CHAPTER VI

IDELE CLASS GROUP AND THE UNIT THEOREM

The ring of adeles. Let \mathbf{k} be an finite extension of the rational number field. An element a of the direct product $\prod_{p} \mathbf{k}_{p}$ of all completions \mathbf{k}_{p} is an adele of \mathbf{k} if every coordinate \mathbf{a}_{p} is in \mathbf{o}_{p} except for a finite number of p. Let $\mathbf{A}_{\mathbf{k}}$ denote the set of adeles of $\mathbf{k} . \mathbf{A}_{\mathbf{k}}$ is a ring, and the idele group $\mathbf{I}_{\mathbf{k}}$ is the group of units of $\mathbf{A}_{\mathbf{k}}$. As with ideles, $\left|\mathbf{a}_{p}\right|_{p}$ is denoted simply by $|\mathbf{a}|_{p}$.

For the topology of $\mathbf{A}_{\mathbf{k}}$, basic neighborhoods are defined as follows. Choose any finite set of primes E of \mathbf{k}, and for each prime p in E choose a positive real ϵ_{p}. Then

$$
\left\{\mathbf{b} \in \mathbf{A}_{\mathbf{k}}| | \mathbf{b}-\left.\mathbf{a}\right|_{p}<\epsilon_{p} \text { for } p \in E \text { and }|\mathbf{b}-\mathbf{a}|_{p} \leq 1 \text { for } p \notin E\right\} .
$$

is a basic neighborhoods of adele a.
Lemma 6.1. Let p be a prime of \mathbf{k}, let \mathbf{K} / \mathbf{k} be a finite extension, and let \wp_{1}, \ldots, \wp_{g} be the primes of \mathbf{K} which divide p. Then there is a natural isomorphism $\sigma: \mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p} \rightarrow \mathbf{K}_{\wp_{1}} \oplus \cdots \oplus \mathbf{K}_{\wp_{g}}$ of algebras over \mathbf{k}_{p}.

Proof. Elements of \mathbf{k} are denoted by lower case a, b; elements of finite extension \mathbf{K} by upper case A, X; elements of \mathbf{k}_{p} by α, β, γ. Let σ_{i} be the imbedding of \mathbf{K} into completion $\mathbf{K}_{\wp_{i}}$. Then $\sigma(A, \beta)=\left(\sigma_{1}(A) \beta, \ldots, \sigma_{g}(A) \beta\right)$ is a \mathbf{k}-bilinear mapping of $\mathbf{K} \times \mathbf{k}_{p}$ to $\mathbf{K}_{\wp_{1}} \oplus \cdots \oplus \mathbf{K}_{\wp_{g}}$. There is a k-linear mapping $\sigma: \mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p} \rightarrow \mathbf{K}_{\wp_{1}} \oplus \cdots \oplus \mathbf{K}_{\wp_{g}}$ such that $\sigma(A \otimes \beta)=\left(\sigma_{1}(A) \beta, \ldots, \sigma_{g}(A) \beta\right)$. Both $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$ and $\mathbf{K}_{\wp_{1}} \oplus \cdots \oplus \mathbf{K}_{\wp_{g}}$ are vector spaces over \mathbf{k}_{p}. We have $\sigma\left((A \otimes \beta)\left(A^{\prime} \otimes \beta^{\prime}\right)\right)=\sigma(A \otimes \beta) \operatorname{sigma}\left(A^{\prime} \otimes \beta^{\prime}\right)$, and σ is \mathbf{k}_{p}-linear.

Let X_{1}, \ldots, X_{n} be a basis for \mathbf{K} over \mathbf{k}. We want to show that $X_{1} \otimes 1, \ldots, X_{n} \otimes 1$ is a basis for $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$ over \mathbf{k}_{p}. An element of $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$ is a finite sum $\sum_{k=1}^{m} A_{k} \otimes \beta_{k}$. Let $A_{k}=\sum_{i=1}^{n} X_{i} a_{i k}$. Then
$\sum_{k=1}^{m} A_{k} \otimes \beta_{k}=\sum_{k=1}^{m}\left(\left(\sum_{i=1}^{n} X_{i} a_{i k}\right) \otimes \beta_{k}\right)=\sum_{k=1}^{m} \sum_{i=1}^{n} X_{i} \otimes a_{i k} \beta_{k}=\sum_{i=1}^{n} X_{i} \otimes \sum_{k=1}^{m} a_{i k} \beta_{k}$.
Then every element of $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$ is of the form $\sum_{i=1}^{n} X_{i} \otimes \gamma_{i}$, so $X_{1} \otimes 1, \ldots, X_{n} \otimes 1$ span $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$ over \mathbf{k}_{p}. We will show that $X_{1} \otimes 1, \ldots, X_{n} \otimes 1$ are linearly independent over
\mathbf{k}_{p}. Suppose that $\sum_{i=1}^{n} X_{i} \otimes \gamma_{i}=0$. Multiply both sides by $X_{j} \otimes 1$ for $1 \leq j \leq n$ to obtain a system of n linear equations.

$$
\sum_{i=1}^{n} X_{i} X_{j} \otimes \gamma_{i}=0 \quad 1 \leq j \leq n
$$

The trace $\mathbf{S}_{\mathbf{K} / \mathbf{k}}: \mathbf{K} \rightarrow \mathbf{k}$ is \mathbf{k}-linear, so we can apply $\mathbf{S}_{\mathbf{K} / \mathbf{k}} \otimes I: \mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p} \rightarrow \mathbf{k}_{p}$ to both sides of each equation, obtaining

$$
\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}} \otimes I\right) \sum_{i=1}^{n} X_{i} X_{j} \otimes \gamma_{i}=\sum_{i=1}^{n} \mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(X_{i} X_{j}\right) \gamma_{i}=0 \quad 1 \leq j \leq n
$$

Matrix $\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(X_{i} X_{j}\right)\right)$ is non-singular by proposition 4.4, so $\gamma_{1}=\cdots=\gamma_{n}=0$. This shows that $X_{1} \otimes 1, \ldots, X_{n} \otimes 1$ are linearly independent over \mathbf{k}_{p}.

Since $\sum_{i=1}^{g}\left[\mathbf{K}_{\wp_{i}}: \mathbf{k}_{p}\right]=[\mathbf{K}: \mathbf{k}]=n$ then algebras $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$ and $\mathbf{K}_{\wp_{1}} \oplus \cdots \oplus \mathbf{K}_{\wp_{g}}$ have the same dimension over \mathbf{k}_{p}. The isomorphism will be established if we can show that $\operatorname{ker}(\sigma)=0$. If $\sigma\left(X_{1} \otimes \gamma_{1}+\ldots X_{n} \otimes \gamma_{n}\right)=0$, then multiply both sides of the equation by $\sigma\left(X_{j} \otimes 1\right)$ for $1 \leq j \leq n$ to obtain the following system of linear equations.

$$
\sigma\left(\sum_{i=1}^{n}\left(X_{i} X_{j} \otimes \gamma_{i}\right)\right)=\sum_{i=1}^{n} \sigma\left(X_{i} X_{j} \otimes \gamma_{i}\right)=0 \text { for } 1 \leq j \leq n .
$$

In $\mathbf{K}_{\wp_{1}} \oplus \cdots \oplus \mathbf{K}_{\wp_{g}}$ we have

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \sigma_{1}\left(X_{i} X_{j}\right) \gamma_{i}, \ldots, \sum_{i=1}^{n} \sigma_{g}\left(X_{i} X_{j}\right) \gamma_{i}\right)=0 \tag{6.1}
\end{equation*}
$$

The trace function $\mathbf{S}_{\mathbf{K} / \mathbf{k}}$ is the sum of local traces (1.5).

$$
\mathbf{S}_{\mathbf{K} / \mathbf{k}}(A)=\sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{k}} / \mathbf{k}_{p}}\left(\sigma_{k}(A)\right)
$$

Each coordinate of (6.1) is zero, so we have

$$
\sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{k}} / \mathbf{k}_{p}}\left(\sum_{i=1}^{n} \sigma_{k}\left(X_{i} X_{j}\right) \gamma_{i}\right)=0 \quad \text { for } 1 \leq j \leq n,
$$

or

$$
\sum_{i=1}^{n}\left(\sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{k}} / \mathbf{k}_{p}} \sigma_{k}\left(X_{i} X_{j}\right)\right) \gamma_{i}=\sum_{i=1}^{n} \mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(X_{i} X_{j}\right) \gamma_{i}=0 \quad \text { for } 1 \leq j \leq n
$$

Since $\operatorname{det}\left(\mathbf{S}_{\mathbf{K k}}\left(X_{i} X_{j}\right)\right) \neq 0$, we conclude that $\gamma_{j}=0$ for $1 \leq j \leq n$, and the proof is complete.

Remark on the trace function. If prime p of \mathbf{k} splits into primes \wp_{1}, \ldots, \wp_{g} in extension \mathbf{K}, then for each prime \wp_{i} we have the embedding $\sigma_{i}: \mathbf{K} \rightarrow \mathbf{K}_{\wp_{i}}$, and the mapping $\sigma: \mathbf{K} \rightarrow \mathbf{K}_{\wp_{1}} \oplus \cdots \oplus \mathbf{K}_{\wp_{g}}$, where $\sigma(A)=\left(\sigma_{1}(A), \ldots, \sigma_{g}(A)\right)$. Consider the function $\mathbf{S}: \mathbf{K}_{\wp_{1}} \oplus \cdots \oplus \mathbf{K}_{\wp_{g}} \rightarrow \mathbf{k}_{p}$ defined by

$$
\mathbf{S}\left(A_{1}, \ldots, A_{g}\right)=\mathbf{S}_{\mathbf{K}_{\wp_{1}} / \mathbf{k}_{p}}\left(A_{1}\right)+\cdots+\mathbf{S}_{\mathbf{K}_{\wp_{g}} / \mathbf{k}_{p}}\left(A_{g}\right)
$$

Then for A in \mathbf{K} we have $\mathbf{S}_{\mathbf{K} / \mathbf{k}}(A)=\mathbf{S}(\sigma(A))$. (Chapter I, norm and trace functions.) On $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$ we have \mathbf{k}-linear transformation $\mathbf{S}_{\mathbf{K} / \mathbf{k}} \otimes I$, which is actually \mathbf{k}_{p}-linear.

$$
\begin{array}{rc}
\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p} \xrightarrow{\sigma \otimes I} \sum_{i=1}^{g} \mathbf{K}_{\wp_{i}} \tag{6.2}\\
\quad \mathbf{s}_{\mathbf{K} / \mathbf{k}} \otimes I & \\
\mathbf{k} \otimes_{\mathbf{k}} \mathbf{k}_{p} \xrightarrow{\iota} & \mathbf{k}_{p}
\end{array}
$$

In diagram (6.2), for A in \mathbf{K}, on the one hand we have $\iota\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}} \otimes I\right)(A \otimes 1)=$ $\iota\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}}(A) \otimes 1\right)=\mathbf{S}_{\mathbf{K} / \mathbf{k}}(A)$, and on the other we have $\mathbf{S}((\sigma \otimes I)(A \otimes 1))=\mathbf{S}(\sigma(A))=$ $\mathbf{S}_{\mathbf{K} / \mathbf{k}}(A)$. Therefore $\iota\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}} \otimes I\right)$ and $\mathbf{S}(\sigma \otimes I)$ agree on elements $A \otimes 1$ in $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$. If X_{1}, \ldots, X_{n} is a basis for \mathbf{K} over \mathbf{k} then $\iota\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}} \otimes I\right)$ and $\mathbf{S}(\sigma \otimes I)$ agree on $X_{1} \otimes 1, \ldots, X_{n} \otimes 1$, which is a basis for $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$ over \mathbf{k}_{p}. Since $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$ and $\sum_{i=1}^{g} \mathbf{K}_{\wp_{i}}$ have the same dimension over \mathbf{k}_{p}, then $\iota\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}} \otimes I\right)$ and $\mathbf{S}(\sigma \otimes I)$ agree on all of $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$, so we have
(6.3) $\sum_{i=1}^{n} \mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(A_{i}\right) \gamma_{i}=\sum_{j=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{j}} / \mathbf{k}_{p}}\left(Y_{1}\right) \quad$ if $\quad(\sigma \otimes I)\left(\sum_{i=1}^{n} A_{i} \otimes \gamma_{i}\right)=\left(Y_{1}, \ldots, Y_{g}\right)$.

Proposition 6.2. $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{A}_{\mathbf{k}} \simeq \mathbf{A}_{\mathbf{K}}$, and if X_{1}, \ldots, X_{n} is a basis for \mathbf{K} over \mathbf{k} then

$$
X_{1} \mathbf{A}_{\mathbf{k}}+\cdots+X_{n} \mathbf{A}_{\mathbf{k}}=\mathbf{A}_{\mathbf{K}}
$$

Proof. The mapping $\mathbf{A}_{\mathbf{k}}$ to $\mathbf{A}_{\mathbf{K}}$ is defined as follows. Each adele a in $\mathbf{A}_{\mathbf{k}}$ determines an adele $\tilde{\mathbf{a}}$ in $\mathbf{A}_{\mathbf{K}}$ by $\tilde{\mathbf{a}}_{\wp}=\mathbf{a}_{p}$, where p is the prime of \mathbf{k} which \wp divides. An element A of \mathbf{K} is mapped to the diagonal of $\mathbf{A}_{\mathbf{K}}$. Each product $A \tilde{\mathbf{a}}$ is an adele because both $|A|_{\wp} \leq 1$ and $|\tilde{\mathbf{a}}|_{\wp}=|\mathbf{a}|_{p} \leq 1$ except for a finite number of primes \wp. The map $\mathbf{K} \times \mathbf{A}_{\mathbf{k}} \rightarrow \mathbf{A}_{\mathbf{K}}$ sending (A, \mathbf{a}) to $A \tilde{\mathbf{a}}$ induces a homomorphism $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{A}_{\mathbf{k}} \rightarrow \mathbf{A}_{\mathbf{K}}$ of algebras over \mathbf{k}. We can identify a with its image $\tilde{\mathbf{a}}$, so the homomorphism may be written simply as $A \otimes \mathbf{a} \rightarrow A \mathbf{a}$.

We need to show that $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{A}_{\mathbf{k}}$ is mapped onto $\mathbf{A}_{\mathbf{K}}$. Choose a basis X_{1}, \ldots, X_{n} for \mathbf{K} over \mathbf{k}. Then $X_{1} \otimes 1, \ldots, X_{n} \otimes 1$ is a basis for $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p}$. Let $\left(A_{\wp}\right)$ be an element of $\mathbf{A}_{\mathbf{K}}$. For each prime p of \mathbf{k}, let \wp_{1}, \ldots, \wp_{g} be the primes of \mathbf{K} that divide p. We have the projection $\pi_{p}: \mathbf{A}_{\mathbf{K}} \rightarrow \sum_{i=1}^{g} \mathbf{K}_{\wp_{i}}$, and the isomorphism $(\sigma \otimes I): \mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_{p} \rightarrow \sum_{i=1}^{g} \mathbf{K}_{\wp_{i}}$. For each adele $\left(A_{\wp}\right)$ of $\mathbf{A}_{\mathbf{K}}$, there exist unique coefficients $\gamma_{i}(p)$ in \mathbf{k}_{p}, for $1 \leq i \leq n$, so that

$$
\begin{equation*}
(\sigma \otimes I)\left(\sum_{i=1}^{n} X_{i} \otimes \gamma_{i}(p)\right)=\pi_{p}\left(\left(A_{\wp}\right)\right)=\left(A_{\wp_{1}}, \ldots, A_{\wp_{g}}\right) . \tag{6.4}
\end{equation*}
$$

The $\gamma_{i}(p)$ determine elements $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ in $\prod_{p} \mathbf{k}_{p}$ such that the p-coordinate of \mathbf{a}_{i} is $\gamma_{i}(p)$. Then $\sum_{i=1}^{n} X_{i} \otimes \mathbf{a}_{i}$ maps to $\left(A_{\wp}\right)$, but we need to check that each \mathbf{a}_{i} is an adele in $\mathbf{A}_{\mathbf{k}}$, i.e., that $\left|\gamma_{i}(p)\right|_{p} \leq 1$ except for a finite number of primes p. Multiplying both sides of (6.4) by $(\sigma \otimes I)\left(X_{j} \otimes 1\right)=\left(\sigma_{\wp_{1}}\left(X_{j}\right), \ldots \sigma_{\wp_{g}}\left(X_{j}\right)\right)$ for $1 \leq j \leq n$, we obtain a system of n equations for each prime p of \mathbf{k}.

$$
\begin{equation*}
(\sigma \otimes I)\left(\sum_{i=1}^{n} X_{i} X_{j} \otimes \gamma_{i}(p)\right)=\left(A_{\wp_{1}} \sigma_{\wp_{1}}\left(X_{j}\right), \ldots, A_{\wp_{g}} \sigma_{\wp_{g}}\left(X_{j}\right)\right), 1 \leq j \leq n \tag{6.5}
\end{equation*}
$$

Applying identity (6.3), we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} \mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(X_{i} X_{j}\right) \gamma_{i}(p)=\sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{k} / \mathbf{k}_{p}}}\left(A_{\wp_{k}} \sigma_{\wp_{k}}\left(X_{j}\right)\right), \quad 1 \leq j \leq n \tag{6.6}
\end{equation*}
$$

Let E contain all primes p of \mathbf{k} such that p is infinite, or $\left|\operatorname{det}\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(X_{i} X_{j}\right)\right)\right|_{p} \neq 1$, or p is divisible by a prime \wp of \mathbf{K} for which either $|A|_{\wp}>1$ or $\left|\sigma_{\wp}\left(X_{j}\right)\right|_{\wp}>1$ for some $j, 1 \leq j \leq n$. For all p not in E, the right side of (6.6) satisfies

$$
\begin{aligned}
&\left|\sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{k} / \mathbf{k}_{p}}}\left(A_{\wp_{\wp_{k}}} \sigma_{\wp_{k}}\left(X_{j}\right)\right)\right|_{p} \\
& \leq \max _{1 \leq k \leq g}\left(\left|\mathbf{S}_{\mathbf{K}_{\wp_{k}} / \mathbf{k}_{p}}\left(A_{\wp_{k}} \sigma_{\wp_{k}}\left(X_{j}\right)\right)\right|_{p}\right) \leq 1 \quad \text { for } 1 \leq j \leq n
\end{aligned}
$$

In system (6.6) for p not in E, all the coefficients $\mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(X_{i} X_{j}\right)$ are in \mathbf{o}_{p}, the determinant $\operatorname{det}\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(X_{i} X_{j}\right)\right)$ is a unit of \mathbf{o}_{p}, and the right side terms are all in \mathbf{o}_{p}. Therefore, we have $\gamma_{i}(p)$ in \mathbf{o}_{p} for $1 \leq i \leq n$ and $p \notin E$, showing that \mathbf{a}_{i} is an adele. Finally, since we identify \mathbf{a} in $\mathbf{A}_{\mathbf{k}}$ with its image in $\mathbf{A}_{\mathbf{K}}$, every element of $\mathbf{A}_{\mathbf{K}}$ is of the form $(\sigma \otimes I)\left(\sum_{i=1}^{n} X_{i} \otimes \mathbf{a}_{i}\right)=\sum_{i=1}^{n} X_{i} \mathbf{a}_{i}$. This completes the proof.

Lemma 6.3. The group $\mathbf{A}_{\mathbf{Q}} / \mathbf{Q}$ of adele classes is compact and there is a compact subset \mathbf{C} of $\mathbf{A}_{\mathbf{Q}}$ such that $\mathbf{A}_{\mathbf{Q}}=\mathbf{Q}+\mathbf{C}$.

Proof. Since \mathbf{o}_{p} is compact for each finite rational prime p then the subset \mathbf{C} defined by

$$
\mathbf{C}=\prod_{\text {finite } p} \mathbf{o}_{p} \times\left[-\frac{1}{2}, \frac{1}{2}\right] \subset \mathbf{A}_{\mathbf{Q}}
$$

is a compact subset of the adele group $\mathbf{A}_{\mathbf{Q}}$. If \mathbf{a} is an adele in $\mathbf{A}_{\mathbf{Q}}$ then there is a finite set E of primes so that $|\mathbf{a}|_{p} \leq 1$ if and only if p is not in E. For a finite prime p in E, we have $\mathbf{a}_{p}=u_{p} / p^{n_{p}}$, where u_{p} is an element of \mathbf{o}_{p}, and $n_{p} \geq 0$. Put $u_{p}=m_{p}+v_{p} p^{n_{p}}$ where m_{p} is a rational integer, $0 \leq m_{p}<p^{n_{p}}$, and v_{p} is an element of \mathbf{o}_{p}. Define α to be the rational number

$$
\alpha=\sum_{p \in E} \frac{m_{p}}{p^{n_{p}}} .
$$

For each finite p not in E we have $|\mathbf{a}-\alpha|_{p} \leq \max \left(|\mathbf{a}|_{p},|\alpha|_{p}\right)=1$, and for each finite p in E, we have

$$
|\mathbf{a}-\alpha|_{p}=\left|\frac{m_{p}+v_{p} p^{n_{p}}}{p^{n_{p}}}-\frac{m_{p}}{p^{n_{p}}}-\sum_{q \in E, q \neq p} \frac{m_{q}}{q^{n_{q}}}\right|_{p}=\left|v_{p}-\sum_{q \in E, q \neq p} \frac{m_{q}}{q^{n_{q}}}\right|_{p} \leq 1 .
$$

At the infinite prime $p=\infty$, there exists a rational integer μ such that $|\mathbf{a}-\alpha-\mu|_{\infty} \leq$ $\frac{1}{2}$. At all finite primes p, we have

$$
|\mathbf{a}-\alpha-\mu|_{p} \leq \max \left(|\mathbf{a}-\alpha|_{p},|\mu|_{p}\right) \leq 1
$$

We have shown that there is a rational number $\beta=\alpha+\mu$ so that $\mathbf{a}-\beta \in \mathbf{C}$. Then the continuous homomorphism $\mathbf{A} \rightarrow \mathbf{A} / \mathbf{Q}$ maps compact subset \mathbf{C} onto \mathbf{A} / \mathbf{Q}, so \mathbf{A} / \mathbf{Q} is compact

Lemma 6.4. If \mathbf{k} is a finite extension of \mathbf{Q} then the group $\mathbf{A}_{\mathbf{k}} / \mathbf{k}$ of adele classes is compact, and there is a compact subset \mathbf{C} of $\mathbf{A}_{\mathbf{k}}$ so that $\mathbf{A}_{\mathbf{k}}=\mathbf{k}+\mathbf{C}$.

Proof. Let x_{1}, \ldots, x_{n} be a basis for \mathbf{k} over \mathbf{Q}. Then $\mathbf{A}_{\mathbf{k}}=x_{1} \mathbf{A}_{\mathbf{Q}}+\cdots+x_{n} \mathbf{A}_{\mathbf{Q}}$ by lemma 6.2. If \mathbf{a} is in $\mathbf{A}_{\mathbf{k}}$, let $\mathbf{a}=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}$ where \mathbf{a}_{i} is in $\mathbf{A}_{\mathbf{Q}}$ for
$1 \leq i \leq n$. By lemma 6.3, there is a compact subset \mathbf{C}^{\prime} of $\mathbf{A}_{\mathbf{Q}}$ so that $\mathbf{A}_{\mathbf{Q}}=\mathbf{Q}+\mathbf{C}^{\prime}$, so $\mathbf{a}_{i}=\beta_{i}+\mathbf{c}_{i}$, where β_{i} is in \mathbf{Q} and \mathbf{c}_{i} is in \mathbf{C}^{\prime}, for $1 \leq i \leq n$, and

$$
\mathbf{a}=\left(x_{1} \beta_{1}+\cdots+x_{n} \beta_{n}\right)+\left(x_{1} \mathbf{c}_{1}+\cdots+x_{n} \mathbf{c}_{n}\right) \in \mathbf{k}+x_{1} \mathbf{C}^{\prime}+\ldots x_{n} \mathbf{C}^{\prime}
$$

Subset $\mathbf{C}=x_{1} \mathbf{C}^{\prime}+\ldots x_{n} \mathbf{C}^{\prime}$ is a compact subset of $\mathbf{A}_{\mathbf{k}}$ and $\mathbf{A}_{\mathbf{k}}=\mathbf{k}+\mathbf{C}$. The continuous homomorphism $\mathbf{A}_{\mathbf{k}} \rightarrow \mathbf{A}_{\mathbf{k}} / \mathbf{k}$ maps \mathbf{C} onto $\mathbf{A}_{\mathbf{k}} / \mathbf{k}$, proving that $\mathbf{A}_{\mathbf{k}} / \mathbf{k}$ is compact.

Haar measure. Both \mathbf{k}_{p} and $\mathbf{A}_{\mathbf{k}}$ are locally compact topological groups so Haar measures may be defined. For infinite primes p, take the ordinary Lebesgue measure on \mathbf{R} or \mathbf{C} for the Haar measure m_{p} on \mathbf{k}_{p}. For finite primes, the measure m_{p} is chosen so that $m_{p}\left(\mathbf{o}_{p}\right)=1$. The cosets of p^{n} are open subsets of compact subset \mathbf{o}_{p}, so the measure of each coset should be $\mathrm{N} p^{-n}$. Take the smallest σ-algebra containing all cosets $\alpha+p^{n}$ for α in \mathbf{k}_{p}. Since every coset of p^{n} is the disjoint union of cosets of p^{n+k} for $k>0$, then every union of cosets is equal to a union of cosets of the same power of p.

Lemma 6.5. If S is a measurable set of \mathbf{k}_{p} and α is an non-zero element of \mathbf{k}_{p} then $m_{p}(\alpha S)=|\alpha|_{p} m_{p}(S)$.

Proof. Let $|\alpha|_{p}=\mathrm{N} p^{-m}$, so $\alpha=u \pi^{m}$ where u is in $\mathbf{u}_{p},(\pi)=p$, and m may be positive, zero or negative. S is a union of cosets $\beta+p^{n}$ and we may take $n \geq \max (-m, 0)$. Then αS is a union of cosets $\alpha \beta+p^{n+m}$ where $n+m \geq 0$, and $m_{p}\left(\alpha+p^{n+m}\right)=\mathrm{N} p^{-n-m}=|\alpha|_{p} m_{p}\left(\beta+p^{n}\right)$. This shows that $m_{p}(\alpha S)=|\alpha|_{p} m_{p}(S)$.

Haar measure on the ring of adeles. Take F to be a finite set of primes of \mathbf{k} containing all infinite primes. For each p, let E_{p} be an open subset of \mathbf{k}_{p} for which $m_{p}\left(E_{p}\right)$ is defined and for which $E_{p}=\mathbf{o}_{p}$ for all p not in F. Consider subsets \mathbf{E} of $\mathbf{A}_{\mathbf{k}}$ of the form $\mathbf{E}=\prod_{p} E_{p}$. Every adele of $\mathbf{A}_{\mathbf{k}}$ is in some \mathbf{E}. Define the measure $m(\mathbf{E})$ to be

$$
m(\mathbf{E})=\prod_{p} m\left(E_{p}\right)
$$

The product is defined since $m_{p}\left(E_{p}\right)=m_{p}\left(\mathbf{o}_{p}\right)=1$ for all but a finite number of p.
Lemma 6.6. If \mathbf{E} is a measurable set of $\mathbf{A}_{\mathbf{K}}$ and \mathbf{i} is an element of $\mathbf{I}_{\mathbf{k}}$ then $m_{p}(\mathbf{i E})=|\mathbf{i}| m(\mathbf{E})$.

Proof. It is enough to check sets of the form $\mathbf{E}=\prod_{p} E_{p}$ such that $E_{p}=\mathbf{o}_{p}$ for p not in some finite set F_{1}. Suppose that $|\mathbf{i}|_{p}=1$ except for p in finite set F_{2}. Then

$$
\mathbf{i E}=\prod_{p \in F_{1} \cup F_{2}} \mathbf{i}_{p} E_{p} \times \prod_{p \notin F_{1} \cup F_{2}} \mathbf{o}_{p} .
$$

We have

$$
\begin{aligned}
m(\mathbf{i E})=\prod_{p \in F_{1} \cup F_{2}} m_{p}\left(\mathbf{i}_{p} E_{p}\right)=\prod_{p \in F_{1} \cup F_{2}} & \left(|\mathbf{i}|_{p} m_{p}\left(E_{p}\right)\right) \\
& =\prod_{p \in F_{1} \cup F_{2}}|\mathbf{i}|_{p} \prod_{p \in F_{1} \cup F_{2}} m_{p}\left(E_{p}\right)=|\mathbf{i}| m(\mathbf{E}) .
\end{aligned}
$$

Given an \mathbf{R}-valued function $f: \mathbf{A}_{\mathbf{k}} \rightarrow \mathbf{R}$ such that $\bar{f}(\mathbf{a})=\sum_{\alpha \in \mathbf{k}} f(\mathbf{a}+\alpha)$ exists, the value $\bar{f}(\mathbf{a})$ depends only the coset $\overline{\mathbf{a}}$ of \mathbf{a} in $\mathbf{A}_{\mathbf{k}}$. Define $\bar{f}(\overline{\mathbf{a}})=\sum_{\alpha \in \mathbf{k}} f(\mathbf{a}+\alpha)$. If f is an integrable function on $\mathbf{A}_{\mathbf{k}}$ then

$$
\int_{\mathbf{A}_{\mathbf{k}}} f(\mathbf{a}) d a=\int_{\mathbf{A}_{\mathbf{k}} / \mathbf{k}} \sum_{\alpha \in \mathbf{k}} f(\mathbf{a}+\alpha) d \overline{\mathbf{a}}=\int_{\mathbf{A}_{\mathbf{k}} / \mathbf{k}} \bar{f}(\overline{\mathbf{a}}) d \overline{\mathbf{a}}
$$

$\mathbf{A}_{\mathbf{k}} / \mathbf{k}$ is a compact group, so it must have finite measure.
Lemma 6.7. Let \mathbf{S} be a measurable subset of $\mathbf{A}_{\mathbf{k}}$ such that $m(\mathbf{S})>m\left(\mathbf{A}_{\mathbf{k}} / \mathbf{k}\right)$. There exist \mathbf{a}_{1} and \mathbf{a}_{2} in \mathbf{S} so that $\mathbf{a}_{1} \neq \mathbf{a}_{2}$ and $\mathbf{a}_{1}-\mathbf{a}_{2}$ is an element of \mathbf{k}^{*}.

Proof. Let χ be the characteristic function of \mathbf{S}. Then $\sum_{\alpha \in \mathbf{k}} \chi(\mathbf{a}+\alpha)>1$ at some a because otherwise we would have

$$
m(\mathbf{S})=\int_{\mathbf{A}_{\mathbf{k}}} \chi(\mathbf{a}) d \mathbf{a}=\int_{\mathbf{A}_{\mathbf{k}} / \mathbf{k}}\left(\sum_{\alpha \in \mathbf{k}} \chi(\mathbf{a}+\alpha)\right) d \overline{\mathbf{a}} \leq \int_{\mathbf{A}_{\mathbf{k}} / \mathbf{k}} 1 d \overline{\mathbf{a}}=m\left(\mathbf{A}_{\mathbf{k}} / \mathbf{k}\right)
$$

If $\sum_{\alpha \in \mathbf{k}} \chi(\mathbf{a}+\alpha)>1$ then there exist α_{1} and α_{2} in \mathbf{k} so that $\alpha_{1} \neq \alpha_{2}, \mathbf{a}_{1}=\mathbf{a}+\alpha_{1} \in$ \mathbf{S} and $\mathbf{a}_{2}=\mathbf{a}+\alpha_{2} \in \mathbf{S}$.

Lemma 6.8. \mathbf{k} is a discrete subgroup of $\mathbf{A}_{\mathbf{k}}$.
Proof. Let α be an element of \mathbf{k}. Choose any prime p_{0} of \mathbf{k}. Then

$$
\mathbf{U}=\left\{\mathbf{a} \in \mathbf{A}_{\mathbf{k}}| | \mathbf{a}-\left.\alpha\right|_{p} \in \mathbf{o}_{p} \text { for } p \neq p_{0} \text { and }|\mathbf{a}-\alpha|_{p_{0}}<\frac{1}{2}\right\}
$$

is an open neighborhood of α, and $\mathbf{U} \cap \mathbf{k}=\{\alpha\}$.

Proposition 6.9. Let $\mathbf{I}_{\mathbf{k}}^{0}$ be the subgroup of $\mathbf{I}_{\mathbf{k}}$ consisting of all ideles \mathbf{i} such that $|\mathbf{i}|=1$. Then $\mathbf{I}_{\mathbf{k}}^{0}$ contains \mathbf{k}^{*}, and the group of idele classes $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}$ is compact.

Proof. Lemma 6.6 insures that $\mathbf{A}_{\mathbf{k}}$ has arbitrarily large compact subsets, so choose a compact subset $\mathbf{C} \subset \mathbf{A}_{\mathbf{k}}$ so that $m(\mathbf{C})>m\left(\mathbf{A}_{\mathbf{k}} / \mathbf{k}\right)$. Subtraction $\left(\mathbf{a}, \mathbf{a}^{\prime}\right) \rightarrow$ $\mathbf{a}-\mathbf{a}^{\prime}$ and multiplication $\left(\mathbf{a}, \mathbf{a}^{\prime}\right) \rightarrow \mathbf{a} \mathbf{a}^{\prime}$ are continuous functions, so $\mathbf{C}^{\prime}=\mathbf{C}-\mathbf{C}$ and $\mathbf{C}^{\prime \prime}=\mathbf{C}^{\prime} \mathbf{C}^{\prime}$ are compact subsets of $\mathbf{A}_{\mathbf{k}}$. By lemma $6.8, \mathbf{K} \cap \mathbf{C}^{\prime \prime}$ is a finite set. Let $\mathbf{K} \cap \mathbf{C}^{\prime \prime}=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$. Then $\mathbf{V}=\mathbf{C}^{\prime} \cup \xi_{1}^{-1} \mathbf{C}^{\prime} \cup \cdots \cup \xi_{n}^{-1} \mathbf{C}^{\prime}$ is a compact subset of $\mathbf{A}_{\mathbf{k}}$.

For any finite set E of primes of \mathbf{k}, the subset

$$
\mathbf{A}_{\mathbf{k}}(E)=\prod_{p \in E} \mathbf{k}_{p} \times \prod_{p \notin E} \mathbf{o}_{p}
$$

is open in $\mathbf{A}_{\mathbf{k}}$, and $\mathbf{A}_{\mathbf{k}} \subset \cup_{E} \mathbf{A}_{\mathbf{k}}(E)$. There exists a finite number of sets E_{1}, \ldots, E_{m} so that compact set \mathbf{V} is contained in $\mathbf{A}_{\mathbf{k}}\left(E_{1}\right) \cup \ldots \mathbf{A}_{\mathbf{k}}\left(E_{m}\right)$. If $E_{0}=E_{1} \cup \cdots \cup E_{m}$ then $\mathbf{A}_{\mathbf{k}}\left(E_{0}\right)=\mathbf{A}_{\mathbf{k}}\left(E_{1}\right) \cup \ldots \mathbf{A}_{\mathbf{k}}\left(E_{m}\right)$, so \mathbf{V} is contained in $\mathbf{A}_{\mathbf{k}}\left(E_{0}\right)$. For each p, the function $\mathbf{a} \rightarrow|\mathbf{a}|_{p}$ is continuous, so $|\mathbf{a}|_{p}$ is bounded on compact set \mathbf{V}. Since E_{0} is a finite set of primes, there exists a positive bound δ so that $|\mathbf{a}|_{p} \leq \delta$ for \mathbf{a} in \mathbf{V} and p in E_{0}, and we have

$$
\begin{equation*}
\mathbf{V} \subset \prod_{p \in E_{0}}\left\{\left.\alpha \in \mathbf{k}_{p}| | \alpha\right|_{p} \leq \delta\right\} \times \prod_{p \notin E_{0}} \mathbf{o}_{p} \tag{6.7}
\end{equation*}
$$

Suppose that \mathbf{c} is a unit of $\mathbf{A}_{\mathbf{k}}$ (i.e., an element of $\mathbf{I}_{\mathbf{k}}$) such that \mathbf{c} and \mathbf{c}^{-1} are in \mathbf{V}. Then by (6.7) both \mathbf{c} and \mathbf{c}^{-1} are elements of \mathbf{W} defined by

$$
\begin{equation*}
\mathbf{W}=\prod_{p \in E_{0}}\left\{\left.\alpha \in \mathbf{k}^{*}| | \alpha\right|_{p} \leq \delta \text { and }\left|\alpha^{-1}\right|_{p} \leq \delta\right\} \times \prod_{p \notin E_{0}} \mathbf{o}_{p}^{*} \tag{6.8}
\end{equation*}
$$

which is a compact subset of the idele group $\mathbf{I}_{\mathbf{k}}$. (Group \mathbf{o}_{p}^{*} is compact because it is the union of $\mathrm{N} p-1$ cosets of ideal p, and each coset is compact because ring \mathbf{o}_{p} is compact.)

Suppose that \mathbf{i} is an idele in $\mathbf{I}_{\mathbf{k}}^{0}$. If we can show that \mathbf{i} is in $\mathbf{k}^{*} \mathbf{W}$, then $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}$ will be the image of compact set \mathbf{W}, which will prove the proposition. Both $\mathbf{i C}$ and $\mathbf{i}^{-1} \mathbf{C}$ are compact subsets of $\mathbf{A}_{\mathbf{k}}$. Since $|\mathbf{i}|=1$, we have $m(\mathbf{i C})=m(\mathbf{C})$ and $m\left(\mathbf{i}^{-1} \mathbf{C}\right)=m(\mathbf{C})$. By lemma 6.7, there exist elements $\mathbf{i a}{ }_{1}$ and $\mathbf{i a}_{2}$ in $\mathbf{i C}$ so that $\mathbf{i} \mathbf{a}_{1}-\mathbf{i} \mathbf{a}_{2}$ is in \mathbf{k}^{*}. Put $\mathbf{c}_{1}=\mathbf{a}_{1}-\mathbf{a}_{2}$. Then \mathbf{c}_{1} is in \mathbf{C}^{\prime} and $\mathbf{i c}_{1}$ is in \mathbf{k}^{*}. Likewise, there exist elements $\mathbf{i}^{-1} \mathbf{b}_{1}$ and $\mathbf{i}^{-1} \mathbf{b}_{2}$ in $\mathbf{i}^{-1} \mathbf{C}$ so that $\mathbf{i}^{-1} \mathbf{b}_{1}-\mathbf{i}^{-1} \mathbf{b}_{2}$ is in \mathbf{k}^{*}. Put $\mathbf{c}_{2}=\mathbf{b}_{1}-\mathbf{b}_{2}$. Then \mathbf{c}_{2} is in \mathbf{C}^{\prime} and $\mathbf{i}^{-1} \mathbf{c}_{2}$ is in \mathbf{k}^{*}.

The product $\left(\mathbf{i c}_{1}\right)\left(\mathbf{i}^{-1} \mathbf{c}_{2}\right)=\mathbf{c}_{1} \mathbf{c}_{2}$ is in $\mathbf{k}^{*} \cap \mathbf{C}^{\prime \prime}$, so $\mathbf{c}_{1} \mathbf{c}_{2}=\xi_{i}$ for some i. We have $\mathbf{c}_{1} \in \mathbf{C}^{\prime} \subset \mathbf{V}$. Also we have $\mathbf{c}_{1}^{-1}=\xi^{-1} \mathbf{c}_{2}$ so $\mathbf{c}_{1}^{-1} \in \xi_{i}^{-1} \mathbf{C}^{\prime} \subset \mathbf{V}$. Therefore \mathbf{c}_{1}^{-1} is in \mathbf{W}, and $\mathbf{i}=\left(\mathbf{i c}_{1}\right) \mathbf{c}_{1}^{-1}$ is in $\mathbf{k}^{*} \mathbf{W}$, which completes the proof.

Lemma 6.10. If E is a finite set of primes of \mathbf{k}, let $\mathbf{k}^{*}(E)$ be the subgroup of E-units in \mathbf{k}.

$$
\mathbf{k}^{*}(E)=\mathbf{k}^{*} \cap \mathbf{I}_{\mathbf{k}}(E)
$$

Then $\left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}(E)$ is compact.
Proof. In the following diagram, the kernel of $\mu \iota$ is $\mathbf{k}^{*}(E)$, so induced homomorphism ι^{\prime} is an isomorphism onto a subgroup of $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}$.

The map ι^{\prime} is open because if V is an open subset of $\left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}(E)$ then $\mu^{\prime-1}(V)$ is open in $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0}$, inclusion ι is an open mapping, and the natural homomorphism μ is an open mapping. Therefore the image $\iota^{\prime}\left(\left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}(E)\right)$ is an open subgroup of $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}$. An open subgroup must be closed, so $\iota^{\prime}\left(\left(\mathbf{I}_{\mathbf{k}}(E) \cap\right.\right.$ $\left.\left.\mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}(E)\right)$ is a closed subgroup of compact group $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}$. Therefore $\left(\mathbf{I}_{\mathbf{k}}(E) \cap\right.$ $\left.\mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}(E)$ is isomorphic to a compact subgroup.

Lemma 6.11. If E is a finite set of primes containing the infinite primes of \mathbf{k} then there exists a positive real number ϵ so that $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}=\mathbf{k}^{*}(E) C_{\epsilon}$, where C_{ϵ} is the compact set defined by

$$
\begin{equation*}
C_{\epsilon}=\left\{\mathbf{i} \in \mathbf{I}_{\mathbf{K}}(E) \cap \mathbf{I}_{k}^{0}\left|\frac{1}{\epsilon} \leq|\mathbf{i}|_{p} \leq \epsilon \text { for } p \in E\right\}\right. \tag{6.9}
\end{equation*}
$$

Proof. We need to show $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0} \subset \mathbf{k}^{*}(E) C_{\epsilon}$. We have the natural homomorphism

$$
\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0} \xrightarrow{\mu^{\prime}}\left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}(E)
$$

onto a compact group. For any given \mathbf{i} in $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0}$, the values $|\mathbf{i}|_{p}$ for p in E are bounded because E is a finite set. For positive real ϵ, the sets C_{ϵ} form an open covering of $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0}$, so the images $\mu^{\prime}\left(C_{\epsilon}\right)$ form an open covering of compact group $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}(E)$. There exist a finite number of the sets $\mu^{\prime}\left(C_{\epsilon}\right)$ which cover $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}(E)$. If $\epsilon_{1}<\epsilon_{2}$ then $C_{\epsilon_{1}} \subset C_{\epsilon_{2}}$. Therefore there exists a single set C_{ϵ} so that $\mu^{\prime}\left(C_{\epsilon}\right)$ covers $\mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*}(E)$. For any \mathbf{i} in $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0}$, there exists an idele \mathbf{j} in C_{ϵ} so that $\mu^{\prime}(\mathbf{i})=\mu^{\prime}(\mathbf{j})$, so $\mu^{\prime}\left(\mathbf{i j}^{-1}\right)=1$. The kernel of μ^{\prime} is $\mathbf{k}^{*}(E)$, so there exists an element α in $\mathbf{k}^{*}(E)$ so that $\mathbf{i}=\alpha \mathbf{j}$. Therefore $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0} \subset \mathbf{k}^{*}(E) C_{\epsilon}$.

Lemma 6.12. \mathbf{k}^{*} is a discrete subgroup of $\mathbf{I}_{\mathbf{k}}$.
Proof. The set U defined by

$$
\begin{equation*}
U=\left\{\mathbf{i} \in \mathbf{I}_{\mathbf{k}}| | \mathbf{i}-\left.1\right|_{p} \leq 1 \text { for } p \text { finite, }|\mathbf{i}-1|_{p}<\frac{1}{2} \text { for } p \text { infinite }\right\} \tag{6.10}
\end{equation*}
$$

is an open subset of \mathbf{I}_{k} which contains no element of \mathbf{k}^{*} other than 1.
Proposition 6.13 (Dirichlet unit theorem). If E is a finite set of pirmes of \mathbf{k} containing all the infinite primes and if the number of elements in E is $s+1$, then $\mathbf{k}^{*}(E)$ is the product of a finite subgroup (the roots of unity in \mathbf{k}^{*}) and a free abelian group on s generators. That is, there exist in $\mathbf{k}^{*}(E)$ an m-th root of unity ω and elements $\eta_{1}, \ldots \eta_{s}$ such that every element η of $\mathbf{k}^{*}(E)$ may be uniquely expressed as a product

$$
\eta=\omega^{\nu_{0}} \eta_{1}^{\nu_{1}} \ldots \eta_{s}^{\nu_{s}} \quad 0 \leq \nu_{o}<m \text { and } \nu_{i} \in \mathbf{Z}(1 \leq i \leq s)
$$

Proof. Let E contain infinite primes p_{0}, \ldots, p_{r}. If E contains any finite primes then let them be p_{r+1}, \ldots, p_{s}. Let A_{s} be defined by

$$
A_{s}=\left\{\left(a_{0}, \ldots, a_{s}\right) \in\left(\mathbf{R}^{+}\right)^{s+1} \mid \prod_{i=0}^{s} a_{i}=1\right\}
$$

where \mathbf{R}^{+}denotes the group of positive real numbers. Let $f: \mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0} \rightarrow A_{s}$ be defined by

$$
f(\mathbf{i})=\left(|\mathbf{i}|_{p_{0}}, \ldots,|\mathbf{i}|_{p_{s}}\right) .
$$

The kernel of f is the group of \mathbf{i} such that $|\mathbf{i}|_{p}=1$ for all primes p, so $\operatorname{ker}(f)$ is compact, and $\operatorname{ker}(f) \cap \mathbf{k}^{*}(E)$ must be a finite group because $\mathbf{k}^{*}(E)$ is discrete. Any finite subgroup of $\mathbf{k}^{*}(E)$ must consist of roots of unity; conversely, any root of unity in $\mathbf{k}^{*}(E)$ must be in the kernel of f. Let m-th of unity ω generate the group of roots of unity in $\mathbf{k}^{*}(E)$.

Let B and H be the images in A_{s} of $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}$ and $\mathbf{k}^{*}(E)$, respectively. H is a discrete subgroup of A_{s}, because the only elements of $\mathbf{k}^{*}(E)$ in the open neighborhood

$$
\left\{\left(a_{0}, \ldots, a_{s}\right) \quad|\quad| a_{i}-1 \left\lvert\,<\frac{1}{2} \quad 0 \leq i \leq s\right.\right\}
$$

of $(1, \ldots, 1)$ are in the finite set $\operatorname{ker}(f) \cap \mathbf{k}^{*}(E)$. For subgroup B we have

$$
B=\left\{\left(b_{0}, \ldots, b_{s}\right) \in A_{s} \mid b_{i}>0 \text { for } 0 \leq i \leq r ; \quad b_{i}=\mathrm{N} p_{i}^{u_{i}}, u_{i} \in \mathbf{Z} \text { for } r<i \leq s\right\}
$$

By lemma 6.11, there exists a compact set $C_{\epsilon} \operatorname{such} \mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}=\mathbf{k}^{*}(E) C_{\epsilon}$. Then

$$
B=f\left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}\right)=f\left(\mathbf{k}^{*}(E)\right) f\left(C_{\epsilon}\right)=H C
$$

where $C=f\left(V_{\epsilon}\right)$ is compact.
We next show that $A_{s}=B V$ where V is compact. Put

$$
\begin{aligned}
V=\left\{\left(a_{0}, \ldots, a_{s}\right) \in A_{s} \mid\right. & a_{i}=1(0 \leq i<r) \\
& \left.\prod_{i=r+1}^{s}\left(\mathrm{~N} p_{i}\right)^{-1} \leq a_{r} \leq 1 ; \quad 1 \leq a_{i} \leq \mathrm{N} p_{i}(r<i \leq s)\right\} .
\end{aligned}
$$

Then V is certainly compact. If $a \in A_{s}$ then choose $b \in B$ so that

$$
\begin{aligned}
&(b a)_{i}=1 \quad 0 \leq i<r \\
& 1 \leq|b a|_{i} \leq \mathrm{N} p_{i} \quad r<i \leq s \\
& b_{r}=\prod_{i=r+1}^{s} b_{i}^{-1} .
\end{aligned}
$$

The condition on b_{r} ensures that $\prod_{i=0}^{s} b_{i}=1$. We have $a=b^{-1}(b a)$. To show that $b a$ is in V, it is only necessary to check coordinate $(b a)_{r}$. We have $a_{r}=\prod_{i \neq r} a_{i}^{-1}$ and $b_{r}=\prod_{i \neq r} b_{i}^{-1}$, so $(b a)_{r}=\prod_{i \neq r}(b a)_{i}^{-1}$. Since $(b a)_{i}=1$ for $0 \leq i<r$ we have $(b a)_{r}=\prod_{r<i \leq s}(b a)_{i}^{-1}$. Since $\mathrm{N} p_{i}^{-1} \leq|b a|_{i} \leq 1$ for $r<i \leq s$, then

$$
\prod_{r<i \leq s} \mathrm{~N} p_{i}^{-1} \leq(b a)_{r} \leq 1
$$

This shows that $b a$ is in V, and that $A_{s}=B V$. Combining $A_{s}=B V$ and $B=H C$ gives

$$
A_{s}=H W
$$

where $W=C V$ is a compact subset of A_{s}.
Let V_{s} be the s-dimensional vector space over \mathbf{R} defined by

$$
V_{s}=\left\{\left(x_{0}, \ldots, x_{s}\right) \in \mathbf{R}^{s+1} \mid \sum_{i=0}^{s} x_{i}=0\right\}
$$

We have the isomorphism $\psi: A_{s} \rightarrow V_{s}$ defined by

$$
\psi\left(a_{0}, \ldots, a_{s}\right)=\left(\log a_{0}, \ldots, \log a_{s}\right)
$$

Since $A_{s}=H W$, we have $V_{s}=\psi\left(A_{s}\right)=\psi(H W)=\psi(H)+\psi(W)$. Put $L=\psi(H)$ and $W^{\prime}=\psi(W)$. Then

$$
V_{s}=L+W^{\prime}
$$

where L is a discrete subgroup and W^{\prime} is compact. We will show that L is a free abelian group on s generators.

Let y_{1}, \ldots, y_{t} be a maximal linearly independent subset of L. For $y \in L$, there are real α_{i} so that

$$
y=\sum_{i=1}^{r} \alpha_{i} y_{i}=\sum_{i=1}^{r}\left[\alpha_{i}\right] y_{i}+\sum_{i=1}^{r}\left\{\alpha_{i}\right\} y_{i},
$$

where $\left[\alpha_{i}\right] \in \mathbf{Z}$ and $0 \leq\left\{\alpha_{i}\right\}<1$ for $i=1, \ldots, t$. The term $\sum_{i=1}^{r}\left\{\alpha_{i}\right\} y_{i}$ is in the intersection of L and a compact subset of V_{s}. Therefore, there is a finite set L_{0} such that

$$
L=\mathbf{Z} y_{1}+\cdots+\mathbf{Z} y_{t}+L_{0}
$$

If $t<s$, then y_{1}, \ldots, y_{t} can be extended to a basis $y_{1}, \ldots, y_{t}, y_{t+1}, \ldots, y_{s}$ of V_{s}. Since $V_{s}=L+W^{\prime}$ with W^{\prime} compact, there is a constant c so that for any v in V_{s}, we have

$$
v=\sum_{i=1}^{t} m_{i} y_{i}+\sum_{i=1}^{s} \alpha_{i} y_{i} \quad \text { where } \alpha_{i}<c
$$

But this is impossible since $\alpha_{t+1} y_{t+1}$ must have unbounded coefficient α_{t+1}. Therefore $t=s$.

Let the elements of finite set L_{0} be z_{1}, \ldots, z_{ν}. By the pigeon-hole principle, there are two distinct numbers j and j^{\prime} so that $0 \leq j<j^{\prime} \leq \nu$ and $j z_{1}-j^{\prime} z_{1}=$ $\sum_{i=1}^{s} m_{i} y_{i}$ with $m_{i} \in \mathbf{Z}$. If we replace each y_{i} by $\left(j-j^{\prime}\right)^{-1} y_{i}$ then z_{1} is an element of $\mathbf{Z} y_{1}+\ldots \mathbf{Z} y_{s}$, and we have $L=\mathbf{Z} y_{1}+\ldots \mathbf{Z} y_{s}+L_{0}^{\prime}$ where L_{0}^{\prime} contains $\nu-1$ elements. After a finite number of steps, we arrive at a set of free generators y_{1}, \ldots, y_{s} for L.

Choose elements $\eta_{1}, \ldots \eta_{s}$ in $\mathbf{k}^{*}(E)$ so that $\psi\left(f\left(\eta_{i}\right)\right)=y_{s}$. If $\eta \in \mathbf{k}^{*}(E)$ then there are unique integers ν_{1}, \ldots, ν_{s} so that $\psi(f(\eta))=\sum_{i=1}^{s} \nu_{i} y_{i}$, so $\eta \prod_{i=1}^{s} \eta^{-\nu_{i}}$ is in $\operatorname{ker}(f)=\langle\omega\rangle$. Therefore

$$
\eta=\omega^{\nu_{0}} \eta_{1}^{\nu_{1}} \ldots \eta_{s}^{\nu_{s}} .
$$

This concludes the proof of the unit theorem.

