CHAPTER IV

THEOREM 1: PROOF FOR CYCLIC EXTENSIONS

Non-degeneracy of the trace in separable extensions. In this section, \mathbf{k} may be either a finite field or an algebraic number field. (The result for finite fields is needed in the proof of proposition 4.7.) $\mathbf{S}_{\mathbf{K} / \mathbf{k}}(x y)$ is a \mathbf{k}-bilinear form of \mathbf{K} represented by matrix $\mathbf{S}_{i j}=\mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(\alpha_{i} \alpha_{j}\right)$ with respect to basis $\alpha_{1}, \ldots, \alpha_{n}$ of \mathbf{K} over \mathbf{k}. If $x=a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}$ and $y=b_{1} \alpha_{1}+\cdots+b_{n} \alpha_{n}$, then

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{K} / \mathbf{k}}(x y)=\mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \alpha_{i} \alpha_{j} b_{j}\right) \\
&=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(\alpha_{i} \alpha_{j}\right) b_{j}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \mathbf{S}_{i j} b_{j}=\left(\mathbf{X}^{t}\right) \mathbf{S Y} .
\end{aligned}
$$

Lemma 4.1. If \mathbf{K} / \mathbf{k} is a finite normal separable extension with Galois group $G=G(\mathbf{K}: \mathbf{k})$ then

$$
\mathbf{N}_{\mathbf{K} / \mathbf{k}} \alpha=\prod_{\sigma \in G} \alpha^{\sigma} \quad \text { and } \quad \mathbf{S}_{\mathbf{K} / \mathbf{k}} \alpha=\sum_{\sigma \in G} \alpha^{\sigma} .
$$

Proof. Let $[\mathbf{k}(\alpha): \mathbf{k}]=n$ and $[\mathbf{K}: \mathbf{k}(\alpha)]=m$. Let G be the Galois group of \mathbf{K} over \mathbf{k} and H be the subgroup of G that fixes $\mathbf{k}(\alpha)$. Let $\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ be a set of representatives for the distinct right cosets of H in G. The minimum polynomial $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ of α over \mathbf{k} has factorization $\left(x-\alpha^{\rho_{1}}\right) \ldots\left(x-\alpha^{\rho_{n}}\right)$, so $a_{1}=-\sum_{k=1}^{n} \alpha^{\rho_{k}}$ and $a_{n}=(-1)^{n} \prod_{k=1}^{n} \alpha^{\rho_{k}}$. The matrix representing T_{α} as a linear transformation of $\mathbf{k}(\alpha)$ with respect to basis $1, \alpha, \ldots, \alpha^{n-1}$ is

$$
\mathbf{T}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a^{n} \\
1 & 0 & \ldots & 0 & -a_{n-1} \\
0 & 1 & \ldots & 0 & -a_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -a_{1}
\end{array}\right)
$$

Then $\mathbf{N}_{\mathbf{k}(\alpha) / \mathbf{k}} \alpha=\operatorname{det}(\mathbf{T})=(-1)^{n+1}\left(-a_{n}\right)=\prod_{k=1}^{n} \alpha^{\rho_{k}}$ and $\mathbf{S}_{\mathbf{k}(\alpha) / \mathbf{k}} \alpha=\operatorname{trace}(\mathbf{T})=$ $-a_{1}=\sum_{k=1}^{n} \alpha^{\rho_{k}}$. We have

$$
\begin{aligned}
& \mathbf{N}_{\mathbf{K} / \mathbf{k}} \alpha=\mathbf{N}_{\mathbf{k}(\alpha) / \mathbf{k}} \mathbf{N}_{\mathbf{K} / \mathbf{k}(\alpha)} \alpha=\mathbf{N}_{\mathbf{k}(\alpha) / \mathbf{k}} \alpha^{m}, \\
& \mathbf{S}_{\mathbf{K} / \mathbf{k}} \alpha=\mathbf{S}_{\mathbf{k}(\alpha) / \mathbf{k}} \mathbf{S}_{\mathbf{K} / \mathbf{k}(\alpha)} \alpha=m \mathbf{S}_{\mathbf{k}(\alpha) / \mathbf{k}} \alpha
\end{aligned}
$$

Let $H=\left\{\tau_{1}, \ldots, \tau^{m}\right\}$. Then the $n m$ products $\tau_{j} \rho_{k}$ run over G. We have

$$
\begin{gathered}
\prod_{\sigma \in G} \alpha^{\sigma}=\prod_{j=1}^{m} \prod_{k=1}^{n} \alpha^{\tau_{j} \rho_{k}}=\left(\prod_{k=1}^{n} \alpha^{\rho_{k}}\right)^{m}=\mathbf{N}_{\mathbf{K} / \mathbf{k}} \alpha \\
\sum_{\sigma \in G} \alpha^{\sigma}=\sum_{j=1}^{m} \sum_{k=1}^{n} \alpha^{\tau_{j} \rho_{k}}=m \sum_{k=1}^{n} \alpha^{\rho_{k}}=\mathbf{S}_{\mathbf{K} / \mathbf{k}} \alpha .
\end{gathered}
$$

Lemma 4.2. If \mathbf{K} / \mathbf{k} is a finite normal separable extension then matrix \mathbf{S} is non-singular.

Proof. Let $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be the automorphisms in Galois group $G(\mathbf{K}: \mathbf{k})$. By lemma 4.1, $\mathbf{S}_{i j}=\sum_{k=1}^{n} \alpha_{i}^{\sigma_{k}} \alpha_{j}^{\sigma_{k}}$, so $\mathbf{S}_{i j}=\mathbf{A} \mathbf{A}^{t}$ where $\mathbf{A}_{i k}=\alpha_{i}^{\sigma_{k}}$. With respect to a simple basis $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$, \mathbf{A} has the form $\mathbf{A}_{i k}=\left(\alpha^{\sigma_{k}}\right)^{i-1}$, which is a Vandermonde matrix $V\left(\alpha^{\sigma_{1}}, \ldots, \alpha^{\sigma_{n}}\right)$. There are n distinct conjugates of generator α, so \mathbf{A} is non-singular and so is \mathbf{S}.

Lemma 4.3. Let \mathbf{K} be a finite normal extension \mathbf{k}. Matrix $\left(\mathbf{S}_{i j}\right)$ is non-singular if and only if for every non-zero element y of \mathbf{K} there exists an element x of \mathbf{K} so that $\mathbf{S}_{\mathbf{K} / \mathbf{k}}(x y) \neq 0$.

Proof. $\mathbf{S}_{\mathbf{K} / \mathbf{k}}(x y)=\left(\mathbf{X}^{t}\right) \mathbf{S Y}$. Suppose \mathbf{S} non-singular. If $y \neq 0$ then $\mathbf{S Y} \neq 0$, so there is a vector \mathbf{X} so that $\left(\mathbf{X}^{t}\right) \mathbf{S Y} \neq 0$. conversely, if \mathbf{S} is singular then $\mathbf{S Y}=0$ for some non-zero y, and $\mathbf{S}_{\mathbf{K} / \mathbf{k}}(x y)=0$ for every x in \mathbf{K}.

Proposition 4.4. Let \mathbf{L} be a finite separable (not necessarily normal) extension of \mathbf{k}. Then the trace $\mathbf{S}_{\mathbf{L} / \mathbf{k}}(x y)$ is non-degenerate: for every non-zero y in \mathbf{L} there is an x in \mathbf{L} so that $\mathbf{S}_{\mathbf{L} / \mathbf{k}}(x y) \neq 0$.

Proof. Let y be a non-zero element of \mathbf{L}. Then \mathbf{L} is contained in a finite normal extension \mathbf{K}, and

$$
\mathbf{S}_{\mathbf{K} / \mathbf{k}}(x y)=\mathbf{S}_{\mathbf{L} / \mathbf{k}}\left(\mathbf{S}_{\mathbf{K} / \mathbf{L}}(x y)\right)=\mathbf{S}_{\mathbf{L} / \mathbf{k}}\left(\mathbf{S}_{\mathbf{K} / \mathbf{L}}(x) y\right)
$$

Choose x in \mathbf{K} so that $\mathbf{S}_{\mathbf{K} / \mathbf{k}}(x y) \neq 0$. Then $\mathbf{S}_{\mathbf{K} / \mathbf{L}}(x)$ is the desired element of \mathbf{L}.
Remark. In lemma 4.5, let the images modulo \wp and p of elements β in \mathbf{O}_{\wp} and b in \mathbf{o}_{p} be denoted by $\bar{\beta}$ and \bar{b}, respectively.

Lemma 4.5. Suppose that p-adic extension $\mathbf{K}_{\wp} / \mathbf{k}_{p}$ is not ramified. Let $F(q)$ denote finite field \mathbf{o}_{p} / p where $q=N p$; let $F\left(q^{f}\right)$ denote finite field \mathbf{O}_{\wp} / \wp where $q^{f}=N_{\wp}$. Then

$$
\overline{\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha}=\mathbf{N}_{F\left(q^{f}\right) / F(q)} \bar{\alpha} \quad \text { and } \quad \overline{\mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha}=\mathbf{S}_{F\left(q^{f}\right) / F(q)} \bar{\alpha} .
$$

Proof. Choose w_{1}, \ldots, w_{f} in \mathbf{O}_{\wp} so that $\overline{w_{1}}, \ldots, \overline{w_{f}}$ is a basis for $F\left(q^{f}\right)$ over $F(q)$. Let $p=(\pi)$ for $\pi \in \mathbf{o}_{p}$. Suppose $a_{1} w_{1}+\cdots+a_{n} w_{n}=0$ with $a_{i} \in \mathbf{k}_{p}$. After multiplying by a power of π, we may take the coefficients a_{i} in \mathbf{o}_{p}. Then each coefficient a_{i} is 0 modulo p, so $a_{i}=\pi a_{i}^{\prime}$ with a_{i}^{\prime} in \mathbf{o}_{p}. Dividing by π, we have $a_{1}^{\prime} w_{1}+\cdots+a_{n}^{\prime} w_{n}=0$. In this fashion we can show that each a_{i} is divisible by an arbitrarily large power of π, so each $a_{i}=0$ and w_{1}, \ldots, w_{f} must be linearly independent over \mathbf{k}_{p}. We have $\left[\mathbf{K}_{\wp} / \mathbf{k}_{p}\right]=f$, so w_{1}, \ldots, w_{f} is a basis of \mathbf{K}_{\wp} over \mathbf{k}_{p}. With respect basis w_{1}, \ldots, w_{f}, let the matrix representing T_{α} be $\left(a_{i j}\right)$. With respect to basis $\overline{w_{1}}, \ldots, \overline{w_{f}}$, the matrix representing $T_{\bar{\alpha}}$ as a linear transformation of \mathbf{O}_{\wp} / \wp over \mathbf{o}_{p} / p will be $\left(\overline{a_{i j}}\right)$. We have $\overline{\operatorname{det}\left(a_{i j}\right)}=\operatorname{det}\left(\overline{a_{i j}}\right)$ and $\overline{\operatorname{trace}\left(a_{i j}\right)}=$ trace $\left(\overline{a_{i j}}\right)$, which proves the lemma.

Every unit is a norm in unramified p-adic extensions. If \mathbf{K} / \mathbf{k} is a finite extension of algebraic numbers then \mathbf{O}_{\wp} / \wp is a finite field containing $\mathrm{N} \wp$ elements; \mathbf{o}_{p} / p is finite field containing $\mathrm{N} p$ elements. Let these finite fields be denoted by $F\left(q^{f}\right)$ and $F(q)$, where $q=\mathrm{N} p$ and $q^{f}=\mathrm{N} \wp$.

Lemma 4.6. Every element in $F(q)$ is the norm of an element in $F\left(q^{f}\right)$.
Proof. The Galois group of $F\left(q^{f}\right)$ over $F(q)$ is generated by σ where $\alpha^{\sigma}=\alpha^{q}$. Then

$$
\mathbf{N}_{F\left(q^{f}\right) / F(q)}(\alpha)=\alpha \alpha^{q} \ldots \alpha^{q^{n-1}}=\alpha^{1+q+\cdots+q^{n-1}}=\alpha^{\left(\frac{q^{n}-1}{q-1}\right)}
$$

$\mathbf{N}_{F\left(q^{f}\right) / F(q)}(0)=0$, so we have to show that the $q-1$ non-zero elements of $F(q)$ are norms. Take α to be a generator of $F\left(q^{f}\right)^{*}$. Then

$$
\mathbf{N}_{F\left(q^{f}\right) / F(q)}\left(\alpha^{u}\right)=\alpha^{u\left(\frac{q^{n-1}}{q-1}\right)}
$$

For $u=0,1, \ldots, q-2$ we have $0 \leq u\left(q^{n}-1\right) /(q-1)<q^{n}-1$. Since α has order $q^{n}-1$, there are $q-1$ distinct values of $\mathbf{N}_{F\left(q^{f}\right) / F(q)}\left(\alpha^{u}\right)$.

Proposition 4.7. If \mathbf{K}_{\wp} is an finite unramified extension of p-adic field \mathbf{k}_{p}, then every unit in \mathbf{k}_{p} is the norm of an element in \mathbf{K}_{\wp}.

Proof. Let β be a unit in \mathbf{k}_{p}. By lemma 4.6, there is an α_{1} in \mathbf{K}_{\wp} so that $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha_{1}=\beta(\bmod p)$. Suppose that we have already found α_{n} in \mathbf{K}_{\wp} so that
$\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha_{n}=\beta\left(\bmod p^{n}\right)$. Let $p=(\pi)$. The extension $\mathbf{K}_{\wp} / \mathbf{k}_{p}$ is not ramified, so $p \mathbf{O}_{\wp}=\wp$, and $\wp^{n}=\pi^{n} \mathbf{O}_{\wp}$ for $n \geq 0$. Then $\left(\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha_{n}\right)^{-1} \beta=1+\delta \pi^{n}\left(\bmod p^{n+1}\right)$. Put $\alpha_{n+1}=\alpha_{n}\left(1+x \pi^{n}\right)$. The condition $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha_{n+1}=\beta\left(\bmod p^{n+1}\right)$ will be satisfied if we can find x in \mathbf{K}_{\wp} so that

$$
\begin{equation*}
\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}\left(1+x \pi^{n}\right)=1+\delta \pi^{n}\left(\bmod p^{n+1}\right) . \tag{4.1}
\end{equation*}
$$

Let $\left(x_{i j}\right)$ be the matrix representing T_{x} in \mathbf{K}_{\wp} over \mathbf{k}_{p} with respect to some basis. then the matrix representing $T_{1+x \pi^{n}}$ is

$$
\left(\begin{array}{cccc}
1+x_{11} \pi^{n} & x_{12} \pi^{n} & \ldots & x_{1 f} \pi^{n} \\
x_{21} \pi^{n} & 1+x_{22} \pi^{n} & \ldots & x_{2 f} \pi^{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{f 1} \pi^{n} & x_{f 2} \pi^{n} & \ldots & 1+x_{f f} \pi^{n}
\end{array}\right)
$$

We therefore have

$$
\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}\left(1+x \pi^{n}\right)=1+\left(x_{11}+\cdots+x_{f f}\right) \pi^{n}=1+\pi^{n} \mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} x\left(\bmod p^{n+1}\right)
$$

Condition (4.1) is therefore

$$
1+\pi^{n} \mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} x=1+\delta \pi^{n}\left(\bmod p^{n+1}\right)
$$

or

$$
\mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} x=\delta(\bmod p) .
$$

By lemma 4.3, the trace $\mathbf{S}: \mathbf{O}_{\wp} / \wp \rightarrow \mathbf{o}_{p} / p$ is non-degenerate; there exists an element $\gamma \in \mathbf{O}_{\wp}$ so that $\mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \gamma=\epsilon \neq 0(\bmod p)$. Then $\mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \gamma \epsilon^{-1}=1(\bmod p)$, and $\mathbf{S}_{\mathbf{K}_{\varphi} / \mathbf{k}_{p}} \gamma \epsilon^{-1} \delta=\delta(\bmod p)$. Therefore $\alpha_{n+1}=\alpha_{n}\left(1+\gamma \epsilon^{-1} \delta \pi^{n}\right)$ satisfies (4.1). The sequence $\left\{\alpha_{n}\right\}$ converges to a limit α in \mathbf{K}_{\wp} satisfying $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha=\beta$.

Exponential and logarithm functions. In the following discussion of exponential and logarithm functions, let \wp denote a prime of \mathbf{k} and $(p)=\wp \cap \mathbf{Z}$ the rational prime that \wp divides, with $p>0$.

Lemma 4.8. Let \wp be a finite prime of \mathbf{k}. The series

$$
\begin{equation*}
\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k}}{k!}+\ldots \tag{4.2}
\end{equation*}
$$

converges for x in \mathbf{k}_{\wp} if $\operatorname{ord}_{\wp}(x)>\frac{b}{p-1}$ where $b=\operatorname{ord}_{\wp}(p)$.
Proof. The series converges if and only if $\lim _{k \rightarrow \infty}\left|x^{k} / k!\right|_{\wp}=0$. The exact power to which rational prime p divides k ! is

$$
\operatorname{ord}_{p}(k!)=\left[\frac{k}{p}\right]+\left[\frac{k}{p^{2}}\right]+\left[\frac{k}{p^{3}}\right]+\ldots
$$

Let $k=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{r} p^{r}$ where $0 \leq a_{i}<p$. Then

$$
\begin{aligned}
{\left[\frac{k}{p}\right] } & =a_{1}+a_{2} p+\ldots+a_{r} p^{r-1} \\
{\left[\frac{k}{p^{2}}\right] } & =r a_{2}+\ldots+a_{r} p^{r-2}
\end{aligned}
$$

Summing each column, we have

$$
\operatorname{ord}_{p}(k!)=a_{0} \frac{p^{0}-1}{p-1}+a_{1} \frac{p^{1}-1}{p-1}+a_{2} \frac{p^{2}-1}{p-1}+\cdots+a_{r} \frac{p^{r}-1}{p-1},
$$

or

$$
\operatorname{ord}_{p}(k!)=\frac{k-\left(a_{0}+a_{1}+\cdots+a_{r}\right)}{p-1} \leq \frac{k-1}{p-1} .
$$

Since $b=\operatorname{ord}_{\wp}(p)$, we have

$$
\begin{equation*}
\operatorname{ord}_{\wp>}(k!)=b\left(\frac{k-\left(a_{0}+a_{1}+\cdots+a_{r}\right)}{p-1}\right) \leq b\left(\frac{k-1}{p-1}\right) . \tag{4.3}
\end{equation*}
$$

Then

$$
\begin{aligned}
\operatorname{ord}_{\wp}\left(x^{k} / k!\right) & =k \operatorname{ord}_{\wp}(x)-\operatorname{ord}_{\wp}(k!) \\
& \geq k \operatorname{ord}_{\wp}(x)-b\left(\frac{k-1}{p-1}\right)=k\left(\operatorname{ord}_{\wp}(x)-\frac{b}{p-1}\right)+\frac{b}{p-1},
\end{aligned}
$$

so $\operatorname{ord}_{\wp}\left(x^{k} / k!\right) \rightarrow \infty$ if $\operatorname{ord}_{\wp}(x)-b /(p-1)>0$.
Lemma 4.9. If $\operatorname{ord}_{\wp}(x)>\frac{b}{p-1}$ then $\operatorname{ord}_{\wp}(\exp (x)-1)=\operatorname{ord}_{\wp}(x)$.
Proof. We have

$$
\exp (x)-1=x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k}}{k!}+\ldots
$$

We need to show $\left|x^{k} / k!\right|_{\wp}<|x|_{\wp}$, or $\left|x^{k-1} / k!\right|_{\wp}<1$ for $k \geq 2$. We have $\operatorname{ord}_{\wp}(k!) \leq$ $b\left(\frac{k-1}{p-1}\right)$, so if $\operatorname{ord}_{\wp}(x)>\frac{b}{p-1}$ and $k \geq 2$ then

$$
\operatorname{ord}_{\wp}\left(\frac{x^{k-1}}{k!}\right)=(k-1) \operatorname{ord}_{\wp}(x)-\operatorname{ord}_{\wp}(k!)>(k-1) \frac{b}{p-1}-b \frac{k-1}{p-1}=0 .
$$

Lemma 4.10. Let \wp be a finite prime of \mathbf{k}. The infinite series

$$
\log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots-\frac{x^{k}}{k}-\ldots
$$

converges for x in \mathbf{k}_{\wp} if $|x|_{\wp}<1$.
Proof. If $\operatorname{ord}_{\wp}(x)>0$ we show that $\left|x^{k} / k\right|_{\wp} \rightarrow 0$, or $k \operatorname{ord}_{\wp}(x)-\operatorname{ord}_{\wp}(k) \rightarrow \infty$. Let $k=u p^{v}$ where $(u, p)=1$. Then $k=p^{\log _{p}(k)}$, so $\operatorname{ord}_{\wp}(k)=b v \leq b \log _{p}(k)$. If $\operatorname{ord}(x)>0$ then for large k we have $\frac{\log _{p}(k)}{k}<\frac{1}{2 b} \operatorname{ord}_{\wp}(x)$, and

$$
\begin{aligned}
k \operatorname{ord}_{\wp}(x)-\operatorname{ord}_{\wp}(k) & =k\left(\operatorname{ord}_{\wp}(x)-\frac{\operatorname{ord}_{\wp}(k)}{k}\right) \\
& \geq k\left(\operatorname{ord}_{\wp}(x)-\frac{b \log _{p}(k)}{k}\right)>\frac{k}{2} \operatorname{ord}_{\wp}(x) \rightarrow \infty
\end{aligned}
$$

LEMMA 4.11. If $\operatorname{ord}_{\wp}(x)>\frac{b}{p-1}$ then $\operatorname{ord}_{\wp}(\log (1-x))=\operatorname{ord}_{\wp}(x)$.
Proof. If $\operatorname{ord}_{\wp}(x)>\frac{b}{p-1}$, we need to show

$$
\left|\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+\frac{x^{k}}{k}+\ldots\right|_{\wp}<|x|_{\wp} .
$$

It is enough to show $\left|x^{k} / k\right|_{\wp}<|x|_{\wp}$, or

$$
k \operatorname{ord}_{\wp}(x)-\operatorname{ord}_{\wp}(k)>\operatorname{ord}_{\wp}(x) \quad \text { for } k \geq 2 .
$$

Put $k=u p^{v}$, where $(u, p)=1$. We need $u p^{v} \operatorname{ord}_{\wp}(x)-b v>\operatorname{ord}_{\wp}(x)$, or

$$
\left(u p^{v}-1\right) \operatorname{ord}_{\wp}(x)-b v>0
$$

Since $u \geq 1$, we need $\left(p^{v}-1\right) \operatorname{ord}_{\wp}(x)-b v>0$, or

$$
\left(\frac{p^{v}-1}{p-1}\right) \operatorname{ord}_{\wp}(x)-\frac{b v}{p-1}>0 .
$$

If $\operatorname{ord}_{\wp}(x)>\frac{b}{p-1}$ then we need

$$
\left(\frac{p^{v}-1}{p-1}\right)\left(\frac{b}{p-1}\right)-\frac{b v}{p-1} \geq 0
$$

or

$$
\frac{p^{v}-1}{p-1}-v=\left(1+p+\cdots+p^{v-1}\right)-v \geq 0
$$

The last inequality is certainly valid, since $p \geq 2$ and $v \geq 0$.

Lemma 4.12. For s and t in \mathbf{k}_{\wp}, if $\operatorname{ord}_{\wp}(s)>\frac{b}{p-1}$ and $\operatorname{ord}_{\wp}(t)>\frac{b}{p-1}$ then

$$
\begin{aligned}
\log ((1-s)(1-t)) & =\log (1-s)+\log (1-t) \\
\exp (\log (1-s)) & =1-s \\
\exp (s) \exp (t) & =\exp (s+t) \\
\log (\exp (s)) & =s
\end{aligned}
$$

Proof. That each of the above series converges follows from the four previous lemmas.

Lemma 4.13. If $n>0$ and $\operatorname{ord}_{\wp}(n)=a$, then every element in the set

$$
\left\{y \in \mathbf{k}_{\S}^{*} \left\lvert\, \operatorname{ord}_{\wp}(y-1)>\frac{b}{p-1}+a\right.\right\}
$$

is the n-th power of an element in $\left\{x \in \mathbf{k}_{\wp}^{*} \left\lvert\, \operatorname{ord}_{\wp}(x-1)>\frac{b}{p-1}\right.\right\}$.
Proof. If $\operatorname{ord}_{\wp}(y-1)>b /(p-1)+a$ then $\log (1-(y-1))=\log (y)$ is defined, and $\operatorname{ord}_{\wp}(\log (y))=\operatorname{ord}_{\wp}(y-1)$. Then $\operatorname{ord}_{\wp}(\log (y) / n)>b /(p-1)$, so $x=\exp (\log (y) / n)$ and $\exp (\log (y))$ are defined. We have

$$
x^{n}=\left(\exp \left(\frac{\log (y)}{n}\right)\right)^{n}=\exp (\log (y))=y
$$

and

$$
\operatorname{ord}_{\wp}(x-1)=\operatorname{ord}_{\wp}\left(\exp \left(\frac{\log (y)}{n}\right)-1\right)=\operatorname{ord}_{\wp}\left(\frac{\log (y)}{n}\right)>\frac{b}{p-1} .
$$

Remark. We revert to the usual notation: p is a prime of \mathbf{k} and \wp a prime of finite extension field \mathbf{K}.

Lemma 4.14. $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}$ is an open subgroup of \mathbf{k}_{p}^{*}.
Proof. Let $\left[\mathbf{K}_{\wp}: \mathbf{k}_{p}\right]=n$. If α is in \mathbf{k}_{p}^{*} then $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha=\alpha^{n}$, so Every n-th power of an element in \mathbf{k}_{p}^{*} is in $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}$. If $\operatorname{ord}_{p}(n)=a$ then every element in open set $\left\{\alpha \left\lvert\, \operatorname{ord}_{p}(\alpha-1)>\frac{b}{p-1}+a\right.\right\}$ is an n-th power by lemma 4.13. Subgroup $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}$ contains an open set, so $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}$ is open.

Proposition 4.15. If E is a finite set of primes of \mathbf{k} containing all infinite primes and all primes that are ramified in \mathbf{K}, then

$$
\mathbf{I}_{\mathbf{k}}\{E\} \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}=\mathbf{I}_{\mathbf{k}}
$$

Proof. Given \mathbf{i} in $\mathbf{I}_{\mathbf{k}}$, let F be the set of prime for which $\left|\mathbf{i}_{p}\right|_{p} \neq 1$. By lemma 2.4, there exists an element α in \mathbf{k}_{p}^{*} so that $\alpha^{-1} \mathbf{i}_{p}$ is arbitrarily close to 1 at primes p in $E \cup F$. In particular, we want $\alpha^{-1} \mathbf{i}_{p} \in \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{K}_{\wp}^{*}$ for the finite primes in $E \cup F$ and $\alpha^{-1} \mathbf{i}_{p} \in \mathbf{R}^{+}$for the real infinite primes of \mathbf{k}. Define \mathbf{i}_{1} and \mathbf{i}_{2} so that

$$
\mathbf{i}_{1}=\left\{\begin{array}{rl}
1 & \text { for } p \notin E \cup F \\
\alpha^{-1} \mathbf{i}_{p} & \text { for } p \in E \cup F
\end{array} \quad \mathbf{i}_{2}=\left\{\begin{aligned}
\alpha^{-1} \mathbf{i}_{p} & \text { for } p \notin E \cup F \\
1 & \text { for } p \in E \cup F
\end{aligned}\right.\right.
$$

Then $\mathbf{i}=\alpha \mathbf{i}_{1} \mathbf{i}_{2}$ where $\alpha \in \mathbf{k}^{*}, \mathbf{i}_{1} \in \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$, and $\mathbf{i}_{2} \in \mathbf{I}_{\mathbf{k}}\{E \cup F\} \subset \mathbf{I}_{\mathbf{k}}\{E\}$.
Two number-theoretic lemmas. Put $T_{r}=\left(a^{v^{r}}-1\right) /\left(a^{v^{r-1}}-1\right)$, where $r>0$, $a>1, v>1$. We have

$$
\begin{aligned}
a^{v^{r}}-1= & \left(\left(a^{v^{r-1}}-1\right)+1\right)^{v}-1 \\
= & \left(a^{v^{r-1}}-1\right)^{v}+\cdots+\binom{k}{v}\left(a^{v^{r-1}}-1\right)^{k}+\cdots+v\left(a^{v^{r-1}}-1\right) \\
& T_{r}=\left(a^{v^{r-1}}-1\right)^{v-1}+v\left(a^{v^{r-1}}-1\right)^{v-2}+\cdots+v
\end{aligned}
$$

Lemma 4.16. If $r>0, a>1$, and v is prime then
(1) if q is a prime so that $q \mid T_{r}$ and $q \mid\left(a^{v^{r-1}}-1\right)$ then $q=v$,
(2) if $v \mid T_{r}$ then $v \mid\left(a^{v^{r-1}}-1\right)$,
(3) if $v>2$ or $r>1$ then $T_{r} \neq 0\left(\bmod v^{2}\right)$.

Proof. (1) If $q \mid T_{r}$ and $q \mid\left(a^{v^{r-1}}-1\right)$ then by (4.4), q must divided v, so $q=v$. (2) If $v \mid T_{r}$ then v divides every term of (4.4) except possibly $\left(a^{v^{r-1}}-1\right)^{v-1}$, so v divides that term too. Therefore v divides $a^{v^{r-1}}-1$.
(3) Assume $T_{r}=0\left(\bmod v^{2}\right)$. Then v divides $a^{v^{r-1}}-1$ by (2). If $v>2$ then v^{2} divides every term of (4.4) except v; then v^{2} cannot divide T_{r}, so $v>2$ is impossible. If $r>1$ then (since $v=2$) we have $T_{r}=\left(a^{2^{r-1}}-1\right)+2$. If a is even then T_{r} is odd (impossible), so a is odd. $a^{2^{r-1}}$ is a square so $a^{2^{r-1}}=1(\bmod 4)$ and $T_{r}=2(\bmod 4)$ (impossible). It must be that $r=1$.

LEMMA 4.17. Given positive integers m, a, and prime power $v^{h}>1$, we can find prime q not dividing am so that the order of a modulo q is v^{l} where $l \geq h$.

Proof. Let q_{1}, \ldots, q_{s} be the primes dividing m. If q_{i} divides some $a^{v^{r}}-1$ then let q_{i} divide $a^{v^{r_{i}}}-1$. Take r_{0} greater than h and also greater than any of the r_{i} that are defined. We claim that there is a prime q dividing $T_{r_{0}}$ so that q is not equal to v or any of the q_{i}. Then q also divides $a^{v^{r_{0}}}-1$, so $a^{v^{r_{0}}}=1(\bmod q)$. If $a^{v^{r_{0}-1}}=1(\bmod q)$ then by (4.4) we would have $T_{r_{0}}=v(\bmod q)$ (impossible). Therefore the order of a modulo q is $v^{r_{0}}$, which is greater than v^{h}.

We need to show how to find q. By (4.4) we must have $T_{r_{0}}>v$. If $T_{r_{0}}$ were a power of v then by (3) of lemma 4.16 we would have $r_{0}=1$. But r_{0} was chosen greater than 1 , so $T_{r_{0}}$ has some prime divisor q that is not v. Then q divides $a^{v^{r_{0}}}-1$. Suppose that $q=q_{i}$. Since q_{i} divides $a^{v^{r_{i}}}-1$ and $r_{i}<r_{0}$, then q_{i} would divide $a^{v^{r_{0}-1}}-1$. By (1) of lemma 4.16, $q_{i}=v$ (impossible). Therefore $q \neq q_{i}$.

Existence of cyclic extensions with given properties.

Proposition 4.18. Let finite prime p of \mathbf{Q}, finite extension \mathbf{T} of \mathbf{Q}, and prime power $v^{h}>1$ be given. Then there exists a cyclic extension \mathbf{Z} of \mathbf{Q} so that
(1) \mathbf{Z} is contained in a cyclotomic extension of \mathbf{Q},
(2) p is not ramified in \mathbf{Z},
(3) Artin symbol $\left(\frac{\mathbf{Z}: \mathbf{Q}}{p}\right)$ has order v^{h},
(4) $\mathbf{Z} \cap \mathbf{T}=\mathbf{Q}$, and
(5) $[\mathbf{Z}: \mathbf{Q}]$ is a power of v and $[\mathbf{Z}: \mathbf{Q}] \geq v^{h}$.

Proof. Look at all of the fields $\mathbf{Q}\left(\zeta_{m}\right) \cap \mathbf{T}$; choose m_{0} so that $\left[\mathbf{Q}\left(\zeta_{m_{0}}\right) \cap \mathbf{T}: \mathbf{Q}\right]$ is maximum. We first want to show that if m is relatively prime to m_{0} then $\mathbf{Q}\left(\zeta_{m}\right) \cap \mathbf{T}=\mathbf{Q}$. We have $\mathbf{Q}\left(\zeta_{m}\right) \cap \mathbf{T} \subset \mathbf{Q}\left(\zeta_{m m_{0}}\right) \cap \mathbf{T}$. Also, $\mathbf{Q}\left(\zeta_{m_{0}}\right) \cap \mathbf{T} \subset$ $\mathbf{Q}\left(\zeta_{m m_{0}}\right) \cap \mathbf{T}$, but by the choice of m_{0}, we must have $\mathbf{Q}\left(\zeta_{m_{0}}\right) \cap \mathbf{T}=\mathbf{Q}\left(\zeta_{m m_{0}}\right) \cap \mathbf{T}$. Therefore $\mathbf{Q}\left(\zeta_{m}\right) \cap \mathbf{T} \subset \mathbf{Q}\left(\zeta_{m}\right) \cap \mathbf{Q}\left(\zeta_{m_{0}}\right)=\mathbf{Q}$ as claimed.

By lemma 4.17, given m_{0}, p, and v^{h}, we can find prime q relatively prime to p and m_{0} so that the order of p modulo q is v^{l} and $l \geq h$. Let $\mathbf{k}=\mathbf{Q}\left(\zeta_{q}\right)$, a cyclic extension with Galois group isomorphic to \mathbf{Z}_{q}^{*}. By lemma 3.2 we have $\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right) \zeta=\zeta^{p}$. The order of $\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)$ is the order of p modulo q, which is v^{l}. Let σ be a generator of $G=G(\mathbf{k}: \mathbf{Q})$; the order of σ is $q-1$. Then $\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)=\sigma^{r v^{k}}$, where v does not divide r. Since $\sigma^{r v^{k+l}}=\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)^{v^{l}}=1$, and v^{k+l} is the smallest power for which this is true, it follows that v^{k+l} is the exact power of v dividing $q-1$.

Take \mathbf{Z} to be the fixed field of the subgroup H generated by $\sigma^{v^{k+h}}$. By lemma 2.13, $\left(\frac{\mathbf{Z}: \mathbf{Q}}{p}\right)=\sigma^{r v^{k}}$. Then $\left(\frac{\mathbf{Z}: \mathbf{Q}}{p}\right)^{v^{h}}=\sigma^{r v^{k+h}} \in H$. Therefore $\left(\frac{\mathbf{Z}: \mathbf{Q}}{p}\right)^{v^{h}}=1$. If
$j<h$ then $\left(\frac{\mathbf{z}: \mathbf{Q}}{p}\right)^{v^{j}}=\sigma^{r v^{k+j}} \notin\left\langle\sigma^{v^{k+h}}\right\rangle$, so $\left(\frac{\mathbf{Z}: \mathbf{Q}}{p}\right)^{v^{j}} \neq 1$; therefore $\left(\frac{\mathbf{Z}: \mathbf{Q}}{p}\right)$ is order v^{h}.

We have (1) \mathbf{Z} is contained in $\mathbf{Q}\left(\zeta_{q}\right),(2) p$ does not divide q and so is not ramified in \mathbf{Z}, (3) Artin symbol $\left(\frac{\mathbf{Z}: \mathbf{Q}}{p}\right)$ has order v^{h}, (4) $\mathbf{Z} \cap \mathbf{T} \subset \mathbf{Q}\left(\zeta_{q}\right) \cap T \subset \mathbf{Q}$, and (5) $\left.[\mathbf{Z}: \mathbf{Q}]=[G: H]=\left[\langle\sigma\rangle:<\sigma^{v^{k+h}}\right\rangle\right]=v^{k+h}$.

Remark. It is possible to choose the roots of unity so that $\zeta_{m n}^{n}=\zeta_{m}$. (Choose an embedding of the algebraic closure of \mathbf{Q} into the complex field such that ζ_{n} is mapped to $e^{2 \pi i / n}$ for each $n>1$.) This relation will simplify the proof of proposition 4.19.

Lemma 4.19. If (n, m) is the greatest common divisor of n and m then

$$
\mathbf{Q}\left(\zeta_{n}\right) \mathbf{Q}\left(\zeta_{m}\right)=\mathbf{Q}\left(\zeta_{n m /(n, m)}\right)
$$

Proof. There exists integers u and v so that $u n+v m=(n, m)$, and we have $\zeta_{m}^{u} \zeta_{n}^{v}=\zeta_{n m}^{u n+m v}=\zeta_{n m}^{(n, m)}=\zeta_{n m /(n, m)}$, so $\mathbf{Q}\left(\zeta_{n m /(n, m)}\right)$ is contained in $\mathbf{Q}\left(\zeta_{n}\right) \mathbf{Q}\left(\zeta_{m}\right)$. Since $\zeta_{m n /(n, m)}^{n /(n, m)}=\zeta_{m}$ and $\zeta_{m n /(n, m)}^{m /(n, m)}=\zeta_{n}$ we also have $\mathbf{Q}\left(\zeta_{n}\right) \mathbf{Q}\left(\zeta_{m}\right)$ contained in $\mathbf{Q}\left(\zeta_{n m /(n, m)}\right)$. Therefore $\mathbf{Q}\left(\zeta_{n}\right) \mathbf{Q}\left(\zeta_{m}\right)=\mathbf{Q}\left(\zeta_{n m /(n, m)}\right)$.

Proposition 4.20. Let finite prime p of \mathbf{Q}, finite extension \mathbf{T} of \mathbf{Q}, and positive integer n be given. Then there exists a cyclic extension \mathbf{Z} of \mathbf{Q} so that
(1) \mathbf{Z} is contained in a cyclotomic extension of \mathbf{Q}.
(2) p is not ramified in \mathbf{Z},
(3) Artin symbol $\left(\frac{\mathbf{Z}: \mathbf{Q}}{p}\right)$ has order n,
(4) $\mathbf{Z} \cap \mathbf{T}=\mathbf{Q}$,
(5) n divides $[\mathbf{Z}: \mathbf{Q}]$, and the only primes dividing $[\mathbf{Z}: \mathbf{Q}]$ are those dividing n.

Proof. If n is a prime power then proposition 4.20 reduces to proposition 4.18. Suppose that the conclusion of Proposition 4.20 holds for relatively prime n_{1} and n_{2}. We must show that the conclusion holds for $n_{1} n_{2}$. Let $\mathbf{Z}_{1}=\mathbf{Z}\left(p, n_{1}, \mathbf{T}\right)$ satisfy the conclusion for n_{1}, and let $\mathbf{Z}_{2}=\mathbf{Z}\left(p, n_{2}, \mathbf{Z}_{1} \mathbf{T}\right)$ satisfy the conclusion for n_{2}.

Choose \mathbf{Z} to be $\mathbf{Z}_{1} \mathbf{Z}_{2}$. Then \mathbf{Z}_{1} is contained in $\mathbf{Q}\left(\zeta_{m_{1}}\right)$ and \mathbf{Z}_{2} is contained in $\mathbf{Q}\left(\zeta_{m_{2}}\right)$. By lemma $4.19, \mathbf{Z}$ is contained in $\mathbf{Q}\left(\zeta_{m}\right)$, where m is the least common multiple of m_{1} and m_{2}, showing (1). p is not ramified in \mathbf{Z}_{1}, so any prime of \mathbf{Z}_{2} dividing p is not ramified in $\mathbf{Z}_{1} \mathbf{Z}_{2} / \mathbf{Z}_{2}$ by lemma 2.16. Since p is not ramified in $\mathbf{Z}_{2} / \mathbf{Q}$ then p is not ramified in $\mathbf{Z}_{1} \mathbf{Z}_{2} / \mathbf{Q}$, showing (2).

We must that \mathbf{Z} / \mathbf{Q} is cyclic. We have $\mathbf{Z}_{1} \cap \mathbf{Z}_{2} \subset \mathbf{Z}_{1} \mathbf{T} \cap \mathbf{Z}_{2}=\mathbf{Q}$. Therefore by lemmas 2.10 and 2.11, we have $G\left(\mathbf{Z}_{1} \mathbf{Z}_{2}: \mathbf{Q}\right)=\mathbf{G}\left(\mathbf{Z}_{1}: \mathbf{Q}\right) \times \mathbf{G}\left(\mathbf{Z}_{2}: \mathbf{Q}\right)$. Let cyclic $\operatorname{group} \mathbf{G}\left(\mathbf{Z}_{1}: \mathbf{Q}\right)$ of order r_{1} be generated by σ_{1}, and let cyclic group $\mathbf{G}\left(\mathbf{Z}_{2}: \mathbf{Q}\right)$
of order r_{2} be generated by σ_{2}. The only primes dividing r_{1} are those dividing n_{1}, and the only primes dividing r_{2} are those dividing n_{2}. Then r_{1} and r_{2} are relatively prime, and the order of (σ_{1}, σ_{2}) must be $r_{1} r_{2}$. The isomorphism corresponding to $\left(\sigma_{1}, \sigma_{2}\right)$ generates $G\left(\mathbf{Z}_{1} \mathbf{Z}_{2}: \mathbf{Q}\right)$, so \mathbf{Z} / \mathbf{Q} is cyclic of degree $r_{1} r_{2}$, and the only primes dividing $[\mathbf{Z}: \mathbf{Q}]$ are those dividing $n_{1} n_{2}$ showing (5).

Artin symbol $\left(\frac{\mathbf{z}: \mathbf{Q}}{p}\right)$ corresponds to the pair $\left(\left(\frac{\mathbf{Z}_{1}: \mathbf{Q}}{p}\right),\left(\frac{\mathbf{Z}_{2}: \mathbf{Q}}{p}\right)\right)$ by the corollary to lemma 2.13. These Artin symbols for \mathbf{Z}_{1} and \mathbf{Z}_{2} have orders n_{1} and n_{2}, respectively. Therefore $\left(\frac{\mathbf{Z}: \mathbf{Q}}{p}\right)$ has order $n_{1} n_{2}$, showing (3). Finally, $\left[\mathbf{Z}_{1} \mathbf{Z}_{2} \mathbf{T}: \mathbf{Z}_{2}\right]=$ $\left[\mathbf{Z}_{1} \mathbf{T}: \mathbf{Z}_{2} \cap \mathbf{Z}_{1} \mathbf{T}\right]=\left[\mathbf{Z}_{1} \mathbf{T}: \mathbf{Q}\right]$, so $\left[\mathbf{Z}_{1} \mathbf{Z}_{2} \mathbf{T}: \mathbf{Z}_{2}\right]\left[\mathbf{Z}_{2}: \mathbf{Q}\right]=\left[\mathbf{Z}_{1} \mathbf{T}: \mathbf{Q}\right]\left[\mathbf{Z}_{2}: \mathbf{Q}\right]$. Therefore $\left[\mathbf{Z}_{1} \mathbf{Z}_{2} \mathbf{T}: \mathbf{Q}\right]=\left[\mathbf{Z}_{1} \mathbf{T}: \mathbf{Q}\right]\left[\mathbf{Z}_{2}: \mathbf{Q}\right]$. By lemma 2.10, it follow that $\mathbf{Z}_{1} \mathbf{Z}_{2} \cap \mathbf{T}=\mathbf{Q}$, showing (4).

Proposition 4.21. Let \mathbf{k} be a finite extension of \mathbf{Q}. Let finite prime \wp of \mathbf{k}, finite extension \mathbf{T} of \mathbf{k}, and positive integer n be given. Then there exists a cyclic extension \mathbf{Z} of \mathbf{k} so that
(1) \mathbf{Z} is contained in a cyclotomic extension of \mathbf{k}.
(2) \wp is not ramified in \mathbf{Z},
(3) Artin symbol $\left(\frac{\mathbf{Z}: \mathbf{k}}{\wp}\right)$ has order n,
(4) $\mathbf{Z} \cap \mathbf{T}=\mathbf{k}$,
(5) n divides $[\mathbf{Z}: \mathbf{k}]$.

Proof. Let (p) be the prime of \mathbf{Q} that \wp divides; let $\mathrm{N} \wp=p^{f}$. Let \mathbf{Z}^{\prime} be the cyclic extension of \mathbf{Q} satisfying the conclusion of proposition 4.20 for $p, n f$ and \mathbf{T}. Take $\mathbf{Z}=\mathbf{Z}^{\prime} \mathbf{k}$. Since $\mathbf{Z}^{\prime} \subset \mathbf{Q}\left(\zeta_{m}\right)$, we have $\mathbf{Z} \subset \mathbf{k}\left(\zeta_{m}\right)$, showing (1). Since p is not ramified in \mathbf{Z}^{\prime} then \wp is not ramified in \mathbf{Z} by lemma 2.16, showing (2). Artin symbol $\left(\frac{\mathbf{Z}^{\prime}: \mathbf{Q}}{p}\right)$ has order $n f$, and by lemma 2.16 we have $\left(\frac{\mathbf{Z}: \mathbf{k}}{\wp}\right)=\left(\frac{\mathbf{Z}^{\prime}: \mathbf{Q}}{p}\right)^{f}$. Therefore $\left(\frac{\mathbf{Z}: \mathbf{k}}{\wp}\right)$ has order n, showing (3).

We want to show $\mathbf{Z} \cap \mathbf{T}=\mathbf{k}$. We have

$$
[\mathbf{Z T}: \mathbf{T}]=\left[\mathbf{Z}^{\prime} \mathbf{T}: \mathbf{T}\right]=\left[\mathbf{Z}^{\prime}: \mathbf{Z}^{\prime} \cap \mathbf{T}\right]=\left[\mathbf{Z}^{\prime}: \mathbf{Q}\right] \geq\left[\mathbf{Z}^{\prime} \mathbf{k}: \mathbf{k}\right]=[\mathbf{Z}: \mathbf{k}] \geq[\mathbf{Z} \mathbf{T}: \mathbf{T}] .
$$

Therefore $[\mathbf{Z}: \mathbf{k}]=[\mathbf{Z T}: \mathbf{T}]=[\mathbf{Z}: \mathbf{Z} \cap \mathbf{T}]$ so $\mathbf{k}=\mathbf{T} \cap \mathbf{Z}$, showing (4). Finally, $G(\mathbf{Z}: \mathbf{k})$ contains an element of order n by (3), so n divides $[\mathbf{Z}: \mathbf{k}]$, showing (5).

Proposition 4.22. If $\mathbf{K}_{1} \mathbf{k}$ is a finite abelian extension and Theorem 1 holds for $\mathbf{K}_{1} / \mathbf{k}$, then Theorem 1 holds for any extension $\mathbf{K}_{2} / \mathbf{k}$ such that $\mathbf{K}_{1} \supset \mathbf{K}_{2} \supset \mathbf{k}$.

Proof. Theorem 1 holds for $\mathbf{K}_{2} / \mathbf{k}$ if and only $\phi_{\mathbf{K}_{2} / \mathbf{k}}$ of (2.1) can be extended onto $\mathbf{I}_{\mathbf{k}}$ so that the kernel contains \mathbf{k}^{*}. The restriction of $\phi_{\mathbf{K}_{1} / \mathbf{k}}(\mathbf{i})$ as defined by (2.1) to \mathbf{K}_{2} coincides with $\phi_{\mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})$ for $\mathbf{i} \in \mathbf{I}_{\mathbf{k}}\{E\}$. Since $\phi_{\mathbf{K}_{1} / \mathbf{k}}$ can be extended to
all of $\mathbf{I}_{\mathbf{k}}$ so that the kernel contains \mathbf{k}^{*}, we may define $\phi_{\mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})$ for $\mathbf{I} \in \mathbf{I}_{\mathbf{k}}$ to be the restriction of $\phi_{\mathbf{K}_{1} / \mathbf{k}}(\mathbf{i})$ to \mathbf{K}_{2}.

Remark. The cyclic extension \mathbf{Z} / \mathbf{k} guaranteed by proposition 4.21 is contained in a cyclotomic extension of \mathbf{k}. Since we have proved Theorem 1 for cyclotomic extensions, then Theorem 1 holds for the extensions $\mathbf{Z}=\mathbf{Z}(p, n, \mathbf{T}) / \mathbf{k}$.

Proof of theorem 1 for cyclic extensions. Let \mathbf{K} / \mathbf{k} be a cyclic extension of degree n , and let σ_{0} be a generator of $G(\mathbf{K}: \mathbf{k})$. There is an isomorphism $\chi: G(\mathbf{K}: \mathbf{k}) \longrightarrow \mathbf{C}$ to n-th roots of unity in defined by

$$
\chi\left(\sigma_{0}^{x}\right)=\exp \left(\frac{2 \pi i x}{n}\right)
$$

By the first and second fundamental inequalities (to be proved in chapters 7 and 8), we have $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=n$. Finite abelian group $\mathbf{I}_{\mathbf{k}} /\left(\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right)$ is a direct product of cyclic groups

$$
\frac{\mathbf{I}_{\mathbf{k}}}{\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}}=\mathbf{H}_{1} \times \cdots \times \mathbf{H}_{r}
$$

where \mathbf{H}_{k} is a cyclic group of order n_{k} generated by h_{k}. Every element of the quotient group can be written as a product

$$
h_{1}^{x_{1}} \ldots h_{r}^{x_{r}} \text { where } 0 \leq x_{k}<n_{k} .
$$

For each r-tuple $\omega=\left(\omega_{1}, \ldots, \omega_{r}\right)$ with $0 \leq \omega_{k}<n_{k}$, there is a homomorphism $\chi_{\omega}: \mathbf{H}_{1} \times \cdots \times \mathbf{H}_{r} \rightarrow \mathbf{C}$ defined by

$$
\chi_{\omega}\left(h_{1}^{x_{1}} \ldots h_{r}^{s_{r}}\right)=\exp \left(\frac{2 \pi i \omega_{1} x_{1}}{n_{1}}\right) \ldots \exp \left(\frac{2 \pi i \omega_{1} x_{1}}{n_{1}}\right) .
$$

The number of homomorphisms χ_{ω} is n. Each homomorphism uniquely determines the r-tuple ω because the image $\exp \left(2 \pi i \omega_{k} / n_{k}\right)$ of h_{k} determines ω_{k}.

Choose a prime p of \mathbf{k}. By proposition 4.21 , there is a cyclic extension $\mathbf{Z}=$ $\mathbf{Z}(p, n, \mathbf{K})$ contained in a cyclotomic extension of \mathbf{k} such that $[\mathbf{Z}: \mathbf{k}]$ is divisible by n, prime p is not ramified in \mathbf{Z}, Artin symbol $\left(\frac{\mathbf{Z}: \mathbf{k}}{p}\right)$ has order exactly n, and $\mathbf{Z} \cap \mathbf{K}=\mathbf{k}$. Let ρ_{0} generate the Galois group $G(\mathbf{Z}: \mathbf{k})$, and let $r n=[\mathbf{Z}: \mathbf{k}]$. There is an isomorphism $\Theta: G(\mathbf{Z}: \mathbf{k}) \rightarrow \mathbf{C}$ defined by

$$
\Theta\left(\rho_{0}^{x}\right)=\exp \left(\frac{2 \pi i x}{r n}\right) .
$$

Since $\mathbf{Z} \cap \mathbf{K}=\mathbf{k}$, we have

$$
G(\mathbf{Z K}: \mathbf{k})=G(\mathbf{Z}: \mathbf{k}) \times G(\mathbf{K}: \mathbf{k})=\left\{\left(\rho_{0}^{x}, \sigma_{0}^{y}\right) \mid 0 \leq x<r n, 0 \leq y<n\right\} .
$$

Let $\mathbf{S}=\mathbf{S}(a)$ be the fixed field of $\left\{\left(\rho_{0}^{x}, \sigma_{0}^{y}\right) \mid x a-y r=0(\bmod r n\}\right.$. Then $\mathbf{Z S} \subset \mathbf{Z K}$. If $\left(\rho_{0}^{x}, \sigma_{0}^{y}\right)$ fixes \mathbf{Z} then $x=0(\bmod r n)$, and if $\left(\rho_{0}^{x}, \sigma_{0}^{y}\right)$ fixes \mathbf{S} then $x a-y r=$ $0(\bmod r n)$. If $\mathbf{Z S}$ is fixed then $y r=0(\bmod r n)$, or $y=0(\bmod n)$, so only the identity of $G(\mathbf{Z K}: \mathbf{k})$ fixes ZS. Therefore $\mathbf{Z S}=\mathbf{Z K}$.
\mathbf{Z} is contained in a cyclotomic extension of \mathbf{k}, so $\mathbf{Z S}$ is contained in a cyclotomic extension of \mathbf{S}. Therefore Theorem 1 holds for $\mathbf{Z S} / \mathbf{S} . G(\mathbf{Z S}: \mathbf{S})$ is isomorphic to a subgroup of $G(\mathbf{Z}: \mathbf{k})$. Let $\rho^{x_{0}}$ generate $G(\mathbf{Z S}: \mathbf{S})$, and we can take x_{0} to be the least positive power of ρ that is in $G(\mathbf{Z S}: \mathbf{S})$ (i.e., that fixes $\mathbf{S})$, so x_{0} divides $r n$.

Since $\mathbf{N}_{\mathbf{S} / \mathbf{k}}$ maps $\operatorname{ker}\left(\phi_{\mathbf{Z S} / \mathbf{S}}\right)=\mathbf{S}^{*} \mathbf{N}_{\mathbf{Z S} / \mathbf{S}} \mathbf{I}_{\mathbf{Z S}}$ to $\operatorname{ker}\left(\chi_{\omega}\right)=\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$, there is an induced homomorphism $f: G(\mathbf{Z S}: \mathbf{S}) \rightarrow \mathbf{C}$ so that $f \phi_{\mathbf{Z S} / \mathbf{S}}=\chi_{\omega} \mathbf{N}_{\mathbf{S} / \mathbf{K}}$. (See diagram (4.7), noting that $\mathbf{N}_{\mathbf{S} / \mathbf{k}} \mathbf{N}_{\mathbf{Z S} / \mathbf{S}}=\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{N}_{\mathbf{Z K} / \mathbf{K}}$ because $\mathbf{Z S}=\mathbf{Z K}$.) The image of $\rho_{0}^{x_{0}}$ must be an $\left(r n / x_{0}\right)$-th root of unity, so there is an integer u so that $f\left(\rho_{0}^{x_{0}}\right)=\Theta\left(\rho_{0}\right)^{u x_{0}}=\Theta\left(\rho_{0}^{x_{0}}\right)^{u}$. Since $\rho_{0}^{x_{0}}$ generates the image of $\phi_{\mathbf{Z S}} / \mathbf{s}$, we have $f\left(\phi_{\mathbf{Z S} / \mathbf{S}}(\mathbf{i})\right)=\Theta\left(\left.\phi_{\mathbf{Z S} / \mathbf{S}}(\mathbf{i})\right|_{\mathbf{z}}\right)^{u}$. The restriction $\left.\phi_{\mathbf{Z S} / \mathbf{S}}(\mathbf{i})\right|_{\mathbf{z}}$ of $\phi_{\mathbf{Z S} / \mathbf{s}}(\mathbf{i})$ to \mathbf{Z} is $\phi_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S} / \mathbf{k}} \mathbf{i}\right)$ (proposition 2.19). Therefore there is an integer $u=u(a, p, \mathbf{Z})$ depending on the choices of a, p and \mathbf{Z} so that

$$
\begin{equation*}
\chi_{\omega}\left(\mathbf{N}_{\mathbf{S} / \mathbf{k}} \mathbf{i}\right)=\Theta\left(\phi_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S} / \mathbf{k}} \mathbf{i}\right)\right)^{u} \quad \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{S}} \tag{4.5}
\end{equation*}
$$

Let $\mathbf{Z}^{\prime}=\mathbf{Z}^{\prime}\left(p^{\prime}, n, \mathbf{K}\right)$ be another cyclic extension satisfying the conclusion of proposition 4.21 , where p^{\prime} is a prime of \mathbf{k}. (Note: \mathbf{Z}^{\prime} will be used to show that certain later results are independent of p and of \mathbf{Z}.) Now let $\mathbf{W}=\mathbf{W}\left(p, n, \mathbf{Z Z}^{\prime} \mathbf{K}\right)$ be a cyclic extension of \mathbf{k} satisfying the conclusion of proposition 4.21. Then \mathbf{W} is a cyclic extension contained in a cyclotomic extension of $\mathbf{k},[\mathbf{W}: \mathbf{k}]$ is divisible by n, Artin symbol $\left(\frac{\mathbf{W}: \mathbf{k}}{p}\right)$ has order n, and $\mathbf{W} \cap \mathbf{Z Z}^{\prime} \mathbf{K}=\mathbf{k}$. Let $[\mathbf{W}: \mathbf{k}]=s n$, and let τ_{0} be a generator of cyclic group $G(\mathbf{W}: \mathbf{k})$. There is an isomorphism $\Xi: G(\mathbf{W}: \mathbf{k}) \rightarrow \mathbf{C}$ defined by

$$
\Xi\left(\tau_{0}^{z}\right)=\exp \left(\frac{2 \pi i}{s n}\right)
$$

We repeat the previous argument, with \mathbf{W} in place of \mathbf{Z}. Since $\mathbf{W} \cap \mathbf{Z Z}^{\prime} \mathbf{K}=\mathbf{k}$, we have

$$
G(\mathbf{K W}: \mathbf{k})=G(\mathbf{K}: \mathbf{k}) \times G(\mathbf{W}: \mathbf{k})=\left\{\left(\sigma_{0}^{y}, \tau_{0}^{z}\right) \mid 0 \leq y<n, 0 \leq z<s n\right\} .
$$

Let \mathbf{T} be the fixed field of $\left\{\left(\sigma_{0}^{y}, \tau_{0}^{z}\right) \mid y s-z=0(\bmod s n\}\right.$. Then $\mathbf{W T} \subset \mathbf{K W}$. If $\left(\sigma_{0}^{y}, \tau_{0}^{z}\right)$ fixes \mathbf{W} then $z=0(\bmod s n)$, and if $\left(\rho_{0}^{x}, \sigma_{0}^{y}\right)$ fixes \mathbf{T} then $y s-z=$ $0(\bmod s n)$. If TW is fixed then $y s=0(\bmod s n)$, or $y=0(\bmod n)$, so only the identity of $G(\mathbf{K W}: \mathbf{k})$ fixes $\mathbf{T W}$. Therefore $\mathbf{T W}=\mathbf{K W}$.

Since \mathbf{W} is contained in a cyclotomic extension of \mathbf{k} then $\mathbf{T W}$ is contained in a cyclotomic extension of \mathbf{T}. Therefore Theorem 1 holds for $\mathbf{T W} / \mathbf{T} . G(\mathbf{T W}: \mathbf{T})$ is isomorphic to a subgroup of $G(\mathbf{W}: \mathbf{k})$. Let $\tau^{z_{0}}$ generate $G(\mathbf{T W}: \mathbf{T})$, and we can take z_{0} to be the least positive power of τ that is in $G(\mathbf{T W}: \mathbf{T})$ (i.e., that fixes \mathbf{T}, so z_{0} divides $s n$.

Since $\mathbf{N}_{\mathbf{T} / \mathbf{k}} \operatorname{maps} \operatorname{ker}\left(\phi_{\mathbf{T W} / \mathbf{W}}\right)=\mathbf{T}^{*} \mathbf{N}_{\mathbf{T W} / \mathbf{W}} \mathbf{I}_{\mathbf{T W}}$ to $\operatorname{ker}\left(\chi_{\omega}\right)=\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$, there is an induced homomorphism $g: G(\mathbf{T W}: \mathbf{T}) \rightarrow \mathbf{C}$ so that $g \phi_{\mathbf{T W} / \mathbf{W}}=$ $\chi_{\omega} \mathbf{N}_{\mathbf{T} / \mathbf{k}}$. (See diagram (4.8), noting that $\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{N}_{\mathbf{T W} / \mathbf{T}}=\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{N}_{\mathbf{K W} / \mathbf{K}}$ because $\mathbf{T W}=\mathbf{K W}$.) The image of $\tau_{0}^{z_{0}}$ must be an $\left(s n / z_{0}\right)$-th root of unity, so there is an integer v so that $g\left(\tau_{0}^{z_{0}}\right)=\Xi\left(\tau_{0}\right)^{v z_{0}}=\Xi\left(\tau_{0}^{z_{0}}\right)^{v}$. Since $\tau_{0}^{z_{0}}$ generates the image of $\phi_{\mathbf{T W} / \mathbf{w}}$, we have $g\left(\phi_{\mathbf{T w} / \mathbf{w}}(\mathbf{i})\right)=\Xi\left(\phi_{\mathbf{T W} / \mathbf{W}}(\mathbf{i}) \mid \mathbf{w}\right)^{u}$. The restriction $\phi_{\mathbf{T W} / \mathbf{W}}(\mathbf{i}) \mid \mathbf{w}$ of $\phi_{\mathbf{T W} / \mathbf{T}}(\mathbf{i})$ to \mathbf{W} is $\phi_{\mathbf{W} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right)$ (proposition 2.19). Therefore there is an integer $v=v\left(p, p^{\prime}, \mathbf{Z}, \mathbf{Z}^{\prime}\right)$ depending on the choices of $p, p^{\prime}, \mathbf{Z}$ and \mathbf{Z}^{\prime} so that

$$
\begin{equation*}
\chi_{\omega}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right)=\Xi\left(\phi_{\mathbf{T} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right)\right)^{v} \quad \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{T}} \tag{4.6}
\end{equation*}
$$

Multiply both sides of (4.6) by $\Theta\left(\phi_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right)\right)^{-u}$ to obtain

$$
\begin{align*}
\chi_{\omega}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right) \Theta\left(\phi_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right)\right)^{-u} \tag{4.9}\\
\quad=\Theta\left(\phi_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right)\right)^{-u} \Xi\left(\phi_{\mathbf{T} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right)\right)^{v} \quad \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{T}} .
\end{align*}
$$

Given $\mathbf{j} \in \mathbf{I}_{\mathbf{S T}}$, if $\mathbf{i}=\mathbf{N}_{\mathbf{S T} / \mathbf{T}} \mathbf{j}$ then $\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}=\mathbf{N}_{\mathbf{S} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S T} / \mathbf{S}} \mathbf{j}\right)=\mathbf{N}_{\mathbf{S T} / \mathbf{k}} \mathbf{j}$. The kernel of the mapping $\mathbf{I}_{\mathbf{k}} \rightarrow \mathbf{C}$ by $\mathbf{i} \rightarrow \chi_{\omega}(\mathbf{i}) \Theta\left(\phi_{\mathbf{Z} / \mathbf{k}} \mathbf{i}\right)^{-u}$ contains $\mathbf{N}_{\mathbf{S} / \mathbf{k}} \mathbf{I}_{\mathbf{S}}$ by (4.5). If we evaluate (4.9) at $\mathbf{i}=\mathbf{N}_{\mathbf{S T} / \mathbf{T}} \mathbf{j}$, we obtain

$$
\begin{equation*}
1=\Theta\left(\phi_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S T} / \mathbf{k}} \mathbf{j}\right)\right)^{-u} \Xi\left(\phi_{\mathbf{W} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S T} / \mathbf{k}} \mathbf{j}\right)\right)^{v} \quad \text { for } \mathbf{j} \in \mathbf{I}_{\mathbf{S T}} \tag{4.10}
\end{equation*}
$$

We have $\mathbf{Z S}=\mathbf{Z K}$ contained in a cyclotomic extension of \mathbf{S} and $\mathbf{T W}=\mathbf{K W}$ contained in a cyclotomic extension of \mathbf{T}, so $\mathbf{Z K W}=\mathbf{Z S W}=\mathbf{Z T W}$ is contained in a cyclotomic extension of TS. Therefore Theorem 1 holds for ZKW/TS. The restriction of $\phi_{\mathbf{Z K W} / \mathbf{T S}}$ to $\mathbf{Z S T}$ is $\phi_{\mathbf{Z S T} / \mathbf{T S}}(\mathbf{i})=\phi_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S T} / \mathbf{k}}(\mathbf{i})\right.$), and the restriction of $\phi_{\mathbf{Z K W} / \mathbf{T S}}$ to $\mathbf{S T W}$ is $\phi_{\mathbf{S T W} / \mathbf{T S}}(\mathbf{i})=\phi_{\mathbf{W} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S T} / \mathbf{k}}(\mathbf{i})\right.$). (Let σ_{1} denote the restriction of $\phi_{\mathbf{Z K W} / \mathbf{T S}}$ to \mathbf{K}.) The mapping $(\rho, \sigma, \tau) \rightarrow \Theta(\rho)^{-u} \Xi(\tau)^{v}$ is a homomorphism $G(\mathbf{Z K W}: \mathbf{k}) \rightarrow \mathbf{C}$ which maps $\phi_{\mathbf{Z K W} / \mathbf{S T}}(\mathbf{i})=\left(\phi_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S T} / \mathbf{k}} \mathbf{i}\right), \sigma_{1}, \phi_{\mathbf{W} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S T} / \mathbf{k}} \mathbf{i}\right)\right)$ to 1 by (4.10). The homomorphism $\phi_{\mathbf{Z K W} / \mathbf{S T}}$ maps $\mathbf{I}_{\mathbf{S T}}$ onto $G(\mathbf{Z K W}: \mathbf{S T})$. Therefore

$$
\Theta(\rho)^{-u} \Xi(\tau)^{v}=1 \quad \text { for any }(\rho, \sigma, \tau) \in G(\mathbf{Z K W}: \mathbf{k}) \text { leaving ST fixed. }
$$

In particular, the automorphism $\left(\rho_{0}^{r}, \sigma_{0}^{a}, \tau_{0}^{a s}\right)$ leaves both \mathbf{S} and \mathbf{T} fixed. Therefore

$$
\Theta\left(\rho_{0}^{r}\right)^{-u} \Xi\left(\tau_{0}^{a s}\right)^{v}=1
$$

We have $\exp (2 \pi i r /(r n))^{-u} \exp (2 \pi i a s /(s n))^{v}=\exp (2 \pi i(-u / n+a v / n))=1$, or

$$
\begin{equation*}
u=a v(\bmod n) \tag{4.11}
\end{equation*}
$$

We show that v is independent of \mathbf{Z} and \mathbf{Z}^{\prime}. The construction leading from \mathbf{W} to v is symmetric in \mathbf{Z} and \mathbf{Z}^{\prime}. We can reverse the roles of \mathbf{Z} and \mathbf{Z}^{\prime}, and the $v\left(\mathbf{Z}, \mathbf{Z}^{\prime}\right)$ that satisfies (4.11) for $u(\mathbf{Z})$ also satisfies (4.11) for $u\left(\mathbf{Z}^{\prime}\right)$.

$$
\begin{aligned}
v\left(\mathbf{W}, \mathbf{Z}, \mathbf{Z}^{\prime}\right) a & =u(a, \mathbf{Z})(\bmod n) \\
v\left(\mathbf{W}, \mathbf{Z}, \mathbf{Z}^{\prime}\right) a & =u\left(a, \mathbf{Z}^{\prime}\right)(\bmod n)
\end{aligned}
$$

We can also start from either \mathbf{Z}^{\prime} or $\mathbf{Z}^{\prime \prime}$, obtaining

$$
\begin{aligned}
v\left(\mathbf{W}, \mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}\right) a & =u\left(a, \mathbf{Z}^{\prime}\right)(\bmod n) \\
v\left(\mathbf{W}, \mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}\right) a & =u\left(a, \mathbf{Z}^{\prime \prime}\right)(\bmod n)
\end{aligned}
$$

We choose $a=1$ to conclude that $v\left(\mathbf{W}, \mathbf{Z}, \mathbf{Z}^{\prime}\right)=u(1, \mathbf{Z})=u\left(1, \mathbf{Z}^{\prime}\right)=v\left(\mathbf{W}, \mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}\right)$. In like manner we have $v\left(\mathbf{W}, \mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}\right)=v\left(\mathbf{W}, \mathbf{Z}^{\prime \prime}, \mathbf{Z}^{\prime \prime \prime}\right)$. Therefore $v_{\mathbf{W}}$ is independent of \mathbf{Z} and \mathbf{Z}^{\prime}.
v is independent of \mathbf{W}. If \mathbf{W}^{\prime} is chosen then, since u is independent of \mathbf{W}, we have

$$
v(\mathbf{W}) a=u(a, \mathbf{Z})=v\left(\mathbf{W}^{\prime}\right) a(\bmod n) .
$$

Choose $a=1$ to conclude that $v(\mathbf{W})=u(1, \mathbf{Z})=v\left(\mathbf{W}^{\prime}\right) 1(\bmod n)$.
v is independent of p and p^{\prime}. The construction leading from \mathbf{W} to v is symmetric in p and p^{\prime}. We can start from either $\mathbf{Z}=\mathbf{Z}(p, n, \mathbf{K})$ or $\mathbf{Z}^{\prime}=\mathbf{Z}^{\prime}\left(p^{\prime}, n, \mathbf{K}\right)$, concluding that

$$
\begin{aligned}
& v\left(p, p^{\prime}\right) a=u(p, \mathbf{Z})(\bmod n) \\
& v\left(p, p^{\prime}\right) a=u\left(p^{\prime}, \mathbf{Z}^{\prime}\right)(\bmod n)
\end{aligned}
$$

We can start from $\mathbf{Z}^{\prime}=\mathbf{Z}\left(p^{\prime}, n, \mathbf{K}\right)$ or $\mathbf{Z}^{\prime \prime}=\mathbf{Z}^{\prime \prime}\left(p^{\prime \prime}, n, \mathbf{K}\right)$, concluding that

$$
\begin{aligned}
v\left(p^{\prime}, p^{\prime \prime}\right) a & =u\left(p^{\prime}, \mathbf{Z}^{\prime}\right)(\bmod n) \\
v\left(p^{\prime}, p^{\prime \prime}\right) a & =u\left(p^{\prime \prime}, \mathbf{Z}^{\prime \prime}\right)(\bmod n)
\end{aligned}
$$

Choose $a=1$ to conclude that $v\left(p, p^{\prime}\right)=v\left(p^{\prime}, p^{\prime \prime}\right)(\bmod n)$. Likewise, $v\left(p^{\prime}, p^{\prime \prime}\right)=$ $v\left(p^{\prime \prime}, p^{\prime \prime \prime}\right)(\bmod n)$. Therefore v is independent of p. We have shown the independence of u and v from p, \mathbf{Z} and \mathbf{W}.

Now let p be a prime not ramified in \mathbf{K}. Choose $\mathbf{Z}=\mathbf{Z}(p, n, \mathbf{K})$. Artin symbol $\left(\frac{\mathbf{Z}: \mathbf{k}}{p}\right)$ has order n. Since $[\mathbf{Z}: \mathbf{k}]=r n$, we have

$$
\begin{equation*}
\left(\frac{\mathbf{Z}: \mathbf{k}}{p}\right)=\rho_{0}^{x_{1} r} \quad \text { where }\left(x_{1}, n\right)=1 \tag{4.12}
\end{equation*}
$$

Artin symbol $\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)$ is some power of σ_{0}, so let

$$
\begin{equation*}
\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)=\sigma_{0}^{y_{1}} \tag{4.13}
\end{equation*}
$$

\mathbf{S} is the fixed field of $\left\{\left(\rho_{0}^{x}, \sigma_{0}^{y}\right) \mid x a-y r=0(\bmod n)\right\}$. $\left(\frac{\mathbf{S}: \mathbf{k}}{p}\right)$ and $\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)$ are the restrictions of $\left(\frac{\mathbf{Z K}: \mathbf{k}}{p}\right)$ to \mathbf{S} and \mathbf{K}, respectively, so

$$
\left(\frac{\mathbf{Z K}: \mathbf{k}}{p}\right)=\left(\left(\frac{\mathbf{Z}: \mathbf{k}}{p}\right),\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)\right)=\left(\rho_{0}^{x_{1} r}, \sigma_{0}^{y_{1}}\right) .
$$

Choose a so that $x_{1} a-y_{1}=0(\bmod n)$. Then

$$
r x_{1} a-r y_{1}=0(\bmod n),
$$

so $\left(\frac{\mathbf{Z K}: \mathbf{k}}{p}\right)$ fixes \mathbf{S}, so $\left(\frac{\mathbf{S}: \mathbf{k}}{p}\right)=1$. If \wp is a prime of \mathbf{S} dividing p then $\left(\frac{\mathbf{S}: \mathbf{k}}{p}\right)$ generates $G\left(\mathbf{S}_{\wp} / \mathbf{k}_{p}\right)$, so $\mathbf{S}_{\wp}=\mathbf{k}_{p}$.

For $\alpha \in \mathbf{k}_{p}$, let $\mathbf{i}=\mathbf{i}(\alpha, p)$ be the idele in \mathbf{I}_{k} so that

$$
\mathbf{i}_{q}=\left\{\begin{array}{c}
\alpha \text { at } q=p \\
1 \text { at } q \neq p
\end{array}\right.
$$

Since $\mathbf{S}_{\wp}=\mathbf{k}_{p}$, choose $\mathbf{j}=\mathbf{j}(\alpha, \wp)$ for a prime \wp of \mathbf{K} dividing p. Then

$$
\mathbf{N}_{\mathbf{S} / \mathbf{k}} \mathbf{j}(\alpha, \wp)=\mathbf{i}(\alpha, p)
$$

and by (4.5) we have

$$
\begin{align*}
\chi_{\omega}(\mathbf{i}(\alpha, p))=\chi_{\omega}\left(\mathbf{N}_{\mathbf{S} / \mathbf{k}} \mathbf{j}(\alpha, \wp)\right) & \tag{4.14}\\
& =\Theta\left(\phi_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{S} / \mathbf{k}} \mathbf{j}(\alpha, \wp)\right)^{u}=\Theta\left(\phi_{\mathbf{Z} / \mathbf{k}} \mathbf{i}(\alpha, p)\right)^{u}\right.
\end{align*}
$$

Prime p is not ramified in \mathbf{Z}, so

$$
\begin{equation*}
\phi_{\mathbf{Z} / \mathbf{k}}(\mathbf{i}(\alpha, p))=\left(\frac{\mathbf{Z}: \mathbf{k}}{p}\right)^{b} \quad \text { where }|\alpha|_{p}=\mathrm{N} p^{-b} \tag{4.15}
\end{equation*}
$$

By (4.14), (4.15), and (4.12) we have

$$
\begin{aligned}
\chi_{\omega}(\mathbf{i}(\alpha, p)) & =\Theta\left(\left(\frac{\mathbf{Z}: \mathbf{k}}{p}\right)\right)^{b u}=\Theta\left(\rho_{0}^{r x_{1} b u}\right) \\
& =\exp \left(\frac{2 \pi i r x_{1} b u}{r n}\right)=\exp \left(\frac{2 \pi i x_{1} b u}{n}\right)
\end{aligned}
$$

Since $v a=u(\bmod n)$, and since a was chosen so that $x_{1} a=y_{1}(\bmod n)$, we have $x_{1} b u=x_{1} b v a=y_{1} b v(\bmod n)$. By 4.13, we have

$$
\chi_{\omega}(\mathbf{i}(\alpha, p))=\exp \left(\frac{2 \pi i y_{1} b v}{n}\right)=\chi\left(\sigma_{0}^{y_{1} b v}\right)=\chi\left(\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)\right)^{b v}
$$

To summarize, suppose that p is not ramified in \mathbf{K}, α is an element of \mathbf{k}_{p}, and $\mathbf{i}=\mathbf{i}(\alpha, p)$ is an idele in $\mathbf{I}_{\mathbf{k}}$ with components $\mathbf{i}_{q}=\alpha$ at prime $q=p$ and $\mathbf{i}_{q}=1$ at primes $q \neq p$. Then there is an integer v independent of p so that $0<v<n$ and

$$
\begin{equation*}
\chi_{\omega}(\mathbf{i}(\alpha, p))=\chi\left(\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)\right)^{b v} \quad \text { where }|\alpha|_{p}=\mathrm{N} p^{-b} \tag{4.16}
\end{equation*}
$$

If $\mathbf{i} \in \mathbf{I}_{\mathbf{k}}\{E\}$, then (2.1) defines $\phi_{\mathbf{K} / \mathbf{k}}$ by

$$
\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i})=\prod_{p \neq E}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{b_{p}} \quad \text { where } \mathbf{I}_{p}=\mathrm{N} p^{-b_{p}}
$$

The only non-trivial terms of the product over E are for primes in $F=\left\{p| | \mathbf{i}_{p} \mid \neq 1\right\}$, so

$$
\chi\left(\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i})\right)^{v}=\prod_{p \notin F} \chi\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{b_{p} v}=\prod_{p \notin F} \chi_{\omega}\left(\mathbf{i}\left(\mathbf{i}_{p}, p\right)\right) .
$$

Idele \mathbf{i} in $\mathbf{I}_{\mathbf{k}}\{E\}$ as a direct product is

$$
\mathbf{i}=\prod_{\mathbf{p} \in F} \mathbf{i}\left(\mathbf{i}_{p}, p\right) \times \prod_{\mathbf{p} \notin F} \mathbf{i}\left(\mathbf{i}_{p}, p\right)
$$

For a prime p not in F, each component \mathbf{i}_{p} is the norm of an β_{\wp} element in \mathbf{K}_{\wp} for prime \wp of \mathbf{K} dividing p, by proposition 4.7. By setting $\mathbf{j}_{\wp}=\beta$ at one prime \wp dividing each prime p not in F and $\mathbf{j}_{\wp}=1$ otherwise, we have

$$
\prod_{p \notin F} \mathbf{i}\left(\mathbf{i}_{p}, p\right) \in \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}} \subset \operatorname{ker}\left(\chi_{\omega}\right)
$$

therefore

$$
\begin{equation*}
\chi\left(\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i})\right)^{v}=\chi_{\omega}\left(\prod_{p \in F} \mathbf{i}\left(\mathbf{i}_{p}, p\right)\right)=\chi_{\omega}(\mathbf{i}) \quad \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{k}}\{E\} . \tag{4.17}
\end{equation*}
$$

Since $\mathbf{I}_{\mathbf{k}}=\mathbf{I}_{\mathbf{k}}\{E\} \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$, then $\chi_{\omega}(\mathbf{i})$ is completely determined by its values at \mathbf{i} in $\mathbf{I}_{\mathbf{k}}\{E\}$. The n functions χ_{ω} are all distinct because if $\chi_{\omega_{1}}=\chi_{\omega_{2}}$ then $1=\chi_{\omega_{1}}(\mathbf{i}) \chi_{\omega_{2}}(\mathbf{i})^{-1}=\chi_{\left(\omega_{1}-\omega_{2}\right)}(\mathbf{i})$. But if $\omega_{1}-\omega_{2} \neq(0)$ then $\chi_{\left(\omega_{1}-\omega_{2}\right)}(\mathbf{i}) \neq 1$ for some \mathbf{i} in $\mathbf{I}_{\mathbf{k}}\{E\}$, so we must have $\omega_{1}=\omega_{2}$. There are n homomorphisms χ_{ω} corresponding to n values of v, so the correspondence is one-to-one. There is therefore some ω_{0} that corresponds to $v=1$, and we have

$$
\begin{equation*}
\chi\left(\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i})\right)=\chi_{\omega_{0}}(\mathbf{i}) \quad \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{k}}\{E\} \tag{4.18}
\end{equation*}
$$

The right side of (4.18) is defined for all \mathbf{i} in $\mathbf{I}_{\mathbf{k}} \cdot \chi$ is an isomorphism from $G[\mathbf{K}: \mathbf{k}]$ to the n-th roots of unity. Define

$$
\begin{equation*}
\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i})=\chi^{-1}\left(\chi_{\omega_{0}}(\mathbf{i})\right) \quad \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{k}} \tag{4.19}
\end{equation*}
$$

This definition agrees with (2.1) for \mathbf{i} in $\mathbf{I}_{\mathbf{k}}\{E\}$ and the kernel contains \mathbf{k}^{*}. This completes the proof of theorem 1 for cyclic extensions.

