CHAPTER VI

IDELE CLASS GROUP AND THE UNIT THEOREM

The ring of adeles. Let **k** be an finite extension of the rational number field. An element **a** of the direct product $\prod_p \mathbf{k}_p$ of all completions \mathbf{k}_p is an *adele* of **k** if every coordinate \mathbf{a}_p is in \mathbf{o}_p except for a finite number of p. Let $\mathbf{A}_{\mathbf{k}}$ denote the set of adeles of **k**. $\mathbf{A}_{\mathbf{k}}$ is a ring, and the idele group $\mathbf{I}_{\mathbf{k}}$ is the group of units of $\mathbf{A}_{\mathbf{k}}$. As with ideles, $|\mathbf{a}_p|_p$ is denoted simply by $|\mathbf{a}|_p$.

For the topology of $\mathbf{A}_{\mathbf{k}}$, basic neighborhoods are defined as follows. Choose any finite set of primes E of \mathbf{k} , and for each prime p in E choose a positive real ϵ_p . Then

$$\{\mathbf{b} \in \mathbf{A}_{\mathbf{k}} \mid |\mathbf{b} - \mathbf{a}|_p < \epsilon_p \text{ for } p \in E \text{ and } |\mathbf{b} - \mathbf{a}|_p \leq 1 \text{ for } p \notin E\}.$$

is a basic neighborhoods of adele **a**.

LEMMA 6.1. Let p be a prime of \mathbf{k} , let \mathbf{K}/\mathbf{k} be a finite extension, and let \wp_1, \ldots, \wp_g be the primes of \mathbf{K} which divide p. Then there is a natural isomorphism $\sigma : \mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p \to \mathbf{K}_{\wp_1} \oplus \cdots \oplus \mathbf{K}_{\wp_q}$ of algebras over \mathbf{k}_p .

PROOF. Elements of \mathbf{k} are denoted by lower case a, b; elements of finite extension \mathbf{K} by upper case A, X; elements of \mathbf{k}_p by α, β, γ . Let σ_i be the imbedding of \mathbf{K} into completion \mathbf{K}_{\wp_i} . Then $\sigma(A, \beta) = (\sigma_1(A)\beta, \ldots, \sigma_g(A)\beta)$ is a \mathbf{k} -bilinear mapping of $\mathbf{K} \times \mathbf{k}_p$ to $\mathbf{K}_{\wp_1} \oplus \cdots \oplus \mathbf{K}_{\wp_g}$. There is a \mathbf{k} -linear mapping $\sigma : \mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p \to \mathbf{K}_{\wp_1} \oplus \cdots \oplus \mathbf{K}_{\wp_g}$ such that $\sigma(A \otimes \beta) = (\sigma_1(A)\beta, \ldots, \sigma_g(A)\beta)$. Both $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$ and $\mathbf{K}_{\wp_1} \oplus \cdots \oplus \mathbf{K}_{\wp_g}$ are vector spaces over \mathbf{k}_p . We have $\sigma((A \otimes \beta)(A' \otimes \beta')) = \sigma(A \otimes \beta) \operatorname{sigma}(A' \otimes \beta')$, and σ is \mathbf{k}_p -linear.

Let X_1, \ldots, X_n be a basis for **K** over **k**. We want to show that $X_1 \otimes 1, \ldots, X_n \otimes 1$ is a basis for $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$ over \mathbf{k}_p . An element of $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$ is a finite sum $\sum_{k=1}^m A_k \otimes \beta_k$. Let $A_k = \sum_{i=1}^n X_i a_{ik}$. Then

$$\sum_{k=1}^{m} A_k \otimes \beta_k = \sum_{k=1}^{m} \left(\left(\sum_{i=1}^{n} X_i a_{ik} \right) \otimes \beta_k \right) = \sum_{k=1}^{m} \sum_{i=1}^{n} X_i \otimes a_{ik} \beta_k = \sum_{i=1}^{n} X_i \otimes \sum_{k=1}^{m} a_{ik} \beta_k.$$

Then every element of $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$ is of the form $\sum_{i=1}^n X_i \otimes \gamma_i$, so $X_1 \otimes 1, \ldots, X_n \otimes 1$ span $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$ over \mathbf{k}_p . We will show that $X_1 \otimes 1, \ldots, X_n \otimes 1$ are linearly independent over

 \mathbf{k}_p . Suppose that $\sum_{i=1}^n X_i \otimes \gamma_i = 0$. Multiply both sides by $X_j \otimes 1$ for $1 \leq j \leq n$ to obtain a system of n linear equations.

$$\sum_{i=1}^{n} X_i X_j \otimes \gamma_i = 0 \qquad 1 \le j \le n.$$

The trace $\mathbf{S}_{\mathbf{K}/\mathbf{k}} : \mathbf{K} \to \mathbf{k}$ is **k**-linear, so we can apply $\mathbf{S}_{\mathbf{K}/\mathbf{k}} \otimes I : \mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p \to \mathbf{k}_p$ to both sides of each equation, obtaining

$$\left(\mathbf{S}_{\mathbf{K}/\mathbf{k}} \otimes I\right) \sum_{i=1}^{n} X_i X_j \otimes \gamma_i = \sum_{i=1}^{n} \mathbf{S}_{\mathbf{K}/\mathbf{k}} (X_i X_j) \gamma_i = 0 \qquad 1 \le j \le n.$$

Matrix $(\mathbf{S}_{\mathbf{K}/\mathbf{k}}(X_iX_j))$ is non-singular by proposition 4.4, so $\gamma_1 = \cdots = \gamma_n = 0$. This shows that $X_1 \otimes 1, \ldots, X_n \otimes 1$ are linearly independent over \mathbf{k}_p .

Since $\sum_{i=1}^{g} [\mathbf{K}_{\wp_i} : \mathbf{k}_p] = [\mathbf{K} : \mathbf{k}] = n$ then algebras $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$ and $\mathbf{K}_{\wp_1} \oplus \cdots \oplus \mathbf{K}_{\wp_g}$ have the same dimension over \mathbf{k}_p . The isomorphism will be established if we can show that $\ker(\sigma) = 0$. If $\sigma(X_1 \otimes \gamma_1 + \ldots + X_n \otimes \gamma_n) = 0$, then multiply both sides of the equation by $\sigma(X_j \otimes 1)$ for $1 \leq j \leq n$ to obtain the following system of linear equations.

$$\sigma\left(\sum_{i=1}^{n} \left(X_i X_j \otimes \gamma_i\right)\right) = \sum_{i=1}^{n} \sigma\left(X_i X_j \otimes \gamma_i\right) = 0 \text{ for } 1 \le j \le n.$$

In $\mathbf{K}_{\wp_1} \oplus \cdots \oplus \mathbf{K}_{\wp_g}$ we have

(6.1)
$$\left(\sum_{i=1}^{n} \sigma_1\left(X_i X_j\right) \gamma_i, \dots, \sum_{i=1}^{n} \sigma_g\left(X_i X_j\right) \gamma_i\right) = 0.$$

The trace function $\mathbf{S}_{\mathbf{K}/\mathbf{k}}$ is the sum of local traces (1.5).

$$\mathbf{S}_{\mathbf{K}/\mathbf{k}}(A) = \sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{k}}/\mathbf{k}_{p}} \big(\sigma_{k}(A) \big).$$

Each coordinate of (6.1) is zero, so we have

$$\sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{k}}/\mathbf{k}_{p}} \left(\sum_{i=1}^{n} \sigma_{k}(X_{i}X_{j})\gamma_{i} \right) = 0 \quad \text{for } 1 \le j \le n,$$

$$\sum_{i=1}^{n} \left(\sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{k}}/\mathbf{k}_{p}} \sigma_{k}(X_{i}X_{j}) \right) \gamma_{i} = \sum_{i=1}^{n} \mathbf{S}_{\mathbf{K}/\mathbf{k}}(X_{i}X_{j}) \gamma_{i} = 0 \quad \text{for } 1 \le j \le n.$$

Since det $(\mathbf{S}_{\mathbf{Kk}}(X_iX_j)) \neq 0$, we conclude that $\gamma_j = 0$ for $1 \leq j \leq n$, and the proof is complete.

REMARK ON THE TRACE FUNCTION. If prime p of \mathbf{k} splits into primes \wp_1, \ldots, \wp_g in extension \mathbf{K} , then for each prime \wp_i we have the embedding $\sigma_i : \mathbf{K} \to \mathbf{K}_{\wp_i}$, and the mapping $\sigma : \mathbf{K} \to \mathbf{K}_{\wp_1} \oplus \cdots \oplus \mathbf{K}_{\wp_g}$, where $\sigma(A) = (\sigma_1(A), \ldots, \sigma_g(A))$. Consider the function $\mathbf{S} : \mathbf{K}_{\wp_1} \oplus \cdots \oplus \mathbf{K}_{\wp_g} \to \mathbf{k}_p$ defined by

$$\mathbf{S}(A_1,\ldots,A_g) = \mathbf{S}_{\mathbf{K}_{\wp_1}/\mathbf{k}_p}(A_1) + \cdots + \mathbf{S}_{\mathbf{K}_{\wp_g}/\mathbf{k}_p}(A_g).$$

Then for A in **K** we have $\mathbf{S}_{\mathbf{K}/\mathbf{k}}(A) = \mathbf{S}(\sigma(A))$. (Chapter I, norm and trace functions.) On $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$ we have **k**-linear transformation $\mathbf{S}_{\mathbf{K}/\mathbf{k}} \otimes I$, which is actually \mathbf{k}_p -linear.

In diagram (6.2), for A in \mathbf{K} , on the one hand we have $\iota \left(\mathbf{S}_{\mathbf{K}/\mathbf{k}} \otimes I \right) (A \otimes 1) = \iota \left(\mathbf{S}_{\mathbf{K}/\mathbf{k}}(A) \otimes 1 \right) = \mathbf{S}_{\mathbf{K}/\mathbf{k}}(A)$, and on the other we have $\mathbf{S}((\sigma \otimes I)(A \otimes 1)) = \mathbf{S}(\sigma(A)) = \mathbf{S}_{\mathbf{K}/\mathbf{k}}(A)$. Therefore $\iota(\mathbf{S}_{\mathbf{K}/\mathbf{k}} \otimes I)$ and $\mathbf{S}(\sigma \otimes I)$ agree on elements $A \otimes 1$ in $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$. If X_1, \ldots, X_n is a basis for \mathbf{K} over \mathbf{k} then $\iota(\mathbf{S}_{\mathbf{K}/\mathbf{k}} \otimes I)$ and $\mathbf{S}(\sigma \otimes I)$ agree on $X_1 \otimes 1, \ldots, X_n \otimes 1$, which is a basis for $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$ over \mathbf{k}_p . Since $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$ and $\sum_{i=1}^{g} \mathbf{K}_{\wp_i}$ have the same dimension over \mathbf{k}_p , then $\iota(\mathbf{S}_{\mathbf{K}/\mathbf{k}} \otimes I)$ and $\mathbf{S}(\sigma \otimes I)$ agree on all of $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$, so we have

(6.3)
$$\sum_{i=1}^{n} \mathbf{S}_{\mathbf{K}/\mathbf{k}}(A_i)\gamma_i = \sum_{j=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_j}/\mathbf{k}_p}(Y_1) \quad \text{if} \quad (\sigma \otimes I)(\sum_{i=1}^{n} A_i \otimes \gamma_i) = (Y_1, \dots, Y_g).$$

50

or

PROPOSITION 6.2. $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{A}_{\mathbf{k}} \simeq \mathbf{A}_{\mathbf{K}}$, and if X_1, \ldots, X_n is a basis for \mathbf{K} over \mathbf{k} then

$$X_1\mathbf{A}_k + \dots + X_n\mathbf{A}_k = \mathbf{A}_K.$$

PROOF. The mapping $\mathbf{A}_{\mathbf{k}}$ to $\mathbf{A}_{\mathbf{K}}$ is defined as follows. Each adele \mathbf{a} in $\mathbf{A}_{\mathbf{k}}$ determines an adele $\tilde{\mathbf{a}}$ in $\mathbf{A}_{\mathbf{K}}$ by $\tilde{\mathbf{a}}_{\wp} = \mathbf{a}_{p}$, where p is the prime of \mathbf{k} which \wp divides. An element A of \mathbf{K} is mapped to the diagonal of $\mathbf{A}_{\mathbf{K}}$. Each product $A\tilde{\mathbf{a}}$ is an adele because both $|A|_{\wp} \leq 1$ and $|\tilde{\mathbf{a}}|_{\wp} = |\mathbf{a}|_{p} \leq 1$ except for a finite number of primes \wp . The map $\mathbf{K} \times \mathbf{A}_{\mathbf{k}} \to \mathbf{A}_{\mathbf{K}}$ sending (A, \mathbf{a}) to $A\tilde{\mathbf{a}}$ induces a homomorphism $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{A}_{\mathbf{k}} \to \mathbf{A}_{\mathbf{K}}$ of algebras over \mathbf{k} . We can identify \mathbf{a} with its image $\tilde{\mathbf{a}}$, so the homomorphism may be written simply as $A \otimes \mathbf{a} \to A\mathbf{a}$.

We need to show that $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{A}_{\mathbf{k}}$ is mapped onto $\mathbf{A}_{\mathbf{K}}$. Choose a basis X_1, \ldots, X_n for \mathbf{K} over \mathbf{k} . Then $X_1 \otimes 1, \ldots, X_n \otimes 1$ is a basis for $\mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p$. Let (A_{\wp}) be an element of $\mathbf{A}_{\mathbf{K}}$. For each prime p of \mathbf{k} , let \wp_1, \ldots, \wp_g be the primes of \mathbf{K} that divide p. We have the projection $\pi_p : \mathbf{A}_{\mathbf{K}} \to \sum_{i=1}^{g} \mathbf{K}_{\wp_i}$, and the isomorphism $(\sigma \otimes I) : \mathbf{K} \otimes_{\mathbf{k}} \mathbf{k}_p \to \sum_{i=1}^{g} \mathbf{K}_{\wp_i}$. For each adele (A_{\wp}) of $\mathbf{A}_{\mathbf{K}}$, there exist unique coefficients $\gamma_i(p)$ in \mathbf{k}_p , for $1 \leq i \leq n$, so that

(6.4)
$$(\sigma \otimes I) \left(\sum_{i=1}^{n} X_i \otimes \gamma_i(p) \right) = \pi_p ((A_{\wp})) = (A_{\wp_1}, \dots, A_{\wp_g}).$$

The $\gamma_i(p)$ determine elements $\mathbf{a}_1, \ldots, \mathbf{a}_n$ in $\prod_p \mathbf{k}_p$ such that the *p*-coordinate of \mathbf{a}_i is $\gamma_i(p)$. Then $\sum_{i=1}^n X_i \otimes \mathbf{a}_i$ maps to (A_{\wp}) , but we need to check that each \mathbf{a}_i is an adele in $\mathbf{A}_{\mathbf{k}}$, *i.e.*, that $|\gamma_i(p)|_p \leq 1$ except for a finite number of primes *p*. Multiplying both sides of (6.4) by $(\sigma \otimes I)(X_j \otimes 1) = (\sigma_{\wp_1}(X_j), \ldots, \sigma_{\wp_g}(X_j))$ for $1 \leq j \leq n$, we obtain a system of *n* equations for each prime *p* of \mathbf{k} .

(6.5)
$$(\sigma \otimes I)\left(\sum_{i=1}^{n} X_i X_j \otimes \gamma_i(p)\right) = \left(A_{\wp_1} \sigma_{\wp_1}(X_j), \dots, A_{\wp_g} \sigma_{\wp_g}(X_j)\right), \ 1 \le j \le n.$$

Applying identity (6.3), we obtain

(6.6)
$$\sum_{i=1}^{n} \mathbf{S}_{\mathbf{K}/\mathbf{k}}(X_{i}X_{j})\gamma_{i}(p) = \sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}\wp_{k}/\mathbf{k}_{p}} \left(A_{\wp_{k}}\sigma_{\wp_{k}}(X_{j})\right), \qquad 1 \le j \le n.$$

Let *E* contain all primes *p* of **k** such that *p* is infinite, or $|\det(\mathbf{S}_{\mathbf{K}/\mathbf{k}}(X_iX_j))|_p \neq 1$, or *p* is divisible by a prime \wp of **K** for which either $|A|_{\wp} > 1$ or $|\sigma_{\wp}(X_j)|_{\wp} > 1$ for some *j*, $1 \leq j \leq n$. For all *p* not in *E*, the right side of (6.6) satisfies

$$\left\|\sum_{k=1}^{g} \mathbf{S}_{\mathbf{K}\wp_{k}/\mathbf{k}_{p}} \left(A_{\wp_{k}}\sigma_{\wp_{k}}(X_{j})\right)\right\|_{p}$$
$$\leq \max_{1\leq k\leq g} \left(\left\|\mathbf{S}_{\mathbf{K}_{\wp_{k}}/\mathbf{k}_{p}} \left(A_{\wp_{k}}\sigma_{\wp_{k}}(X_{j})\right)\right\|_{p}\right) \leq 1 \quad \text{for } 1\leq j\leq n.$$

In system (6.6) for p not in E, all the coefficients $\mathbf{S}_{\mathbf{K}/\mathbf{k}}(X_iX_j)$ are in \mathbf{o}_p , the determinant det $(\mathbf{S}_{\mathbf{K}/\mathbf{k}}(X_iX_j))$ is a unit of \mathbf{o}_p , and the right side terms are all in \mathbf{o}_p . Therefore, we have $\gamma_i(p)$ in \mathbf{o}_p for $1 \leq i \leq n$ and $p \notin E$, showing that \mathbf{a}_i is an adele. Finally, since we identify \mathbf{a} in $\mathbf{A}_{\mathbf{k}}$ with its image in $\mathbf{A}_{\mathbf{K}}$, every element of $\mathbf{A}_{\mathbf{K}}$ is of the form $(\sigma \otimes I)(\sum_{i=1}^n X_i \otimes \mathbf{a}_i) = \sum_{i=1}^n X_i \mathbf{a}_i$. This completes the proof.

LEMMA 6.3. The group $\mathbf{A}_{\mathbf{Q}}/\mathbf{Q}$ of adele classes is compact and there is a compact subset \mathbf{C} of $\mathbf{A}_{\mathbf{Q}}$ such that $\mathbf{A}_{\mathbf{Q}} = \mathbf{Q} + \mathbf{C}$.

PROOF. Since \mathbf{o}_p is compact for each finite rational prime p then the subset \mathbf{C} defined by

$$\mathbf{C} = \prod_{ ext{finite } p} \mathbf{o}_p imes \left[-rac{1}{2} \;,\; rac{1}{2}
ight] \subset \mathbf{A}_{\mathbf{Q}}$$

is a compact subset of the adele group $\mathbf{A}_{\mathbf{Q}}$. If **a** is an adele in $\mathbf{A}_{\mathbf{Q}}$ then there is a finite set E of primes so that $|\mathbf{a}|_p \leq 1$ if and only if p is not in E. For a finite prime p in E, we have $\mathbf{a}_p = u_p/p^{n_p}$, where u_p is an element of \mathbf{o}_p , and $n_p \geq 0$. Put $u_p = m_p + v_p p^{n_p}$ where m_p is a rational integer, $0 \leq m_p < p^{n_p}$, and v_p is an element of \mathbf{o}_p . Define α to be the rational number

$$\alpha = \sum_{p \in E} \frac{m_p}{p^{n_p}}$$

For each finite p not in E we have $|\mathbf{a} - \alpha|_p \leq \max(|\mathbf{a}|_p, |\alpha|_p) = 1$, and for each finite p in E, we have

$$|\mathbf{a} - \alpha|_p = \left| \frac{m_p + v_p p^{n_p}}{p^{n_p}} - \frac{m_p}{p^{n_p}} - \sum_{q \in E, \ q \neq p} \frac{m_q}{q^{n_q}} \right|_p = \left| v_p - \sum_{q \in E, \ q \neq p} \frac{m_q}{q^{n_q}} \right|_p \le 1.$$

At the infinite prime $p = \infty$, there exists a rational integer μ such that $|\mathbf{a} - \alpha - \mu|_{\infty} \leq \frac{1}{2}$. At all finite primes p, we have

$$|\mathbf{a} - \alpha - \mu|_p \le \max\left(|\mathbf{a} - \alpha|_p, \ |\mu|_p\right) \le 1.$$

We have shown that there is a rational number $\beta = \alpha + \mu$ so that $\mathbf{a} - \beta \in \mathbf{C}$. Then the continuous homomorphism $\mathbf{A} \to \mathbf{A}/\mathbf{Q}$ maps compact subset \mathbf{C} onto \mathbf{A}/\mathbf{Q} , so \mathbf{A}/\mathbf{Q} is compact

LEMMA 6.4. If **k** is a finite extension of **Q** then the group $\mathbf{A}_{\mathbf{k}}/\mathbf{k}$ of adele classes is compact, and there is a compact subset **C** of $\mathbf{A}_{\mathbf{k}}$ so that $\mathbf{A}_{\mathbf{k}} = \mathbf{k} + \mathbf{C}$.

PROOF. Let x_1, \ldots, x_n be a basis for **k** over **Q**. Then $\mathbf{A}_{\mathbf{k}} = x_1 \mathbf{A}_{\mathbf{Q}} + \cdots + x_n \mathbf{A}_{\mathbf{Q}}$ by lemma 6.2. If **a** is in $\mathbf{A}_{\mathbf{k}}$, let $\mathbf{a} = x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n$ where \mathbf{a}_i is in $\mathbf{A}_{\mathbf{Q}}$ for $1 \leq i \leq n$. By lemma 6.3, there is a compact subset \mathbf{C}' of $\mathbf{A}_{\mathbf{Q}}$ so that $\mathbf{A}_{\mathbf{Q}} = \mathbf{Q} + \mathbf{C}'$, so $\mathbf{a}_i = \beta_i + \mathbf{c}_i$, where β_i is in \mathbf{Q} and \mathbf{c}_i is in \mathbf{C}' , for $1 \leq i \leq n$, and

$$\mathbf{a} = (x_1\beta_1 + \dots + x_n\beta_n) + (x_1\mathbf{c}_1 + \dots + x_n\mathbf{c}_n) \in \mathbf{k} + x_1\mathbf{C}' + \dots + x_n\mathbf{C}'.$$

Subset $\mathbf{C} = x_1 \mathbf{C}' + \dots x_n \mathbf{C}'$ is a compact subset of $\mathbf{A}_{\mathbf{k}}$ and $\mathbf{A}_{\mathbf{k}} = \mathbf{k} + \mathbf{C}$. The continuous homomorphism $\mathbf{A}_{\mathbf{k}} \to \mathbf{A}_{\mathbf{k}}/\mathbf{k}$ maps \mathbf{C} onto $\mathbf{A}_{\mathbf{k}}/\mathbf{k}$, proving that $\mathbf{A}_{\mathbf{k}}/\mathbf{k}$ is compact.

Haar measure. Both \mathbf{k}_p and \mathbf{A}_k are locally compact topological groups so Haar measures may be defined. For infinite primes p, take the ordinary Lebesgue measure on \mathbf{R} or \mathbf{C} for the Haar measure m_p on \mathbf{k}_p . For finite primes, the measure m_p is chosen so that $m_p(\mathbf{o}_p) = 1$. The cosets of p^n are open subsets of compact subset \mathbf{o}_p , so the measure of each coset should be Np^{-n} . Take the smallest σ -algebra containing all cosets $\alpha + p^n$ for α in \mathbf{k}_p . Since every coset of p^n is the disjoint union of cosets of p^{n+k} for k > 0, then every union of cosets is equal to a union of cosets of the same power of p.

LEMMA 6.5. If S is a measurable set of \mathbf{k}_p and α is an non-zero element of \mathbf{k}_p then $m_p(\alpha S) = |\alpha|_p m_p(S)$.

PROOF. Let $|\alpha|_p = Np^{-m}$, so $\alpha = u\pi^m$ where u is in \mathbf{u}_p , $(\pi) = p$, and m may be positive, zero or negative. S is a union of cosets $\beta + p^n$ and we may take $n \ge \max(-m, 0)$. Then αS is a union of cosets $\alpha\beta + p^{n+m}$ where $n + m \ge 0$, and $m_p(\alpha + p^{n+m}) = Np^{-n-m} = |\alpha|_p m_p(\beta + p^n)$. This shows that $m_p(\alpha S) = |\alpha|_p m_p(S)$.

Haar measure on the ring of adeles. Take F to be a finite set of primes of \mathbf{k} containing all infinite primes. For each p, let E_p be an open subset of \mathbf{k}_p for which $m_p(E_p)$ is defined and for which $E_p = \mathbf{o}_p$ for all p not in F. Consider subsets \mathbf{E} of $\mathbf{A}_{\mathbf{k}}$ of the form $\mathbf{E} = \prod_p E_p$. Every adele of $\mathbf{A}_{\mathbf{k}}$ is in some \mathbf{E} . Define the measure $m(\mathbf{E})$ to be

$$m(\mathbf{E}) = \prod_{p} m\left(E_{p}\right).$$

The product is defined since $m_p(E_p) = m_p(\mathbf{o}_p) = 1$ for all but a finite number of p.

LEMMA 6.6. If **E** is a measurable set of $\mathbf{A}_{\mathbf{K}}$ and **i** is an element of $\mathbf{I}_{\mathbf{k}}$ then $m_p(\mathbf{iE}) = |\mathbf{i}| m(\mathbf{E})$.

PROOF. It is enough to check sets of the form $\mathbf{E} = \prod_p E_p$ such that $E_p = \mathbf{o}_p$ for p not in some finite set F_1 . Suppose that $|\mathbf{i}|_p = 1$ except for p in finite set F_2 . Then

$$\mathbf{iE} = \prod_{p \in F_1 \cup F_2} \mathbf{i}_p E_p \times \prod_{p \notin F_1 \cup F_2} \mathbf{o}_p$$

We have

$$m(\mathbf{i}\mathbf{E}) = \prod_{p \in F_1 \cup F_2} m_p(\mathbf{i}_p E_p) = \prod_{p \in F_1 \cup F_2} \left(|\mathbf{i}|_p m_p(E_p) \right)$$
$$= \prod_{p \in F_1 \cup F_2} |\mathbf{i}|_p \prod_{p \in F_1 \cup F_2} m_p(E_p) = |\mathbf{i}| m(\mathbf{E}).$$

Given an **R**-valued function $f : \mathbf{A}_{\mathbf{k}} \to \mathbf{R}$ such that $\overline{f}(\mathbf{a}) = \sum_{\alpha \in \mathbf{k}} f(\mathbf{a} + \alpha)$ exists, the value $\overline{f}(\mathbf{a})$ depends only the coset $\overline{\mathbf{a}}$ of \mathbf{a} in $\mathbf{A}_{\mathbf{k}}$. Define $\overline{f}(\overline{\mathbf{a}}) = \sum_{\alpha \in \mathbf{k}} f(\mathbf{a} + \alpha)$. If f is an integrable function on $\mathbf{A}_{\mathbf{k}}$ then

$$\int_{\mathbf{A}_{\mathbf{k}}} f(\mathbf{a}) \, da = \int_{\mathbf{A}_{\mathbf{k}}/\mathbf{k}} \sum_{\alpha \in \mathbf{k}} f(\mathbf{a} + \alpha) \, d\overline{\mathbf{a}} = \int_{\mathbf{A}_{\mathbf{k}}/\mathbf{k}} \overline{f}(\overline{\mathbf{a}}) \, d\overline{\mathbf{a}}$$

 A_k/k is a compact group, so it must have finite measure.

LEMMA 6.7. Let **S** be a measurable subset of $\mathbf{A}_{\mathbf{k}}$ such that $m(\mathbf{S}) > m(\mathbf{A}_{\mathbf{k}}/\mathbf{k})$. There exist \mathbf{a}_1 and \mathbf{a}_2 in **S** so that $\mathbf{a}_1 \neq \mathbf{a}_2$ and $\mathbf{a}_1 - \mathbf{a}_2$ is an element of \mathbf{k}^* .

PROOF. Let χ be the characteristic function of **S**. Then $\sum_{\alpha \in \mathbf{k}} \chi(\mathbf{a} + \alpha) > 1$ at some **a** because otherwise we would have

$$m(\mathbf{S}) = \int_{\mathbf{A}_{\mathbf{k}}} \chi(\mathbf{a}) \, d\mathbf{a} = \int_{\mathbf{A}_{\mathbf{k}}/\mathbf{k}} \left(\sum_{\alpha \in \mathbf{k}} \chi(\mathbf{a} + \alpha) \right) \, d\overline{\mathbf{a}} \le \int_{\mathbf{A}_{\mathbf{k}}/\mathbf{k}} 1 \, d\overline{\mathbf{a}} = m(\mathbf{A}_{\mathbf{k}}/\mathbf{k})$$

If $\sum_{\alpha \in \mathbf{k}} \chi(\mathbf{a} + \alpha) > 1$ then there exist α_1 and α_2 in \mathbf{k} so that $\alpha_1 \neq \alpha_2$, $\mathbf{a}_1 = \mathbf{a} + \alpha_1 \in \mathbf{S}$ and $\mathbf{a}_2 = \mathbf{a} + \alpha_2 \in \mathbf{S}$.

LEMMA 6.8. \mathbf{k} is a discrete subgroup of $\mathbf{A}_{\mathbf{k}}$.

PROOF. Let α be an element of **k**. Choose any prime p_0 of **k**. Then

$$\mathbf{U} = \left\{ \mathbf{a} \in \mathbf{A}_{\mathbf{k}} \mid |\mathbf{a} - \alpha|_{p} \in \mathbf{o}_{p} \text{ for } p \neq p_{0} \text{ and } |\mathbf{a} - \alpha|_{p_{0}} < \frac{1}{2} \right\}$$

is an open neighborhood of α , and $\mathbf{U} \cap \mathbf{k} = \{\alpha\}$.

54

PROPOSITION 6.9. Let $\mathbf{I}_{\mathbf{k}}^{0}$ be the subgroup of $\mathbf{I}_{\mathbf{k}}$ consisting of all ideles \mathbf{i} such that $|\mathbf{i}| = 1$. Then $\mathbf{I}_{\mathbf{k}}^{0}$ contains \mathbf{k}^{*} , and the group of idele classes $\mathbf{I}_{\mathbf{k}}^{0}/\mathbf{k}^{*}$ is compact.

PROOF. Lemma 6.6 insures that $\mathbf{A}_{\mathbf{k}}$ has arbitrarily large compact subsets, so choose a compact subset $\mathbf{C} \subset \mathbf{A}_{\mathbf{k}}$ so that $m(\mathbf{C}) > m(\mathbf{A}_{\mathbf{k}}/\mathbf{k})$. Subtraction $(\mathbf{a}, \mathbf{a}') \to \mathbf{a} - \mathbf{a}'$ and multiplication $(\mathbf{a}, \mathbf{a}') \to \mathbf{aa'}$ are continuous functions, so $\mathbf{C}' = \mathbf{C} - \mathbf{C}$ and $\mathbf{C}'' = \mathbf{C}'\mathbf{C}'$ are compact subsets of $\mathbf{A}_{\mathbf{k}}$. By lemma 6.8, $\mathbf{K} \cap \mathbf{C}''$ is a finite set. Let $\mathbf{K} \cap \mathbf{C}'' = \{\xi_1, \ldots, \xi_n\}$. Then $\mathbf{V} = \mathbf{C}' \cup \xi_1^{-1}\mathbf{C}' \cup \cdots \cup \xi_n^{-1}\mathbf{C}'$ is a compact subset of $\mathbf{A}_{\mathbf{k}}$.

For any finite set E of primes of \mathbf{k} , the subset

$$\mathbf{A}_{\mathbf{k}}(E) = \prod_{p \in E} \mathbf{k}_p \times \prod_{p \notin E} \mathbf{o}_p$$

is open in $\mathbf{A}_{\mathbf{k}}$, and $\mathbf{A}_{\mathbf{k}} \subset \bigcup_{E} \mathbf{A}_{\mathbf{k}}(E)$. There exists a finite number of sets E_{1}, \ldots, E_{m} so that compact set \mathbf{V} is contained in $\mathbf{A}_{\mathbf{k}}(E_{1}) \cup \ldots \mathbf{A}_{\mathbf{k}}(E_{m})$. If $E_{0} = E_{1} \cup \cdots \cup E_{m}$ then $\mathbf{A}_{\mathbf{k}}(E_{0}) = \mathbf{A}_{\mathbf{k}}(E_{1}) \cup \ldots \mathbf{A}_{\mathbf{k}}(E_{m})$, so \mathbf{V} is contained in $\mathbf{A}_{\mathbf{k}}(E_{0})$. For each p, the function $\mathbf{a} \to |\mathbf{a}|_{p}$ is continuous, so $|\mathbf{a}|_{p}$ is bounded on compact set \mathbf{V} . Since E_{0} is a finite set of primes, there exists a positive bound δ so that $|\mathbf{a}|_{p} \leq \delta$ for \mathbf{a} in \mathbf{V} and p in E_{0} , and we have

(6.7)
$$\mathbf{V} \subset \prod_{p \in E_0} \left\{ \alpha \in \mathbf{k}_p \mid |\alpha|_p \le \delta \right\} \times \prod_{p \notin E_0} \mathbf{o}_p.$$

Suppose that **c** is a unit of $\mathbf{A}_{\mathbf{k}}$ (*i.e.*, an element of $\mathbf{I}_{\mathbf{k}}$) such that **c** and \mathbf{c}^{-1} are in **V**. Then by (6.7) both **c** and \mathbf{c}^{-1} are elements of **W** defined by

(6.8)
$$\mathbf{W} = \prod_{p \in E_0} \left\{ \alpha \in \mathbf{k}^* \mid |\alpha|_p \le \delta \text{ and } |\alpha^{-1}|_p \le \delta \right\} \times \prod_{p \notin E_0} \mathbf{o}_p^*,$$

which is a compact subset of the idele group $\mathbf{I}_{\mathbf{k}}$. (Group \mathbf{o}_p^* is compact because it is the union of Np - 1 cosets of ideal p, and each coset is compact because ring \mathbf{o}_p is compact.)

Suppose that **i** is an idele in $\mathbf{I}_{\mathbf{k}}^{0}$. If we can show that **i** is in $\mathbf{k}^{*}\mathbf{W}$, then $\mathbf{I}_{\mathbf{k}}^{0}/\mathbf{k}^{*}$ will be the image of compact set **W**, which will prove the proposition. Both **iC** and $\mathbf{i}^{-1}\mathbf{C}$ are compact subsets of $\mathbf{A}_{\mathbf{k}}$. Since $|\mathbf{i}| = 1$, we have $m(\mathbf{i}\mathbf{C}) = m(\mathbf{C})$ and $m(\mathbf{i}^{-1}\mathbf{C}) = m(\mathbf{C})$. By lemma 6.7, there exist elements $\mathbf{i}\mathbf{a}_{1}$ and $\mathbf{i}\mathbf{a}_{2}$ in $\mathbf{i}\mathbf{C}$ so that $\mathbf{i}\mathbf{a}_{1} - \mathbf{i}\mathbf{a}_{2}$ is in \mathbf{k}^{*} . Put $\mathbf{c}_{1} = \mathbf{a}_{1} - \mathbf{a}_{2}$. Then \mathbf{c}_{1} is in \mathbf{C}' and $\mathbf{i}\mathbf{c}_{1}$ is in \mathbf{k}^{*} . Likewise, there exist elements $\mathbf{i}^{-1}\mathbf{b}_{1}$ and $\mathbf{i}^{-1}\mathbf{b}_{2}$ in $\mathbf{i}^{-1}\mathbf{C}$ so that $\mathbf{i}^{-1}\mathbf{b}_{1} - \mathbf{i}^{-1}\mathbf{b}_{2}$ is in \mathbf{k}^{*} . Put $\mathbf{c}_{2} = \mathbf{b}_{1} - \mathbf{b}_{2}$. Then \mathbf{c}_{2} is in \mathbf{k}^{*} .

The product $(\mathbf{ic}_1)(\mathbf{i}^{-1}\mathbf{c}_2) = \mathbf{c}_1\mathbf{c}_2$ is in $\mathbf{k}^* \cap \mathbf{C}''$, so $\mathbf{c}_1\mathbf{c}_2 = \xi_i$ for some *i*. We have $\mathbf{c}_1 \in \mathbf{C}' \subset \mathbf{V}$. Also we have $\mathbf{c}_1^{-1} = \xi^{-1}\mathbf{c}_2$ so $\mathbf{c}_1^{-1} \in \xi_i^{-1}\mathbf{C}' \subset \mathbf{V}$. Therefore \mathbf{c}_1^{-1} is in \mathbf{W} , and $\mathbf{i} = (\mathbf{ic}_1)\mathbf{c}_1^{-1}$ is in $\mathbf{k}^*\mathbf{W}$, which completes the proof.

LEMMA 6.10. If E is a finite set of primes of \mathbf{k} , let $\mathbf{k}^*(E)$ be the subgroup of E-units in \mathbf{k} .

$$\mathbf{k}^*(E) = \mathbf{k}^* \cap \mathbf{I}_{\mathbf{k}}(E).$$

Then $(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0})/\mathbf{k}^{*}(E)$ is compact.

PROOF. In the following diagram, the kernel of $\mu\iota$ is $\mathbf{k}^*(E)$, so induced homomorphism ι' is an isomorphism onto a subgroup of $\mathbf{I}^0_{\mathbf{k}}/\mathbf{k}^*$.

$$\begin{aligned} \mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0} & \stackrel{\iota}{\longrightarrow} & \mathbf{I}_{\mathbf{k}}^{0} \\ & \downarrow^{\mu'} & \downarrow^{\mu} \\ & \left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}\right) / \mathbf{k}^{*}(E) & \stackrel{\iota'}{\longrightarrow} & \mathbf{I}_{\mathbf{k}}^{0} / \mathbf{k}^{*} \end{aligned}$$

The map ι' is open because if V is an open subset of $(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0})/\mathbf{k}^{*}(E)$ then $\mu'^{-1}(V)$ is open in $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0}$, inclusion ι is an open mapping, and the natural homomorphism μ is an open mapping. Therefore the image $\iota'((\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0})/\mathbf{k}^{*}(E))$ is an open subgroup of $\mathbf{I}_{\mathbf{k}}^{0}/\mathbf{k}^{*}$. An open subgroup must be closed, so $\iota'((\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0})/\mathbf{k}^{*}(E))$ is a closed subgroup of compact group $\mathbf{I}_{\mathbf{k}}^{0}/\mathbf{k}^{*}$. Therefore $(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0})/\mathbf{k}^{*}(E)$ is isomorphic to a compact subgroup.

LEMMA 6.11. If E is a finite set of primes containing the infinite primes of **k** then there exists a positive real number ϵ so that $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0} = \mathbf{k}^{*}(E)C_{\epsilon}$, where C_{ϵ} is the compact set defined by

(6.9)
$$C_{\epsilon} = \left\{ \mathbf{i} \in \mathbf{I}_{\mathbf{K}}(E) \cap \mathbf{I}_{k}^{0} \mid \frac{1}{\epsilon} \leq |\mathbf{i}|_{p} \leq \epsilon \text{ for } p \in E \right\}.$$

PROOF. We need to show $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0} \subset \mathbf{k}^{*}(E)C_{\epsilon}$. We have the natural homomorphism

$$\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0} \xrightarrow{\mu'} \left(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0} \right) / \mathbf{k}^{*}(E)$$

onto a compact group. For any given \mathbf{i} in $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0}$, the values $|\mathbf{i}|_{p}$ for p in E are bounded because E is a finite set. For positive real ϵ , the sets C_{ϵ} form an open covering of $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0}$, so the images $\mu'(C_{\epsilon})$ form an open covering of compact group $\mathbf{I}_{\mathbf{k}}^{0}/\mathbf{k}^{*}(E)$. There exist a finite number of the sets $\mu'(C_{\epsilon})$ which cover $\mathbf{I}_{\mathbf{k}}^{0}/\mathbf{k}^{*}(E)$. If $\epsilon_{1} < \epsilon_{2}$ then $C_{\epsilon_{1}} \subset C_{\epsilon_{2}}$. Therefore there exists a single set C_{ϵ} so that $\mu'(C_{\epsilon})$ covers $\mathbf{I}_{\mathbf{k}}^{0}/\mathbf{k}^{*}(E)$. For any \mathbf{i} in $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{k}^{0}$, there exists an idele \mathbf{j} in C_{ϵ} so that $\mu'(\mathbf{i}) = \mu'(\mathbf{j})$, so $\mu'(\mathbf{i}\mathbf{j}^{-1}) = 1$. The kernel of μ' is $\mathbf{k}^{*}(E)$, so there exists an element α in $\mathbf{k}^{*}(E)$ so that $\mathbf{i} = \alpha \mathbf{j}$. Therefore $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0} \subset \mathbf{k}^{*}(E)C_{\epsilon}$. LEMMA 6.12. \mathbf{k}^* is a discrete subgroup of $\mathbf{I}_{\mathbf{k}}$.

PROOF. The set U defined by

(6.10)
$$U = \left\{ \mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid |\mathbf{i} - 1|_p \le 1 \text{ for } p \text{ finite, } |\mathbf{i} - 1|_p < \frac{1}{2} \text{ for } p \text{ infinite} \right\}$$

is an open subset of \mathbf{I}_k which contains no element of \mathbf{k}^* other than 1.

PROPOSITION 6.13 (DIRICHLET UNIT THEOREM). If E is a finite set of pirmes of **k** containing all the infinite primes and if the number of elements in E is s + 1, then $\mathbf{k}^*(E)$ is the product of a finite subgroup (the roots of unity in \mathbf{k}^*) and a free abelian group on s generators. That is, there exist in $\mathbf{k}^*(E)$ an m-th root of unity ω and elements $\eta_1, \ldots \eta_s$ such that every element η of $\mathbf{k}^*(E)$ may be uniquely expressed as a product

$$\eta = \omega^{\nu_0} \eta_1^{\nu_1} \dots \eta_s^{\nu_s} \qquad 0 \le \nu_o < m \text{ and } \nu_i \in \mathbf{Z} \ (1 \le i \le s)$$

PROOF. Let E contain infinite primes p_0, \ldots, p_r . If E contains any finite primes then let them be p_{r+1}, \ldots, p_s . Let A_s be defined by

$$A_{s} = \left\{ (a_{0}, \dots, a_{s}) \in \left(\mathbf{R}^{+} \right)^{s+1} \ \middle| \ \prod_{i=0}^{s} a_{i} = 1 \right\}$$

where \mathbf{R}^+ denotes the group of positive real numbers. Let $f : \mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^0 \to A_s$ be defined by

$$f(\mathbf{i}) = (|\mathbf{i}|_{p_0}, \ldots, |\mathbf{i}|_{p_s}).$$

The kernel of f is the group of \mathbf{i} such that $|\mathbf{i}|_p = 1$ for all primes p, so ker(f) is compact, and ker $(f) \cap \mathbf{k}^*(E)$ must be a finite group because $\mathbf{k}^*(E)$ is discrete. Any finite subgroup of $\mathbf{k}^*(E)$ must consist of roots of unity; conversely, any root of unity in $\mathbf{k}^*(E)$ must be in the kernel of f. Let m-th of unity ω generate the group of roots of unity in $\mathbf{k}^*(E)$.

Let B and H be the images in A_s of $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^0$ and $\mathbf{k}^*(E)$, respectively. H is a discrete subgroup of A_s , because the only elements of $\mathbf{k}^*(E)$ in the open neighborhood

$$\left\{ (a_0, \dots, a_s) \quad \middle| \quad |a_i - 1| < \frac{1}{2} \quad 0 \le i \le s \right\}$$

of $(1, \ldots, 1)$ are in the finite set $\ker(f) \cap \mathbf{k}^*(E)$. For subgroup B we have

$$B = \left\{ (b_0, \dots, b_s) \in A_s \mid b_i > 0 \text{ for } 0 \le i \le r; \quad b_i = Np_i^{u_i}, \ u_i \in \mathbf{Z} \text{ for } r < i \le s \right\}$$

By lemma 6.11, there exists a compact set C_{ϵ} such $\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0} = \mathbf{k}^{*}(E)C_{\epsilon}$. Then

$$B = f(\mathbf{I}_{\mathbf{k}}(E) \cap \mathbf{I}_{\mathbf{k}}^{0}) = f(\mathbf{k}^{*}(E))f(C_{\epsilon}) = HC,$$

where $C = f(V_{\epsilon})$ is compact.

We next show that $A_s = BV$ where V is compact. Put

$$V = \left\{ (a_0, \dots, a_s) \in A_s \ \middle| \ a_i = 1 \ (0 \le i < r); \\ \prod_{i=r+1}^s (Np_i)^{-1} \le a_r \le 1; \quad 1 \le a_i \le Np_i \ (r < i \le s) \right\}.$$

Then V is certainly compact. If $a \in A_s$ then choose $b \in B$ so that

$$(ba)_i = 1 \qquad 0 \le i < r$$

$$1 \le |ba|_i \le Np_i \qquad r < i \le s$$

$$b_r = \prod_{i=r+1}^s b_i^{-1}.$$

The condition on b_r ensures that $\prod_{i=0}^{s} b_i = 1$. We have $a = b^{-1}(ba)$. To show that ba is in V, it is only necessary to check coordinate $(ba)_r$. We have $a_r = \prod_{i \neq r} a_i^{-1}$ and $b_r = \prod_{i \neq r} b_i^{-1}$, so $(ba)_r = \prod_{i \neq r} (ba)_i^{-1}$. Since $(ba)_i = 1$ for $0 \le i < r$ we have $(ba)_r = \prod_{r < i \le s} (ba)_i^{-1}$. Since $Np_i^{-1} \le |ba|_i \le 1$ for $r < i \le s$, then

$$\prod_{r < i \le s} \mathbf{N} p_i^{-1} \le (ba)_r \le 1.$$

This shows that ba is in V, and that $A_s = BV$. Combining $A_s = BV$ and B = HC gives

$$A_s = HW,$$

where W = CV is a compact subset of A_s .

Let V_s be the s-dimensional vector space over **R** defined by

$$V_s = \left\{ (x_0, \dots, x_s) \in \mathbf{R}^{s+1} \mid \sum_{i=0}^s x_i = 0 \right\}$$

We have the isomorphism $\psi: A_s \to V_s$ defined by

$$\psi(a_0,\ldots,a_s) = (\log a_0,\ldots,\log a_s).$$

Since $A_s = HW$, we have $V_s = \psi(A_s) = \psi(HW) = \psi(H) + \psi(W)$. Put $L = \psi(H)$ and $W' = \psi(W)$. Then $V_s = L + W'$

where L is a discrete subgroup and W' is compact. We will show that L is a free abelian group on s generators.

Let y_1, \ldots, y_t be a maximal linearly independent subset of L. For $y \in L$, there are real α_i so that

$$y = \sum_{i=1}^{r} \alpha_i y_i = \sum_{i=1}^{r} [\alpha_i] y_i + \sum_{i=1}^{r} \{\alpha_i\} y_i,$$

where $[\alpha_i] \in \mathbf{Z}$ and $0 \leq \{\alpha_i\} < 1$ for i = 1, ..., t. The term $\sum_{i=1}^r \{\alpha_i\} y_i$ is in the intersection of L and a compact subset of V_s . Therefore, there is a finite set L_0 such that

$$L = \mathbf{Z}y_1 + \dots + \mathbf{Z}y_t + L_0.$$

If t < s, then y_1, \ldots, y_t can be extended to a basis $y_1, \ldots, y_t, y_{t+1}, \ldots, y_s$ of V_s . Since $V_s = L + W'$ with W' compact, there is a constant c so that for any v in V_s , we have

$$v = \sum_{i=1}^{t} m_i y_i + \sum_{i=1}^{s} \alpha_i y_i$$
 where $\alpha_i < c$.

But this is impossible since $\alpha_{t+1}y_{t+1}$ must have unbounded coefficient α_{t+1} . Therefore t = s.

Let the elements of finite set L_0 be z_1, \ldots, z_{ν} . By the pigeon-hole principle, there are two distinct numbers j and j' so that $0 \leq j < j' \leq \nu$ and $jz_1 - j'z_1 = \sum_{i=1}^{s} m_i y_i$ with $m_i \in \mathbb{Z}$. If we replace each y_i by $(j-j')^{-1}y_i$ then z_1 is an element of $\mathbb{Z}y_1 + \ldots \mathbb{Z}y_s$, and we have $L = \mathbb{Z}y_1 + \ldots \mathbb{Z}y_s + L'_0$ where L'_0 contains $\nu - 1$ elements. After a finite number of steps, we arrive at a set of free generators y_1, \ldots, y_s for L.

Choose elements $\eta_1, \ldots \eta_s$ in $\mathbf{k}^*(E)$ so that $\psi(f(\eta_i)) = y_s$. If $\eta \in \mathbf{k}^*(E)$ then there are unique integers ν_1, \ldots, ν_s so that $\psi(f(\eta)) = \sum_{i=1}^s \nu_i y_i$, so $\eta \prod_{i=1}^s \eta^{-\nu_i}$ is in ker $(f) = \langle \omega \rangle$. Therefore

$$\eta = \omega^{\nu_0} \eta_1^{\nu_1} \dots \eta_s^{\nu_s}.$$

This concludes the proof of the unit theorem.