## CHAPTER VII

## FIRST FUNDAMENTAL INEQUALITY

In this chapter, we will prove that if $\mathbf{K}$ is a finite cyclic extension of $\mathbf{k}$ then $\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$ is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ and $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ is divisible by $[\mathbf{K}: \mathbf{k}]$. We begin with an algebraic lemma.

Lemma 7.1 (Herbrand's lemma). Let $L$ be a subgroup of finite index in abelian group $J$, and let $f: J \rightarrow J$ and $g: J \rightarrow J$ be two homomorphisms such that $f(L) \subset L$ and $g(L) \subset L$, and $f g=g f=1$. Let $f_{1}$ and $g_{1}$ be the restrictions to $L$ of $f$ and $g$, respectively. If $\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]$ and $\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]$ are both finite then $[\operatorname{ker}(f): \operatorname{Im}(g)]$ and $[\operatorname{ker}(g): \operatorname{Im}(f)]$ are finite and

$$
\frac{[\operatorname{ker}(f): \operatorname{Im}(g)]}{\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]}=\frac{[\operatorname{ker}(g): \operatorname{Im}(f)]}{\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]}
$$

Proof. Consider the composite $J \xrightarrow{f} \operatorname{Im}(f) \xrightarrow{\iota} \frac{\operatorname{Im}(f)}{\operatorname{Im}\left(f_{1}\right)}$. If $f(j)$ is in $\operatorname{Im}\left(f_{1}\right)$ then $f(j)=f(\ell)$ with $\ell$ in $L$, so $j=j \ell^{-1} \ell$ is in $\operatorname{ker}(f) L$. Therefore $\operatorname{ker}(\iota f)=\operatorname{ker}(f) L$, and

$$
\frac{J}{\operatorname{ker}(f) L} \simeq \frac{\operatorname{Im}(f)}{\operatorname{Im}\left(f_{1}\right)}
$$

Both sides are finite groups since $[J: L]$ is finite. In addition, we have

$$
\frac{\operatorname{ker}(f) L}{L} \simeq \frac{\operatorname{ker}(f)}{\operatorname{ker}(f) \cap L} \simeq \frac{\operatorname{ker}(f)}{\operatorname{ker}\left(f_{1}\right)}
$$

Homomorphism $g$ satisfies the same hypotheses as $f$, so we have also

$$
\frac{J}{\operatorname{ker}(g) L} \simeq \frac{\operatorname{Im}(g)}{\operatorname{Im}\left(g_{1}\right)} \quad \text { and } \quad \frac{\operatorname{ker}(g) L}{L} \simeq \frac{\operatorname{ker}(g)}{\operatorname{ker}(g) \cap L} \simeq \frac{\operatorname{ker}(g)}{\operatorname{ker}\left(g_{1}\right)} .
$$

Therefore, with every index in the following being finite, we have

$$
\begin{aligned}
{[J: L] } & =\left[\operatorname{Im}(f): \operatorname{Im}\left(f_{1}\right)\right]\left[\operatorname{ker}(f): \operatorname{ker}\left(f_{1}\right)\right] \\
& =\left[\operatorname{Im}(f): \operatorname{Im}\left(f_{1}\right)\right] \frac{\left[\operatorname{ker}(f): \operatorname{Im}\left(g_{1}\right)\right]}{\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]} \\
& =\left[\operatorname{Im}(f): \operatorname{Im}\left(f_{1}\right)\right]\left[\operatorname{Im}(g): \operatorname{Im}\left(g_{1}\right)\right] \frac{[\operatorname{ker}(f): \operatorname{Im}(g)]}{\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]},
\end{aligned}
$$

or

$$
\frac{[J: L]}{\left[\operatorname{Im}(f): \operatorname{Im}\left(f_{1}\right)\right]\left[\operatorname{Im}(g): \operatorname{Im}\left(g_{1}\right)\right]}=\frac{[\operatorname{ker}(f): \operatorname{Im}(g)]}{\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]}
$$

The left side is symmetric in $f$ and $g$ so we have the desired result,

$$
\frac{[\operatorname{ker}(f): \operatorname{Im}(g)]}{\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]}=\frac{[\operatorname{ker}(g): \operatorname{Im}(f)]}{\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]}
$$

Lemma 7.2 (Hilbert's Theorem 90). Let $\mathbf{Z} / \mathbf{F}$ be a finite cyclic extension of degree $n$ with Galois group generated by $\sigma$. If $\alpha$ in $\mathbf{Z}^{*}$ satisfies $\alpha^{1+\sigma+\cdots+\sigma^{n-1}}=1$ then there exists $\beta$ in $\mathbf{Z}^{*}$ such that $\alpha=\beta^{1-\sigma}$.

Proof. Suppose that $\mathbf{Z}=\mathbf{F}(\theta)$. Put $\theta_{i}=\theta^{\sigma^{i}}$. Then $\theta_{i}^{\sigma}=\theta_{i+1}$ for $0 \leq i<n-1$, and $\theta_{n-1}^{\sigma}=\theta=\theta_{0}$. Put $\alpha_{0}=1, \alpha_{1}=\alpha, \ldots, \alpha_{i}=\alpha^{1+\sigma+\cdots+\sigma^{i-1}}$ for $1 \leq i \leq n-1$. Then $\alpha \alpha_{i}^{\sigma}=\alpha_{i+1}$ for $0 \leq i<n-1$, and $\alpha \alpha_{n-1}^{\sigma}=\alpha^{1+\sigma+\cdots+\sigma^{n-1}}=1=\alpha_{0}$. Finally, put

$$
\beta_{j}=\alpha_{0} \theta_{0}^{j}+\alpha_{1} \theta_{1}^{j}+\cdots+\alpha_{n-1} \theta_{n-1}^{j} \quad \text { for } 0 \leq j<n .
$$

Then $\alpha \beta_{j}^{\sigma}=\beta_{j}$. The $n$ elements $\theta_{0}, \ldots, \theta_{n-1}$ are all distinct (otherwise $\theta$ would have fewer than $n$ conjugates, which is impossible), so the Vandermonde matrix $\left(\theta_{i}^{j}\right)$ is non-singular. Therefore $\beta_{j} \neq 0$ for at least one value of $j$, and we have $\alpha=\beta_{j} / \beta_{j}^{\sigma}=\beta_{j}^{1-\sigma}$ as desired.

Computation of $\left[\mathbf{k}_{p}^{*}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right]$ for cyclic extensions. In the proof of the first fundamental inequality for cyclic extensions, we begin by showing that $\left[\mathbf{k}_{p}^{*}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right]=\left[\mathbf{K}_{\wp}: \mathbf{k}_{p}\right]$, and we will need only that local extension $\mathbf{K}_{\wp} / \mathbf{k}_{p}$ is cyclic. Let $\left[\mathbf{K}_{\wp}: \mathbf{k}_{p}\right]=n=e f$, where $p \mathbf{O}_{\wp}=\wp^{e}$ and $\mathrm{N}_{\wp}=\mathrm{N} p^{f}$. Let principal ideals $\wp$ and $p$ be generated by elements $\Pi$ in $\mathbf{O}_{\wp}$ and $\pi$ in $\mathbf{o}_{p}$, respectively. Denote the unit group $\mathbf{O}_{\wp}^{*}$ by $\mathbf{U}_{\wp}$ and the unit group $\mathbf{o}_{p}^{*}$ by $\mathbf{u}_{p}$. The index $\left[\mathbf{k}_{p}^{*}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right]$ is the product of two factors.

$$
\begin{equation*}
\left[\mathbf{k}_{p}^{*}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right]=\left[\mathbf{k}_{p}^{*}: \mathbf{u}_{p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right]\left[\mathbf{u}_{p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right] \tag{7.1}
\end{equation*}
$$

We will show that the first factor of the right side is $f$ and the second factor is $e$.
Computation of the first factor. Since $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}(\Pi)=(\pi)^{f}$, we have $\mathbf{N}_{\mathbf{K}_{\varphi} / \mathbf{k}_{p}} \Pi=$ $\mu \pi^{f}$ where $\mu$ is in $\mathbf{u}_{p}$. Then $\mathbf{K}_{\wp}^{*}=\mathbf{U}_{\wp}\langle\Pi\rangle$, so $\mathbf{u}_{p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}=\mathbf{u}_{p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{U}_{\wp}\left\langle\pi^{f}\right\rangle=$ $\mathbf{u}_{p}\left\langle\pi^{f}\right\rangle$. We also have $\mathbf{k}_{p}^{*}=\mathbf{u}_{p}\langle\pi\rangle$, so

$$
\begin{align*}
& {\left[\mathbf{k}_{p}^{*}: \mathbf{u}_{p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right]=\left[\mathbf{u}_{p}\langle\pi\rangle: \mathbf{u}_{p}\left\langle\pi^{f}\right\rangle\right] }  \tag{7.2}\\
&=\left[\langle\pi\rangle: \mathbf{u}_{p}\left\langle\pi^{f}\right\rangle \cap\langle\pi\rangle\right]=\left[\langle\pi\rangle:\left\langle\pi^{f}\right\rangle\right]=f .
\end{align*}
$$

Computation of the second factor. We have

$$
\begin{equation*}
\left[\mathbf{u}_{p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right]=\left[\mathbf{u}_{p}: \mathbf{u}_{p} \cap \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\S}^{*}\right]=\left[\mathbf{u}_{p}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{U}_{\wp}\right] . \tag{7.3}
\end{equation*}
$$

To compute [ $\mathbf{u}_{p}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{U}_{\wp}$ ], we apply Herbrand's lemma with $J=\mathbf{U}_{\wp}$, and homomorphisms $f: J \rightarrow J$ and $g: J \rightarrow J$ defined by $f(\alpha)=\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha=\alpha^{1+\sigma+\cdots+\sigma^{n-1}}$ and $g(\beta)=\beta^{1-\sigma}$. Then $\operatorname{ker}(g)=\left\{\beta \in \mathbf{U}_{\wp} \mid \beta / \beta^{\sigma}=1\right\}=\mathbf{U}_{\wp} \cap \mathbf{k}_{p}^{*}=\mathbf{u}_{p}$, and $\operatorname{Im}(f)=\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{U}_{\wp}$. Lemma 7.1 (Herbrand's) asserts that

$$
\begin{equation*}
\left[\mathbf{u}_{p}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{U}_{\wp}\right]=[\operatorname{ker}(g): \operatorname{Im}(f)]=\frac{[\operatorname{ker}(f): \operatorname{Im}(g)]\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]}{\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]} \tag{7.4}
\end{equation*}
$$

It remains to choose $L$ and compute the three indices on the right side of (7.1)
Computation of $[\operatorname{ker}(f): \operatorname{Im}(g)]$. We have

$$
\operatorname{Im}(g)=\left\{\alpha \in \mathbf{U}_{p} \mid \alpha=\beta^{1-\sigma} \text { with } \beta \in \mathbf{U}_{\wp}\right\}
$$

and, by lemma 7.2,

$$
\operatorname{ker}(f)=\left\{\alpha \in \mathbf{U}_{\wp} \mid \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha=1\right\}=\left\{\alpha \in \mathbf{U}_{\wp} \mid \alpha=\beta^{1-\sigma} \text { with } \beta \in \mathbf{K}_{\wp}^{*}\right\}
$$

Let $g^{\prime}: \mathbf{K}_{\wp}^{*} \rightarrow \mathbf{K}_{\wp}^{*}$ be the map $g^{\prime}(\alpha)=\alpha^{1-\sigma}$. Then $\operatorname{ker}(f)=\operatorname{Im}\left(g^{\prime}\right)$, and $\operatorname{Im}(g)=$ $g\left(\mathbf{U}_{\wp}\right)=g^{\prime}\left(\mathbf{k}_{p}^{*} \mathbf{U}_{\wp}\right)$. Both rows are exact in the following commutative diagram.


We have $[\operatorname{ker}(f): \operatorname{Im}(g)]=\left[\mathbf{K}_{\wp}^{*}: \mathbf{k}_{p}^{*} \mathbf{U}_{\wp}\right]=\left[\mathbf{U}_{\wp}\langle\Pi\rangle: \mathbf{U}_{\wp}\langle\pi\rangle\right]=\left[\langle\Pi\rangle:\left\langle\Pi^{e}\right\rangle\right]$, and therefore

$$
\begin{equation*}
[\operatorname{ker}(f): \operatorname{Im}(g)]=e \tag{7.5}
\end{equation*}
$$

Choice of subgroup L. By the normal basis theorem, there exists an element $\theta$ in $\mathbf{K}_{\wp}$ so that $\theta, \theta^{\sigma}, \ldots, \theta^{\sigma^{n-1}}$ is a basis of $\mathbf{K}_{\wp}$ over $\mathbf{k}_{p}$. If $\alpha$ is in $\mathbf{k}_{p}^{*}$ then $\alpha \theta, \alpha \theta^{\sigma}, \ldots, \alpha \theta^{\sigma^{n-1}}$ is also a basis, so we can assume that $\operatorname{ord}_{\wp}\left(\theta^{\sigma^{j}}\right)>\frac{b}{q-1}$, where $b$ is as defined in lemma 4.8 , and $q$ is the rational prime which $p$ divides. Put

$$
M=\mathbf{o}_{p} \theta+\mathbf{o}_{p} \theta^{\sigma}+\cdots+\mathbf{o}_{p} \theta^{\sigma^{n-1}}
$$

Then $\exp (x)$ is defined on $M$ and maps $M$ isomorphically onto a subgroup $L$ of $\mathbf{U}_{\wp}$, where

$$
L=\exp (M)=\left\{y \in \mathbf{U}_{\wp} \left\lvert\, \operatorname{ord}_{\wp}(y-1)>\frac{b}{q-1}\right.\right\} .
$$

If $m$ is sufficiently large, we will show that $M$ contains $\wp^{e m}$. Let $x_{1}, \ldots, x_{n}$ be a basis for $\mathbf{O}_{\wp}$ over $\mathbf{o}_{p}$. Then $x_{i}=\sum_{j=0}^{n-1} \beta_{i j} \theta^{\sigma^{j}}$ for $1 \leq i \leq n$, with $\beta_{i j}$ in $\mathbf{o}_{p}$. There is a constant $c_{0}$ so that $\operatorname{ord}_{p}\left(\beta_{i j}\right)>-c_{0}$ for $0 \leq j<n$ and $1 \leq i \leq n$. If $x$ is in $\wp^{e m}=$ $\left(\Pi^{e m}\right)=\pi^{m} \mathbf{O}_{\wp}$ then $x=\sum_{i=1}^{n} \alpha_{i} \pi^{m} x_{i}=\sum_{i=1}^{n} \sum_{j=0}^{n-1} \alpha_{i} \pi^{m} \beta_{i j} \theta^{\sigma^{j}}=\sum_{j=0}^{n-1} \gamma_{j} \theta^{\sigma^{j}}$, where $\alpha_{i}$ is in $\mathbf{o}_{p}, 1 \leq i \leq n$, and $\gamma_{j}=\sum_{j=0}^{n-1} \alpha_{i} \pi^{m} \beta_{i j}$. We have

$$
\operatorname{ord}_{p}\left(\gamma_{j}\right) \geq \min \left(\operatorname{ord}\left(\alpha_{i} \pi^{m} \beta_{i j}\right)\right)>m-c_{0} .
$$

If we take $m \geq c_{0}$ then the $\gamma_{j}$ are all in $\mathbf{o}_{p}$, so $x$ is in $M$, and $\wp^{e m} \subset M \subset \mathbf{O}_{\wp}$. Since $\left[\mathbf{O}_{\wp}: \wp^{e m}\right]$ is finite, we see that $\left[M: \wp^{e m}\right]$ is finite. Since $\wp^{e m}$ is mapped isomorphically onto $1+\wp^{e m}$ by the exponential function, then $\left[L: 1+\wp^{e m}\right]$ is finite.


We can carry out the computation of $\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]$ and $\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]$ in $M$. Since $M^{\sigma}=M$, we can define $\tilde{f}_{1}: M \rightarrow M$ by $\tilde{f}(x)=x+x^{\sigma}+\cdots+x^{\sigma^{n-1}}$, and $\tilde{g}_{1}: M \rightarrow M$ by $\tilde{g}(y)=y-y^{\sigma}$. Each automorphism of $\mathbf{K}_{\wp} / \mathbf{k}_{p}$ is an isometry, so if $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$ then we have $\left|\alpha_{n}-\alpha\right|_{\wp}=\left|\alpha_{n}^{\sigma}-\alpha^{\sigma}\right|_{\wp}$, so $\lim _{n \rightarrow \infty} \alpha_{n}^{\sigma}=\alpha^{\sigma}$. Therefore $\exp \left(x^{\sigma}\right)=(\exp (x))^{\sigma}$. We have

$$
\begin{aligned}
\exp \left(\tilde{f}_{1}(\alpha)\right)=\exp \left(x+x^{\sigma}+\cdots\right. & \left.+x^{\sigma^{n-1}}\right)=\exp (x) \exp \left(x^{\sigma}\right) \ldots \exp \left(x^{\sigma^{n-1}}\right) \\
& =\exp (x) \exp (x)^{\sigma} \ldots \exp (x)^{\sigma^{n-1}}=f_{1}(\exp (\alpha))
\end{aligned}
$$

Likewise, we have $\exp \left(\tilde{g}_{1}(y)\right)=g_{1}(\exp (y))$. Since exp is an isomorphism, we have

$$
\begin{align*}
& {\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]=\left[\operatorname{ker}\left(\tilde{f}_{1}\right): \operatorname{Im}\left(\tilde{g}_{1}\right)\right]} \\
& {\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]=\left[\operatorname{ker}\left(\tilde{g}_{1}\right): \operatorname{Im}\left(\tilde{f}_{1}\right)\right] .} \tag{7.6}
\end{align*}
$$

Computation of $\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]$. Let $x$ be in $M$. Then $x=\sum_{i=0}^{n-1} \alpha_{i} \theta^{\sigma^{i}}$, with $\alpha_{i}$ in $\mathbf{o}_{p}$. We have

$$
\begin{align*}
\tilde{f}_{1}(x)=\sum_{j=0}^{n-1}\left(\sum_{i=0}^{n-1} \alpha_{i} \theta^{\sigma^{i}}\right)^{\sigma^{j}} & =\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \alpha_{i} \theta^{\sigma^{i+j}}  \tag{7.7}\\
= & \left(\sum_{i=0}^{n-1} \alpha_{i}\right)\left(\sum_{k=0}^{n-1} \theta^{\sigma^{k}}\right)=\left(\sum_{i=0}^{n-1} \alpha_{i}\right) \mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \theta .
\end{align*}
$$

If $\mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \theta=0$, then replace $\theta$ with $\theta+1$, which also generates a cyclic basis and $\mathbf{S}_{\mathbf{K}_{\mathcal{\beta}} / \mathbf{k}_{p}}(\theta+1) \neq 0$. Therefore $\operatorname{ker}\left(\tilde{f}_{1}\right)=\left\{x \in M \mid \sum_{i=0}^{n-1} \alpha_{i}=0\right\}$.

For $y=\sum_{j=0}^{n-1} \beta_{j} \theta^{\sigma^{j}}$, we have $\tilde{g}_{1}(y)=\tilde{g}_{1}\left(\sum_{j=0}^{n-1} \beta_{j} \theta^{\sigma^{j}}\right)=\left(\sum_{j=0}^{n-1} \beta_{j} \theta^{\sigma^{j}}\right)-$ $\left(\sum_{j=0}^{n-1} \beta_{j} \theta^{\sigma^{j+1}}\right)$, so

$$
\begin{equation*}
\tilde{g}_{1}(y)=\left(\beta_{0}-\beta_{n-1}\right) \theta+\left(\beta_{1}-\beta_{0}\right) \theta^{\sigma}+\cdots+\left(\beta_{n-1}-\beta_{n-2}\right) \theta^{\sigma^{n-1}} \tag{7.8}
\end{equation*}
$$

We show $\operatorname{ker}\left(\tilde{f}_{1}\right) \subset \operatorname{Im}\left(\tilde{g}_{1}\right)$. If $\sum_{i=0}^{n-1} \alpha_{i}=0$, put $\beta_{0}=\alpha_{0}, \beta_{1}=\alpha_{0}+\alpha_{1}, \ldots$, $\beta_{n-1}=\alpha_{0}+\cdots+\alpha_{n-1}=0$. Then

$$
\beta_{0}-\beta_{n-1}=\alpha_{0}, \quad \beta_{1}-\beta_{0}=\alpha_{1}, \quad \ldots, \quad \beta_{n-1}-\beta_{n-2}=\alpha_{n-1}
$$

so

$$
\begin{equation*}
\left[\operatorname{ker}\left(\tilde{f}_{1}\right): \operatorname{Im}\left(\tilde{g}_{1}\right)\right]=1 \tag{7.9}
\end{equation*}
$$

Computation of $\left[\operatorname{ker}\left(\tilde{g}_{1}\right): \operatorname{Im}\left(\tilde{f}_{1}\right]\right.$. By (7.8), we have $\tilde{g}_{1}(y)=0$ if and only if $\beta_{0}=\beta_{n-1}, \beta_{1}=\beta_{0}, \ldots, \beta_{n-1}=\beta_{n-2}$, so $\operatorname{ker}\left(\tilde{g}_{1}\right)=\mathbf{o}_{p}\left(\sum_{j=1}^{n-1} \theta^{\sigma^{j}}\right)$. Comparison with (7.7) shows that $\operatorname{Im}\left(\tilde{f}_{1}\right)$ is the same set. Therefore

$$
\begin{equation*}
\left[\operatorname{ker}\left(\tilde{g}_{1}\right): \operatorname{Im}\left(\tilde{f}_{1}\right)\right]=1 . \tag{7.10}
\end{equation*}
$$

Proposition 7.3. If extension $\mathbf{K}_{\wp} / \mathbf{k}_{p}$ is normal with cyclic Galois group, then $\left[\mathbf{u}_{p}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{U}_{\wp}\right]=e$.

Proof. Using (7.6), substituting the results of (7.5), (7.9) and (7.10) into the right side of (7.4), we obtain

$$
\begin{equation*}
\left[\mathbf{u}_{p}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{U}_{\wp}\right]=e . \tag{7.11}
\end{equation*}
$$

Remark. Lemma 4.7 was the unramified case of lemma 7.3 .

Proposition 7.4. If extension $\mathbf{K}_{\wp} / \mathbf{k}_{p}$ is normal with cyclic Galois group, then $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}} \mathbf{K}_{\wp}^{*}$ is an open subgroup of $\mathbf{k}_{p}^{*}$ and $\left[\mathbf{k}_{p}^{*}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right]=n$.

Proof. Applying the results of (7.2), (7.3) and (7.11) to the right side of (7.1) produces

$$
\left[\mathbf{k}_{p}^{*}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}} \mathbf{K}_{\wp}^{*}\right]=e f=n .
$$

Lemma 7.5. If $\mathbf{i}$ is an idele in $\mathbf{I}_{\mathbf{k}}$ and $G(\mathbf{K}: \mathbf{k})$ is abelian then $\mathbf{i}$ is in $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$ if and only if $\mathbf{i}_{p}$ is in $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}$ for every prime $p$ of $\mathbf{k}$ and some prime $\wp$ of $\mathbf{K}$ dividing $p$.

Proof. Suppose that for every $p$ we have $\mathbf{i}_{p}=\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha_{\wp}$ for $\alpha_{\wp}$ in $\mathbf{K}_{\wp}^{*}$ for some $\wp$ dividing $p$. This gives a set $U$ of primes of $\mathbf{K}$. Let $\mathbf{j}$ in $\mathbf{I}_{\mathbf{K}}$ have components $\mathbf{j}_{\wp}=\alpha_{\wp}$ for $\wp$ in $U$ and $\mathbf{j}_{\wp}=1$ for $\wp$ not in $U$. Then $\prod_{\wp \mid p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{j}_{\wp}=\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha_{\wp}=\mathbf{i}_{p}$ for each $p$, so $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{j}=\mathbf{i}$.

Conversely, suppose that $\mathbf{i}=\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{j}$ for some $\mathbf{j}$ in $\mathbf{I}_{\mathbf{K}}$. Then $\mathbf{i}_{p}=\prod_{\wp \mid p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{j}_{\wp}$ for each $p$. Let the primes of $\mathbf{K}$ dividing $p$ be $\wp_{1}, \ldots, \wp_{g}$. For abelian extensions, the splitting groups $S_{\wp_{i}}$ all coincide, so put $S_{p}=S_{\wp_{j}}$. (Chapter I, Splitting groups and inertial groups in normal extensions.) Let $\sigma_{1}, \ldots, \sigma_{g}$ be a set of coset representatives for splitting group $S_{p}$ in $G(\mathbf{K}: \mathbf{k})$. Then $\wp_{1}^{\sigma_{j}}=\wp_{j}$, and $\sigma_{j}: \mathbf{K}_{\wp_{1}} \rightarrow \mathbf{K}_{\wp_{j}}$ is an isomorphism. Put $\tau_{j}=\sigma_{j}^{-1}$. Then $\wp_{j}^{\tau_{j}}=\wp_{1}$ and $\tau_{j}: \mathbf{K}_{\wp_{j}} \rightarrow \mathbf{K}_{\wp_{1}}$ is an isomorphism, and we have

$$
\mathbf{N}_{\mathbf{K}_{\wp_{j}} / \mathbf{k}_{p}} \mathbf{j}_{\wp_{j}}=\left(\mathbf{N}_{\mathbf{K}_{\wp_{j}} / \mathbf{k}_{p}} \mathbf{j}_{\wp_{j}}\right)^{\tau_{j}}=\prod_{\sigma \in S(p)}\left(\mathbf{j}_{\wp_{j}}^{\sigma}\right)^{\tau_{j}}=\prod_{\sigma \in S(p)}\left(\mathbf{j}_{\wp_{j}}^{\tau_{j}}\right)^{\sigma}=\mathbf{N}_{\mathbf{K}_{\wp_{1}} / \mathbf{k}_{p}} \mathbf{j}_{\wp_{j}}^{\tau_{j}},
$$

and $\mathbf{i}_{p}=\prod_{j=1}^{g} \mathbf{N}_{\mathbf{K}_{\wp_{j}} / \mathbf{k}_{p}} \mathbf{j}_{\wp_{j}}=\prod_{j=1}^{g} \mathbf{N}_{\mathbf{K}_{\wp_{1}} / \mathbf{k}_{p}} \mathbf{j}_{\wp_{\rho_{j}}}^{\tau_{j}}=\mathbf{N}_{\mathbf{K}_{\wp_{1}} / \mathbf{k}_{p}}\left(\prod_{j=1}^{g} \mathbf{j}_{\wp_{\wp_{j}}}^{\tau_{j}}\right)$, showing that $\mathbf{i}_{p}$ is in $\mathbf{N}_{\mathbf{K}_{\wp_{1}} / \mathbf{k}_{p}} \mathbf{K}_{\wp_{1}}$.

Lemma 7.6. $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$ is an open subgroup of $\mathbf{I}_{\mathbf{k}}$.
Proof. If $p$ is a ramified finite prime in $\mathbf{K}$ then by lemma 4.14 there is an integer $m_{p}$ so that

$$
W_{p}^{\prime}\left(m_{p}\right)=\left\{\alpha \in \mathbf{k}_{p}^{*} \mid \operatorname{ord}_{p}(\alpha)>m_{p}\right\} \subset \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*} .
$$

If $p$ is an unramified finite prime, then every unit of $\mathbf{o}_{p}$ is a norm by lemma 4.7, so $W_{p}^{\prime}(0)=\mathbf{u}_{p} \subset \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}$; set $m_{p}=0$. If $p$ is a real infinite prime, then $W_{p}^{\prime}(1) \subset \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*} ;$ set $m_{p}=1$. For a complex infinite prime, set $m_{p}=0$. Then $\prod_{p} W_{p}^{\prime}\left(m_{p}\right)$ is an basic open neighborhood contained in $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}$.

Lemma 7.7. If $\mathbf{J}$ is an open subgroup of $\mathbf{I}_{k}$ so that $\mathbf{I}_{k}=\mathbf{J I}_{\mathbf{k}}^{0}$ then $\mathbf{k}^{*} \mathbf{J}$ is a subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$.

Proof. We have

$$
\frac{\mathbf{I}_{\mathbf{k}}}{\mathbf{k}^{*} \mathbf{J}}=\frac{\mathbf{k}^{*} \mathbf{J I}_{\mathbf{k}}^{0}}{\mathbf{k}^{*} \mathbf{J}} \simeq \frac{\mathbf{I}_{\mathbf{k}}^{0}}{\mathbf{k}^{*} \mathbf{J} \cap \mathbf{I}_{\mathbf{k}}^{0}} \simeq \frac{\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}}{\left(\mathbf{k}^{*} \mathbf{J} \cap \mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}}
$$

$\mathbf{J}$ is open, so $\mathbf{k}^{*} \mathbf{J}=\cup_{\alpha \in \mathbf{k}^{*}} \mathbf{J}$ is open. Therefore $\mathbf{k}^{*} \mathbf{J} \cap \mathbf{I}_{\mathbf{k}}^{0}$ is an open subgroup of $\mathbf{I}_{\mathbf{k}}^{0}$, and $\left(\mathbf{k}^{*} \mathbf{J} \cap \mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}$ is open in the quotient topology. We have an open covering of $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}$, which is compact by Proposition 6.9; therefore $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}$ is covered by a finite number of cosets of $\left(\mathbf{k}^{*} \mathbf{J} \cap \mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}$.

Lemma 7.8. If $\mathbf{K} / \mathbf{k}$ is abelian then $\mathbf{I}_{\mathbf{k}}=\left(\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right) \mathbf{I}_{\mathbf{k}}^{0}$.
Proof. Choose one infinite prime $p_{0}$ of $\mathbf{k}$ and one infinite prime $\wp_{0}$ of $\mathbf{K}$ which divides $p_{0}$. Given $\mathbf{i}$ in $\mathbf{I}_{\mathbf{k}}$, define ideles $\mathbf{i}^{\prime}$ and $\mathbf{i}^{\prime \prime}$ of $\mathbf{I}_{\mathbf{k}}$ as follows. At primes $p$ such that $p \neq p_{0}$, put $\mathbf{i}_{p}^{\prime}=\mathbf{i}_{p}$ and $\mathbf{i}_{p}^{\prime \prime}=1$. Put $\mathbf{i}_{p_{0}}^{\prime}=\mathbf{i}_{p_{0}} / c$ and $\mathbf{i}_{p_{0}}^{\prime \prime}=c$, where $c$ in $\mathbf{k}_{p_{0}}$ satisfies $|c|_{p_{0}}=|\mathbf{i}|$. (If $p_{0}$ is real and $\sigma: \mathbf{k}_{p_{0}} \simeq \mathbf{R}$, choose $c$ so that $\sigma(c)=|\mathbf{i}|$; if $p_{0}$ is complex and $\sigma: \mathbf{k}_{p_{0}} \simeq \mathbf{C}$, choose $c$ so that $\sigma(c)=\sqrt{|\mathbf{i}|}$, taking the positive real square root.) Then $\mathbf{i}=\mathbf{i}^{\prime} \mathbf{i}^{\prime \prime}$. To show that $\left|\mathbf{i}^{\prime}\right|$ is in $\mathbf{I}_{\mathbf{k}}^{0}$, consider

$$
\left|\mathbf{i}^{\prime}\right|=\left(\prod_{p \neq p_{0}}\left|\mathbf{i}^{\prime}\right|_{p}\right)\left|\mathbf{i}^{\prime}\right|_{p_{0}}=\left(\prod_{p \neq p_{0}}|\mathbf{i}|_{p}\right)\left(\frac{\left|\mathbf{i}_{p_{0}}\right|_{p_{0}}}{|c|_{p_{0}}}\right)=\frac{|\mathbf{i}|}{|c|_{p_{0}}}=1 .
$$

We have $|c|_{p_{0}}=|\sigma(c)|=|\mathbf{i}|$ if $p_{0}$ is real, and $|c|_{p_{0}}=|\sigma(c)|^{2}=|\mathbf{i}|$ if $p_{0}$ is complex. To show that $\mathbf{i}^{\prime \prime}$ is in $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$, for $p \neq p_{0}$ we have $\mathbf{i}_{p}^{\prime \prime}=1 \in \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}$, and $\mathbf{i}_{p_{0}}^{\prime \prime}=c$. Since $\sigma(c)>0$, then $c$ is in $\mathbf{N}_{\mathbf{K}_{\varphi_{0}} / \mathbf{k}_{p_{0}}} \mathbf{K}_{\wp_{0}}$. By lemma $7.5, \mathbf{i}^{\prime \prime} \in \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{K}$, and we have shown $\mathbf{i} \in\left(\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right) \mathbf{I}_{\mathbf{k}}^{0}$.

Corollary 7.9. $\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$ is a subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$.
Lemma 7.10. For any finite set $E$ of primes of $\mathbf{k}$ containing the infinite primes, let

$$
\mathbf{I}_{\mathbf{k}}(E)=\left\{\left.\mathbf{i} \in \mathbf{I}_{\mathbf{k}}| | \mathbf{i}\right|_{p}=1 \text { for } p \notin E\right\}
$$

Then $\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E)$ is a subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$.
Proof. By lemma 7.7, we need to show that $\mathbf{I}_{k}(E)$ is open and $\mathbf{I}_{\mathbf{k}}=\mathbf{I}_{\mathbf{k}}(E) \mathbf{I}_{\mathbf{k}}^{0}$. We have $\prod_{p} W^{\prime}(0) \subset \mathbf{I}_{\mathbf{k}}(E)$, so $\mathbf{I}_{\mathbf{k}}(E)$ is open. For the other requirement, let $\mathbf{i}$ be in $\mathbf{I}_{\mathbf{k}}$. choose one infinite prime $p_{0}$. Define ideles $\mathbf{i}^{\prime}$, $\mathbf{i}^{\prime \prime}$, and $c$ in $\mathbf{k}_{p_{0}}$ as in the proof of lemma 7.8. Then $\mathbf{i}=\mathbf{i}^{\prime \prime} \mathbf{i}^{\prime}, \mathbf{i}^{\prime}$ is in $\mathbf{I}_{\mathbf{k}}^{0}$, and $\mathbf{i}^{\prime \prime}$ is in $\mathbf{I}_{\mathbf{k}}(E)$. Therefore $\mathbf{I}_{\mathbf{k}} \subset \mathbf{I}_{\mathbf{k}}(E) \mathbf{I}_{\mathbf{k}}^{0}$.

Lemma 7.11. Let $E$ be a finite set of primes of $\mathbf{k}$ containing the infinite primes. There exists a finite set $F$ of primes such that $E \subset F$ and $\mathbf{I}_{\mathbf{k}}=\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(F)$.

Proof. By lemma $7.10, \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E)$ is a subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$, so there are ideles $\mathbf{i}_{1}, \ldots, \mathbf{i}_{r}$ such that $\mathbf{I}_{\mathbf{k}}=\cup_{j=1}^{r} \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E) \mathbf{i}_{j}$. Let $F$ consist of the primes in $E$ and all primes such that $\left|\mathbf{i}_{j}\right|_{p} \neq 1$ for $1 \leq j \leq r$. Then $F$ is a finite set of primes, and $\mathbf{I}_{\mathbf{k}}(E) \mathbf{i}_{j} \subset \mathbf{I}_{\mathbf{k}}(F)$. Therefore $\mathbf{I}_{\mathbf{k}} \subset \mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(F)$.

Lemma 7.12. Let $H_{1}, H_{2}$ and $H_{3}$ be subgroups of abelian group $H$. If $H_{1} \subset H_{3}$ then

$$
\frac{H_{1} H_{2}}{H_{3}} \simeq \frac{H_{2}}{H_{2} \cap H_{3}} .
$$

Proof. The natural homomorphism $H_{2} \rightarrow\left(H_{1} H_{2}\right) / H_{3}$ is onto and the kernel is $H_{2} \cap H_{3}$. (Note: the case in which $H_{1}=H_{3}$ has been used on several occasions.)

Computation of $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right] . \mathbf{K}$ is a finite cyclic extension of $\mathbf{k}$ of degree $n$. Let $\sigma$ be a generator of Galois $\operatorname{group} G(\mathbf{K}: \mathbf{k})$. Let $E$ be a set of primes of $\mathbf{k}$ that contains all infinite primes, all primes that are ramified in $\mathbf{K}$, and primes such that $\mathbf{I}_{\mathbf{k}}=\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E)$. Let $E^{\prime}$ be a set of primes of $\mathbf{K}$ containing all primes that divide a prime of $E$ and such that $\mathbf{I}_{\mathbf{K}}=\mathbf{K}^{*} \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)$. Add to $E$ all primes of $\mathbf{k}$ that are divisible by a prime of $E^{\prime}$. Then add to $E^{\prime}$ primes that divide a prime in $E$. (Now $E^{\prime}$ is closed under that action $\wp \rightarrow \wp^{\sigma}$, and if $\wp$ divides $p$ then $\wp \in E^{\prime}$ if and only if $p \in E$.) Since $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{K}^{*} \subset \mathbf{k}^{*}$, we have

$$
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=\left[\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E): \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}^{*} \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]=\left[\mathbf{k}^{*} \mathbf{I}_{\mathbf{k}}(E): \mathbf{k}^{*} \mathbf{N}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right] .
$$

Using lemma 7.12, we obtain

$$
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right) \cap \mathbf{I}_{\mathbf{k}}(E)\right]
$$

Since $\mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right) \subset \mathbf{I}_{\mathbf{k}}(E)$, we have

$$
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=\frac{\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]}{\left[\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right) \cap \mathbf{I}_{\mathbf{k}}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]}
$$

Again, since $\mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right) \subset \mathbf{I}_{\mathbf{k}}(E)$, we have

$$
\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right) \cap \mathbf{I}_{\mathbf{k}}(E)=\mathbf{k}^{*}(E) \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)
$$

where $\mathbf{k}^{*}(E)=\mathbf{k}^{*} \cap \mathbf{I}_{\mathbf{k}}(E)$ is the group of $E$-units of $\mathbf{k}$. Therefore

$$
\begin{equation*}
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=\frac{\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]}{\left[\mathbf{k}^{*}(E) \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]} \tag{7.12}
\end{equation*}
$$

We need to compute the numerator and the denominator of (7.12).

The numerator of (7.12). We have a map $\prod_{p \in E} \mathbf{k}_{p}^{*} \rightarrow \mathbf{I}_{\mathbf{k}}(E)$, and we can identify an element of $\prod_{p \in E} \mathbf{k}_{p}^{*}$ with its image in $\mathbf{I}_{\mathbf{k}}(E)$. Define $\mathbf{I}_{\mathbf{k}}\{E\}$ to be

$$
\mathbf{I}_{\mathbf{k}}\{E\}=\left\{\mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid \mathbf{i}_{p}=1 \text { for } p \in E\right\}
$$

Then

$$
\mathbf{I}_{\mathbf{k}}(E)=\left(\prod_{p \in E} \mathbf{k}_{p}^{*}\right)\left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}\{E\}\right)
$$

By lemma 4.7 and lemma 7.5 , we have $\left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}\{E\}\right) \subset \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)$, so

$$
\begin{equation*}
\mathbf{I}_{\mathbf{k}}(E)=\left(\prod_{p \in E} \mathbf{k}_{p}^{*}\right) \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right) \tag{7.13}
\end{equation*}
$$

Substituting (7.13) into the numerator of (7.12) gives

$$
\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]=\left[\left(\prod_{p \in E} \mathbf{k}_{p}^{*}\right) \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right): \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right]
$$

Applying lemma 7.12, we have

$$
\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]=\left[\left(\prod_{p \in E} \mathbf{k}_{p}^{*}\right):\left(\prod_{p \in E} \mathbf{k}_{p}^{*}\right) \cap \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]
$$

For each $p$ in $E$, choose one $\wp$ in $E^{\prime}$ that divides $p$. By lemma 7.5 , we have

$$
\left(\prod_{p \in E} \mathbf{k}_{p}^{*}\right) \cap \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)=\prod_{p \in E} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*} .
$$

Therefore

$$
\begin{aligned}
{\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right] } & =\left[\left(\prod_{p \in E} \mathbf{k}_{p}^{*}\right): \prod_{p \in E} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right] \\
& =\prod_{p \in E}\left[\mathbf{k}_{p}^{*}: \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}\right]
\end{aligned}
$$

The degree $n_{p}=\left[\mathbf{K}_{\wp}: \mathbf{k}_{p}\right]$ does not depend of the choice of $\wp$, so we obtain the following formula for the numerator of (7.12).

$$
\begin{equation*}
\left[\mathbf{I}_{\mathbf{k}}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]=\prod_{p \in E} n_{p} \tag{7.14}
\end{equation*}
$$

The denominator of (7.12). Applying lemma 7.12 to the denominator, we have

$$
\left[\mathbf{k}^{*}(E) \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]=\left[\mathbf{k}^{*}(E): \mathbf{k}^{*}(E) \cap \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]
$$

from which we obtain

$$
\begin{align*}
& {\left[\mathbf{k}^{*}(E) \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right)\right]}  \tag{7.15}\\
& \quad=\frac{\left[\mathbf{k}^{*}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right]}{\left[\mathbf{k}^{*}(E) \cap \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right]} .
\end{align*}
$$

Substituting (7.14) and (7.15) into (7.12) gives the following formula.

$$
\begin{align*}
& {\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right] }  \tag{7.16}\\
= & \left(\frac{\prod_{p \in E} n_{p}}{\left[\mathbf{k}^{*}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right]}\right)\left[\mathbf{k}^{*}(E) \cap \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right]
\end{align*}
$$

Computation of $\left[\mathbf{k}^{*}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right]$. By the unit theorem 6.13, if $E$ contains $s+1$ primes $p_{0}, \ldots, p_{s}$ then $\mathbf{k}^{*}(E)$ is the product of a finite group and a free abelian group on $s$ generators. Each prime $p_{i}$ is divisible by $g_{i}$ primes of $\mathbf{K}$. The number of primes in $E^{\prime}$ is $s^{\prime}+1=\sum_{i=1}^{s} g_{i}$, and $\mathbf{K}^{*}\left(E^{\prime}\right)$ is the product of a finite group and a free abelian group on $s^{\prime}$ generators.

If $\wp$ is a prime of $\mathbf{K}$ dividing prime $p$ of $\mathbf{k}$, then $\wp$ is in $E^{\prime}$ if and only if $p$ is in $E$. Therefore

$$
\mathbf{k}^{*}(E)=\left\{\alpha \in \mathbf{K}^{*}\left(E^{\prime}\right) \mid \alpha^{\tau}=\alpha \text { for } \tau \in G[\mathbf{K}: \mathbf{k}]\right\} .
$$

The cyclic Galois group $G(\mathbf{K}: \mathbf{k})$ is generated by $\sigma$, so

$$
\begin{equation*}
\mathbf{k}^{*}(E)=\left\{\alpha \in \mathbf{K}^{*}\left(E^{\prime}\right) \mid \alpha^{\sigma}=\alpha\right\}=\left\{\alpha \in \mathbf{K}^{*}\left(E^{\prime}\right) \mid \alpha^{1-\sigma}=1\right\} . \tag{7.17}
\end{equation*}
$$

We will apply Herbrand's lemma with $J=\mathbf{K}^{*}\left(E^{\prime}\right)$. Note that $\mathbf{K}^{*}\left(E^{\prime}\right)^{\sigma} \subset \mathbf{K}^{*}\left(E^{\prime}\right)$ since $\wp^{\sigma} \in E^{\prime}$ if and only if $\wp \in E^{\prime}$. Put $g: \mathbf{K}^{*}\left(E^{\prime}\right) \rightarrow \mathbf{K}^{*}\left(E^{\prime}\right)$ by $g(\alpha)=\alpha^{1-\sigma}$. Put $f: \mathbf{K}^{*}\left(E^{\prime}\right) \rightarrow \mathbf{K}^{*}\left(E^{\prime}\right)$ by $f(\alpha)=\mathbf{N}_{\mathbf{K} / \mathbf{k}} \alpha=\alpha^{1+\sigma+\cdots+\sigma^{n-1}}$. Then $f g=g f=1$, so the requirements of Herbrand's lemma are met. We have $\operatorname{Im}(f)=\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{K}^{*}\left(E^{\prime}\right)$, and by formula (7.17), we have $\operatorname{ker}(g)=\mathbf{k}^{*}(E)$, so

$$
\begin{equation*}
\left[\mathbf{k}^{*}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right]=[\operatorname{ker}(g): \operatorname{Im}(f)]=[\operatorname{ker}(f): \operatorname{Im}(g)] \frac{\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]}{\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]} \tag{7.18}
\end{equation*}
$$

It remains to compute $[\operatorname{ker}(f): \operatorname{Im}(g)]$, to choose subgroup $L$, and to compute $\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]$ and $\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]$.

Computation of $[\operatorname{ker}(f): \operatorname{Im}(g)]$. By Hilbert theorem 90, if $f(\alpha)=1$ with $\alpha \in$ $\mathbf{k}^{*}(E)$ then there is an element $\beta \in \mathbf{K}^{*}$ such that $\alpha=\beta^{1-\sigma}$. The following lemma is needed to insure that $\beta$ may be chosen from $\mathbf{K}^{*}\left(E^{\prime}\right)$, which will show that $\operatorname{ker}(f) \subset$ $\operatorname{Im}(g)$, so we have

$$
\begin{equation*}
[\operatorname{ker}(f): \operatorname{Im}(g)]=1 \tag{7.19}
\end{equation*}
$$

Lemma 7.13. If $\alpha \in \mathbf{k}^{*}(E)$ and $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \alpha=1$, then there is an element $\beta^{\prime} \in$ $\mathbf{K}^{*}\left(E^{\prime}\right)$ such that $\alpha=\left(\beta^{\prime}\right)^{1-\sigma}$.

Proof. Let $\alpha=\beta^{1-\sigma}$ with $\beta \in \mathbf{K}^{*}$. If we can find $\gamma$ in $\mathbf{k}^{*}$ so that $\beta \gamma \in \mathbf{K}^{*}\left(E^{\prime}\right)$, then $(\beta \gamma)^{1-\sigma}=\beta^{1-\sigma}=\alpha$, so $\beta^{\prime}=\beta \gamma$ will satisfy the conclusion. Let $\wp$ be any prime not in $E^{\prime}$. Put $\wp_{i}=\wp^{\sigma^{-i}}$ for $0 \leq i<g_{i}$. Then $\wp_{i} \notin E^{\prime}$, so $|\alpha|_{\wp_{i}}=1$. We have

$$
1=|\alpha|_{\wp i}=\left|\alpha^{\sigma^{i}}\right|_{\wp}=\left|\beta^{\sigma^{i}-\sigma^{i+1}}\right|_{\wp}=\left|\beta^{\sigma^{i}}\right|_{\wp}\left|\beta^{\sigma^{i+1}}\right|_{\wp}^{-1}
$$

Therefore $\left|\beta^{\sigma^{i}}\right|_{\wp}=\left|\beta^{\sigma^{i+1}}\right|_{\wp}$, so for any $\wp$ not in $E$ we have

$$
|\beta|_{\wp}=\left|\beta^{\sigma}\right|_{\wp}=\cdots=\left|\beta^{\sigma^{n-1}}\right|_{\wp} .
$$

This also applies to $\wp_{i}$, so we have $|\beta|_{\wp_{i}}=\left|\beta^{\sigma}\right|_{\wp_{i}}=|\beta|_{\wp_{i}^{-\sigma}}=|\beta|_{\wp_{i+1}}$. Therefore

$$
|\beta|_{\wp}=|\beta|_{\wp 0}=|\beta|_{\wp_{1}}=\cdots=|\beta|_{\wp g_{i}-1} .
$$

Because $\wp$ is not in $E^{\prime}$, the extension $\mathbf{K}_{\wp} / \mathbf{k}_{p}$ is not ramified, so there are elements in $\mathbf{k}_{p}^{*}$ of every value. In particular, there exist an element $\lambda_{p} \in \mathbf{k}_{p}^{*}$ such that $\left|\lambda_{p}\right|_{\wp_{0}}=|\beta|_{\wp_{0}}$. Since $\lambda_{p}$ is fixed by $\sigma$, we have

$$
|\beta|_{\wp_{i}}=|\beta|_{\wp_{0}}=\left|\lambda_{p}\right|_{\wp_{0}}=\left|\lambda_{p}^{\sigma^{-i}}\right|_{\wp_{0}^{\sigma-i}}=\left|\lambda_{p}^{\sigma^{-i}}\right|_{\wp_{i}}=\left|\lambda_{p}\right|_{\wp_{i}}
$$

Let idele $\mathbf{i} \in \mathbf{I}_{\mathbf{p}}$ have component $\mathbf{i}_{p}=\lambda_{p}$ for $p \notin E$, and $\mathbf{i}_{p}=1$ for $p \in E$. If $\wp \notin E^{\prime}$ then $\left|\beta \mathbf{i}^{-1}\right|_{\wp_{i}}=1$, so $\beta \mathbf{i}^{-1} \in \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)$. Using the imbedding $\mathbf{I}_{\mathbf{k}} \rightarrow \mathbf{I}_{\mathbf{K}}$, we have $\mathbf{I}_{\mathbf{k}}(E) \subset \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)$, so

$$
\mathbf{I}_{k}=\mathbf{k}^{*} \mathbf{I}_{k}(E) \subset \mathbf{k}^{*} \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)
$$

Put $\mathbf{i}=\delta \mathbf{j}$ with $\delta \in \mathbf{k}^{*}$ and $\mathbf{j} \in \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)$. Then $\beta \mathbf{i}^{-1}=\beta \delta^{-1} \mathbf{j}^{-1}$. Since $\beta \mathbf{i}^{-1}$ and $\mathbf{j}^{-1}$ are in $\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)$, then so is $\beta \delta^{-1}$ in $\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)$. Therefore $\beta \delta^{-1} \in \mathbf{K}^{*}\left(E^{\prime}\right)$, so $\gamma=\delta^{-1}$ is the required element.

The subgroup $L$. If $p_{0}, \ldots, p_{s}$ are the primes in $E$, each $p_{i}$ in $E$ splits into $g_{i}$ primes in $\mathbf{K}$. We claim that there exist elements in $J=\mathbf{K}^{*}\left(E^{\prime}\right)$ as follows.
(1) Elements $\eta_{1}, \ldots \eta_{s}$ so that $\eta_{i}^{1-\sigma}=1$.
(2) Elements $H_{0}, \ldots, H_{s}$ so that $H_{i}^{\sigma^{g}}=H_{i}$ and $H_{i}^{1+\sigma+\cdots+\sigma^{g_{i}-1}}=1$.
(3) The elements $\eta_{1}, \ldots, \eta_{s}, H_{0}, H_{0}^{\sigma}, \ldots, H_{0}^{\sigma^{g_{0}-2}}, \ldots, H_{s}, H_{s}^{\sigma}, \ldots, H_{s}^{\sigma_{s}-2}$ are independent and generate a subgroup $L$ of finite index in $J=\mathbf{K}^{*}\left(E^{\prime}\right)$. (If $g_{i}=1$ then $H_{i}$ is omitted.)

We will now apply Herbrand's lemma using the subgroup above $L$ to compute $\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]$ and $\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]$, after which we will show that $L$ is a subgroup of finite index in $J$.

Computation of $\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]$ and $\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]$. A typical element of $L$ has the form

$$
\Delta=\prod_{i=1}^{s} \eta^{u_{i}} \prod_{i=0}^{s} H_{i}^{v_{i}(\sigma)}
$$

where $v_{i}(\sigma)$ is a polynomial with rational integer coefficients of degree at most $g_{i}-2$. Note that $\mathbf{N}_{\mathbf{K} / \mathbf{k}} H_{i}=1$, because if $\mathbf{Z}_{i}$ is the subfield of $\mathbf{K}$ fixed by the subgroup $<\sigma^{g_{i}}>$ then $H_{i} \in \mathbf{Z}_{i}$ and

$$
\mathbf{N}_{\mathbf{Z}_{i} / \mathbf{k}} H_{i}=H_{i}^{1+\sigma+\cdots+\sigma^{g_{i}-1}}=1
$$

so $\mathbf{N}_{\mathbf{K} / \mathbf{k}} H_{i}=\mathbf{N}_{\mathbf{Z}_{i} / \mathbf{k}} \mathbf{N}_{\mathbf{K} / \mathbf{Z}_{i}} H_{i}=\mathbf{N}_{\mathbf{Z}_{i} / \mathbf{k}}\left(H_{i}\right)^{n / g_{i}}=1$. Therefore,

$$
f(\Delta)=\prod_{i=1}^{s} \eta^{n u_{i}} \prod_{i=0}^{s} \mathbf{N}_{\mathbf{K} / \mathbf{k}} H_{i}^{v_{i}(\sigma)}=\prod_{i=1}^{s} \eta^{n u_{i}} .
$$

The right side is an element of $L$, so $f(L) \subset L$, and we have

$$
\begin{equation*}
\operatorname{Im}\left(f_{1}\right)=\left\{\prod_{i=1}^{s} \eta^{n u_{i}} \mid u_{i} \in \mathbf{Z}\right\} \tag{7.20}
\end{equation*}
$$

Since the $\eta_{i}$ are independent, the kernel of $f_{1}$ is

$$
\begin{equation*}
\operatorname{ker}\left(f_{1}\right)=\left\{\prod_{i=0}^{s} H_{i}^{v_{i}(\sigma)} \mid v_{i}(\sigma) \in \mathbf{Z}[\sigma] \text { and } \operatorname{deg}\left(v_{i}\right) \leq g_{i}-2\right\} . \tag{7.21}
\end{equation*}
$$

Next, we find the kernel and image of $g_{1}$. We have

$$
\begin{equation*}
g_{1}(\Delta)=\prod_{i=0}^{s} H_{i}^{v_{i}(\sigma)(1-\sigma)} . \tag{7.22}
\end{equation*}
$$

Let $m_{i}$ be the coefficient of $\sigma^{g_{i}-2}$ in $v_{i}(\sigma)$. Since $H_{i}^{1+\sigma+\cdots+\sigma^{g_{i}-1}}=1$, we have

$$
H_{i}^{v_{i}(\sigma)(1-\sigma)}=H_{i}^{v_{i}(\sigma)(1-\sigma)+m_{i}\left(1+\sigma+\cdots+\sigma^{g_{i}-1}\right)},
$$

and $v_{i}(\sigma)(1-\sigma)+m_{i}\left(1+\sigma+\cdots+\sigma^{g_{i}-1}\right)$ is a polynomial of degree at most $g_{i}-2$. Therefore $\operatorname{ker}\left(g_{1}\right)$ is the set

$$
\operatorname{ker}\left(g_{1}\right)=\left\{\prod_{i=1}^{s} \eta^{u_{i}} \prod_{i=0}^{s} H_{i}^{v_{i}(\sigma)} \mid v_{i}(\sigma)(1-\sigma)+m_{i}\left(1+\sigma+\cdots+\sigma^{g_{i}-1}\right)=0\right\}
$$

There exist polynomials $a(x)$ and $b(x)$ so that $(1-x) a(x)+\left(1+x+\cdots+x^{g_{i}-1}\right) b(x)=$ 1. If $v_{i}(\sigma)(1-\sigma)+m_{i}\left(1+\sigma+\cdots+\sigma^{g_{i}-1}\right)=0$, then $v_{i}(\sigma)=(1+\sigma+\cdots+$ $\left.\sigma^{g_{i}-1}\right)\left(v_{i}(\sigma) b(\sigma)-m_{i} a(\sigma)\right)$. Since the degree of $v_{i}(\sigma)$ is at most $g_{i}-2$ then we must have $v_{i}(\sigma)=0$. Therefore

$$
\begin{equation*}
\operatorname{ker}\left(g_{1}\right)=\left\{\prod_{i=1}^{s} \eta^{u_{i}}\right\} \tag{7.23}
\end{equation*}
$$

For the computation of $\operatorname{Im}\left(g_{1}\right)$, we have the following lemma.
Lemma 7.14. A necessary and sufficient condition for polynomial $h(x)$ of degree at most $g-2$ to be of the form

$$
h(x)=v(x)(1-x)+m\left(1+x+\cdots+x^{g-1}\right)
$$

where $m$ is a rational integer and $v(x)$ is a polynomial of degree at most $g-2$ is

$$
h(1)=0(\bmod g) .
$$

Proof. If $h(x)=v(x)(1-x)+m\left(1+x+\cdots+x^{g-1}\right)$ then $h(1)=m g$. Conversely, suppose $h(1)=m g$ for some integer $m$. Let $v(x)$ be the quotient of the division of $h(x)-m\left(1+x+\cdots+x^{g-1}\right)$ by $1-x$. Then we have
$h(x)-m\left(1+x+\cdots+x^{g-1}\right)=v(x)(1-x)+r \quad$ where $\operatorname{deg}(v(x)) \leq g-2$, and $r \in \mathbf{Z}$.
Setting $x=1$, we conclude that $r=0$, so $h(x)=v(x)(1-x)+m\left(1+x+\cdots+x^{g-1}\right)$.
Applying lemma 7.14 , we see that (7.22) is equivalent to

$$
\begin{equation*}
\operatorname{Im}\left(g_{1}\right)=\left\{\prod_{i=0}^{s} H_{i}^{h_{i}(\sigma)} \mid h_{i}(1)=0\left(\bmod g_{i}\right) \text { and } \operatorname{deg}\left(h_{i}\right) \leq g_{i}-2\right\} \tag{7.24}
\end{equation*}
$$

By (7.22) and (7.19), we have

$$
\begin{equation*}
\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]=\left[\prod_{i=1}^{s} \eta^{u_{i}}: \prod_{i=1}^{s} \eta^{n u_{i}}\right]=n^{s} \tag{7.25}
\end{equation*}
$$

By (7.21) and (7.24), we have

$$
\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]=\left[\prod_{i=0}^{s} H_{i}^{v_{i}(\sigma)}: \prod_{i=0}^{s} H_{i}^{h_{i}(\sigma)}\right] \quad\left\{\begin{aligned}
\operatorname{deg}\left(v_{i}\right) & \leq g_{i}-2 \\
\operatorname{deg}\left(h_{i}\right) & \leq g_{i}-2 \\
h_{i}(1) & =0\left(\bmod g_{i}\right)
\end{aligned}\right.
$$

In the homomorphism $H_{i}^{v_{i}(\sigma)} \rightarrow \mathbf{Z} /(g)$ by $H_{i}^{v_{i}(\sigma)} \rightarrow v_{i}(1)(\bmod g)$, the kernel consists of those $h_{i}(\sigma)$ such that $h_{i}(\sigma)=1\left(\bmod g_{i}\right)$, so $H_{i}^{v_{i}(\sigma)} / H_{i}^{h_{i}(\sigma)}$ is isomorphic to $\mathbf{Z} /\left(g_{i}\right)$. therefore

$$
\begin{equation*}
\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]=\prod_{i=0}^{s} g_{i} \tag{7.26}
\end{equation*}
$$

From (7.25) and (7.26), we have

$$
\begin{equation*}
\frac{\left[\operatorname{ker}\left(g_{1}\right): \operatorname{Im}\left(f_{1}\right)\right]}{\left[\operatorname{ker}\left(f_{1}\right): \operatorname{Im}\left(g_{1}\right)\right]}=\frac{n^{s}}{\prod_{i=0}^{s} g_{i}}=\frac{1}{n} \prod_{i=0}^{s}\left(\frac{n}{g_{i}}\right)=\frac{1}{n} \prod_{i=0}^{s} n_{i}=\frac{1}{n} \prod_{p \in E} n_{p} \tag{7.27}
\end{equation*}
$$

From (7.27) and (7.18), and recalling that $[\operatorname{ker}(f): \operatorname{Im}(g)]=1$, we have

$$
\begin{equation*}
\left[\mathbf{k}^{*}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right]=\frac{1}{n} \prod_{p \in E} n_{p}=\frac{1}{[\mathbf{K}: \mathbf{k}]} \prod_{p \in E} n_{p} \tag{7.28}
\end{equation*}
$$

Substituting the right side of (7.28) into (7.16), we obtain

$$
\begin{equation*}
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=[\mathbf{K}: \mathbf{k}]\left[\mathbf{k}^{*}(E) \cap \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right] \tag{7.29}
\end{equation*}
$$

Except for constructing generators for subgroup $L$, we have finished the proof of the first fundamental inequality.

First fundamental inequality. If $\mathbf{K}$ is a cyclic extension of $\mathbf{k}$ then $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ is divisible by $[\mathbf{K}: \mathbf{k}]$.

Proof. The term $\left[\mathbf{k}^{*}(E) \cap \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\right): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right]$ in (7.29) is finite because it divides $\left[\mathbf{k}^{*}(E): \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{K}\left(E^{\prime}\right)\right)\right]$, which has been shown in (7.28) to be finite.

Construction of generators for subgroup $L$. For each prime $p=p_{i}, 0 \leq$ $i \leq s$, in $E$, there are $g=g_{i}$ primes of $\mathbf{K}$ dividing $p$; their splitting groups coincide and so may all be denoted by $S_{p}(\mathbf{K} / \mathbf{k})$. Since $\left[G(\mathbf{K} / \mathbf{k}): S_{p}(\mathbf{K} / \mathbf{k})\right]=g$ then $S_{p}(\mathbf{K} / \mathbf{k})$ is generated by $\sigma^{g}$. Let $\mathbf{Z}$ be the subfield of $\mathbf{K}$ fixed by $S_{p}(\mathbf{K} / \mathbf{k})$. Then $G(\mathbf{K}: \mathbf{Z})=S_{p}(\mathbf{K} / \mathbf{k})$. To determine $S_{p}(\mathbf{K} / \mathbf{Z})$, for prime $\wp$ in $E^{\prime}$ dividing $p$ we have

$$
\begin{aligned}
& S_{\wp}(\mathbf{K} / \mathbf{Z})=\{\tau \in G(\mathbf{K}: \mathbf{Z})\left.\mid \wp^{\tau}=\wp\right\} \\
&=\left\{\tau \in S_{p}(\mathbf{K} / \mathbf{k}) \mid \wp^{\tau}=\wp\right\}=S_{p}(\mathbf{K} / \mathbf{k})=G(\mathbf{K}: \mathbf{Z}) .
\end{aligned}
$$

Then $\left[G(\mathbf{K}: \mathbf{Z}): S_{\wp}(\mathbf{K} / \mathbf{Z})\right]=1$, so each prime $\wp$ of $\mathbf{K}$ divides exactly one prime $\wp^{\prime}$ of $\mathbf{Z}$. The subgroups $S_{\wp}(\mathbf{K} / \mathbf{Z})$ all coincide with $S_{p}(\mathbf{K} / \mathbf{k})$. We next determine the splitting groups $S_{\wp^{\prime}}(\mathbf{Z} / \mathbf{k})$. We have the exact sequence

$$
1 \rightarrow S_{p}(\mathbf{K} / \mathbf{k}) \rightarrow G(\mathbf{K}: \mathbf{k}) \rightarrow G(\mathbf{Z}: \mathbf{k}) \rightarrow 1
$$

Let $\bar{\tau}$ be the image of $\tau$ in $G(\mathbf{Z}: \mathbf{k})$. Then

$$
S_{\wp^{\prime}}(\mathbf{Z} / \mathbf{k})=\left\{\bar{\tau} \in G(\mathbf{Z}: \mathbf{k}) \mid \wp^{\prime \bar{\tau}}=\wp^{\prime}\right\} .
$$

We have $\wp^{\prime \bar{\tau}}=\left(\wp \cap \mathbf{O}_{\mathbf{Z}}\right)^{\tau}=\wp^{\tau} \cap \mathbf{O}_{\mathbf{Z}}=\wp^{\tau^{\prime}}$, so $\wp^{\prime \bar{\tau}}=\wp^{\prime}$ if and only if $\wp^{\tau^{\prime}}=\wp^{\prime}$ if and only if $\wp^{\tau}=\wp$. Therefore $\bar{\tau} \in S_{\wp^{\prime}}(\mathbf{Z} / \mathbf{k})$ if and only if $\tau \in S_{\wp}(\mathbf{K} / \mathbf{k})$ if and only if $\bar{\tau}=1$. This show that $S_{\wp^{\prime}}(\mathbf{Z} / \mathbf{k})=1$ so

$$
\mathbf{Z}_{夕^{\prime}}=\mathbf{k}_{p} .
$$

To determine the parameters $e^{\prime}$ and $f^{\prime}$ for the splitting of prime $\wp_{i}^{\prime}$ in $\mathbf{K}$, the extension $\mathbf{K}_{\wp}$ of $\mathbf{Z}_{\wp^{\prime}}$ is identical to extension $\mathbf{K}_{\wp}$ of $\mathbf{k}_{p}$, so we have $e^{\prime}=e$ and $f^{\prime}=f$.

Lemma 7.15. Let $\wp$ be a prime of abelian extension $\mathbf{K}$ of $\mathbf{k}$, and let $\mathbf{Z}$ the subfield fixed by the splitting group $S_{\wp}(\mathbf{K} / \mathbf{k})$. If $\alpha$ is in $\mathbf{K}^{*}$, we have $\left|\mathbf{N}_{\mathbf{K} / \mathbf{Z}} \alpha\right|_{\wp}$ is greater than 1, equal to 1, or less than 1, if and only if $|\alpha|_{\wp}$ is greater than 1, equal to 1, or less than 1, respectively.

Proof. The proof depends on the fact that $\wp$ is the only prime of $\mathbf{K}$ dividing prime $\wp^{\prime}=\wp \cap \mathbf{O}_{\mathbf{Z}}$ of $\mathbf{Z}$. For $\alpha$ in $\mathbf{K}^{*}$ the formula expressing $\mathbf{N}_{\mathbf{K} / \mathbf{Z}} \alpha$ as the product of local norms reduces to

$$
\mathbf{N}_{\mathbf{K} / \mathbf{Z}} \alpha=\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{Z}_{\wp^{\prime}}} \alpha
$$

Therefore

$$
\left|\mathbf{N}_{\mathbf{K} / \mathbf{Z}} \alpha\right|_{\wp^{\prime}}=\left|\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{Z}_{\wp^{\prime}}} \alpha\right|_{\wp^{\prime}}=|\alpha|_{\wp} .
$$

Applying the above formula (twice!) to the element $\mathbf{N}_{\mathbf{K} / \mathbf{Z}} \alpha$, we have

$$
\left|\mathbf{N}_{\mathbf{K} / \mathbf{Z}} \alpha\right|_{\wp}=\left|\mathbf{N}_{\mathbf{K} / \mathbf{Z}}\left(\mathbf{N}_{\mathbf{K} / \mathbf{Z}} \alpha\right)\right|_{\wp^{\prime}}=\left|\left(\mathbf{N}_{\mathbf{K} / \mathbf{Z}} \alpha\right)^{e f}\right|_{\wp^{\prime}}=|\alpha|_{\wp}^{e f},
$$

from which the conclusion follows immediately.
Remark. The primes of $E$ are $p_{0}, \ldots, p_{s}$. For each $p_{i}$ in $E$, choose one prime $\wp_{i}$ in $E^{\prime}$ which divides $p_{i}$. Prime $p_{i}$ splits into $g_{i}$ primes in K. Splitting group $S_{p_{i}}(\mathbf{K} / \mathbf{k})$ is generated by $\sigma^{g_{i}}$, and $\wp_{i}, \wp_{i}^{\sigma}, \ldots, \wp_{i}^{\sigma_{i}^{g_{i}-1}}$ is the complete list of distinct primes of $\mathbf{K}$ dividing $p_{i}$. The number of primes in $E^{\prime}$ is $s^{\prime}+1=\sum_{i=0}^{s} g_{i}$.

Lemma 7.16. If a single prime $\wp_{i}$ is selected then there exists an element $\alpha$ in $\mathbf{K}^{*}$ so that

$$
|\alpha|_{\wp_{i}}>1 \quad \text { and } \quad|\alpha|_{\wp}<1 \quad \text { for } \wp \in E^{\prime}, \wp \neq \wp_{i} \text {. }
$$

Proof. $E$ contains at least one infinite prime, so we take $p_{s}$ to be infinite. Then $\wp_{s}$ is also infinite. Let $\nu$ be a positive real constant so that $\nu>\max (\mu, 1)$ where constant $m u$ is defined below. If $s=0$ then there is nothing to prove. We construct idele $\mathbf{j} \in \mathbf{I}_{\mathbf{K}}$ by choosing components $\mathbf{j}_{\wp}$ in the following order.

If $i=1 \ldots, s-1$, choose components as follows:
(1) At $\wp \notin E^{\prime}$, choose $\mathbf{j}_{\wp}=1$.
(2) At $\wp \in E^{\prime}, \wp \neq \wp_{i}$ and $\wp \neq \wp_{s}$, choose $\mathbf{j}_{\wp} \in \mathbf{K}_{\wp}^{*}$ so that $|\mathbf{j}|_{\wp}<\frac{1}{\nu}$.
(3) At $\wp_{i}$, choose $\mathbf{j}_{\wp_{i}} \in \mathbf{K}_{\wp}^{*}$ large enough so that $|\mathbf{j}|_{\wp_{i}}>\nu \prod_{\wp \in E^{\prime}, \wp \neq \wp_{i}, \wp \neq \wp_{s}}|\mathbf{j}|_{\wp}^{-1}$.
(4) At $\wp_{s}$, choose $\mathbf{j}_{\wp_{s}} \in \mathbf{K}_{\wp}^{*}$ so that $|\mathbf{j}|=1$.

From (3) we have $\prod_{\wp \in E^{\prime}, \wp \neq \wp_{s}}|\mathbf{j}|_{\wp}>\nu$. Then from (4), we have

$$
|\mathbf{j}|_{\wp_{s}}=\prod_{\wp \in E^{\prime}, \wp \neq \neq \wp_{s}}|\mathbf{j}|_{\wp}^{-1}<\frac{1}{\nu} .
$$

If $i=s$, choose components of $\mathbf{j}$ as follows:
(1 $1_{s}$ At $\wp \notin E^{\prime}$, choose $\mathbf{j}_{\wp}=1$.
$\left(2_{s}\right)$ At $\wp \in E^{\prime}, \wp \neq \wp_{s}$, choose $\mathbf{j}_{\wp} \in \mathbf{K}_{\wp}^{*}$ so that $|\mathbf{j}|_{\wp}<\frac{1}{\nu}$.
$\left(3_{s}\right)$ At $\wp_{s}$, choose $\mathbf{j} \in \mathbf{K}_{\wp_{s}}^{*}$ so that $|\mathbf{j}|=1$.
From $\left(3_{s}\right)$ and $\left(2_{s}\right)$, we have $|\mathbf{j}|_{\wp_{s}}=\prod_{\wp \in E^{\prime}, \wp \notin \wp_{s}}|\mathbf{j}|_{\wp}^{-1}>(\nu)^{s^{\prime}}>\nu$.
By our construction, $\mathbf{j}$ is in $\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right) \cap \mathbf{I}_{\mathbf{K}}^{0}$. By lemma 6.10, there exists a constant $\mu$ so that

$$
\mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right) \cap \mathbf{I}_{\mathbf{K}}^{0}=\mathbf{K}^{*}(E)\left\{\mathbf{i} \in \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)\left|\frac{1}{\mu} \leq|\mathbf{i}|_{\wp} \leq \mu \text { for } \wp \in E^{\prime}\right\}\right.
$$

Therefore there exist element $\alpha \in \mathbf{K}^{*}\left(E^{\prime}\right)$ and idele $\mathbf{i} \in \mathbf{I}_{\mathbf{K}}\left(E^{\prime}\right)$ so that $\mathbf{j}=\alpha \mathbf{i}$ and $\mathbf{i}$ satisfies the condition $\frac{1}{\mu} \leq|\mathbf{i}|_{\wp} \leq \mu$ for $\wp \in E^{\prime}$. For $\wp_{i}$ we have

$$
|\alpha|_{\wp_{i}}=|\mathbf{j}|_{\wp_{i} i}|\mathbf{i}|_{\wp_{i}}^{-1}>\frac{\nu}{\mu}>1
$$

and for $\wp \in E^{\prime}, \wp \neq \wp_{i}$ we have

$$
|\alpha|_{\wp}=|\mathbf{j}|_{\wp}|\mathbf{i}|_{\wp}^{-1}<\frac{\mu}{\nu}<1 .
$$

Lemma 7.17. There exist elements $H_{0}^{* *}, \ldots, H_{s}^{* *}$ in $\mathbf{K}^{*}$ so that

$$
\left|H_{i}^{* *}\right|_{\wp_{i}}>1 \quad \text { and } \quad\left|H_{i}^{* *}\right|_{\wp}<1 \quad \text { for } \wp \in E^{\prime}, \wp \neq \wp_{i} \text {. }
$$

Proof. Apply Lemma 7.16 for $i=1, \ldots, s$.
Lemma 7.18. Let $H_{0}^{* *}, \ldots, H_{s}^{* *}$ in $\mathbf{K}^{*}\left(E^{\prime}\right)$ satisfy the conclusion of lemma 7.16. Let $\mathbf{Z}_{i}$ be the subfield fixed by splitting group $S_{p_{i}}(\mathbf{K} / \mathbf{k})=<\sigma^{g_{i}}>$. Put $H_{i}^{*}=$ $\mathbf{N}_{\mathbf{K} / \mathbf{Z}_{i}} H_{i}^{* *}$. Then elements

$$
\left(H_{0}^{*}\right), \ldots,\left(H_{0}^{*}\right)^{\sigma^{g_{i}-1}}, \ldots,\left(H_{s}^{*}\right), \ldots,\left(H_{s}^{*}\right)^{\sigma_{s}^{g_{s}-1}}
$$

satisfy the condition

$$
\left|\left(H_{i}^{*}\right)^{\sigma^{j}}\right|_{\wp_{i}^{\sigma^{j}}}>1 \quad \text { and } \quad\left|\left(H_{i}^{*}\right)^{\sigma^{j}}\right|_{\wp}<1 \quad \text { if } \wp \in E^{\prime} \text { and } \wp \neq \wp_{i}^{\sigma^{j}}
$$

Proof. The primes of $E^{\prime}$ are $\wp_{i}^{\sigma^{j}}$ for $0 \leq i \leq s, 0 \leq j<g_{i}$. Suppose that $\wp$ in $E^{\prime}$ does not divide $p_{i}$. Then $\wp=\wp_{i^{\prime}}^{\sigma^{j}}$ with $i^{\prime} \neq i$. We have $\left[\mathbf{K}: \mathbf{Z}_{i}\right]=n_{i}$ where $n=n_{i} g_{i}$. Then

$$
\left|H_{i}^{*}\right|_{\wp}=\left|\mathbf{N}_{\mathbf{K} / \mathbf{Z}_{i}} H_{i}^{* *}\right|_{\wp}=\left|\prod_{k=0}^{n_{i}-1}\left(H_{i}^{* *}\right)^{\sigma^{k g_{i}}}\right|_{\wp}=\prod_{k=0}^{n_{i}-1}\left|H_{i}^{* *}\right|_{\wp \sigma^{-k g_{i}}}<1,
$$

because none of the $\wp^{\sigma^{-k g_{i}}}$ coincide with $\wp_{i}$, so all of the terms $\left|H_{i}^{* *}\right|_{\wp^{\sigma^{-k g_{i}}}}$ are less than 1.

We also have to check $\left(H_{i}^{*}\right)^{\sigma^{j}}$ at $\wp_{i}, \wp_{i}^{\sigma}, \ldots, \wp_{i}^{\sigma_{i}^{g_{i}-1}}$. Since $H_{i}^{*}=\mathbf{N}_{\mathbf{K} / \mathbf{Z}_{i}} H_{i}^{* *}$ and $\left|H_{i}^{* *}\right|_{\wp_{i}}>1$, then by lemma 7.15 we have

$$
\left|\left(H_{i}^{*}\right)^{\sigma^{j}}\right|_{\wp_{i}^{\sigma^{j}}}=\left|H_{i}^{*}\right|_{\wp_{i}}>1 .
$$

For $\wp=\wp_{i}^{\sigma^{j^{\prime}}} \neq \wp_{i}^{\sigma^{j}}$, we have $\wp^{\sigma^{-j}} \neq \wp_{i}$ so

$$
\left|\left(H_{i}^{*}\right)^{\sigma^{j}}\right|_{\wp}=\left|H_{i}^{*}\right|_{\wp}{ }^{\sigma^{-j}}<1,
$$

showing that the $\left(H_{i}^{*}\right)^{\sigma^{j}}$ satisfy the required conditions.

LEMMA 7.19. Put $U_{i j}=\left(H_{i}^{*}\right)^{\sigma^{j}}, 0 \leq i \leq s, 0 \leq j<g_{i}$. There are $s^{\prime}+1$ pairs $(i, j)$. If we exclude $U_{i_{0} j_{0}}$ for one pair $\left(i_{0}, j_{0}\right)$, then the remaining $s^{\prime}$ elements $U_{i j}$ are independent.

Proof. Suppose that $\prod_{(i, j) \neq\left(i_{0}, j_{0}\right)} U_{i j}^{a_{i j}}=1$. Let

$$
F^{\prime}=\left\{(i, j) \mid a_{i j}>0\right\} \quad \text { and } \quad F^{\prime \prime}=\left\{(i, j) \mid a_{i j}<0\right\},
$$

so $F^{\prime} \cap F^{\prime \prime}=\emptyset$. Suppose that $F^{\prime}$ is not empty. Then

$$
\prod_{(i, j) \in F^{\prime}} U_{i j}^{b_{i j}}=\prod_{(i, j) \in F^{\prime \prime}} U_{i j}^{b_{i j}}
$$

where $b_{i j}>0$. Let $\wp_{i}^{\sigma^{j}}$ be denoted by $\wp_{i j}$. Since $\left(i_{0}, j_{0}\right) \notin F^{\prime} \cup F^{\prime \prime}$ we have

$$
\prod_{(i, j) \in F^{\prime}}\left|U_{i j}^{a_{i j}}\right|_{\wp_{i_{0} j_{0}}}=\prod_{(i, j) \in F^{\prime \prime}}\left|U_{i j}^{b_{i j}}\right|_{\wp_{i_{0} j_{0}}}<1
$$

This show that $F^{\prime \prime}$ cannot be empty. By the product formula, we have

$$
\left.\left.\prod_{\wp}\right|_{(i, j) \in F^{\prime}} U_{i j}^{b_{i j}}\right|_{\wp}=\prod_{\wp \in E^{\prime}}\left|\prod_{(i, j) \in F^{\prime}} U_{i j}^{b_{i j}}\right|_{\wp}=\prod_{\wp \in E^{\prime}} \prod_{(i, j) \in F^{\prime}}\left|U_{i j}^{b_{i j}}\right|_{\wp}=1 .
$$

Since $\wp_{i_{0} j_{0}} \in E^{\prime}$, there exists $\left(i_{i}, j_{1}\right)$ so that

$$
\prod_{(i, j) \in F^{\prime}}\left|U_{i j}^{b_{i j}}\right|_{\wp_{i_{1} j_{1}}}>1
$$

and $\left(i_{1}, j_{1}\right)$ must be in $F^{\prime}$. We have a contradiction since $\left(i_{1}, j_{1}\right)$ is not in $F^{\prime \prime}$, but

$$
\prod_{(i, j) \in F^{\prime \prime}}\left|U_{i j}^{b_{i j}}\right|_{\wp i_{i_{1} j_{1}}}=\prod_{(i, j) \in F^{\prime}}\left|U_{i j}^{b_{i j}}\right|_{\wp_{i_{1} j_{1}}}>1
$$

Lemma 7.20. Suppose that $A$ is an abelian group containing a subgroup $A_{0}$ of finite index in $A$, and $A_{0}$ is free abelian on $s^{\prime}$ generators. Let $B$ be a subgroup of $A$ containing $s^{\prime}$ independent elements. Then $B$ has finite index in $A$.

Proof. Take $B^{\prime}$ to a subgroup of $B$ generated by $s^{\prime}$ independent elements. Then $B^{\prime} \subset B \subset A$. Let $\left[A: A_{0}\right]=m$. Replace $B^{\prime}$ by $B_{0}=m B^{\prime}$. Then $B_{0} \subset A_{0}$ and $B_{0}$ has $s^{\prime}$ independent elements. Let $x_{1}, \ldots, x_{s^{\prime}}$ be a basis for $A_{0}$; let $y_{1}, \ldots, y_{s^{\prime}}$
be independent in $B_{0}$. Let $y_{i}=\sum_{j=1}^{s^{\prime}} a_{i j} x_{j}$. Matrix $\left(a_{i j}\right)$ is non-singular, because otherwise there exist integers $b_{1}, \ldots, b_{s^{\prime}}$, not all zero, so that $\sum_{i=0}^{s^{\prime}} b_{i} a_{i j}=0$. Then $\sum_{i=0}^{s^{\prime}} b_{i} y_{i}=\sum_{i=0}^{s^{\prime}} \sum_{j=0}^{s^{\prime}} b_{i} a_{i j} x_{j}=\sum_{j=0}^{s^{\prime}} \sum_{i=0}^{s^{\prime}} b_{i} a_{i j} x_{j}=0$, which is impossible. There exists an integer matrix $\left(c_{i k}\right)$ so that $\left(c_{i k}\right)\left(a_{k j}\right)=a I$, where $a=\operatorname{det}\left(a_{i j}\right)$. Then

$$
\sum_{k=0}^{s^{\prime}} c_{i k} y_{k}=\sum_{k=0}^{s^{\prime}} \sum_{j=0}^{s^{\prime}} c_{i k} a_{k j} x_{j}=a x_{i} \in B_{0}
$$

Therefore $a A_{0} \subset B_{0}$, so $\left[A_{0}: B_{0}\right]<\left[A_{0}: a A_{0}\right]=a^{s^{\prime}}$, so $[A: B]<\left[A: B_{0}\right]=[A:$ $\left.A_{0}\right]\left[A_{0}: B_{0}\right]<m a^{s^{\prime}}$, which proves the lemma.

We now define the elements $\eta_{0}, \ldots, \eta_{s}$ and $H_{0}, \ldots, H_{s}$ as follows.

$$
\eta_{i}=\mathbf{N}_{\mathbf{Z}_{i} / \mathbf{k}} H_{i}^{*} \quad \text { and } \quad H_{i}=\eta_{i}^{-1}\left(H_{i}^{*}\right)^{g_{i}} \quad \text { for } 0 \leq i \leq s
$$

These satisfy the first two of three required conditions.
(1) $\eta_{i}$ is in $\mathbf{k}^{*}(E)$, so $\eta_{i}^{1-\sigma}=1$.
(2) $\mathbf{N}_{\mathbf{Z}_{i} / \mathbf{k}} H_{i}=\mathbf{N}_{\mathbf{Z}_{i} / \mathbf{k}}\left(\eta_{i}^{-1}\left(H_{i}^{*}\right)^{g_{i}}\right)=\eta_{i}^{-g_{i}} \eta_{i}^{g_{i}}=1$.

Let $L$ be the subgroup generated by the following elements (This is one more than we need, but we will show that $\eta_{0}$ may be discarded.)

$$
\eta_{0}, \ldots, \eta_{s}, H_{0}, \ldots, H_{0}^{\sigma^{g_{0}-2}}, \ldots, H_{s}, \ldots, H_{0}^{\sigma^{g_{s}-2}}
$$

Since $\mathbf{N}_{\mathbf{Z}_{i} / \mathbf{k}} H_{i}=1$, then $H_{i}^{1+\sigma+\cdots+\sigma^{g_{i}-1}}=1$, or $H_{i}^{\sigma^{g_{i}-1}}=\left(H_{i}^{1+\sigma+\cdots+\sigma^{g_{i}-2}}\right)^{-1}$, so $H_{i}^{\sigma^{g_{i}-1}}$ is in $L$. We have $H_{i}^{\sigma^{j}}=\eta_{i}^{-1}\left(H_{i}^{* \sigma^{j}}\right)^{g_{i}}$, so $\left(H_{i}^{* \sigma^{j}}\right)^{g_{i}}=\eta_{i} H_{i}^{\sigma^{j}}$ is in $L$ for $0 \leq j \leq g_{i}-1$. By lemma 7.19, we know that $L$ contains $s^{\prime}$ independent elements, so by lemma 7.20 subgroup $L$ has finite index in $\mathbf{K}^{*}\left(E^{\prime}\right)$. We still need to discard one element. If we could discard one of the $H_{i}^{\sigma^{j}}$ leaving $s^{\prime}$ independent elements, then $\eta_{0}, \ldots, \eta_{s}$ would be a set of $s+1$ independent units in $k^{*}(E)$, but this would be a violation of unit theorem 6.13. Therefore we must discard one of the $\eta_{i}$. After relabeling the $\eta_{i}$, we obtain the following set of $s^{\prime}$ independent generators for $L$.

$$
\begin{equation*}
\eta_{1}, \ldots, \eta_{s}, H_{0}, \ldots, H_{0}^{\sigma^{g_{0}-2}}, \ldots, H_{s}, \ldots, H_{0}^{\sigma^{g_{s}-2}} \tag{7.29}
\end{equation*}
$$

Condition (3) is now satisfied: elements (7.29) are independent and generate a subgroup of finite index in $\mathbf{K}^{*}\left(E^{\prime}\right)$. The completes the proof of the first fundamental inequality.

