CHAPTER VII

FIRST FUNDAMENTAL INEQUALITY

In this chapter, we will prove that if **K** is a finite cyclic extension of **k** then $\mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}$ is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ and $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$ is divisible by $[\mathbf{K} : \mathbf{k}]$. We begin with an algebraic lemma.

LEMMA 7.1 (HERBRAND'S LEMMA). Let L be a subgroup of finite index in abelian group J, and let $f: J \to J$ and $g: J \to J$ be two homomorphisms such that $f(L) \subset L$ and $g(L) \subset L$, and fg = gf = 1. Let f_1 and g_1 be the restrictions to Lof f and g, respectively. If $[\ker(f_1) : \operatorname{Im}(g_1)]$ and $[\ker(g_1) : \operatorname{Im}(f_1)]$ are both finite then $[\ker(f) : \operatorname{Im}(g)]$ and $[\ker(g) : \operatorname{Im}(f)]$ are finite and

$$\frac{[\ker(f): Im(g)]}{[\ker(f_1): Im(g_1)]} = \frac{[\ker(g): Im(f)]}{[\ker(g_1): Im(f_1)]}$$

PROOF. Consider the composite $J \xrightarrow{f} \operatorname{Im}(f) \xrightarrow{\iota} \frac{\operatorname{Im}(f)}{\operatorname{Im}(f_1)}$. If f(j) is in $\operatorname{Im}(f_1)$ then $f(j) = f(\ell)$ with ℓ in L, so $j = j\ell^{-1}\ell$ is in $\ker(f)L$. Therefore $\ker(\iota f) = \ker(f)L$, and

$$\frac{J}{\ker(f)L} \simeq \frac{\operatorname{Im}(f)}{\operatorname{Im}(f_1)}$$

Both sides are finite groups since [J:L] is finite. In addition, we have

$$\frac{\ker(f)L}{L} \simeq \frac{\ker(f)}{\ker(f) \cap L} \simeq \frac{\ker(f)}{\ker(f_1)}$$

Homomorphism g satisfies the same hypotheses as f, so we have also

$$\frac{J}{\ker(g)L} \simeq \frac{\operatorname{Im}(g)}{\operatorname{Im}(g_1)} \quad \text{and} \quad \frac{\ker(g)L}{L} \simeq \frac{\ker(g)}{\ker(g) \cap L} \simeq \frac{\ker(g)}{\ker(g_1)}.$$

Therefore, with every index in the following being finite, we have

or

$$\frac{[J:L]}{[\operatorname{Im}(f):\operatorname{Im}(f_1)][\operatorname{Im}(g):\operatorname{Im}(g_1)]} = \frac{[\ker(f):\operatorname{Im}(g)]}{[\ker(f_1):\operatorname{Im}(g_1)]}$$

The left side is symmetric in f and g so we have the desired result,

$$\frac{[\operatorname{ker}(f):\operatorname{Im}(g)]}{[\operatorname{ker}(f_1):\operatorname{Im}(g_1)]} = \frac{[\operatorname{ker}(g):\operatorname{Im}(f)]}{[\operatorname{ker}(g_1):\operatorname{Im}(f_1)]}.$$

LEMMA 7.2 (HILBERT'S THEOREM 90). Let \mathbf{Z}/\mathbf{F} be a finite cyclic extension of degree n with Galois group generated by σ . If α in \mathbf{Z}^* satisfies $\alpha^{1+\sigma+\dots+\sigma^{n-1}} = 1$ then there exists β in \mathbf{Z}^* such that $\alpha = \beta^{1-\sigma}$.

PROOF. Suppose that $\mathbf{Z} = \mathbf{F}(\theta)$. Put $\theta_i = \theta^{\sigma^i}$. Then $\theta_i^{\sigma} = \theta_{i+1}$ for $0 \le i < n-1$, and $\theta_{n-1}^{\sigma} = \theta = \theta_0$. Put $\alpha_0 = 1, \alpha_1 = \alpha, \ldots, \alpha_i = \alpha^{1+\sigma+\dots+\sigma^{i-1}}$ for $1 \le i \le n-1$. Then $\alpha \alpha_i^{\sigma} = \alpha_{i+1}$ for $0 \le i < n-1$, and $\alpha \alpha_{n-1}^{\sigma} = \alpha^{1+\sigma+\dots+\sigma^{n-1}} = 1 = \alpha_0$. Finally, put

$$\beta_j = \alpha_0 \theta_0^j + \alpha_1 \theta_1^j + \dots + \alpha_{n-1} \theta_{n-1}^j \quad \text{for } 0 \le j < n.$$

Then $\alpha \beta_j^{\sigma} = \beta_j$. The *n* elements $\theta_0, \ldots, \theta_{n-1}$ are all distinct (otherwise θ would have fewer than *n* conjugates, which is impossible), so the Vandermonde matrix (θ_i^j) is non-singular. Therefore $\beta_j \neq 0$ for at least one value of *j*, and we have $\alpha = \beta_j / \beta_j^{\sigma} = \beta_j^{1-\sigma}$ as desired.

Computation of $[\mathbf{k}_p^* : \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*]$ for cyclic extensions. In the proof of the first fundamental inequality for cyclic extensions, we begin by showing that $[\mathbf{k}_p^* : \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*] = [\mathbf{K}_\wp : \mathbf{k}_p]$, and we will need only that local extension $\mathbf{K}_\wp/\mathbf{k}_p$ is cyclic. Let $[\mathbf{K}_\wp : \mathbf{k}_p] = n = ef$, where $p\mathbf{O}_\wp = \wp^e$ and $\mathbf{N}\wp = \mathbf{N}p^f$. Let principal ideals \wp and p be generated by elements Π in \mathbf{O}_\wp and π in \mathbf{o}_p , respectively. Denote the unit group \mathbf{O}_\wp^* by \mathbf{U}_\wp and the unit group \mathbf{o}_p^* by \mathbf{u}_p . The index $[\mathbf{k}_p^* : \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*]$ is the product of two factors.

(7.1)
$$[\mathbf{k}_p^* : \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*] = [\mathbf{k}_p^* : \mathbf{u}_p\mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*][\mathbf{u}_p\mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^* : \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*]$$

We will show that the first factor of the right side is f and the second factor is e.

Computation of the first factor. Since $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}(\Pi) = (\pi)^{f}$, we have $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\Pi = \mu\pi^{f}$ where μ is in \mathbf{u}_{p} . Then $\mathbf{K}_{\wp}^{*} = \mathbf{U}_{\wp}\langle \Pi \rangle$, so $\mathbf{u}_{p}\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\mathbf{K}_{\wp}^{*} = \mathbf{u}_{p}\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\mathbf{U}_{\wp}\langle \pi^{f} \rangle = \mathbf{u}_{p}\langle \pi^{f} \rangle$. We also have $\mathbf{k}_{p}^{*} = \mathbf{u}_{p}\langle \pi \rangle$, so

(7.2)
$$[\mathbf{k}_p^* : \mathbf{u}_p \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p} \mathbf{K}_\wp^*] = [\mathbf{u}_p \langle \pi \rangle : \mathbf{u}_p \langle \pi^f \rangle]$$
$$= [\langle \pi \rangle : \mathbf{u}_p \langle \pi^f \rangle \cap \langle \pi \rangle] = [\langle \pi \rangle : \langle \pi^f \rangle] = f.$$

Computation of the second factor. We have

(7.3)
$$[\mathbf{u}_p \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p} \mathbf{K}_{\wp}^* : \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p} \mathbf{K}_{\wp}^*] = [\mathbf{u}_p : \mathbf{u}_p \cap \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p} \mathbf{K}_{\wp}^*] = [\mathbf{u}_p : \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p} \mathbf{U}_{\wp}].$$

To compute $[\mathbf{u}_p : \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{U}_{\wp}]$, we apply Herbrand's lemma with $J = \mathbf{U}_{\wp}$, and homomorphisms $f : J \to J$ and $g : J \to J$ defined by $f(\alpha) = \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\alpha = \alpha^{1+\sigma+\dots+\sigma^{n-1}}$ and $g(\beta) = \beta^{1-\sigma}$. Then $\ker(g) = \{\beta \in \mathbf{U}_{\wp} \mid \beta/\beta^{\sigma} = 1\} = \mathbf{U}_{\wp} \cap \mathbf{k}_p^* = \mathbf{u}_p$, and $\operatorname{Im}(f) = \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{U}_{\wp}$. Lemma 7.1 (Herbrand's) asserts that

(7.4)
$$\left[\mathbf{u}_p : \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p} \mathbf{U}_\wp \right] = \left[\ker(g) : \operatorname{Im}(f) \right] = \frac{\left[\ker(f) : \operatorname{Im}(g) \right] \left[\ker(g_1) : \operatorname{Im}(f_1) \right]}{\left[\ker(f_1) : \operatorname{Im}(g_1) \right]}$$

It remains to choose L and compute the three indices on the right side of (7.1)

Computation of $[\ker(f) : Im(g)]$. We have

$$\operatorname{Im}(g) = \left\{ \alpha \in \mathbf{U}_p \mid \alpha = \beta^{1-\sigma} \text{ with } \beta \in \mathbf{U}_\wp \right\},\$$

and, by lemma 7.2,

$$\ker(f) = \left\{ \alpha \in \mathbf{U}_{\wp} \mid \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{\wp}} \alpha = 1 \right\} = \left\{ \alpha \in \mathbf{U}_{\wp} \mid \alpha = \beta^{1-\sigma} \text{ with } \beta \in \mathbf{K}_{\wp}^{*} \right\}.$$

Let $g' : \mathbf{K}_{\wp}^* \to \mathbf{K}_{\wp}^*$ be the map $g'(\alpha) = \alpha^{1-\sigma}$. Then $\ker(f) = \operatorname{Im}(g')$, and $\operatorname{Im}(g) = g(\mathbf{U}_{\wp}) = g'(\mathbf{k}_p^*\mathbf{U}_{\wp})$. Both rows are exact in the following commutative diagram.

$$1 \longrightarrow \mathbf{k}_{p}^{*} \longrightarrow \mathbf{K}_{\wp}^{*} \xrightarrow{g'} \ker(f) \longrightarrow 1$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$1 \longrightarrow \mathbf{k}_{p}^{*} \longrightarrow \mathbf{k}_{p}^{*} \mathbf{U}_{\wp} \xrightarrow{g'} \operatorname{Im}(g) \longrightarrow 1$$

We have $[\ker(f) : \operatorname{Im}(g)] = [\mathbf{K}_{\wp}^* : \mathbf{k}_p^* \mathbf{U}_{\wp}] = [\mathbf{U}_{\wp} \langle \Pi \rangle : \mathbf{U}_{\wp} \langle \pi \rangle] = [\langle \Pi \rangle : \langle \Pi^e \rangle]$, and therefore

(7.5)
$$[\ker(f) : \operatorname{Im}(g)] = e.$$

Choice of subgroup L. By the normal basis theorem, there exists an element θ in \mathbf{K}_{\wp} so that $\theta, \theta^{\sigma}, \ldots, \theta^{\sigma^{n-1}}$ is a basis of \mathbf{K}_{\wp} over \mathbf{k}_p . If α is in \mathbf{k}_p^* then $\alpha\theta, \alpha\theta^{\sigma}, \ldots, \alpha\theta^{\sigma^{n-1}}$ is also a basis, so we can assume that $\operatorname{ord}_{\wp}(\theta^{\sigma^j}) > \frac{b}{q-1}$, where b is as defined in lemma 4.8, and q is the *rational* prime which p divides. Put

$$M = \mathbf{o}_p \theta + \mathbf{o}_p \theta^{\sigma} + \dots + \mathbf{o}_p \theta^{\sigma^{n-1}}.$$

Then exp(x) is defined on M and maps M isomorphically onto a subgroup L of \mathbf{U}_{\wp} , where

$$L = \exp(M) = \left\{ y \in \mathbf{U}_{\wp} \mid \operatorname{ord}_{\wp}(y-1) > \frac{b}{q-1} \right\}.$$

If *m* is sufficiently large, we will show that *M* contains \wp^{em} . Let x_1, \ldots, x_n be a basis for \mathbf{O}_{\wp} over \mathbf{o}_p . Then $x_i = \sum_{j=0}^{n-1} \beta_{ij} \theta^{\sigma^j}$ for $1 \le i \le n$, with β_{ij} in \mathbf{o}_p . There is a constant c_0 so that $\operatorname{ord}_p(\beta_{ij}) > -c_0$ for $0 \le j < n$ and $1 \le i \le n$. If x is in $\wp^{em} = (\Pi^{em}) = \pi^m \mathbf{O}_{\wp}$ then $x = \sum_{i=1}^n \alpha_i \pi^m x_i = \sum_{i=1}^n \sum_{j=0}^{n-1} \alpha_i \pi^m \beta_{ij} \theta^{\sigma^j} = \sum_{j=0}^{n-1} \gamma_j \theta^{\sigma^j}$, where α_i is in \mathbf{o}_p , $1 \le i \le n$, and $\gamma_j = \sum_{j=0}^{n-1} \alpha_i \pi^m \beta_{ij}$. We have

 $\operatorname{ord}_p(\gamma_j) \ge \min\left(\operatorname{ord}(\alpha_i \pi^m \beta_{ij})\right) > m - c_0.$

If we take $m \ge c_0$ then the γ_j are all in \mathbf{o}_p , so x is in M, and $\wp^{em} \subset M \subset \mathbf{O}_{\wp}$. Since $[\mathbf{O}_{\wp} : \wp^{em}]$ is finite, we see that $[M : \wp^{em}]$ is finite. Since \wp^{em} is mapped isomorphically onto $1 + \wp^{em}$ by the exponential function, then $[L : 1 + \wp^{em}]$ is finite.

We can carry out the computation of $[\ker(g_1) : \operatorname{Im}(f_1)]$ and $[\ker(f_1) : \operatorname{Im}(g_1)]$ in M. Since $M^{\sigma} = M$, we can define $\tilde{f}_1 : M \to M$ by $\tilde{f}(x) = x + x^{\sigma} + \dots + x^{\sigma^{n-1}}$, and $\tilde{g}_1 : M \to M$ by $\tilde{g}(y) = y - y^{\sigma}$. Each automorphism of $\mathbf{K}_{\wp}/\mathbf{k}_p$ is an isometry, so if $\lim_{n\to\infty} \alpha_n = \alpha$ then we have $|\alpha_n - \alpha|_{\wp} = |\alpha_n^{\sigma} - \alpha^{\sigma}|_{\wp}$, so $\lim_{n\to\infty} \alpha_n^{\sigma} = \alpha^{\sigma}$. Therefore $\exp(x^{\sigma}) = (\exp(x))^{\sigma}$. We have

$$\exp\left(\tilde{f}_1(\alpha)\right) = \exp\left(x + x^{\sigma} + \dots + x^{\sigma^{n-1}}\right) = \exp(x)\exp(x^{\sigma})\dots\exp\left(x^{\sigma^{n-1}}\right)$$
$$= \exp(x)\exp(x)^{\sigma}\dots\exp(x)^{\sigma^{n-1}} = f_1\left(\exp(\alpha)\right)$$

Likewise, we have $\exp\left(\tilde{g}_1(y)\right) = g_1\left(\exp(y)\right)$. Since exp is an isomorphism, we have

(7.6)
$$[\ker(f_1) : \operatorname{Im}(g_1)] = [\ker(f_1) : \operatorname{Im}(\tilde{g}_1)]$$
$$[\ker(g_1) : \operatorname{Im}(f_1)] = [\ker(\tilde{g}_1) : \operatorname{Im}(\tilde{f}_1)].$$

Computation of $[\ker(f_1) : Im(g_1)]$. Let x be in M. Then $x = \sum_{i=0}^{n-1} \alpha_i \theta^{\sigma^i}$, with α_i in \mathbf{o}_p . We have

(7.7)
$$\tilde{f}_{1}(x) = \sum_{j=0}^{n-1} \left(\sum_{i=0}^{n-1} \alpha_{i} \theta^{\sigma^{i}} \right)^{\sigma^{j}} = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \alpha_{i} \theta^{\sigma^{i+j}}$$
$$= \left(\sum_{i=0}^{n-1} \alpha_{i} \right) \left(\sum_{k=0}^{n-1} \theta^{\sigma^{k}} \right) = \left(\sum_{i=0}^{n-1} \alpha_{i} \right) \mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}} \theta.$$

If $\mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\theta = 0$, then replace θ with $\theta + 1$, which also generates a cyclic basis and $\mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}(\theta + 1) \neq 0$. Therefore $\ker(\tilde{f}_{1}) = \left\{ x \in M \mid \sum_{i=0}^{n-1} \alpha_{i} = 0 \right\}$.

For
$$y = \sum_{j=0}^{n-1} \beta_j \theta^{\sigma^j}$$
, we have $\tilde{g}_1(y) = \tilde{g}_1 \left(\sum_{j=0}^{n-1} \beta_j \theta^{\sigma^j} \right) = \left(\sum_{j=0}^{n-1} \beta_j \theta^{\sigma^j} \right) - \left(\sum_{j=0}^{n-1} \beta_j \theta^{\sigma^{j+1}} \right)$, so

(7.8)
$$\tilde{g}_1(y) = (\beta_0 - \beta_{n-1})\theta + (\beta_1 - \beta_0)\theta^{\sigma} + \dots + (\beta_{n-1} - \beta_{n-2})\theta^{\sigma^{n-1}}$$

We show $\ker(\tilde{f}_1) \subset \operatorname{Im}(\tilde{g}_1)$. If $\sum_{i=0}^{n-1} \alpha_i = 0$, put $\beta_0 = \alpha_0$, $\beta_1 = \alpha_0 + \alpha_1$, ..., $\beta_{n-1} = \alpha_0 + \cdots + \alpha_{n-1} = 0$. Then

$$\beta_0 - \beta_{n-1} = \alpha_0, \quad \beta_1 - \beta_0 = \alpha_1, \quad \dots, \quad \beta_{n-1} - \beta_{n-2} = \alpha_{n-1},$$

 \mathbf{SO}

(7.9)
$$[\ker(\tilde{f}_1) : \operatorname{Im}(\tilde{g}_1)] = 1.$$

Computation of $[\ker(\tilde{g}_1) : Im(\tilde{f}_1]$. By (7.8), we have $\tilde{g}_1(y) = 0$ if and only if $\beta_0 = \beta_{n-1}, \beta_1 = \beta_0, \ldots, \beta_{n-1} = \beta_{n-2}$, so $\ker(\tilde{g}_1) = \mathbf{o}_p\left(\sum_{j=1}^{n-1} \theta^{\sigma^j}\right)$. Comparison with (7.7) shows that $\operatorname{Im}(\tilde{f}_1)$ is the same set. Therefore

(7.10)
$$[\ker(\tilde{g}_1) : \operatorname{Im}(\tilde{f}_1)] = 1.$$

PROPOSITION 7.3. If extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ is normal with cyclic Galois group, then $[\mathbf{u}_p:\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{U}_{\wp}] = e.$

PROOF. Using (7.6), substituting the results of (7.5), (7.9) and (7.10) into the right side of (7.4), we obtain

(7.11)
$$\left[\mathbf{u}_p:\mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{U}_\wp\right] = e.$$

REMARK. Lemma 4.7 was the unramified case of lemma 7.3.

64

PROPOSITION 7.4. If extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ is normal with cyclic Galois group, then $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}}\mathbf{K}_{\wp}^*$ is an open subgroup of \mathbf{k}_p^* and $[\mathbf{k}_p^*:\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^*] = n$.

PROOF. Applying the results of (7.2), (7.3) and (7.11) to the right side of (7.1) produces

$$\left[\mathbf{k}_{p}^{*}:\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}}\mathbf{K}_{\wp}^{*}\right]=ef=n.$$

LEMMA 7.5. If \mathbf{i} is an idele in $\mathbf{I}_{\mathbf{k}}$ and $G(\mathbf{K} : \mathbf{k})$ is abelian then \mathbf{i} is in $\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}$ if and only if \mathbf{i}_p is in $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}$ for every prime p of \mathbf{k} and some prime \wp of \mathbf{K} dividing p.

PROOF. Suppose that for every p we have $\mathbf{i}_p = \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p} \alpha_{\wp}$ for α_{\wp} in \mathbf{K}_{\wp}^* for some \wp dividing p. This gives a set U of primes of \mathbf{K} . Let \mathbf{j} in $\mathbf{I}_{\mathbf{K}}$ have components $\mathbf{j}_{\wp} = \alpha_{\wp}$ for \wp in U and $\mathbf{j}_{\wp} = 1$ for \wp not in U. Then $\prod_{\wp|p} \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p} \mathbf{j}_{\wp} = \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p} \alpha_{\wp} = \mathbf{i}_p$ for each p, so $\mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{j} = \mathbf{i}$.

Conversely, suppose that $\mathbf{i} = \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{j}$ for some \mathbf{j} in $\mathbf{I}_{\mathbf{K}}$. Then $\mathbf{i}_p = \prod_{\wp|p} \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p} \mathbf{j}_\wp$ for each p. Let the primes of \mathbf{K} dividing p be \wp_1, \ldots, \wp_g . For abelian extensions, the splitting groups S_{\wp_i} all coincide, so put $S_p = S_{\wp_j}$. (Chapter I, Splitting groups and inertial groups in normal extensions.) Let $\sigma_1, \ldots, \sigma_g$ be a set of coset representatives for splitting group S_p in $G(\mathbf{K} : \mathbf{k})$. Then $\wp_1^{\sigma_j} = \wp_j$, and $\sigma_j : \mathbf{K}_{\wp_1} \to \mathbf{K}_{\wp_j}$ is an isomorphism. Put $\tau_j = \sigma_j^{-1}$. Then $\wp_j^{\tau_j} = \wp_1$ and $\tau_j : \mathbf{K}_{\wp_j} \to \mathbf{K}_{\wp_1}$ is an isomorphism, and we have

$$\mathbf{N}_{\mathbf{K}_{\wp_j}/\mathbf{k}_p} \mathbf{j}_{\wp_j} = \left(\mathbf{N}_{\mathbf{K}_{\wp_j}/\mathbf{k}_p} \mathbf{j}_{\wp_j} \right)^{\tau_j} = \prod_{\sigma \in S(p)} \left(\mathbf{j}_{\wp_j}^{\sigma} \right)^{\tau_j} = \prod_{\sigma \in S(p)} \left(\mathbf{j}_{\wp_j}^{\tau_j} \right)^{\sigma} = \mathbf{N}_{\mathbf{K}_{\wp_1}/\mathbf{k}_p} \mathbf{j}_{\wp_j}^{\tau_j},$$

and $\mathbf{i}_p = \prod_{j=1}^g \mathbf{N}_{\mathbf{K}_{\wp_j}/\mathbf{k}_p} \mathbf{j}_{\wp_j} = \prod_{j=1}^g \mathbf{N}_{\mathbf{K}_{\wp_1}/\mathbf{k}_p} \mathbf{j}_{\wp_j}^{\tau_j} = \mathbf{N}_{\mathbf{K}_{\wp_1}/\mathbf{k}_p} \left(\prod_{j=1}^g \mathbf{j}_{\wp_j}^{\tau_j}\right)$, showing that \mathbf{i}_p is in $\mathbf{N}_{\mathbf{K}_{\wp_1}/\mathbf{k}_p} \mathbf{K}_{\wp_1}$.

LEMMA 7.6. $N_{K/k}I_K$ is an open subgroup of I_k .

PROOF. If p is a ramified finite prime in **K** then by lemma 4.14 there is an integer m_p so that

$$W'_p(m_p) = \left\{ \alpha \in \mathbf{k}_p^* \mid \operatorname{ord}_p(\alpha) > m_p \right\} \subset \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p} \mathbf{K}_\wp^*.$$

If p is an unramified finite prime, then every unit of \mathbf{o}_p is a norm by lemma 4.7, so $W'_p(0) = \mathbf{u}_p \subset \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*$; set $m_p = 0$. If p is a real infinite prime, then $W'_p(1) \subset \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*$; set $m_p = 1$. For a complex infinite prime, set $m_p = 0$. Then $\prod_p W'_p(m_p)$ is an basic open neighborhood contained in $\mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*$. LEMMA 7.7. If **J** is an open subgroup of \mathbf{I}_k so that $\mathbf{I}_k = \mathbf{J}\mathbf{I}_k^0$ then $\mathbf{k}^*\mathbf{J}$ is a subgroup of finite index in \mathbf{I}_k .

PROOF. We have

$$\frac{\mathbf{I_k}}{\mathbf{k^*J}} = \frac{\mathbf{k^*JI_k^0}}{\mathbf{k^*J}} \simeq \frac{\mathbf{I_k^0}}{\mathbf{k^*J} \cap \mathbf{I_k^0}} \simeq \frac{\mathbf{I_k^0/k^*}}{\left(\mathbf{k^*J} \cap \mathbf{I_k^0}\right)/\mathbf{k^*}}$$

J is open, so $\mathbf{k}^* \mathbf{J} = \bigcup_{\alpha \in \mathbf{k}^*} \mathbf{J}$ is open. Therefore $\mathbf{k}^* \mathbf{J} \cap \mathbf{I}^0_{\mathbf{k}}$ is an open subgroup of $\mathbf{I}^0_{\mathbf{k}}$, and $(\mathbf{k}^* \mathbf{J} \cap \mathbf{I}^0_{\mathbf{k}}) / \mathbf{k}^*$ is open in the quotient topology. We have an open covering of $\mathbf{I}^0_{\mathbf{k}} / \mathbf{k}^*$, which is compact by Proposition 6.9; therefore $\mathbf{I}^0_{\mathbf{k}} / \mathbf{k}^*$ is covered by a finite number of cosets of $(\mathbf{k}^* \mathbf{J} \cap \mathbf{I}^0_{\mathbf{k}}) / \mathbf{k}^*$.

LEMMA 7.8. If \mathbf{K}/\mathbf{k} is abelian then $\mathbf{I}_{\mathbf{k}} = (\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}})\mathbf{I}_{\mathbf{k}}^{0}$.

PROOF. Choose one infinite prime p_0 of \mathbf{k} and one infinite prime \wp_0 of \mathbf{K} which divides p_0 . Given \mathbf{i} in $\mathbf{I}_{\mathbf{k}}$, define ideles \mathbf{i}' and \mathbf{i}'' of $\mathbf{I}_{\mathbf{k}}$ as follows. At primes p such that $p \neq p_0$, put $\mathbf{i}'_p = \mathbf{i}_p$ and $\mathbf{i}''_p = 1$. Put $\mathbf{i}'_{p_0} = \mathbf{i}_{p_0}/c$ and $\mathbf{i}''_{p_0} = c$, where c in \mathbf{k}_{p_0} satisfies $|c|_{p_0} = |\mathbf{i}|$. (If p_0 is real and $\sigma : \mathbf{k}_{p_0} \simeq \mathbf{R}$, choose c so that $\sigma(c) = |\mathbf{i}|$; if p_0 is complex and $\sigma : \mathbf{k}_{p_0} \simeq \mathbf{C}$, choose c so that $\sigma(c) = \sqrt{|\mathbf{i}|}$, taking the positive real square root.) Then $\mathbf{i} = \mathbf{i}'\mathbf{i}''$. To show that $|\mathbf{i}'|$ is in $\mathbf{I}^0_{\mathbf{k}}$, consider

$$|\mathbf{i}'| = \left(\prod_{p \neq p_0} |\mathbf{i}'|_p\right) |\mathbf{i}'|_{p_0} = \left(\prod_{p \neq p_0} |\mathbf{i}|_p\right) \left(\frac{|\mathbf{i}_{p_0}|_{p_0}}{|c|_{p_0}}\right) = \frac{|\mathbf{i}|}{|c|_{p_0}} = 1.$$

We have $|c|_{p_0} = |\sigma(c)| = |\mathbf{i}|$ if p_0 is real, and $|c|_{p_0} = |\sigma(c)|^2 = |\mathbf{i}|$ if p_0 is complex. To show that \mathbf{i}'' is in $\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}$, for $p \neq p_0$ we have $\mathbf{i}''_p = 1 \in \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}^*_{\wp}$, and $\mathbf{i}''_{p_0} = c$. Since $\sigma(c) > 0$, then c is in $\mathbf{N}_{\mathbf{K}_{\wp0}/\mathbf{k}_{p_0}}\mathbf{K}_{\wp0}$. By lemma 7.5, $\mathbf{i}'' \in \mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_K$, and we have shown $\mathbf{i} \in (\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}})\mathbf{I}^0_{\mathbf{k}}$.

COROLLARY 7.9. $\mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}$ is a subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$.

LEMMA 7.10. For any finite set E of primes of \mathbf{k} containing the infinite primes, let

$$\mathbf{I}_{\mathbf{k}}(E) = \left\{ \mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid |\mathbf{i}|_{p} = 1 \text{ for } p \notin E \right\}.$$

Then $\mathbf{k}^* \mathbf{I}_{\mathbf{k}}(E)$ is a subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$.

PROOF. By lemma 7.7, we need to show that $\mathbf{I}_k(E)$ is open and $\mathbf{I}_k = \mathbf{I}_k(E)\mathbf{I}_k^0$. We have $\prod_p W'(0) \subset \mathbf{I}_k(E)$, so $\mathbf{I}_k(E)$ is open. For the other requirement, let \mathbf{i} be in \mathbf{I}_k . choose one infinite prime p_0 . Define ideles \mathbf{i}' , \mathbf{i}'' , and c in \mathbf{k}_{p_0} as in the proof of lemma 7.8. Then $\mathbf{i} = \mathbf{i}''\mathbf{i}'$, \mathbf{i}' is in \mathbf{I}_k^0 , and \mathbf{i}'' is in $\mathbf{I}_k(E)$. Therefore $\mathbf{I}_k \subset \mathbf{I}_k(E)\mathbf{I}_k^0$.

66

LEMMA 7.11. Let E be a finite set of primes of \mathbf{k} containing the infinite primes. There exists a finite set F of primes such that $E \subset F$ and $\mathbf{I}_{\mathbf{k}} = \mathbf{k}^* \mathbf{I}_{\mathbf{k}}(F)$.

PROOF. By lemma 7.10, $\mathbf{k}^* \mathbf{I}_{\mathbf{k}}(E)$ is a subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$, so there are ideles $\mathbf{i}_1, \ldots, \mathbf{i}_r$ such that $\mathbf{I}_{\mathbf{k}} = \bigcup_{j=1}^r \mathbf{k}^* \mathbf{I}_{\mathbf{k}}(E) \mathbf{i}_j$. Let F consist of the primes in E and all primes such that $|\mathbf{i}_j|_p \neq 1$ for $1 \leq j \leq r$. Then F is a finite set of primes, and $\mathbf{I}_{\mathbf{k}}(E)\mathbf{i}_j \subset \mathbf{I}_{\mathbf{k}}(F)$. Therefore $\mathbf{I}_{\mathbf{k}} \subset \mathbf{k}^* \mathbf{I}_{\mathbf{k}}(F)$.

LEMMA 7.12. Let H_1 , H_2 and H_3 be subgroups of abelian group H. If $H_1 \subset H_3$ then

$$\frac{H_1H_2}{H_3} \simeq \frac{H_2}{H_2 \cap H_3}.$$

PROOF. The natural homomorphism $H_2 \to (H_1H_2)/H_3$ is onto and the kernel is $H_2 \cap H_3$. (Note: the case in which $H_1 = H_3$ has been used on several occasions.)

Computation of $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$. **K** is a finite cyclic extension of **k** of degree n. Let σ be a generator of Galois group $G(\mathbf{K} : \mathbf{k})$. Let E be a set of primes of **k** that contains all infinite primes, all primes that are ramified in **K**, and primes such that $\mathbf{I}_{\mathbf{k}} = \mathbf{k}^* \mathbf{I}_{\mathbf{k}}(E)$. Let E' be a set of primes of **K** containing all primes that divide a prime of E and such that $\mathbf{I}_{\mathbf{K}} = \mathbf{K}^* \mathbf{I}_{\mathbf{K}}(E')$. Add to E all primes of **k** that are divisible by a prime of E'. Then add to E' primes that divide a prime in E. (Now E' is closed under that action $\wp \to \wp^{\sigma}$, and if \wp divides p then $\wp \in E'$ if and only if $p \in E$.) Since $\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{K}^* \subset \mathbf{k}^*$, we have

$$\left[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}\right] = \left[\mathbf{k}^{*}\mathbf{I}_{\mathbf{k}}(E):\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{K}^{*}\mathbf{I}_{\mathbf{K}}(E')\right)\right] = \left[\mathbf{k}^{*}\mathbf{I}_{\mathbf{k}}(E):\mathbf{k}^{*}\mathbf{N}\left(\mathbf{I}_{\mathbf{K}}(E')\right)\right].$$

Using lemma 7.12, we obtain

$$\left[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}\right] = \left[\mathbf{I}_{\mathbf{k}}(E):\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}(E')\right) \cap \mathbf{I}_{\mathbf{k}}(E)\right].$$

Since $\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{I}_{\mathbf{K}}(E')) \subset \mathbf{I}_{\mathbf{k}}(E)$, we have

$$\left[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}\right] = \frac{\left[\mathbf{I}_{\mathbf{k}}(E):\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}(E')\right)\right]}{\left[\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}(E')\right) \cap \mathbf{I}_{\mathbf{k}}(E):\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}(E')\right)\right]}$$

Again, since $\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{I}_{\mathbf{K}}(E')) \subset \mathbf{I}_{\mathbf{k}}(E)$, we have

$$\mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \big(\mathbf{I}_{\mathbf{K}}(E') \big) \cap \mathbf{I}_{\mathbf{k}}(E) = \mathbf{k}^*(E) \mathbf{N}_{\mathbf{K}/\mathbf{k}} \big(\mathbf{I}_{\mathbf{K}}(E') \big),$$

where $\mathbf{k}^*(E) = \mathbf{k}^* \cap \mathbf{I}_{\mathbf{k}}(E)$ is the group of *E*-units of **k**. Therefore

(7.12)
$$\left[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}} \right] = \frac{ \left[\mathbf{I}_{\mathbf{k}}(E) : \mathbf{N}_{\mathbf{K}/\mathbf{k}} \left(\mathbf{I}_{\mathbf{K}}(E') \right) \right] }{ \left[\mathbf{k}^*(E) \mathbf{N}_{\mathbf{K}/\mathbf{k}} \left(\mathbf{I}_{\mathbf{K}}(E') \right) : \mathbf{N}_{\mathbf{K}/\mathbf{k}} \left(\mathbf{I}_{\mathbf{K}}(E') \right) \right] }.$$

We need to compute the numerator and the denominator of (7.12).

The numerator of (7.12). We have a map $\prod_{p \in E} \mathbf{k}_p^* \to \mathbf{I}_{\mathbf{k}}(E)$, and we can identify an element of $\prod_{p \in E} \mathbf{k}_p^*$ with its image in $\mathbf{I}_{\mathbf{k}}(E)$. Define $\mathbf{I}_{\mathbf{k}}\{E\}$ to be

$$\mathbf{I}_{\mathbf{k}}\{E\} = \left\{ \mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid \mathbf{i}_{p} = 1 \text{ for } p \in E \right\}.$$

Then

$$\mathbf{I}_{\mathbf{k}}(E) = \left(\prod_{p \in E} \mathbf{k}_p^*\right) \left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}\{E\}\right).$$

By lemma 4.7 and lemma 7.5, we have $(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}\{E\}) \subset \mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}(E')$, so

(7.13)
$$\mathbf{I}_{\mathbf{k}}(E) = \left(\prod_{p \in E} \mathbf{k}_p^*\right) \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}(E').$$

Substituting (7.13) into the numerator of (7.12) gives

$$\left[\mathbf{I}_{\mathbf{k}}(E):\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{I}_{\mathbf{K}}(E'))\right] = \left[\left(\prod_{p\in E}\mathbf{k}_{p}^{*}\right)\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}(E'):\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}(E')\right].$$

Applying lemma 7.12, we have

$$\left[\mathbf{I}_{\mathbf{k}}(E):\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{I}_{\mathbf{K}}(E'))\right] = \left[\left(\prod_{p\in E}\mathbf{k}_{p}^{*}\right):\left(\prod_{p\in E}\mathbf{k}_{p}^{*}\right)\cap\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{I}_{\mathbf{K}}(E'))\right].$$

For each p in E, choose one \wp in E' that divides p. By lemma 7.5, we have

$$\left(\prod_{p\in E}\mathbf{k}_p^*\right)\cap\mathbf{N}_{\mathbf{K}/\mathbf{k}}\big(\mathbf{I}_{\mathbf{K}}(E')\big)=\prod_{p\in E}\mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_\wp^*.$$

Therefore

$$\begin{split} \left[\mathbf{I}_{\mathbf{k}}(E):\mathbf{N}_{\mathbf{K}/\mathbf{k}}\big(\mathbf{I}_{\mathbf{K}}(E')\big)\right] &= \left[\left(\prod_{p\in E}\mathbf{k}_{p}^{*}\right):\prod_{p\in E}\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\mathbf{K}_{\wp}^{*}\right]\\ &= \prod_{p\in E}\left[\mathbf{k}_{p}^{*}:\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\mathbf{K}_{\wp}^{*}\right] \end{split}$$

The degree $n_p = [\mathbf{K}_{\wp} : \mathbf{k}_p]$ does not depend of the choice of \wp , so we obtain the following formula for the numerator of (7.12).

(7.14)
$$\left[\mathbf{I}_{\mathbf{k}}(E):\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{I}_{\mathbf{K}}(E'))\right] = \prod_{p \in E} n_p$$

68

The denominator of (7.12). Applying lemma 7.12 to the denominator, we have

$$\left[\mathbf{k}^{*}(E)\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}(E')\right):\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}(E')\right)\right]=\left[\mathbf{k}^{*}(E):\mathbf{k}^{*}(E)\cap\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}(E')\right)\right],$$

from which we obtain

(7.15)
$$\begin{bmatrix} \mathbf{k}^*(E) \mathbf{N}_{\mathbf{K}/\mathbf{k}} (\mathbf{I}_{\mathbf{K}}(E')) : \mathbf{N}_{\mathbf{K}/\mathbf{k}} (\mathbf{I}_{\mathbf{K}}(E')) \end{bmatrix} \\ = \frac{\left[\mathbf{k}^*(E) : \mathbf{N}_{\mathbf{K}/\mathbf{k}} (\mathbf{K}(E')) \right]}{\left[\mathbf{k}^*(E) \cap \mathbf{N}_{\mathbf{K}/\mathbf{k}} (\mathbf{I}_{\mathbf{K}}(E')) : \mathbf{N}_{\mathbf{K}/\mathbf{k}} (\mathbf{K}(E')) \right]}.$$

Substituting (7.14) and (7.15) into (7.12) gives the following formula.

(7.16)
$$\begin{bmatrix} \mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}} \end{bmatrix}$$
$$= \left(\frac{\prod_{p \in E} n_p}{\left[\mathbf{k}^*(E) : \mathbf{N}_{\mathbf{K}/\mathbf{k}} (\mathbf{K}(E')) \right]} \right) \left[\mathbf{k}^*(E) \cap \mathbf{N}_{\mathbf{K}/\mathbf{k}} (\mathbf{I}_{\mathbf{K}}(E')) : \mathbf{N}_{\mathbf{K}/\mathbf{k}} (\mathbf{K}(E')) \right]$$

Computation of $[\mathbf{k}^*(E) : \mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{K}(E'))]$. By the unit theorem 6.13, if E contains s + 1 primes p_0, \ldots, p_s then $\mathbf{k}^*(E)$ is the product of a finite group and a free abelian group on s generators. Each prime p_i is divisible by g_i primes of \mathbf{K} . The number of primes in E' is $s' + 1 = \sum_{i=1}^{s} g_i$, and $\mathbf{K}^*(E')$ is the product of a finite group and a free abelian group on s' generators.

If \wp is a prime of **K** dividing prime p of **k**, then \wp is in E' if and only if p is in E. Therefore

$$\mathbf{k}^*(E) = \left\{ \alpha \in \mathbf{K}^*(E') \mid \alpha^\tau = \alpha \text{ for } \tau \in G[\mathbf{K} : \mathbf{k}] \right\}.$$

The cyclic Galois group $G(\mathbf{K} : \mathbf{k})$ is generated by σ , so

(7.17)
$$\mathbf{k}^*(E) = \left\{ \alpha \in \mathbf{K}^*(E') \mid \alpha^\sigma = \alpha \right\} = \left\{ \alpha \in \mathbf{K}^*(E') \mid \alpha^{1-\sigma} = 1 \right\}$$

We will apply Herbrand's lemma with $J = \mathbf{K}^*(E')$. Note that $\mathbf{K}^*(E')^{\sigma} \subset \mathbf{K}^*(E')$ since $\wp^{\sigma} \in E'$ if and only if $\wp \in E'$. Put $g : \mathbf{K}^*(E') \to \mathbf{K}^*(E')$ by $g(\alpha) = \alpha^{1-\sigma}$. Put $f : \mathbf{K}^*(E') \to \mathbf{K}^*(E')$ by $f(\alpha) = \mathbf{N}_{\mathbf{K}/\mathbf{k}}\alpha = \alpha^{1+\sigma+\dots+\sigma^{n-1}}$. Then fg = gf = 1, so the requirements of Herbrand's lemma are met. We have $\operatorname{Im}(f) = \mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{K}^*(E')$, and by formula (7.17), we have $\ker(g) = \mathbf{k}^*(E)$, so (7.18)

$$\left[\mathbf{k}^{*}(E):\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{K}(E'))\right] = \left[\ker(g):\operatorname{Im}(f)\right] = \left[\ker(f):\operatorname{Im}(g)\right] \frac{\left[\ker(g_{1}):\operatorname{Im}(f_{1})\right]}{\left[\ker(f_{1}):\operatorname{Im}(g_{1})\right]}.$$

It remains to compute $[\ker(f) : \operatorname{Im}(g)]$, to choose subgroup L, and to compute $[\ker(g_1) : \operatorname{Im}(f_1)]$ and $[\ker(f_1) : \operatorname{Im}(g_1)]$.

Computation of $[\ker(f) : Im(g)]$. By Hilbert theorem 90, if $f(\alpha) = 1$ with $\alpha \in \mathbf{k}^*(E)$ then there is an element $\beta \in \mathbf{K}^*$ such that $\alpha = \beta^{1-\sigma}$. The following lemma is needed to insure that β may be chosen from $\mathbf{K}^*(E')$, which will show that $\ker(f) \subset \operatorname{Im}(g)$, so we have

(7.19)
$$[\ker(f) : \operatorname{Im}(g)] = 1.$$

LEMMA 7.13. If $\alpha \in \mathbf{k}^*(E)$ and $\mathbf{N}_{\mathbf{K}/\mathbf{k}}\alpha = 1$, then there is an element $\beta' \in \mathbf{K}^*(E')$ such that $\alpha = (\beta')^{1-\sigma}$.

PROOF. Let $\alpha = \beta^{1-\sigma}$ with $\beta \in \mathbf{K}^*$. If we can find γ in \mathbf{k}^* so that $\beta \gamma \in \mathbf{K}^*(E')$, then $(\beta \gamma)^{1-\sigma} = \beta^{1-\sigma} = \alpha$, so $\beta' = \beta \gamma$ will satisfy the conclusion. Let φ be any prime not in E'. Put $\varphi_i = \varphi^{\sigma^{-i}}$ for $0 \le i < g_i$. Then $\varphi_i \notin E'$, so $|\alpha|_{\varphi_i} = 1$. We have

$$1 = |\alpha|_{\wp_i} = \left|\alpha^{\sigma^i}\right|_{\wp} = \left|\beta^{\sigma^i - \sigma^{i+1}}\right|_{\wp} = \left|\beta^{\sigma^i}\right|_{\wp} \left|\beta^{\sigma^{i+1}}\right|_{\wp}^{-1}.$$

Therefore $|\beta^{\sigma^{i}}|_{\wp} = |\beta^{\sigma^{i+1}}|_{\wp}$, so for any \wp not in E we have

$$\left|\beta\right|_{\wp} = \left|\beta^{\sigma}\right|_{\wp} = \dots = \left|\beta^{\sigma^{n-1}}\right|_{\wp}.$$

This also applies to \wp_i , so we have $|\beta|_{\wp_i} = |\beta^{\sigma}|_{\wp_i} = |\beta|_{\wp_i^{-\sigma}} = |\beta|_{\wp_{i+1}}$. Therefore

$$|\beta|_{\wp} = |\beta|_{\wp_0} = |\beta|_{\wp_1} = \dots = |\beta|_{\wp_{g_i-1}}.$$

Because \wp is not in E', the extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ is not ramified, so there are elements in \mathbf{k}_p^* of every value. In particular, there exist an element $\lambda_p \in \mathbf{k}_p^*$ such that $|\lambda_p|_{\wp_0} = |\beta|_{\wp_0}$. Since λ_p is fixed by σ , we have

$$|\beta|_{\wp_i} = |\beta|_{\wp_0} = |\lambda_p|_{\wp_0} = \left|\lambda_p^{\sigma^{-i}}\right|_{\wp_0^{\sigma^{-i}}} = \left|\lambda_p^{\sigma^{-i}}\right|_{\wp_i} = |\lambda_p|_{\wp_i}.$$

Let idele $\mathbf{i} \in \mathbf{I}_{\mathbf{p}}$ have component $\mathbf{i}_{p} = \lambda_{p}$ for $p \notin E$, and $\mathbf{i}_{p} = 1$ for $p \in E$. If $\wp \notin E'$ then $|\beta \mathbf{i}^{-1}|_{\wp_{i}} = 1$, so $\beta \mathbf{i}^{-1} \in \mathbf{I}_{\mathbf{K}}(E')$. Using the imbedding $\mathbf{I}_{\mathbf{k}} \to \mathbf{I}_{\mathbf{K}}$, we have $\mathbf{I}_{\mathbf{k}}(E) \subset \mathbf{I}_{\mathbf{K}}(E')$, so

$$\mathbf{I}_k = \mathbf{k}^* \mathbf{I}_k(E) \subset \mathbf{k}^* \mathbf{I}_{\mathbf{K}}(E').$$

Put $\mathbf{i} = \delta \mathbf{j}$ with $\delta \in \mathbf{k}^*$ and $\mathbf{j} \in \mathbf{I}_{\mathbf{K}}(E')$. Then $\beta \mathbf{i}^{-1} = \beta \delta^{-1} \mathbf{j}^{-1}$. Since $\beta \mathbf{i}^{-1}$ and \mathbf{j}^{-1} are in $\mathbf{I}_{\mathbf{K}}(E')$, then so is $\beta \delta^{-1}$ in $\mathbf{I}_{\mathbf{K}}(E')$. Therefore $\beta \delta^{-1} \in \mathbf{K}^*(E')$, so $\gamma = \delta^{-1}$ is the required element.

The subgroup L. If p_0, \ldots, p_s are the primes in E, each p_i in E splits into g_i primes in **K**. We claim that there exist elements in $J = \mathbf{K}^*(E')$ as follows.

(1) Elements $\eta_1, \ldots \eta_s$ so that $\eta_i^{1-\sigma} = 1$.

(2) Elements H_0, \ldots, H_s so that $H_i^{\sigma^{g_i}} = H_i$ and $H_i^{1+\sigma+\cdots+\sigma^{g_i-1}} = 1$.

(3) The elements $\eta_1, \ldots, \eta_s, H_0, H_0^{\sigma}, \ldots, H_0^{\sigma^{g_0-2}}, \ldots, H_s, H_s^{\sigma}, \ldots, H_s^{\sigma^{g_s-2}}$ are independent and generate a subgroup L of finite index in $J = \mathbf{K}^*(E')$. (If $g_i = 1$ then H_i is omitted.)

We will now apply Herbrand's lemma using the subgroup above L to compute $[\ker(g_1) : \operatorname{Im}(f_1)]$ and $[\ker(f_1) : \operatorname{Im}(g_1)]$, after which we will show that L is a subgroup of finite index in J.

Computation of $[\ker(g_1) : Im(f_1)]$ and $[\ker(f_1) : Im(g_1)]$. A typical element of L has the form

$$\Delta = \prod_{i=1}^{s} \eta^{u_i} \prod_{i=0}^{s} H_i^{v_i(\sigma)}$$

where $v_i(\sigma)$ is a polynomial with rational integer coefficients of degree at most $g_i - 2$. Note that $\mathbf{N}_{\mathbf{K}/\mathbf{k}}H_i = 1$, because if \mathbf{Z}_i is the subfield of \mathbf{K} fixed by the subgroup $\langle \sigma^{g_i} \rangle$ then $H_i \in \mathbf{Z}_i$ and

$$\mathbf{N}_{\mathbf{Z}_i/\mathbf{k}}H_i = H_i^{1+\sigma+\dots+\sigma^{g_i-1}} = 1,$$

so $\mathbf{N}_{\mathbf{K}/\mathbf{k}}H_i = \mathbf{N}_{\mathbf{Z}_i/\mathbf{k}}\mathbf{N}_{\mathbf{K}/\mathbf{Z}_i}H_i = \mathbf{N}_{\mathbf{Z}_i/\mathbf{k}}(H_i)^{n/g_i} = 1$. Therefore,

$$f(\Delta) = \prod_{i=1}^{s} \eta^{nu_i} \prod_{i=0}^{s} \mathbf{N}_{\mathbf{K}/\mathbf{k}} H_i^{v_i(\sigma)} = \prod_{i=1}^{s} \eta^{nu_i}.$$

The right side is an element of L, so $f(L) \subset L$, and we have

(7.20)
$$\operatorname{Im}(f_1) = \left\{ \prod_{i=1}^s \eta^{nu_i} \mid u_i \in \mathbf{Z} \right\}$$

Since the η_i are independent, the kernel of f_1 is

(7.21)
$$\ker(f_1) = \left\{ \prod_{i=0}^s H_i^{v_i(\sigma)} \mid v_i(\sigma) \in \mathbf{Z}[\sigma] \text{ and } \deg(v_i) \le g_i - 2 \right\}.$$

Next, we find the kernel and image of g_1 . We have

(7.22)
$$g_1(\Delta) = \prod_{i=0}^{s} H_i^{v_i(\sigma)(1-\sigma)}$$

Let m_i be the coefficient of σ^{g_i-2} in $v_i(\sigma)$. Since $H_i^{1+\sigma+\dots+\sigma^{g_i-1}} = 1$, we have

$$H_i^{v_i(\sigma)(1-\sigma)} = H_i^{v_i(\sigma)(1-\sigma) + m_i(1+\sigma+\dots+\sigma^{g_i-1})},$$

and $v_i(\sigma)(1-\sigma) + m_i(1+\sigma+\cdots+\sigma^{g_i-1})$ is a polynomial of degree at most $g_i - 2$. Therefore ker (g_1) is the set

$$\ker(g_1) = \left\{ \prod_{i=1}^{s} \eta^{u_i} \prod_{i=0}^{s} H_i^{v_i(\sigma)} \mid v_i(\sigma)(1-\sigma) + m_i(1+\sigma+\dots+\sigma^{g_i-1}) = 0 \right\}.$$

There exist polynomials a(x) and b(x) so that $(1-x)a(x)+(1+x+\cdots+x^{g_i-1})b(x) = 1$. If $v_i(\sigma)(1-\sigma) + m_i(1+\sigma+\cdots+\sigma^{g_i-1}) = 0$, then $v_i(\sigma) = (1+\sigma+\cdots+\sigma^{g_i-1})(v_i(\sigma)b(\sigma)-m_ia(\sigma))$. Since the degree of $v_i(\sigma)$ is at most $g_i - 2$ then we must have $v_i(\sigma) = 0$. Therefore

(7.23)
$$\ker(g_1) = \left\{ \prod_{i=1}^s \eta^{u_i} \right\}.$$

For the computation of $Im(g_1)$, we have the following lemma.

LEMMA 7.14. A necessary and sufficient condition for polynomial h(x) of degree at most g-2 to be of the form

$$h(x) = v(x)(1-x) + m(1+x+\dots+x^{g-1})$$

where m is a rational integer and v(x) is a polynomial of degree at most g-2 is

$$h(1) = 0 \pmod{g}.$$

PROOF. If $h(x) = v(x)(1-x) + m(1+x+\dots+x^{g-1})$ then h(1) = mg. Conversely, suppose h(1) = mg for some integer m. Let v(x) be the quotient of the division of $h(x) - m(1+x+\dots+x^{g-1})$ by 1-x. Then we have

$$h(x) - m(1 + x + \dots + x^{g-1}) = v(x)(1 - x) + r$$
 where deg $(v(x)) \le g - 2$, and $r \in \mathbb{Z}$.

Setting x = 1, we conclude that r = 0, so $h(x) = v(x)(1-x) + m(1+x+\cdots+x^{g-1})$.

Applying lemma 7.14, we see that (7.22) is equivalent to

(7.24)
$$\operatorname{Im}(g_1) = \left\{ \prod_{i=0}^{s} H_i^{h_i(\sigma)} \mid h_i(1) = 0 \pmod{g_i} \text{ and } \deg(h_i) \le g_i - 2 \right\}$$

By (7.22) and (7.19), we have

(7.25)
$$[\ker(g_1) : \operatorname{Im}(f_1)] = \left[\prod_{i=1}^s \eta^{u_i} : \prod_{i=1}^s \eta^{nu_i}\right] = n^s.$$

By (7.21) and (7.24), we have

$$[\ker(f_1) : \operatorname{Im}(g_1)] = \left[\prod_{i=0}^s H_i^{v_i(\sigma)} : \prod_{i=0}^s H_i^{h_i(\sigma)}\right] \qquad \begin{cases} \deg(v_i) \le g_i - 2, \\ \deg(h_i) \le g_i - 2, \\ h_i(1) = 0 \pmod{g_i} \end{cases}$$

In the homomorphism $H_i^{v_i(\sigma)} \to \mathbf{Z}/(g)$ by $H_i^{v_i(\sigma)} \to v_i(1) \pmod{g}$, the kernel consists of those $h_i(\sigma)$ such that $h_i(\sigma) = 1 \pmod{g_i}$, so $H_i^{v_i(\sigma)}/H_i^{h_i(\sigma)}$ is isomorphic to $\mathbf{Z}/(g_i)$. therefore

(7.26)
$$[\ker(f_1) : \operatorname{Im}(g_1)] = \prod_{i=0}^{s} g_i.$$

From (7.25) and (7.26), we have

(7.27)
$$\frac{[\ker(g_1):\operatorname{Im}(f_1)]}{[\ker(f_1):\operatorname{Im}(g_1)]} = \frac{n^s}{\prod_{i=0}^s g_i} = \frac{1}{n} \prod_{i=0}^s \left(\frac{n}{g_i}\right) = \frac{1}{n} \prod_{i=0}^s n_i = \frac{1}{n} \prod_{p \in E} n_p.$$

From (7.27) and (7.18), and recalling that $[\ker(f) : \operatorname{Im}(g)] = 1$, we have

(7.28)
$$\left[\mathbf{k}^*(E):\mathbf{N}_{\mathbf{K}/\mathbf{k}}\big(\mathbf{K}(E')\big)\right] = \frac{1}{n}\prod_{p\in E}n_p = \frac{1}{[\mathbf{K}:\mathbf{k}]}\prod_{p\in E}n_p.$$

Substituting the right side of (7.28) into (7.16), we obtain

(7.29)
$$\left[\mathbf{I}_{\mathbf{k}}:\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}\right] = \left[\mathbf{K}:\mathbf{k}\right]\left[\mathbf{k}^{*}(E)\cap\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}(E')\right):\mathbf{N}_{\mathbf{K}/\mathbf{k}}\left(\mathbf{K}(E')\right)\right].$$

Except for constructing generators for subgroup L, we have finished the proof of the first fundamental inequality.

FIRST FUNDAMENTAL INEQUALITY. If **K** is a cyclic extension of **k** then $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}]$ is divisible by $[\mathbf{K} : \mathbf{k}]$.

PROOF. The term $[\mathbf{k}^*(E) \cap \mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{I}_{\mathbf{K}}(E')) : \mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{K}(E'))]$ in (7.29) is finite because it divides $[\mathbf{k}^*(E) : \mathbf{N}_{\mathbf{K}/\mathbf{k}}(\mathbf{K}(E'))]$, which has been shown in (7.28) to be finite.

Construction of generators for subgroup *L*. For each prime $p = p_i$, $0 \le i \le s$, in *E*, there are $g = g_i$ primes of **K** dividing *p*; their splitting groups coincide and so may all be denoted by $S_p(\mathbf{K}/\mathbf{k})$. Since $[G(\mathbf{K}/\mathbf{k}) : S_p(\mathbf{K}/\mathbf{k})] = g$ then $S_p(\mathbf{K}/\mathbf{k})$ is generated by σ^g . Let **Z** be the subfield of **K** fixed by $S_p(\mathbf{K}/\mathbf{k})$. Then $G(\mathbf{K}:\mathbf{Z}) = S_p(\mathbf{K}/\mathbf{k})$. To determine $S_p(\mathbf{K}/\mathbf{Z})$, for prime \wp in *E'* dividing *p* we have

$$S_{\wp}(\mathbf{K}/\mathbf{Z}) = \left\{ \tau \in G(\mathbf{K} : \mathbf{Z}) \mid \wp^{\tau} = \wp \right\}$$
$$= \left\{ \tau \in S_p(\mathbf{K}/\mathbf{k}) \mid \wp^{\tau} = \wp \right\} = S_p(\mathbf{K}/\mathbf{k}) = G(\mathbf{K} : \mathbf{Z}).$$

Then $[G(\mathbf{K} : \mathbf{Z}) : S_{\wp}(\mathbf{K}/\mathbf{Z})] = 1$, so each prime \wp of \mathbf{K} divides exactly one prime \wp' of \mathbf{Z} . The subgroups $S_{\wp}(\mathbf{K}/\mathbf{Z})$ all coincide with $S_p(\mathbf{K}/\mathbf{k})$. We next determine the splitting groups $S_{\wp'}(\mathbf{Z}/\mathbf{k})$. We have the exact sequence

$$1 \to S_p(\mathbf{K}/\mathbf{k}) \to G(\mathbf{K}:\mathbf{k}) \to G(\mathbf{Z}:\mathbf{k}) \to 1.$$

Let $\overline{\tau}$ be the image of τ in $G(\mathbf{Z}:\mathbf{k})$. Then

$$S_{\wp'}(\mathbf{Z}/\mathbf{k}) = \left\{ \overline{\tau} \in G(\mathbf{Z}:\mathbf{k}) \ \big| \ {\wp'}^{\overline{\tau}} = {\wp'} \right\}$$

We have ${\wp'}^{\overline{\tau}} = (\wp \cap \mathbf{O}_{\mathbf{Z}})^{\tau} = \wp^{\tau} \cap \mathbf{O}_{\mathbf{Z}} = \wp^{\tau'}$, so ${\wp'}^{\overline{\tau}} = \wp'$ if and only if $\wp^{\tau'} = \wp'$ if and only if $\wp^{\tau} = \wp$. Therefore $\overline{\tau} \in S_{\wp'}(\mathbf{Z}/\mathbf{k})$ if and only if $\tau \in S_{\wp}(\mathbf{K}/\mathbf{k})$ if and only if $\overline{\tau} = 1$. This show that $S_{\wp'}(\mathbf{Z}/\mathbf{k}) = 1$ so

$$\mathbf{Z}_{\wp'} = \mathbf{k}_p$$

To determine the parameters e' and f' for the splitting of prime \wp'_i in **K**, the extension \mathbf{K}_{\wp} of $\mathbf{Z}_{\wp'}$ is identical to extension \mathbf{K}_{\wp} of \mathbf{k}_p , so we have e' = e and f' = f.

LEMMA 7.15. Let \wp be a prime of abelian extension **K** of **k**, and let **Z** the subfield fixed by the splitting group $S_{\wp}(\mathbf{K}/\mathbf{k})$. If α is in \mathbf{K}^* , we have $|\mathbf{N}_{\mathbf{K}/\mathbf{Z}}\alpha|_{\wp}$ is greater than 1, equal to 1, or less than 1, if and only if $|\alpha|_{\wp}$ is greater than 1, equal to 1, or less than 1, respectively.

PROOF. The proof depends on the fact that \wp is the only prime of **K** dividing prime $\wp' = \wp \cap \mathbf{O}_{\mathbf{Z}}$ of **Z**. For α in \mathbf{K}^* the formula expressing $\mathbf{N}_{\mathbf{K}/\mathbf{Z}}\alpha$ as the product of local norms reduces to

$$\mathbf{N}_{\mathbf{K}/\mathbf{Z}}\alpha = \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{Z}_{\wp'}}\alpha.$$

Therefore

$$\left|\mathbf{N}_{\mathbf{K}/\mathbf{Z}}\alpha\right|_{\wp'} = \left|\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{Z}_{\wp'}}\alpha\right|_{\wp'} = \left|\alpha\right|_{\wp}.$$

Applying the above formula (twice!) to the element $\mathbf{N}_{\mathbf{K}/\mathbf{Z}}\alpha$, we have

$$\left|\mathbf{N}_{\mathbf{K}/\mathbf{Z}}\alpha\right|_{\wp} = \left|\mathbf{N}_{\mathbf{K}/\mathbf{Z}}\left(\mathbf{N}_{\mathbf{K}/\mathbf{Z}}\alpha\right)\right|_{\wp'} = \left|\left(\mathbf{N}_{\mathbf{K}/\mathbf{Z}}\alpha\right)^{ef}\right|_{\wp'} = |\alpha|_{\wp}^{ef},$$

from which the conclusion follows immediately.

REMARK. The primes of E are p_0, \ldots, p_s . For each p_i in E, choose one prime \wp_i in E' which divides p_i . Prime p_i splits into g_i primes in \mathbf{K} . Splitting group $S_{p_i}(\mathbf{K}/\mathbf{k})$ is generated by σ^{g_i} , and $\wp_i, \wp_i^{\sigma}, \ldots, \wp_i^{\sigma^{g_i-1}}$ is the complete list of distinct primes of \mathbf{K} dividing p_i . The number of primes in E' is $s' + 1 = \sum_{i=0}^{s} g_i$.

LEMMA 7.16. If a single prime \wp_i is selected then there exists an element α in \mathbf{K}^* so that

$$|\alpha|_{\wp_i} > 1$$
 and $|\alpha|_{\wp} < 1$ for $\wp \in E', \wp \neq \wp_i$.

PROOF. *E* contains at least one infinite prime, so we take p_s to be infinite. Then \wp_s is also infinite. Let ν be a positive real constant so that $\nu > \max(\mu, 1)$ where constant mu is defined below. If s = 0 then there is nothing to prove. We construct idele $\mathbf{j} \in \mathbf{I}_{\mathbf{K}}$ by choosing components \mathbf{j}_{\wp} in the following order.

If $i = 1 \dots, s - 1$, choose components as follows:

- (1) At $\wp \notin E'$, choose $\mathbf{j}_{\wp} = 1$.
- (2) At $\wp \in E'$, $\wp \neq \wp_i$ and $\wp \neq \wp_s$, choose $\mathbf{j}_{\wp} \in \mathbf{K}^*_{\wp}$ so that $|\mathbf{j}|_{\wp} < \frac{1}{\nu}$.
- (3) At \wp_i , choose $\mathbf{j}_{\wp_i} \in \mathbf{K}^*_{\wp}$ large enough so that $|\mathbf{j}|_{\wp_i} > \nu \prod_{\wp \in E', \wp \neq \wp_i, \wp \neq \wp_s} |\mathbf{j}|_{\wp}^{-1}$.
- (4) At \wp_s , choose $\mathbf{j}_{\wp_s} \in \mathbf{K}^*_{\wp}$ so that $|\mathbf{j}| = 1$.

From (3) we have $\prod_{\omega \in E', \omega \neq \omega_s} |\mathbf{j}|_{\omega} > \nu$. Then from (4), we have

$$|\mathbf{j}|_{\wp_s} = \prod_{\wp \in E', \wp \neq \wp_s} |\mathbf{j}|_{\wp}^{-1} < \frac{1}{\nu}.$$

If i = s, choose components of **j** as follows:

(1_s) At $\wp \notin E'$, choose $\mathbf{j}_{\wp} = 1$.

(2_s) At $\wp \in E', \wp \neq \wp_s$, choose $\mathbf{j}_{\wp} \in \mathbf{K}^*_{\wp}$ so that $|\mathbf{j}|_{\wp} < \frac{1}{\nu}$.

(3_s) At \wp_s , choose $\mathbf{j} \in \mathbf{K}^*_{\wp_s}$ so that $|\mathbf{j}| = 1$.

From (3_s) and (2_s), we have $|\mathbf{j}|_{\wp_s} = \prod_{\wp \in E', \wp \notin \wp_s} |\mathbf{j}|_{\wp}^{-1} > (\nu)^{s'} > \nu$.

By our construction, ${\bf j}$ is in ${\bf I_K}(E')\cap {\bf I^0_K}$. By lemma 6.10, there exists a constant μ so that

$$\mathbf{I}_{\mathbf{K}}(E') \cap \mathbf{I}_{\mathbf{K}}^{0} = \mathbf{K}^{*}(E) \left\{ \mathbf{i} \in \mathbf{I}_{\mathbf{K}}(E') \mid \frac{1}{\mu} \leq |\mathbf{i}|_{\wp} \leq \mu \text{ for } \wp \in E' \right\}.$$

Therefore there exist element $\alpha \in \mathbf{K}^*(E')$ and idele $\mathbf{i} \in \mathbf{I}_{\mathbf{K}}(E')$ so that $\mathbf{j} = \alpha \mathbf{i}$ and \mathbf{i} satisfies the condition $\frac{1}{\mu} \leq |\mathbf{i}|_{\wp} \leq \mu$ for $\wp \in E'$. For \wp_i we have

$$|\alpha|_{\wp_i} = |\mathbf{j}|_{\wp_i} |\mathbf{i}|_{\wp_i}^{-1} > \frac{\nu}{\mu} > 1$$

and for $\wp \in E'$, $\wp \neq \wp_i$ we have

$$|\alpha|_{\wp} = |\mathbf{j}|_{\wp} |\mathbf{i}|_{\wp}^{-1} < \frac{\mu}{\nu} < 1$$

LEMMA 7.17. There exist elements $H_0^{**}, \ldots, H_s^{**}$ in \mathbf{K}^* so that

$$|H_i^{**}|_{\wp_i} > 1 \qquad and \qquad |H_i^{**}|_{\wp} < 1 \quad for \ \wp \in E', \ \wp \neq \wp_i.$$

PROOF. Apply Lemma 7.16 for $i = 1, \ldots, s$.

LEMMA 7.18. Let $H_0^{**}, \ldots, H_s^{**}$ in $\mathbf{K}^*(E')$ satisfy the conclusion of lemma 7.16. Let \mathbf{Z}_i be the subfield fixed by splitting group $S_{p_i}(\mathbf{K}/\mathbf{k}) = \langle \sigma^{g_i} \rangle$. Put $H_i^* = \mathbf{N}_{\mathbf{K}/\mathbf{Z}_i} H_i^{**}$. Then elements

$$(H_0^*), \ldots, (H_0^*)^{\sigma^{g_i-1}}, \ldots, (H_s^*), \ldots, (H_s^*)^{\sigma^{g_s-1}}$$

satisfy the condition

$$\left| (H_i^*)^{\sigma^j} \right|_{\wp_i^{\sigma^j}} > 1 \qquad and \qquad \left| (H_i^*)^{\sigma^j} \right|_{\wp} < 1 \quad if \quad \wp \in E' \text{ and } \wp \neq \wp_i^{\sigma^j}$$

PROOF. The primes of E' are $\varphi_i^{\sigma^j}$ for $0 \le i \le s, 0 \le j < g_i$. Suppose that φ in E' does not divide p_i . Then $\varphi = \varphi_{i'}^{\sigma^j}$ with $i' \ne i$. We have $[\mathbf{K} : \mathbf{Z}_i] = n_i$ where $n = n_i g_i$. Then

$$|H_{i}^{*}|_{\wp} = \left|\mathbf{N}_{\mathbf{K}/\mathbf{Z}_{i}}H_{i}^{**}\right|_{\wp} = \left|\prod_{k=0}^{n_{i}-1} \left(H_{i}^{**}\right)^{\sigma^{kg_{i}}}\right|_{\wp} = \prod_{k=0}^{n_{i}-1} \left|H_{i}^{**}\right|_{\wp^{\sigma^{-kg_{i}}}} < 1,$$

because none of the $\wp^{\sigma^{-kg_i}}$ coincide with \wp_i , so all of the terms $|H_i^{**}|_{\wp^{\sigma^{-kg_i}}}$ are less than 1.

We also have to check $(H_i^*)^{\sigma^j}$ at $\wp_i, \wp_i^{\sigma}, \ldots, \wp_i^{\sigma^{g_i-1}}$. Since $H_i^* = \mathbf{N}_{\mathbf{K}/\mathbf{Z}_i} H_i^{**}$ and $|H_i^{**}|_{\wp_i} > 1$, then by lemma 7.15 we have

$$\left| (H_i^*)^{\sigma^j} \right|_{\wp_i^{\sigma^j}} = \left| H_i^* \right|_{\wp_i} > 1.$$

For $\wp = \wp_i^{\sigma^{j'}} \neq \wp_i^{\sigma^j}$, we have $\wp^{\sigma^{-j}} \neq \wp_i$ so $\left| (H_i^*)^{\sigma^j} \right|_{\wp} = |H_i^*|_{\wp^{\sigma^{-j}}} < 1,$

showing that the $(H_i^*)^{\sigma^j}$ satisfy the required conditions.

LEMMA 7.19. Put $U_{ij} = (H_i^*)^{\sigma^j}$, $0 \le i \le s$, $0 \le j < g_i$. There are s' + 1 pairs (i, j). If we exclude $U_{i_0j_0}$ for one pair (i_0, j_0) , then the remaining s' elements U_{ij} are independent.

PROOF. Suppose that $\prod_{(i,j)\neq(i_0,j_0)} U_{ij}^{a_{ij}} = 1$. Let

$$F' = \{(i,j) \mid a_{ij} > 0\}$$
 and $F'' = \{(i,j) \mid a_{ij} < 0\},\$

so $F'\cap F''=\emptyset$. Suppose that F' is not empty. Then

$$\prod_{(i,j)\in F'} U_{ij}^{b_{ij}} = \prod_{(i,j)\in F''} U_{ij}^{b_{ij}}$$

where $b_{ij} > 0$. Let $\wp_i^{\sigma^j}$ be denoted by \wp_{ij} . Since $(i_0, j_0) \notin F' \cup F''$ we have

$$\prod_{(i,j)\in F'} \left| U_{ij}^{a_{ij}} \right|_{\wp_{i_0j_0}} = \prod_{(i,j)\in F''} \left| U_{ij}^{b_{ij}} \right|_{\wp_{i_0j_0}} < 1$$

This show that F'' cannot be empty. By the product formula, we have

$$\prod_{\wp} \left| \prod_{(i,j)\in F'} U_{ij}^{b_{ij}} \right|_{\wp} = \prod_{\wp\in E'} \left| \prod_{(i,j)\in F'} U_{ij}^{b_{ij}} \right|_{\wp} = \prod_{\wp\in E'} \prod_{(i,j)\in F'} \left| U_{ij}^{b_{ij}} \right|_{\wp} = 1.$$

Since $\wp_{i_0 j_0} \in E'$, there exists (i_i, j_1) so that

$$\prod_{(i,j)\in F'} \left| U_{ij}^{b_{ij}} \right|_{\wp_{i_1j_1}} > 1.$$

and (i_1, j_1) must be in F'. We have a contradiction since (i_1, j_1) is not in F'', but

$$\prod_{(i,j)\in F''} \left| U_{ij}^{b_{ij}} \right|_{\wp_{i_1j_1}} = \prod_{(i,j)\in F'} \left| U_{ij}^{b_{ij}} \right|_{\wp_{i_1j_1}} > 1.$$

LEMMA 7.20. Suppose that A is an abelian group containing a subgroup A_0 of finite index in A, and A_0 is free abelian on s' generators. Let B be a subgroup of A containing s' independent elements. Then B has finite index in A.

PROOF. Take B' to a subgroup of B generated by s' independent elements. Then $B' \subset B \subset A$. Let $[A : A_0] = m$. Replace B' by $B_0 = mB'$. Then $B_0 \subset A_0$ and B_0 has s' independent elements. Let $x_1, \ldots, x_{s'}$ be a basis for A_0 ; let $y_1, \ldots, y_{s'}$

be independent in B_0 . Let $y_i = \sum_{j=1}^{s'} a_{ij}x_j$. Matrix (a_{ij}) is non-singular, because otherwise there exist integers $b_1, \ldots, b_{s'}$, not all zero, so that $\sum_{i=0}^{s'} b_i a_{ij} = 0$. Then $\sum_{i=0}^{s'} b_i y_i = \sum_{i=0}^{s'} \sum_{j=0}^{s'} b_i a_{ij} x_j = \sum_{j=0}^{s'} \sum_{i=0}^{s'} b_i a_{ij} x_j = 0$, which is impossible. There exists an integer matrix (c_{ik}) so that $(c_{ik})(a_{kj}) = aI$, where $a = \det(a_{ij})$. Then

$$\sum_{k=0}^{s'} c_{ik} y_k = \sum_{k=0}^{s'} \sum_{j=0}^{s'} c_{ik} a_{kj} x_j = a x_i \in B_0.$$

Therefore $aA_0 \subset B_0$, so $[A_0 : B_0] < [A_0 : aA_0] = a^{s'}$, so $[A : B] < [A : B_0] = [A : A_0][A_0 : B_0] < ma^{s'}$, which proves the lemma.

We now define the elements η_0, \ldots, η_s and H_0, \ldots, H_s as follows.

$$\eta_i = \mathbf{N}_{\mathbf{Z}_i/\mathbf{k}} H_i^*$$
 and $H_i = \eta_i^{-1} (H_i^*)^{g_i}$ for $0 \le i \le s$

These satisfy the first two of three required conditions.

- (1) η_i is in $\mathbf{k}^*(E)$, so $\eta_i^{1-\sigma} = 1$.
- (2) $\mathbf{N}_{\mathbf{Z}_i/\mathbf{k}} H_i = \mathbf{N}_{\mathbf{Z}_i/\mathbf{k}} \left(\eta_i^{-1} (H_i^*)^{g_i} \right) = \eta_i^{-g_i} \eta_i^{g_i} = 1.$

Let L be the subgroup generated by the following elements (This is one more than we need, but we will show that η_0 may be discarded.)

$$\eta_0, \ldots, \eta_s, H_0, \ldots, H_0^{\sigma^{g_0-2}}, \ldots, H_s, \ldots, H_0^{\sigma^{g_s-2}}.$$

Since $\mathbf{N}_{\mathbf{Z}_i/\mathbf{k}}H_i = 1$, then $H_i^{1+\sigma+\dots+\sigma^{g_i-1}} = 1$, or $H_i^{\sigma^{g_i-1}} = (H_i^{1+\sigma+\dots+\sigma^{g_i-2}})^{-1}$, so $H_i^{\sigma^{g_i-1}}$ is in L. We have $H_i^{\sigma^j} = \eta_i^{-1} (H_i^{*\sigma^j})^{g_i}$, so $(H_i^{*\sigma^j})^{g_i} = \eta_i H_i^{\sigma^j}$ is in L for $0 \le j \le g_i - 1$. By lemma 7.19, we know that L contains s' independent elements, so by lemma 7.20 subgroup L has finite index in $\mathbf{K}^*(E')$. We still need to discard one element. If we could discard one of the $H_i^{\sigma^j}$ leaving s' independent elements, then η_0, \ldots, η_s would be a set of s + 1 independent units in $k^*(E)$, but this would be a violation of unit theorem 6.13. Therefore we must discard one of the η_i . After relabeling the η_i , we obtain the following set of s' independent generators for L.

(7.29)
$$\eta_1, \dots, \eta_s, H_0, \dots, H_0^{\sigma^{g_0-2}}, \dots, H_s, \dots, H_0^{\sigma^{g_s-2}}, \dots$$

Condition (3) is now satisfied: elements (7.29) are independent and generate a subgroup of finite index in $\mathbf{K}^*(E')$. The completes the proof of the first fundamental inequality.