(E).

We will show that θ is in k∗(E)n. Suppose that i is in Ik(E). Let p be any prime

of k and ℘ any prime of K′ = k( n
√

θ) dividing p. If p is in E then θ is an n-th
power in k∗

p so K′
℘ = kp, and if p is not in E then K′

℘/kp is unramified so ip is in
NK′

℘/kp
(K ′

℘)∗ by lemma 4.7. Since i is a norm everywhere locally then, by lemma

7.5, i is in N
k( n√

θ)/kIk( n√
θ). This show that Ik(E) is contained in N

k( n√
θ)/kIk( n√

θ).

Since Ik = k∗Ik(E) then Ik is contained in k∗N
k( n√

θ)/kIk( n√
θ), so

(8.19)
[

Ik : k∗N
k( n√

θ)/kIk( n√
θ)

]

= 1.

Extension k( n
√

θ)/k is cyclic so the first fundamental inequality applies, and we

conclude that [k( n
√

θ) : k] = 1 because of (8.19). We have k( n
√

θ) = k, so θ is in
k∗(E)n. This proves that k∗(E) ∩ In

k
(E) ⊂ k∗(E)n, so

(8.19a) [k∗(E) ∩ In
k
(E) : k∗(E)n] = 1.

Applying these three results to (8.18), we obtain the desired result

[Ik : k∗In
k
(E)] =

n2(s+1)

ns+1
= ns+1.

Remark. By formula (8.17) and lemma 8.16, we know
[

k∗NK/kIK : k∗In
k
(E)

]

divides ns+1. If we can find ideles i1, . . . , is in NK/kIK so that ia1
1 . . . ias

s is in
k∗In

k
(E) only if the exponents ai all satisfy ai = 0(mod n), this would show that

there are at least ns distinct cosets of k∗In
k
(E) in k∗Nk/kIK, which would show

that [Ik : k∗NK/kIk] is either n or 1, proving the second fundamental inequality.

Remark. The following two observations will be needed in chapter 11. First,
we have

[k∗(E)In
k
(E) : In

k
(E)] = [k∗(E) : k∗(E) ∩ In

k
(E)]

=
[k∗(E) : k∗(E)n]

[k∗(E) ∩ In
k
(E) : k∗(E)n]

=
ns+1

1
= ns+1
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Also, the kernel of the map k∗(E) → k
∗(E)In

k
(E)

In
k
(E) is k∗(E) ∩ In

k
(E) = k∗(E)n, so

k∗(E)

k∗(E)n
' k∗(E)In

k
(E)

In
k
(E)

.

Lemma 8.17.
[

k∗NK/kIK : k∗In
k
(E)

]

is either ns or ns+1.

Proof. As stated in the proof of lemma 8.17, k∗(E)/k∗(E)n is the direct prod-
uct of s + 1 cyclic groups of order n, so the group is a vector space of dimension
s+ 1 over finite field Zn. Element β0 is in k∗(E) but not in k∗(E)n, so the element
β0 can be extended to a basis β0, β1, . . . , βs of k∗(E)/k∗(E)n. These elements are
independent modulo (k∗)n because if βa0

0 . . . βas
s = γn with γ in (k∗)n, then γ must

be in k∗(E), so the exponents ai must all be divisible by n. Put

T = k
(

n
√

β0, . . . ,
n
√

βs

)

T(j) = k
(

n
√

β0, . . . ,
n
√

βj−1,
n
√

βj+1 . . . , n
√

βs

)

0 < j ≤ s

By lemma 8.5, we have [T : k] = ns+1 and [T(j) : k] = ns.
There exist infinitely many primes of T(j) which do not split completely in T,

because otherwise the Artin symbols for extension T/T(j) would be trivial except for
a finite set of primes, so the trivial homomorphism would serve to extend φT/T(j) By

the corollary to the first fundamental inequality (Proposition 2.21), homomorphism
φT/T(j) maps onto G(T : T(j)), so we would have [T : T(j)] = 1, which is impossible.

For 1 ≤ j ≤ s, choose a prime q(j) in T(j) which does not split completely
in T, divides no prime in E and is not ramified in T. Let ℘j be a prime of T

dividing q(j), and let pj be the prime of k which q(j) divides. For prime q(j) we

have [T : T(j)] = n = efg with e = 1 and g < n. Therefore g = 1 and f = n, so

[T℘j
: T

(j)

q(j)] = ef = n. Since T = T(j)( n
√

βj), this means βj cannot be in un
pj

. We

have [upj
: un

pj
] = n by lemma 8.11 (since all the primes of k dividing n are in E

and pj is not in E), so βj generates upj
/un

pj
.

For the β` with ` 6= j, (0 ≤ ` ≤ s), we must have β` ∈ un
pj

because otherwise β`

would also generate upj
/un

pj
and we would have βj = βx

` γn where γ is in upj
, which

would mean T℘j
= T

(j)
qj ( n

√

βj) would be contained in T
(j)
qj , which is a contradiction.

Therefore for 1 ≤ j ≤ s, we have

βj /∈ un
pj

and β` ∈ un
pj

if ` 6= j, 0 ≤ ` ≤ s

and
T(j)

qj
= kpj

( n
√

β0,
n
√

β1, . . . ,
n
√

βj−1,
n
√

βj+1, . . . ,
n
√

βs) = kpj
.
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The sets un
p1

, . . . ,un
ps

are all distinct, so the primes p1, . . . , ps are distinct. Choose
a generator πj in opj

so that pj = (πj). Define ideles i1, . . . , is in Ik(E) by

(8.20) (ij)p =

{

πj if p = pj

1 otherwise

Since T
(j)
qj = kpj

then ij is a norm from IT(j) locally everywhere so ij ∈ NT(j)/kIT(j)

by lemma 7.5. Since k ⊂ K ⊂ T(j) we have ij ∈ NK/kIK. We will show that
i1, . . . , is satisfy the condition of the remark preceeding lemma 8.17. Suppose that
ia1
1 . . . ias

s is in k∗In
k
(E). Then we have

(8.21) ia1
1 . . . ias

s = αi where α ∈ k∗ and i ∈ In
k
(E).

With α defined by (8.21), we would like to compute
[

Ik : k∗Nk( n
√

α)/kIk( n
√

α)

]

.

For a prime p of k we consider the following three cases. First, suppose that p /∈ E
and p 6= pj for 1 ≤ j ≤ s. Evaluating (8.21) at component (p), we have 1 = αip
with ip in up. Therefore α is in up so p does not divide α, and p does not divide n
since E contains all primes dividing n. Therefore p does not ramify in k ( n

√
α) /k,

so every element of up is in N
kp( n

√
α)/kkp ( n

√
α).

Second, suppose that p = pj where 1 ≤ j ≤ s. Every element of un
p is in

N
kp( n

√
α)/kkp ( n

√
α).

Third, suppose that p is in E. Evaluating (8.21) at component (p), we have
1 = αip with ip in un

p , so α is in un
p . Then kp ( n

√
α) = kp, so every element of k∗

p is

in N
kp( n

√
α)/kkp ( n

√
α).

Let F be the set of primes of the first case (p /∈ E and p 6= pj for 1 ≤ j ≤ s).
Combining the three cases and using lemma 7.5, we have

(8.22)
∏

p∈F

up

s
∏

j=1

un
p

∏

p∈E

k∗
p ⊂ Nk( n

√
α)/kIk( n

√
α).

We already know that βj generates upj
/un

pj
for 1 ≤ j ≤ s, so

upj
=

{

βr
j u

n
pj

∣

∣ 0 ≤ r < n
}

⊂ k∗(E)un
pj

,

and therefore

(8.22a)

s
∏

j=1

upj
⊂ k∗(E)

s
∏

j=1

un
pj

.
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Applying (8.22a), we obtain

(8.22b) Ik(E) =
∏

p∈F

up

s
∏

j=1

upj

∏

p∈E

k∗
p ⊂ k∗(E)

∏

p∈F

up

s
∏

j=1

un
pj

∏

p∈E

k∗
p

Using the (8.22b) and (8.22), we have

Ik = k∗Ik(E) ⊂ k∗
∏

p∈F

up

s
∏

j=1

un
pj

∏

p∈E

k∗
p ⊂ k∗Nk( n

√
α)/kIk( n

√
α).

This shows that

(8.23)
[

Ik : k∗Nk( n
√

α)/kIk( n
√

α)

]

= 1.

Since k( n
√

α)/k is cyclic, the first fundamental inequality applies, so [k( n
√

α) : k]
divides

[

Ik : k∗Nk( n
√

α)/kIk( n
√

α)

]

, and then by (8.23) we have [k( n
√

α) : k] = 1.

Then k( n
√

α) = k, so α is in (k∗)n. Taking components of (8.21) at pj for 1 ≤ j ≤ s,
we obtain

π
aj

j = αipj
where α ∈ (k∗

p)
n, and ipj

∈ upj
.

Then p
aj

j =
(

π
aj

j

)

= (β)
n

in opj
, so aj = 0(mod n) for 1 ≤ j ≤ s. This proves

that there are at least ns distinct cosets of k∗In
k
(E) in k∗NK/kIK, which proves the

lemma.

Proposition 8.18. [Ik : k∗NK/kIK] divides [K : k].

Proof. By (8.17) and lemmas 8.16 and 8.17, [Ik : k∗NK/kIK] is 1 or n.

Proposition 8.19. The second fundamental inequality holds for any abelian

extension.

Proof. By Proposition 8.18, the second fundamental inequality holds for ex-
tensions of prime degree n where the ground field contains the n-th roots of unity.
Lemma 8.15 removes the requirement that the ground field contain the n-th roots of
unity. Lemma 8.14 and the remark preceeding it show that the second fundamental
inequality holds for any abelian extension.

Corollary to theorem 1. Now that theorem 1 has been established, the follow-
ing corollary will be of use in proving theorem 2. Let k be an algebraic number field
containing the n-th roots of unity where n is prime. Let E be a finite set of primes
of k containing the infinite primes, primes dividing n, and so that Ik = k∗Ik(E). If

E contains s + 1 primes then k∗(E)/
(

k∗(E)
)n

is the direct product of s + 1 cyclic

groups of order n. Let β0, . . . , βs be such that the cosets of
(

k∗(E)
)n

generate
k∗(E).
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Corollary 8.20. The kernel of φ
k( n

√
β0,..., n

√
βs)/k

is k∗In
k
(E).

Proof. Since the s + 1 elements β0, . . . , βs are independent modulo (k∗)n then
[k( n

√
β0, . . . ,

n
√

βs) : k] = ns+1. For 0 ≤ j ≤ s, let Hj be the kernel of φ
k( n

√
β0)k

.

Since βj is in k∗(E) then

In
k
(E) ⊂ N

k( n
√

βj)kIk( n
√

βj).

By Theorem I, we have

k∗In
k
(E) ⊂ k∗N

k( n
√

βj)kIk(
n√

θ) = ker
(

φ
k( n

√
βj)/k

)

= Hj ,

so

(8.24) k∗In
k(E) ⊂ H0 ∩ · · · ∩ Hs.

By lemma 8.5 and formula (5.1), for i in Ik, we have

φ
k

(

n
√

β0,..., n
√

βs

)

/k
(i) =

(

φ
k

(

n
√

β0

)

/k
(i), . . . , φ

k

(

n
√

βs

)

/k
(i)

)

.

The right side is 1 if and only if φ
k( n

√
βj)/k

(i) = 1 for 0 ≤ j ≤ s, that is, if and only

if i is in H0 ∩ · · · ∩ Hs. Therefore

(8.25) ker

(

φ
k

(

n
√

β0,..., n
√

βs

)

/k

)

= H0 ∩ · · · ∩ Hs.

By theorem I, we have

(8.26) [Ik : H0 ∩ · · · ∩ Hs] =

[

Ik : ker

(

φ
k

(

n
√

β0,..., n
√

βs

)

/k

)]

=
[

k
(

n
√

β0, . . . ,
n
√

βs

)

: k
]

= ns+1

By lemma 8.16, we have [Ik : k∗In
k
(E)] = ns+1. By (8.24) and (8.26), we conclude

that H0 ∩ · · · ∩ Hs = k∗In
k
(E). Then by (8.25), we conclude

ker

(

φ
k

(

n
√

β0,..., n
√

βs

)

/k

)

= k∗In
k(E).


