CHAPTER IV

THEOREM 1: PROOF FOR CYCLIC EXTENSIONS

Non-degeneracy of the trace in separable extensions. In this section, **k** may be either a finite field or an algebraic number field. (The result for finite fields is needed in the proof of proposition 4.7.) $\mathbf{S}_{\mathbf{K}/\mathbf{k}}(xy)$ is a **k**-bilinear form of **K** represented by matrix $\mathbf{S}_{ij} = \mathbf{S}_{\mathbf{K}/\mathbf{k}}(\alpha_i\alpha_j)$ with respect to basis $\alpha_1, \ldots, \alpha_n$ of **K** over **k**. If $x = a_1\alpha_1 + \cdots + a_n\alpha_n$ and $y = b_1\alpha_1 + \cdots + b_n\alpha_n$, then

$$\begin{aligned} \mathbf{S}_{\mathbf{K}/\mathbf{k}}(xy) &= \mathbf{S}_{\mathbf{K}/\mathbf{k}}(\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}\alpha_{i}\alpha_{j}b_{j}) \\ &= \sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}\mathbf{S}_{\mathbf{K}/\mathbf{k}}(\alpha_{i}\alpha_{j})b_{j} = \sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}\mathbf{S}_{ij}b_{j} = (\mathbf{X}^{t})\mathbf{S}\mathbf{Y}. \end{aligned}$$

LEMMA 4.1. If \mathbf{K}/\mathbf{k} is a finite normal separable extension with Galois group $G = G(\mathbf{K} : \mathbf{k})$ then

$$\mathbf{N}_{\mathbf{K}/\mathbf{k}}\alpha = \prod_{\sigma \in G} \alpha^{\sigma} \quad and \quad \mathbf{S}_{\mathbf{K}/\mathbf{k}}\alpha = \sum_{\sigma \in G} \alpha^{\sigma}.$$

PROOF. Let $[\mathbf{k}(\alpha) : \mathbf{k}] = n$ and $[\mathbf{K} : \mathbf{k}(\alpha)] = m$. Let G be the Galois group of \mathbf{K} over \mathbf{k} and H be the subgroup of G that fixes $\mathbf{k}(\alpha)$. Let $\{\rho_1, \ldots, \rho_n\}$ be a set of representatives for the distinct right cosets of H in G. The minimum polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ of α over \mathbf{k} has factorization $(x - \alpha^{\rho_1}) \ldots (x - \alpha^{\rho_n})$, so $a_1 = -\sum_{k=1}^n \alpha^{\rho_k}$ and $a_n = (-1)^n \prod_{k=1}^n \alpha^{\rho_k}$. The matrix representing T_α as a linear transformation of $\mathbf{k}(\alpha)$ with respect to basis $1, \alpha, \ldots, \alpha^{n-1}$ is

$$\mathbf{T} = \begin{pmatrix} 0 & 0 & \dots & 0 & -a^n \\ 1 & 0 & \dots & 0 & -a_{n-1} \\ 0 & 1 & \dots & 0 & -a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_1 \end{pmatrix}$$

Then $\mathbf{N}_{\mathbf{k}(\alpha)/\mathbf{k}}\alpha = \det(\mathbf{T}) = (-1)^{n+1}(-a_n) = \prod_{k=1}^n \alpha^{\rho_k}$ and $\mathbf{S}_{\mathbf{k}(\alpha)/\mathbf{k}}\alpha = \operatorname{trace}(\mathbf{T}) = -a_1 = \sum_{k=1}^n \alpha^{\rho_k}$. We have

$$\begin{split} \mathbf{N}_{\mathbf{K}/\mathbf{k}} \alpha &= \mathbf{N}_{\mathbf{k}(\alpha)/\mathbf{k}} \mathbf{N}_{\mathbf{K}/\mathbf{k}(\alpha)} \alpha = \mathbf{N}_{\mathbf{k}(\alpha)/\mathbf{k}} \alpha^{m}, \\ \mathbf{S}_{\mathbf{K}/\mathbf{k}} \alpha &= \mathbf{S}_{\mathbf{k}(\alpha)/\mathbf{k}} \mathbf{S}_{\mathbf{K}/\mathbf{k}(\alpha)} \alpha = m \mathbf{S}_{\mathbf{k}(\alpha)/\mathbf{k}} \alpha. \end{split}$$

Let $H = \{\tau_1, \ldots, \tau^m\}$. Then the *nm* products $\tau_j \rho_k$ run over G. We have

$$\prod_{\sigma \in G} \alpha^{\sigma} = \prod_{j=1}^{m} \prod_{k=1}^{n} \alpha^{\tau_{j}\rho_{k}} = \left(\prod_{k=1}^{n} \alpha^{\rho_{k}}\right)^{m} = \mathbf{N}_{\mathbf{K}/\mathbf{k}}\alpha$$
$$\sum_{\sigma \in G} \alpha^{\sigma} = \sum_{j=1}^{m} \sum_{k=1}^{n} \alpha^{\tau_{j}\rho_{k}} = m \sum_{k=1}^{n} \alpha^{\rho_{k}} = \mathbf{S}_{\mathbf{K}/\mathbf{k}}\alpha.$$

LEMMA 4.2. If \mathbf{K}/\mathbf{k} is a finite normal separable extension then matrix \mathbf{S} is non-singular.

PROOF. Let $\{\sigma_1, \ldots, \sigma_n\}$ be the automorphisms in Galois group $G(\mathbf{K} : \mathbf{k})$. By lemma 4.1, $\mathbf{S}_{ij} = \sum_{k=1}^{n} \alpha_i^{\sigma_k} \alpha_j^{\sigma_k}$, so $\mathbf{S}_{ij} = \mathbf{A}\mathbf{A}^t$ where $\mathbf{A}_{ik} = \alpha_i^{\sigma_k}$. With respect to a simple basis $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$, \mathbf{A} has the form $\mathbf{A}_{ik} = (\alpha^{\sigma_k})^{i-1}$, which is a Vandermonde matrix $V(\alpha^{\sigma_1}, \ldots, \alpha^{\sigma_n})$. There are *n* distinct conjugates of generator α , so \mathbf{A} is non-singular and so is \mathbf{S} .

LEMMA 4.3. Let **K** be a finite normal extension **k**. Matrix (\mathbf{S}_{ij}) is non-singular if and only if for every non-zero element y of **K** there exists an element x of **K** so that $\mathbf{S}_{\mathbf{K}/\mathbf{k}}(xy) \neq 0$.

PROOF. $\mathbf{S}_{\mathbf{K}/\mathbf{k}}(xy) = (\mathbf{X}^t)\mathbf{S}\mathbf{Y}$. Suppose **S** non-singular. If $y \neq 0$ then $\mathbf{S}\mathbf{Y} \neq 0$, so there is a vector **X** so that $(\mathbf{X}^t)\mathbf{S}\mathbf{Y} \neq 0$. conversely, if **S** is singular then $\mathbf{S}\mathbf{Y} = 0$ for some non-zero y, and $\mathbf{S}_{\mathbf{K}/\mathbf{k}}(xy) = 0$ for every x in **K**.

PROPOSITION 4.4. Let **L** be a finite separable (not necessarily normal) extension of **k**. Then the trace $\mathbf{S}_{\mathbf{L}/\mathbf{k}}(xy)$ is non-degenerate: for every non-zero y in **L** there is an x in **L** so that $\mathbf{S}_{\mathbf{L}/\mathbf{k}}(xy) \neq 0$.

PROOF. Let y be a non-zero element of \mathbf{L} . Then \mathbf{L} is contained in a finite normal extension \mathbf{K} , and

$$\mathbf{S}_{\mathbf{K}/\mathbf{k}}(xy) = \mathbf{S}_{\mathbf{L}/\mathbf{k}}\big(\mathbf{S}_{\mathbf{K}/\mathbf{L}}(xy)\big) = \mathbf{S}_{\mathbf{L}/\mathbf{k}}\big(\mathbf{S}_{\mathbf{K}/\mathbf{L}}(x)y\big).$$

Choose x in **K** so that $\mathbf{S}_{\mathbf{K}/\mathbf{k}}(xy) \neq 0$. Then $\mathbf{S}_{\mathbf{K}/\mathbf{L}}(x)$ is the desired element of **L**.

REMARK. In lemma 4.5, let the images modulo \wp and p of elements β in \mathbf{O}_{\wp} and b in \mathbf{O}_p be denoted by $\overline{\beta}$ and \overline{b} , respectively.

LEMMA 4.5. Suppose that p-adic extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ is not ramified. Let F(q) denote finite field \mathbf{o}_p/p where q = Np; let $F(q^f)$ denote finite field \mathbf{O}_{\wp}/\wp where $q^f = N\wp$. Then

$$\overline{\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\alpha} = \mathbf{N}_{F(q^{f})/F(q)}\overline{\alpha} \quad and \quad \overline{\mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\alpha} = \mathbf{S}_{F(q^{f})/F(q)}\overline{\alpha}.$$

PROOF. Choose w_1, \ldots, w_f in \mathbf{O}_{\wp} so that $\overline{w_1}, \ldots, \overline{w_f}$ is a basis for $F(q^f)$ over F(q). Let $p = (\pi)$ for $\pi \in \mathbf{o}_p$. Suppose $a_1w_1 + \cdots + a_nw_n = 0$ with $a_i \in \mathbf{k}_p$. After multiplying by a power of π , we may take the coefficients a_i in \mathbf{o}_p . Then each coefficient a_i is 0 modulo p, so $a_i = \pi a'_i$ with a'_i in \mathbf{o}_p . Dividing by π , we have $a'_1w_1 + \cdots + a'_nw_n = 0$. In this fashion we can show that each a_i is divisible by an arbitrarily large power of π , so each $a_i = 0$ and w_1, \ldots, w_f must be linearly independent over \mathbf{k}_p . We have $[\mathbf{K}_{\wp}/\mathbf{k}_p] = f$, so w_1, \ldots, w_f is a basis of \mathbf{K}_{\wp} over \mathbf{k}_p . With respect basis w_1, \ldots, w_f , let the matrix representing T_{α} be (a_{ij}) . With respect to basis $\overline{w_1}, \ldots, \overline{w_f}$, the matrix representing $T_{\overline{\alpha}}$ as a linear transformation of $\mathbf{O}\wp/\wp$ over \mathbf{o}_p/p will be $(\overline{a_{ij}})$. We have $\overline{\det(a_{ij})} = \det(\overline{a_{ij}})$ and $\overline{\operatorname{trace}(a_{ij})} = \operatorname{trace}(\overline{a_{ij}})$, which proves the lemma.

Every unit is a norm in unramified *p*-adic extensions. If \mathbf{K}/\mathbf{k} is a finite extension of algebraic numbers then \mathbf{O}_{\wp}/\wp is a finite field containing N \wp elements; \mathbf{o}_p/p is finite field containing Np elements. Let these finite fields be denoted by $F(q^f)$ and F(q), where q = Np and $q^f = N\wp$.

LEMMA 4.6. Every element in F(q) is the norm of an element in $F(q^f)$.

PROOF. The Galois group of $F(q^f)$ over F(q) is generated by σ where $\alpha^{\sigma} = \alpha^q$. Then

$$\mathbf{N}_{F(q^f)/F(q)}(\alpha) = \alpha \alpha^q \dots \alpha^{q^{n-1}} = \alpha^{1+q+\dots+q^{n-1}} = \alpha^{\left(\frac{q^n-1}{q-1}\right)}.$$

 $\mathbf{N}_{F(q^f)/F(q)}(0) = 0$, so we have to show that the q-1 non-zero elements of F(q) are norms. Take α to be a generator of $F(q^f)^*$. Then

$$\mathbf{N}_{F(q^f)/F(q)}(\alpha^u) = \alpha^{u\left(\frac{q^{n-1}}{q-1}\right)}$$

For $u = 0, 1, \ldots, q-2$ we have $0 \le u(q^n - 1)/(q-1) < q^n - 1$. Since α has order $q^n - 1$, there are q - 1 distinct values of $\mathbf{N}_{F(q^f)/F(q)}(\alpha^u)$.

PROPOSITION 4.7. If \mathbf{K}_{\wp} is an finite unramified extension of p-adic field \mathbf{k}_{p} , then every unit in \mathbf{k}_{p} is the norm of an element in \mathbf{K}_{\wp} .

PROOF. Let β be a unit in \mathbf{k}_p . By lemma 4.6, there is an α_1 in \mathbf{K}_{\wp} so that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\alpha_1 = \beta \pmod{p}$. Suppose that we have already found α_n in \mathbf{K}_{\wp} so that

 $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\alpha_{n} = \beta \pmod{p^{n}}$. Let $p = (\pi)$. The extension $\mathbf{K}_{\wp}/\mathbf{k}_{p}$ is not ramified, so $p\mathbf{O}_{\wp} = \wp$, and $\wp^{n} = \pi^{n}\mathbf{O}_{\wp}$ for $n \ge 0$. Then $(\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\alpha_{n})^{-1}\beta = 1 + \delta\pi^{n} \pmod{p^{n+1}}$. Put $\alpha_{n+1} = \alpha_{n}(1 + x\pi^{n})$. The condition $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\alpha_{n+1} = \beta \pmod{p^{n+1}}$ will be satisfied if we can find x in \mathbf{K}_{\wp} so that

(4.1)
$$\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}(1+x\pi^{n}) = 1 + \delta\pi^{n} (\text{mod } p^{n+1}).$$

Let (x_{ij}) be the matrix representing T_x in \mathbf{K}_{\wp} over \mathbf{k}_p with respect to some basis. then the matrix representing $T_{1+x\pi^n}$ is

$$\begin{pmatrix} 1 + x_{11}\pi^n & x_{12}\pi^n & \dots & x_{1f}\pi^n \\ x_{21}\pi^n & 1 + x_{22}\pi^n & \dots & x_{2f}\pi^n \\ \vdots & \vdots & \ddots & \vdots \\ x_{f1}\pi^n & x_{f2}\pi^n & \dots & 1 + x_{ff}\pi^n \end{pmatrix}$$

We therefore have

$$\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}(1+x\pi^{n}) = 1 + (x_{11}+\dots+x_{ff})\pi^{n} = 1 + \pi^{n}\mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}x \pmod{p^{n+1}}.$$

Condition (4.1) is therefore

$$1 + \pi^n \mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_p} x = 1 + \delta \pi^n \pmod{p^{n+1}},$$

or

$$\mathbf{S}_{\mathbf{K}_{\omega}/\mathbf{k}_{p}}x = \delta \pmod{p}.$$

By lemma 4.3, the trace $\mathbf{S} : \mathbf{O}_{\wp}/\wp \to \mathbf{o}_p/p$ is non-degenerate; there exists an element $\gamma \in \mathbf{O}_{\wp}$ so that $\mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\gamma = \epsilon \neq 0 \pmod{p}$. Then $\mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\gamma \epsilon^{-1} = 1 \pmod{p}$, and $\mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\gamma \epsilon^{-1}\delta = \delta \pmod{p}$. Therefore $\alpha_{n+1} = \alpha_n(1 + \gamma \epsilon^{-1}\delta\pi^n)$ satisfies (4.1). The sequence $\{\alpha_n\}$ converges to a limit α in \mathbf{K}_{\wp} satisfying $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\alpha = \beta$.

Exponential and logarithm functions. In the following discussion of exponential and logarithm functions, let \wp denote a prime of \mathbf{k} and $(p) = \wp \cap \mathbf{Z}$ the rational prime that \wp divides, with p > 0.

LEMMA 4.8. Let \wp be a finite prime of **k**. The series

(4.2)
$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^k}{k!} + \dots$$

converges for x in \mathbf{k}_{\wp} if $\operatorname{ord}_{\wp}(x) > \frac{b}{p-1}$ where $b = \operatorname{ord}_{\wp}(p)$.

PROOF. The series converges if and only if $\lim_{k\to\infty} |x^k/k!|_{\wp} = 0$. The exact power to which rational prime p divides k! is

$$\operatorname{ord}_p(k!) = \left[\frac{k}{p}\right] + \left[\frac{k}{p^2}\right] + \left[\frac{k}{p^3}\right] + \dots$$

Let $k = a_0 + a_1 p + a_2 p^2 + \dots + a_r p^r$ where $0 \le a_i < p$. Then $\begin{bmatrix} \frac{k}{p} \end{bmatrix} = a_1 + a_2 p + \dots + a_r p^{r-1}$ $\begin{bmatrix} \frac{k}{p^2} \end{bmatrix} = a_2 + \dots + a_r p^{r-2}$:

Summing each column, we have

$$\operatorname{ord}_p(k!) = a_0 \frac{p^0 - 1}{p - 1} + a_1 \frac{p^1 - 1}{p - 1} + a_2 \frac{p^2 - 1}{p - 1} + \dots + a_r \frac{p^r - 1}{p - 1},$$

or

$$\operatorname{ord}_p(k!) = \frac{k - (a_0 + a_1 + \dots + a_r)}{p - 1} \le \frac{k - 1}{p - 1}$$

Since $b = \operatorname{ord}_{\wp}(p)$, we have

(4.3)
$$\operatorname{ord}_{\wp}(k!) = b\left(\frac{k - (a_0 + a_1 + \dots + a_r)}{p - 1}\right) \le b\left(\frac{k - 1}{p - 1}\right).$$

Then

$$\operatorname{ord}_{\wp}(x^{k}/k!) = k \operatorname{ord}_{\wp}(x) - \operatorname{ord}_{\wp}(k!)$$
$$\geq k \operatorname{ord}_{\wp}(x) - b \left(\frac{k-1}{p-1}\right) = k \left(\operatorname{ord}_{\wp}(x) - \frac{b}{p-1}\right) + \frac{b}{p-1},$$

so $\operatorname{ord}_{\wp}(x^k/k!) \to \infty$ if $\operatorname{ord}_{\wp}(x) - b/(p-1) > 0$. LEMMA 4.9. If $\operatorname{ord}_{\wp}(x) > \frac{b}{p-1}$ then $\operatorname{ord}_{\wp}(\exp(x) - 1) = \operatorname{ord}_{\wp}(x)$. PROOF. We have

$$\exp(x) - 1 = x + \frac{x^2}{2!} + \dots + \frac{x^k}{k!} + \dots$$

We need to show $|x^k/k!|_{\wp} < |x|_{\wp}$, or $|x^{k-1}/k!|_{\wp} < 1$ for $k \ge 2$. We have $\operatorname{ord}_{\wp}(k!) \le b\left(\frac{k-1}{p-1}\right)$, so if $\operatorname{ord}_{\wp}(x) > \frac{b}{p-1}$ and $k \ge 2$ then

$$\operatorname{ord}_{\wp}\left(\frac{x^{k-1}}{k!}\right) = (k-1)\operatorname{ord}_{\wp}(x) - \operatorname{ord}_{\wp}(k!) > (k-1)\frac{b}{p-1} - b\frac{k-1}{p-1} = 0$$

LEMMA 4.10. Let \wp be a finite prime of **k**. The infinite series

$$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^k}{k} - \dots$$

converges for x in \mathbf{k}_{\wp} if $|x|_{\wp} < 1$.

PROOF. If $\operatorname{ord}_{\wp}(x) > 0$ we show that $|x^k/k|_{\wp} \to 0$, or $k \operatorname{ord}_{\wp}(x) - \operatorname{ord}_{\wp}(k) \to \infty$. Let $k = up^v$ where (u, p) = 1. Then $k = p^{\log_p(k)}$, so $\operatorname{ord}_{\wp}(k) = bv \leq b \log_p(k)$. If $\operatorname{ord}(x) > 0$ then for large k we have $\frac{\log_p(k)}{k} < \frac{1}{2b} \operatorname{ord}_{\wp}(x)$, and

$$\begin{split} k \operatorname{ord}_{\wp}(x) - \operatorname{ord}_{\wp}(k) &= k \left(\operatorname{ord}_{\wp}(x) - \frac{\operatorname{ord}_{\wp}(k)}{k} \right) \\ &\geq k \left(\operatorname{ord}_{\wp}(x) - \frac{b \log_p(k)}{k} \right) > \frac{k}{2} \operatorname{ord}_{\wp}(x) \to \infty. \end{split}$$

LEMMA 4.11. If $\operatorname{ord}_{\wp}(x) > \frac{b}{p-1}$ then $\operatorname{ord}_{\wp}(\log(1-x)) = \operatorname{ord}_{\wp}(x)$. PROOF. If $\operatorname{ord}_{\wp}(x) > \frac{b}{p-1}$, we need to show

$$\left|\frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^k}{k} + \dots\right|_{\wp} < |x|_{\wp}.$$

It is enough to show $|x^k/k|_{\wp} < |x|_{\wp}$, or

$$k \operatorname{ord}_{\wp}(x) - \operatorname{ord}_{\wp}(k) > \operatorname{ord}_{\wp}(x) \quad \text{for } k \ge 2$$

Put $k = up^v$, where (u, p) = 1. We need $up^v \operatorname{ord}_{\wp}(x) - bv > \operatorname{ord}_{\wp}(x)$, or

$$(up^v - 1) \operatorname{ord}_{\wp}(x) - bv > 0$$

Since $u \ge 1$, we need $(p^v - 1)$ ord_{\wp}(x) - bv > 0, or

$$\left(\frac{p^{\nu}-1}{p-1}\right)\operatorname{ord}_{\wp}(x) - \frac{b\nu}{p-1} > 0.$$

If $\operatorname{ord}_{\wp}(x) > \frac{b}{p-1}$ then we need

$$\left(\frac{p^{\nu}-1}{p-1}\right)\left(\frac{b}{p-1}\right) - \frac{b\nu}{p-1} \ge 0,$$

or

$$\frac{p^{v}-1}{p-1} - v = (1+p+\dots+p^{v-1}) - v \ge 0.$$

The last inequality is certainly valid, since $p \ge 2$ and $v \ge 0$.

LEMMA 4.12. For s and t in \mathbf{k}_{\wp} , if $\operatorname{ord}_{\wp}(s) > \frac{b}{p-1}$ and $\operatorname{ord}_{\wp}(t) > \frac{b}{p-1}$ then

$$\log ((1-s)(1-t)) = \log(1-s) + \log(1-t)$$
$$\exp (\log(1-s)) = 1-s$$
$$\exp(s) \exp(t) = \exp(s+t)$$
$$\log (\exp(s)) = s$$

PROOF. That each of the above series converges follows from the four previous lemmas.

LEMMA 4.13. If n > 0 and $\operatorname{ord}_{\wp}(n) = a$, then every element in the set

$$\left\{ y \in \mathbf{k}_{\wp}^* \mid \operatorname{ord}_{\wp}(y-1) > \frac{b}{p-1} + a \right\}$$

is the n-th power of an element in $\left\{x \in \mathbf{k}_{\wp}^* \mid \operatorname{ord}_{\wp}(x-1) > \frac{b}{p-1}\right\}$.

PROOF. If $\operatorname{ord}_{\wp}(y-1) > b/(p-1) + a$ then $\log(1-(y-1)) = \log(y)$ is defined, and $\operatorname{ord}_{\wp}(\log(y)) = \operatorname{ord}_{\wp}(y-1)$. Then $\operatorname{ord}_{\wp}(\log(y)/n) > b/(p-1)$, so $x = \exp(\log(y)/n)$ and $\exp(\log(y))$ are defined. We have

$$x^{n} = \left(\exp\left(\frac{\log(y)}{n}\right)\right)^{n} = \exp\left(\log(y)\right) = y,$$

and

$$\operatorname{ord}_{\wp}(x-1) = \operatorname{ord}_{\wp}\left(\exp\left(\frac{\log(y)}{n}\right) - 1\right) = \operatorname{ord}_{\wp}\left(\frac{\log(y)}{n}\right) > \frac{b}{p-1}$$

REMARK. We revert to the usual notation: p is a prime of \mathbf{k} and \wp a prime of finite extension field \mathbf{K} .

LEMMA 4.14. $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{\wp}}\mathbf{K}_{\wp}^{*}$ is an open subgroup of \mathbf{k}_{p}^{*} .

PROOF. Let $[\mathbf{K}_{\wp} : \mathbf{k}_p] = n$. If α is in \mathbf{k}_p^* then $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\alpha = \alpha^n$, so Every *n*-th power of an element in \mathbf{k}_p^* is in $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^*$. If $\operatorname{ord}_p(n) = a$ then every element in open set $\{\alpha \mid \operatorname{ord}_p(\alpha - 1) > \frac{b}{p-1} + a\}$ is an *n*-th power by lemma 4.13. Subgroup $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^*$ contains an open set, so $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^*$ is open.

PROPOSITION 4.15. If E is a finite set of primes of \mathbf{k} containing all infinite primes and all primes that are ramified in \mathbf{K} , then

$$\mathbf{I}_{\mathbf{k}}\{E\}\mathbf{k}^{*}\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}=\mathbf{I}_{\mathbf{k}}$$

PROOF. Given **i** in $\mathbf{I}_{\mathbf{k}}$, let F be the set of prime for which $|\mathbf{i}_p|_p \neq 1$. By lemma 2.4, there exists an element α in \mathbf{k}_p^* so that $\alpha^{-1}\mathbf{i}_p$ is arbitrarily close to 1 at primes p in $E \cup F$. In particular, we want $\alpha^{-1}\mathbf{i}_p \in \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^*$ for the finite primes in $E \cup F$ and $\alpha^{-1}\mathbf{i}_p \in \mathbf{R}^+$ for the real infinite primes of \mathbf{k} . Define \mathbf{i}_1 and \mathbf{i}_2 so that

$$\mathbf{i}_1 = \begin{cases} 1 & \text{for } p \notin E \cup F \\ \alpha^{-1} \mathbf{i}_p & \text{for } p \in E \cup F \end{cases} \qquad \mathbf{i}_2 = \begin{cases} \alpha^{-1} \mathbf{i}_p & \text{for } p \notin E \cup F \\ 1 & \text{for } p \in E \cup F \end{cases}$$

Then $\mathbf{i} = \alpha \mathbf{i}_1 \mathbf{i}_2$ where $\alpha \in \mathbf{k}^*$, $\mathbf{i}_1 \in \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}$, and $\mathbf{i}_2 \in \mathbf{I}_{\mathbf{k}} \{ E \cup F \} \subset \mathbf{I}_{\mathbf{k}} \{ E \}$.

Two number-theoretic lemmas. Put $T_r = (a^{v^r} - 1)/(a^{v^{r-1}} - 1)$, where r > 0, a > 1, v > 1. We have

$$a^{v^{r}} - 1 = \left(\left(a^{v^{r-1}} - 1 \right) + 1 \right)^{v} - 1$$
$$= \left(a^{v^{r-1}} - 1 \right)^{v} + \dots + \binom{k}{v} \left(a^{v^{r-1}} - 1 \right)^{k} + \dots + v \left(a^{v^{r-1}} - 1 \right)^{k}$$

(4.4)
$$T_r = \left(a^{v^{r-1}} - 1\right)^{v-1} + v\left(a^{v^{r-1}} - 1\right)^{v-2} + \dots + v$$

LEMMA 4.16. If r > 0, a > 1, and v is prime then

- (1) if q is a prime so that $q|T_r$ and $q|(a^{v^{r-1}}-1)$ then q=v,
- (2) if $v|T_r$ then $v|(a^{v^{r-1}}-1)$,
- (3) if v > 2 or r > 1 then $T_r \neq 0 \pmod{v^2}$.

PROOF. (1) If $q|T_r$ and $q|(a^{v^{r-1}}-1)$ then by (4.4), q must divided v, so q = v. (2) If $v|T_r$ then v divides every term of (4.4) except possibly $(a^{v^{r-1}}-1)^{v-1}$, so v divides that term too. Therefore v divides $a^{v^{r-1}}-1$.

(3) Assume $T_r = 0 \pmod{v^2}$. Then v divides $a^{v^{r-1}} - 1$ by (2). If v > 2 then v^2 divides every term of (4.4) except v; then v^2 cannot divide T_r , so v > 2 is impossible. If r > 1 then (since v = 2) we have $T_r = (a^{2^{r-1}} - 1) + 2$. If a is even then T_r is odd (impossible), so a is odd. $a^{2^{r-1}}$ is a square so $a^{2^{r-1}} = 1 \pmod{4}$ and $T_r = 2 \pmod{4}$ (impossible). It must be that r = 1. LEMMA 4.17. Given positive integers m, a, and prime power $v^h > 1$, we can find prime q not dividing am so that the order of a modulo q is v^l where $l \ge h$.

PROOF. Let q_1, \ldots, q_s be the primes dividing m. If q_i divides some $a^{v^r} - 1$ then let q_i divide $a^{v^{r_i}} - 1$. Take r_0 greater than h and also greater than any of the r_i that are defined. We claim that there is a prime q dividing T_{r_0} so that q is not equal to v or any of the q_i . Then q also divides $a^{v^{r_0}} - 1$, so $a^{v^{r_0}} = 1 \pmod{q}$. If $a^{v^{r_0-1}} = 1 \pmod{q}$ then by (4.4) we would have $T_{r_0} = v \pmod{q}$ (impossible). Therefore the order of $a \mod q$ is v^{r_0} , which is greater than v^h .

We need to show how to find q. By (4.4) we must have $T_{r_0} > v$. If T_{r_0} were a power of v then by (3) of lemma 4.16 we would have $r_0 = 1$. But r_0 was chosen greater than 1, so T_{r_0} has some prime divisor q that is not v. Then q divides $a^{v_{r_0}} - 1$. Suppose that $q = q_i$. Since q_i divides $a^{v_{r_i}} - 1$ and $r_i < r_0$, then q_i would divide $a^{v_{r_0-1}} - 1$. By (1) of lemma 4.16, $q_i = v$ (impossible). Therefore $q \neq q_i$.

Existence of cyclic extensions with given properties.

PROPOSITION 4.18. Let finite prime p of \mathbf{Q} , finite extension \mathbf{T} of \mathbf{Q} , and prime power $v^h > 1$ be given. Then there exists a cyclic extension \mathbf{Z} of \mathbf{Q} so that (1) \mathbf{Z} is contained in a cyclotomic extension of \mathbf{Q} ,

- (2) p is not ramified in \mathbf{Z} ,
- (3) Artin symbol $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)$ has order v^h ,
- (4) $\mathbf{Z} \cap \mathbf{T} = \mathbf{Q}$, and
- (5) $[\mathbf{Z}:\mathbf{Q}]$ is a power of v and $[\mathbf{Z}:\mathbf{Q}] \ge v^h$.

PROOF. Look at all of the fields $\mathbf{Q}(\zeta_m) \cap \mathbf{T}$; choose m_0 so that $[\mathbf{Q}(\zeta_{m_0}) \cap \mathbf{T} : \mathbf{Q}]$ is maximum. We first want to show that if m is relatively prime to m_0 then $\mathbf{Q}(\zeta_m) \cap \mathbf{T} = \mathbf{Q}$. We have $\mathbf{Q}(\zeta_m) \cap \mathbf{T} \subset \mathbf{Q}(\zeta_{mm_0}) \cap \mathbf{T}$. Also, $\mathbf{Q}(\zeta_{m_0}) \cap \mathbf{T} \subset$ $\mathbf{Q}(\zeta_{mm_0}) \cap \mathbf{T}$, but by the choice of m_0 , we must have $\mathbf{Q}(\zeta_{m_0}) \cap \mathbf{T} = \mathbf{Q}(\zeta_{mm_0}) \cap \mathbf{T}$. Therefore $\mathbf{Q}(\zeta_m) \cap \mathbf{T} \subset \mathbf{Q}(\zeta_m) \cap \mathbf{Q}(\zeta_{m_0}) = \mathbf{Q}$ as claimed.

By lemma 4.17, given m_0 , p, and v^h , we can find prime q relatively prime to pand m_0 so that the order of p modulo q is v^l and $l \ge h$. Let $\mathbf{k} = \mathbf{Q}(\zeta_q)$, a cyclic extension with Galois group isomorphic to \mathbf{Z}_q^* . By lemma 3.2 we have $\left(\frac{\mathbf{k}:\mathbf{Q}}{p}\right)\zeta = \zeta^p$. The order of $\left(\frac{\mathbf{k}:\mathbf{Q}}{p}\right)$ is the order of p modulo q, which is v^l . Let σ be a generator of $G = G(\mathbf{k}:\mathbf{Q})$; the order of σ is q-1. Then $\left(\frac{\mathbf{k}:\mathbf{Q}}{p}\right) = \sigma^{rv^k}$, where v does not divide r. Since $\sigma^{rv^{k+l}} = \left(\frac{\mathbf{k}:\mathbf{Q}}{p}\right)^{v^l} = 1$, and v^{k+l} is the smallest power for which this is true, it follows that v^{k+l} is the exact power of v dividing q-1.

Take **Z** to be the fixed field of the subgroup *H* generated by
$$\sigma^{v^{k+h}}$$
. By lemma 2.13, $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right) = \sigma^{rv^k}$. Then $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)^{v^h} = \sigma^{rv^{k+h}} \in H$. Therefore $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)^{v^h} = 1$. If

$$j < h$$
 then $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)^{v^j} = \sigma^{rv^{k+j}} \notin \langle \sigma^{v^{k+h}} \rangle$, so $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)^{v^j} \neq 1$; therefore $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)$ is order v^h .

We have (1) \mathbf{Z} is contained in $\mathbf{Q}(\zeta_q)$, (2) p does not divide q and so is not ramified in \mathbf{Z} , (3) Artin symbol $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)$ has order v^h , (4) $\mathbf{Z} \cap \mathbf{T} \subset \mathbf{Q}(\zeta_q) \cap T \subset \mathbf{Q}$, and (5) $[\mathbf{Z}:\mathbf{Q}] = [G:H] = [\langle \sigma \rangle : \langle \sigma^{v^{k+h}} \rangle] = v^{k+h}.$

REMARK. It is possible to choose the roots of unity so that $\zeta_{mn}^n = \zeta_m$. (Choose an embedding of the algebraic closure of **Q** into the complex field such that ζ_n is mapped to $e^{2\pi i/n}$ for each n > 1.) This relation will simplify the proof of proposition 4.19.

LEMMA 4.19. If (n, m) is the greatest common divisor of n and m then

$$\mathbf{Q}(\zeta_n)\mathbf{Q}(\zeta_m) = \mathbf{Q}(\zeta_{nm/(n,m)}).$$

PROOF. There exists integers u and v so that un + vm = (n, m), and we have $\zeta_m^u \zeta_n^v = \zeta_{nm}^{un+mv} = \zeta_{nm}^{(n,m)} = \zeta_{nm/(n,m)}$, so $\mathbf{Q}(\zeta_{nm/(n,m)})$ is contained in $\mathbf{Q}(\zeta_n)\mathbf{Q}(\zeta_m)$. Since $\zeta_{mn/(n,m)}^{n/(n,m)} = \zeta_m$ and $\zeta_{mn/(n,m)}^{m/(n,m)} = \zeta_n$ we also have $\mathbf{Q}(\zeta_n)\mathbf{Q}(\zeta_m)$ contained in $\mathbf{Q}(\zeta_{nm/(n,m)})$. Therefore $\mathbf{Q}(\zeta_n)\mathbf{Q}(\zeta_m) = \mathbf{Q}(\zeta_{nm/(n,m)})$.

PROPOSITION 4.20. Let finite prime p of \mathbf{Q} , finite extension \mathbf{T} of \mathbf{Q} , and positive integer n be given. Then there exists a cyclic extension \mathbf{Z} of \mathbf{Q} so that (1) \mathbf{Z} is contained in a cyclotomic extension of \mathbf{Q} .

- (2) p is not ramified in \mathbf{Z} ,
- (3) Artin symbol $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)$ has order n,
- (4) $\mathbf{Z} \cap \mathbf{T} = \mathbf{Q}$,
- (5) *n* divides $[\mathbf{Z} : \mathbf{Q}]$, and the only primes dividing $[\mathbf{Z} : \mathbf{Q}]$ are those dividing *n*.

PROOF. If n is a prime power then proposition 4.20 reduces to proposition 4.18. Suppose that the conclusion of Proposition 4.20 holds for relatively prime n_1 and n_2 . We must show that the conclusion holds for n_1n_2 . Let $\mathbf{Z}_1 = \mathbf{Z}(p, n_1, \mathbf{T})$ satisfy the conclusion for n_1 , and let $\mathbf{Z}_2 = \mathbf{Z}(p, n_2, \mathbf{Z}_1\mathbf{T})$ satisfy the conclusion for n_2 .

Choose **Z** to be $\mathbf{Z}_1\mathbf{Z}_2$. Then \mathbf{Z}_1 is contained in $\mathbf{Q}(\zeta_{m_1})$ and \mathbf{Z}_2 is contained in $\mathbf{Q}(\zeta_{m_2})$. By lemma 4.19, **Z** is contained in $\mathbf{Q}(\zeta_m)$, where *m* is the least common multiple of m_1 and m_2 , showing (1). *p* is not ramified in \mathbf{Z}_1 , so any prime of \mathbf{Z}_2 dividing *p* is not ramified in $\mathbf{Z}_1\mathbf{Z}_2/\mathbf{Z}_2$ by lemma 2.16. Since *p* is not ramified in \mathbf{Z}_2/\mathbf{Q} then *p* is not ramified in $\mathbf{Z}_1\mathbf{Z}_2/\mathbf{Q}$, showing (2).

We must that \mathbf{Z}/\mathbf{Q} is cyclic. We have $\mathbf{Z}_1 \cap \mathbf{Z}_2 \subset \mathbf{Z}_1 \mathbf{T} \cap \mathbf{Z}_2 = \mathbf{Q}$. Therefore by lemmas 2.10 and 2.11, we have $G(\mathbf{Z}_1 \mathbf{Z}_2 : \mathbf{Q}) = \mathbf{G}(\mathbf{Z}_1 : \mathbf{Q}) \times \mathbf{G}(\mathbf{Z}_2 : \mathbf{Q})$. Let cyclic group $\mathbf{G}(\mathbf{Z}_1 : \mathbf{Q})$ of order r_1 be generated by σ_1 , and let cyclic group $\mathbf{G}(\mathbf{Z}_2 : \mathbf{Q})$ of order r_2 be generated by σ_2 . The only primes dividing r_1 are those dividing n_1 , and the only primes dividing r_2 are those dividing n_2 . Then r_1 and r_2 are relatively prime, and the order of (σ_1, σ_2) must be r_1r_2 . The isomorphism corresponding to (σ_1, σ_2) generates $G(\mathbf{Z}_1\mathbf{Z}_2 : \mathbf{Q})$, so \mathbf{Z}/\mathbf{Q} is cyclic of degree r_1r_2 , and the only primes dividing $[\mathbf{Z} : \mathbf{Q}]$ are those dividing n_1n_2 showing (5).

Artin symbol $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)$ corresponds to the pair $\left(\left(\frac{\mathbf{Z}_1:\mathbf{Q}}{p}\right), \left(\frac{\mathbf{Z}_2:\mathbf{Q}}{p}\right)\right)$ by the corollary to lemma 2.13. These Artin symbols for \mathbf{Z}_1 and \mathbf{Z}_2 have orders n_1 and n_2 , respectively. Therefore $\left(\frac{\mathbf{Z}:\mathbf{Q}}{p}\right)$ has order n_1n_2 , showing (3). Finally, $[\mathbf{Z}_1\mathbf{Z}_2\mathbf{T}:\mathbf{Z}_2] = [\mathbf{Z}_1\mathbf{T}:\mathbf{Z}_2\cap\mathbf{Z}_1\mathbf{T}] = [\mathbf{Z}_1\mathbf{T}:\mathbf{Q}]$, so $[\mathbf{Z}_1\mathbf{Z}_2\mathbf{T}:\mathbf{Z}_2][\mathbf{Z}_2:\mathbf{Q}] = [\mathbf{Z}_1\mathbf{T}:\mathbf{Q}][\mathbf{Z}_2:\mathbf{Q}]$. Therefore $[\mathbf{Z}_1\mathbf{Z}_2\mathbf{T}:\mathbf{Q}] = [\mathbf{Z}_1\mathbf{T}:\mathbf{Q}][\mathbf{Z}_2:\mathbf{Q}]$. By lemma 2.10, it follow that $\mathbf{Z}_1\mathbf{Z}_2\cap\mathbf{T} = \mathbf{Q}$, showing (4).

PROPOSITION 4.21. Let \mathbf{k} be a finite extension of \mathbf{Q} . Let finite prime \wp of \mathbf{k} , finite extension \mathbf{T} of \mathbf{k} , and positive integer n be given. Then there exists a cyclic extension \mathbf{Z} of \mathbf{k} so that

- (1) \mathbf{Z} is contained in a cyclotomic extension of \mathbf{k} .
- (2) \wp is not ramified in \mathbf{Z} ,
- (3) Artin symbol $\left(\frac{\mathbf{Z}:\mathbf{k}}{\wp}\right)$ has order n,
- (4) $\mathbf{Z} \cap \mathbf{T} = \mathbf{k}$,
- (5) n divides $[\mathbf{Z} : \mathbf{k}]$.

PROOF. Let (p) be the prime of \mathbf{Q} that \wp divides; let $\aleph \wp = p^f$. Let \mathbf{Z}' be the cyclic extension of \mathbf{Q} satisfying the conclusion of proposition 4.20 for p, nf and \mathbf{T} . Take $\mathbf{Z} = \mathbf{Z'k}$. Since $\mathbf{Z'} \subset \mathbf{Q}(\zeta_m)$, we have $\mathbf{Z} \subset \mathbf{k}(\zeta_m)$, showing (1). Since p is not ramified in \mathbf{Z}' then \wp is not ramified in \mathbf{Z} by lemma 2.16, showing (2). Artin symbol $\left(\frac{\mathbf{Z'}:\mathbf{Q}}{p}\right)$ has order nf, and by lemma 2.16 we have $\left(\frac{\mathbf{Z:k}}{\wp}\right) = \left(\frac{\mathbf{Z'}:\mathbf{Q}}{p}\right)^f$. Therefore $\left(\frac{\mathbf{Z:k}}{\wp}\right)$ has order n, showing (3). We want to show $\mathbf{Z} \cap \mathbf{T} = \mathbf{k}$. We have

$$[\mathbf{Z}\mathbf{T}:\mathbf{T}] = [\mathbf{Z}'\mathbf{T}:\mathbf{T}] = [\mathbf{Z}':\mathbf{Z}'\cap\mathbf{T}] = [\mathbf{Z}':\mathbf{Q}] \geq [\mathbf{Z}'\mathbf{k}:\mathbf{k}] = [\mathbf{Z}:\mathbf{k}] \geq [\mathbf{Z}\mathbf{T}:\mathbf{T}].$$

Therefore $[\mathbf{Z} : \mathbf{k}] = [\mathbf{ZT} : \mathbf{T}] = [\mathbf{Z} : \mathbf{Z} \cap \mathbf{T}]$ so $\mathbf{k} = \mathbf{T} \cap \mathbf{Z}$, showing (4). Finally, $G(\mathbf{Z} : \mathbf{k})$ contains an element of order n by (3), so n divides $[\mathbf{Z} : \mathbf{k}]$, showing (5).

PROPOSITION 4.22. If $\mathbf{K}_1 \mathbf{k}$ is a finite abelian extension and Theorem 1 holds for \mathbf{K}_1/\mathbf{k} , then Theorem 1 holds for any extension \mathbf{K}_2/\mathbf{k} such that $\mathbf{K}_1 \supset \mathbf{K}_2 \supset \mathbf{k}$.

PROOF. Theorem 1 holds for \mathbf{K}_2/\mathbf{k} if and only $\phi_{\mathbf{K}_2/\mathbf{k}}$ of (2.1) can be extended onto $\mathbf{I}_{\mathbf{k}}$ so that the kernel contains \mathbf{k}^* . The restriction of $\phi_{\mathbf{K}_1/\mathbf{k}}(\mathbf{i})$ as defined by (2.1) to \mathbf{K}_2 coincides with $\phi_{\mathbf{K}_2/\mathbf{k}}(\mathbf{i})$ for $\mathbf{i} \in \mathbf{I}_{\mathbf{k}}\{E\}$. Since $\phi_{\mathbf{K}_1/\mathbf{k}}$ can be extended to all of $\mathbf{I}_{\mathbf{k}}$ so that the kernel contains \mathbf{k}^* , we may define $\phi_{\mathbf{K}_2/\mathbf{k}}(\mathbf{i})$ for $\mathbf{I} \in \mathbf{I}_{\mathbf{k}}$ to be the restriction of $\phi_{\mathbf{K}_1/\mathbf{k}}(\mathbf{i})$ to \mathbf{K}_2 .

REMARK. The cyclic extension \mathbf{Z}/\mathbf{k} guaranteed by proposition 4.21 is contained in a cyclotomic extension of \mathbf{k} . Since we have proved Theorem 1 for cyclotomic extensions, then Theorem 1 holds for the extensions $\mathbf{Z} = \mathbf{Z}(p, n, \mathbf{T})/\mathbf{k}$.

Proof of theorem 1 for cyclic extensions. Let \mathbf{K}/\mathbf{k} be a cyclic extension of degree n, and let σ_0 be a generator of $G(\mathbf{K} : \mathbf{k})$. There is an isomorphism $\chi : G(\mathbf{K} : \mathbf{k}) \longrightarrow \mathbf{C}$ to *n*-th roots of unity in defined by

$$\chi(\sigma_0^x) = \exp\left(\frac{2\pi i x}{n}\right).$$

By the first and second fundamental inequalities (to be proved in chapters 7 and 8), we have $[\mathbf{I}_{\mathbf{k}} : \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}] = n$. Finite abelian group $\mathbf{I}_{\mathbf{k}}/(\mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}})$ is a direct product of cyclic groups

$$\frac{\mathbf{l}_{\mathbf{k}}}{\mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}} = \mathbf{H}_1 \times \cdots \times \mathbf{H}_r,$$

where \mathbf{H}_k is a cyclic group of order n_k generated by h_k . Every element of the quotient group can be written as a product

$$h_1^{x_1} \dots h_r^{x_r}$$
 where $0 \le x_k < n_k$.

For each *r*-tuple $\omega = (\omega_1, \ldots, \omega_r)$ with $0 \leq \omega_k < n_k$, there is a homomorphism $\chi_{\omega} : \mathbf{H}_1 \times \cdots \times \mathbf{H}_r \to \mathbf{C}$ defined by

$$\chi_{\omega}\left(h_{1}^{x_{1}}\dots h_{r}^{s_{r}}\right) = \exp\left(\frac{2\pi i\omega_{1}x_{1}}{n_{1}}\right)\dots \exp\left(\frac{2\pi i\omega_{1}x_{1}}{n_{1}}\right).$$

The number of homomorphisms χ_{ω} is *n*. Each homomorphism uniquely determines the *r*-tuple ω because the image $\exp(2\pi i\omega_k/n_k)$ of h_k determines ω_k .

Choose a prime p of \mathbf{k} . By proposition 4.21, there is a cyclic extension $\mathbf{Z} = \mathbf{Z}(p, n, \mathbf{K})$ contained in a cyclotomic extension of \mathbf{k} such that $[\mathbf{Z} : \mathbf{k}]$ is divisible by n, prime p is not ramified in \mathbf{Z} , Artin symbol $\left(\frac{\mathbf{Z}:\mathbf{k}}{p}\right)$ has order exactly n, and $\mathbf{Z} \cap \mathbf{K} = \mathbf{k}$. Let ρ_0 generate the Galois group $G(\mathbf{Z}:\mathbf{k})$, and let $rn = [\mathbf{Z}:\mathbf{k}]$. There is an isomorphism $\Theta: G(\mathbf{Z}:\mathbf{k}) \to \mathbf{C}$ defined by

$$\Theta(\rho_0^x) = \exp\left(\frac{2\pi i x}{rn}\right).$$

Since $\mathbf{Z} \cap \mathbf{K} = \mathbf{k}$, we have

$$G(\mathbf{ZK}:\mathbf{k}) = G(\mathbf{Z}:\mathbf{k}) \times G(\mathbf{K}:\mathbf{k}) = \left\{ (\rho_0^x, \sigma_0^y) \mid 0 \le x < rn, 0 \le y < n \right\}.$$

Let $\mathbf{S} = \mathbf{S}(a)$ be the fixed field of $\{(\rho_0^x, \sigma_0^y) \mid xa - yr = 0 \pmod{rn}\}$. Then $\mathbf{ZS} \subset \mathbf{ZK}$. If (ρ_0^x, σ_0^y) fixes \mathbf{Z} then $x = 0 \pmod{rn}$, and if (ρ_0^x, σ_0^y) fixes \mathbf{S} then $xa - yr = 0 \pmod{rn}$. If \mathbf{ZS} is fixed then $yr = 0 \pmod{rn}$, or $y = 0 \pmod{n}$, so only the identity of $G(\mathbf{ZK} : \mathbf{k})$ fixes \mathbf{ZS} . Therefore $\mathbf{ZS} = \mathbf{ZK}$.

Z is contained in a cyclotomic extension of **k**, so **ZS** is contained in a cyclotomic extension of **S**. Therefore Theorem 1 holds for **ZS**/**S**. $G(\mathbf{ZS} : \mathbf{S})$ is isomorphic to a subgroup of $G(\mathbf{Z} : \mathbf{k})$. Let ρ^{x_0} generate $G(\mathbf{ZS} : \mathbf{S})$, and we can take x_0 to be the least positive power of ρ that is in $G(\mathbf{ZS} : \mathbf{S})$ (*i.e.*, that fixes **S**), so x_0 divides rn.

Since $\mathbf{N}_{\mathbf{S}/\mathbf{k}}$ maps $\ker(\phi_{\mathbf{Z}\mathbf{S}/\mathbf{S}}) = \mathbf{S}^*\mathbf{N}_{\mathbf{Z}\mathbf{S}/\mathbf{S}}\mathbf{I}_{\mathbf{Z}\mathbf{S}}$ to $\ker(\chi_{\omega}) = \mathbf{k}^*\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}$, there is an induced homomorphism $f : G(\mathbf{Z}\mathbf{S} : \mathbf{S}) \to \mathbf{C}$ so that $f\phi_{\mathbf{Z}\mathbf{S}/\mathbf{S}} = \chi_{\omega}\mathbf{N}_{\mathbf{S}/\mathbf{K}}$. (See diagram (4.7), noting that $\mathbf{N}_{\mathbf{S}/\mathbf{k}}\mathbf{N}_{\mathbf{Z}\mathbf{S}/\mathbf{S}} = \mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{N}_{\mathbf{Z}\mathbf{K}/\mathbf{K}}$ because $\mathbf{Z}\mathbf{S} = \mathbf{Z}\mathbf{K}$.) The image of $\rho_0^{x_0}$ must be an (rn/x_0) -th root of unity, so there is an integer uso that $f(\rho_0^{x_0}) = \Theta(\rho_0)^{ux_0} = \Theta(\rho_0^{x_0})^u$. Since $\rho_0^{x_0}$ generates the image of $\phi_{\mathbf{Z}\mathbf{S}/\mathbf{S}}$, we have $f(\phi_{\mathbf{Z}\mathbf{S}/\mathbf{S}}(\mathbf{i})) = \Theta(\phi_{\mathbf{Z}\mathbf{S}/\mathbf{S}}(\mathbf{i})|_{\mathbf{Z}})^u$. The restriction $\phi_{\mathbf{Z}\mathbf{S}/\mathbf{S}}(\mathbf{i})|_{\mathbf{Z}}$ of $\phi_{\mathbf{Z}\mathbf{S}/\mathbf{S}}(\mathbf{i})$ to \mathbf{Z} is $\phi_{\mathbf{Z}/\mathbf{k}}(\mathbf{N}_{\mathbf{S}/\mathbf{k}}\mathbf{i})$ (proposition 2.19). Therefore there is an integer $u = u(a, p, \mathbf{Z})$ depending on the choices of a, p and \mathbf{Z} so that

(4.5)
$$\chi_{\omega} \left(\mathbf{N}_{\mathbf{S}/\mathbf{k}} \mathbf{i} \right) = \Theta \left(\phi_{\mathbf{Z}/\mathbf{k}} \left(\mathbf{N}_{\mathbf{S}/\mathbf{k}} \mathbf{i} \right) \right)^{u} \quad \text{for } \mathbf{i} \in \mathbf{I}_{\mathbf{S}}.$$

Let $\mathbf{Z}' = \mathbf{Z}'(p', n, \mathbf{K})$ be another cyclic extension satisfying the conclusion of proposition 4.21, where p' is a prime of \mathbf{k} . (Note: \mathbf{Z}' will be used to show that certain later results are independent of p and of \mathbf{Z} .) Now let $\mathbf{W} = \mathbf{W}(p, n, \mathbf{Z}\mathbf{Z}'\mathbf{K})$ be a cyclic extension of \mathbf{k} satisfying the conclusion of proposition 4.21. Then \mathbf{W} is a cyclic extension contained in a cyclotomic extension of \mathbf{k} , $[\mathbf{W} : \mathbf{k}]$ is divisible by n, Artin symbol $\left(\frac{\mathbf{W}:\mathbf{k}}{p}\right)$ has order n, and $\mathbf{W} \cap \mathbf{Z}\mathbf{Z}'\mathbf{K} = \mathbf{k}$. Let $[\mathbf{W} : \mathbf{k}] = sn$, and let τ_0 be a generator of cyclic group $G(\mathbf{W} : \mathbf{k})$. There is an isomorphism $\Xi : G(\mathbf{W} : \mathbf{k}) \to \mathbf{C}$ defined by

$$\Xi(\tau_0^z) = \exp\left(\frac{2\pi i}{sn}\right).$$

We repeat the previous argument, with \mathbf{W} in place of \mathbf{Z} . Since $\mathbf{W} \cap \mathbf{Z}\mathbf{Z}'\mathbf{K} = \mathbf{k}$, we have

$$G(\mathbf{KW} : \mathbf{k}) = G(\mathbf{K} : \mathbf{k}) \times G(\mathbf{W} : \mathbf{k}) = \{(\sigma_0^y, \tau_0^z) \mid 0 \le y < n, 0 \le z < sn\}.$$

Let **T** be the fixed field of $\{(\sigma_0^y, \tau_0^z) \mid ys - z = 0 \pmod{sn}\}$. Then $\mathbf{WT} \subset \mathbf{KW}$. If (σ_0^y, τ_0^z) fixes **W** then $z = 0 \pmod{sn}$, and if (ρ_0^x, σ_0^y) fixes **T** then $ys - z = 0 \pmod{sn}$. If **TW** is fixed then $ys = 0 \pmod{sn}$, or $y = 0 \pmod{n}$, so only the identity of $G(\mathbf{KW} : \mathbf{k})$ fixes **TW**. Therefore $\mathbf{TW} = \mathbf{KW}$.

Since **W** is contained in a cyclotomic extension of **k** then **TW** is contained in a cyclotomic extension of **T**. Therefore Theorem 1 holds for **TW/T**. $G(\mathbf{TW} : \mathbf{T})$ is isomorphic to a subgroup of $G(\mathbf{W} : \mathbf{k})$. Let τ^{z_0} generate $G(\mathbf{TW} : \mathbf{T})$, and we can take z_0 to be the least positive power of τ that is in $G(\mathbf{TW} : \mathbf{T})$ (*i.e.*, that fixes **T**), so z_0 divides sn.

Since $\mathbf{N}_{\mathbf{T}/\mathbf{k}}$ maps $\ker(\phi_{\mathbf{T}\mathbf{W}/\mathbf{W}}) = \mathbf{T}^*\mathbf{N}_{\mathbf{T}\mathbf{W}/\mathbf{W}}\mathbf{I}_{\mathbf{T}\mathbf{W}}$ to $\ker(\chi_{\omega}) = \mathbf{k}^*\mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{I}_{\mathbf{K}}$, there is an induced homomorphism $g: G(\mathbf{T}\mathbf{W}:\mathbf{T}) \to \mathbf{C}$ so that $g\phi_{\mathbf{T}\mathbf{W}/\mathbf{W}} = \chi_{\omega}\mathbf{N}_{\mathbf{T}/\mathbf{k}}$. (See diagram (4.8), noting that $\mathbf{N}_{\mathbf{T}/\mathbf{k}}\mathbf{N}_{\mathbf{T}\mathbf{W}/\mathbf{T}} = \mathbf{N}_{\mathbf{K}/\mathbf{k}}\mathbf{N}_{\mathbf{K}\mathbf{W}/\mathbf{K}}$ because $\mathbf{T}\mathbf{W} = \mathbf{K}\mathbf{W}$.) The image of $\tau_0^{z_0}$ must be an (sn/z_0) -th root of unity, so there is an integer v so that $g(\tau_0^{z_0}) = \Xi(\tau_0)^{vz_0} = \Xi(\tau_0^{z_0})^v$. Since $\tau_0^{z_0}$ generates the image of $\phi_{\mathbf{T}\mathbf{W}/\mathbf{W}}$, we have $g\left(\phi_{\mathbf{T}\mathbf{W}/\mathbf{W}}(\mathbf{i})\right) = \Xi\left(\phi_{\mathbf{T}\mathbf{W}/\mathbf{W}}(\mathbf{i})|_{\mathbf{W}}\right)^u$. The restriction $\phi_{\mathbf{T}\mathbf{W}/\mathbf{W}}(\mathbf{i})|_{\mathbf{W}}$ of $\phi_{\mathbf{T}\mathbf{W}/\mathbf{T}}(\mathbf{i})$ to \mathbf{W} is $\phi_{\mathbf{W}/\mathbf{k}}(\mathbf{N}_{\mathbf{T}/\mathbf{k}}\mathbf{i})$ (proposition 2.19). Therefore there is an integer $v = v(p, p', \mathbf{Z}, \mathbf{Z}')$ depending on the choices of p, p', \mathbf{Z} and \mathbf{Z}' so that

(4.6)
$$\chi_{\omega}\left(\mathbf{N}_{\mathbf{T}/\mathbf{k}}\mathbf{i}\right) = \Xi\left(\phi_{\mathbf{T}/\mathbf{k}}\left(\mathbf{N}_{\mathbf{T}/\mathbf{k}}\mathbf{i}\right)\right)^{\upsilon} \quad \text{for } \mathbf{i} \in \mathbf{I}_{\mathbf{T}}.$$

Multiply both sides of (4.6) by $\Theta \left(\phi_{\mathbf{Z}/\mathbf{k}}(\mathbf{N}_{\mathbf{T}/\mathbf{k}}\mathbf{i}) \right)^{-u}$ to obtain

(4.9)
$$\chi_{\omega}(\mathbf{N}_{\mathbf{T}/\mathbf{k}}\mathbf{i})\Theta\left(\phi_{\mathbf{Z}/\mathbf{k}}(\mathbf{N}_{\mathbf{T}/\mathbf{k}}\mathbf{i})\right)^{-u} = \Theta\left(\phi_{\mathbf{Z}/\mathbf{k}}(\mathbf{N}_{\mathbf{T}/\mathbf{k}}\mathbf{i})\right)^{-u}\Xi\left(\phi_{\mathbf{T}/\mathbf{k}}\left(\mathbf{N}_{\mathbf{T}/\mathbf{k}}\mathbf{i}\right)\right)^{v} \quad \text{for } \mathbf{i}\in\mathbf{I}_{\mathbf{T}}.$$

Given $\mathbf{j} \in \mathbf{I}_{ST}$, if $\mathbf{i} = \mathbf{N}_{ST/T} \mathbf{j}$ then $\mathbf{N}_{T/k} \mathbf{i} = \mathbf{N}_{S/k} (\mathbf{N}_{ST/S} \mathbf{j}) = \mathbf{N}_{ST/k} \mathbf{j}$. The kernel of the mapping $\mathbf{I}_k \to \mathbf{C}$ by $\mathbf{i} \to \chi_{\omega}(\mathbf{i})\Theta(\phi_{\mathbf{Z}/k}\mathbf{i})^{-u}$ contains $\mathbf{N}_{S/k}\mathbf{I}_S$ by (4.5). If we evaluate (4.9) at $\mathbf{i} = \mathbf{N}_{ST/T} \mathbf{j}$, we obtain

(4.10)
$$1 = \Theta \left(\phi_{\mathbf{Z}/\mathbf{k}}(\mathbf{N}_{\mathbf{ST}/\mathbf{k}} \mathbf{j}) \right)^{-u} \Xi \left(\phi_{\mathbf{W}/\mathbf{k}}(\mathbf{N}_{\mathbf{ST}/\mathbf{k}} \mathbf{j}) \right)^{v} \quad \text{for } \mathbf{j} \in \mathbf{I}_{\mathbf{ST}}.$$

We have $\mathbf{ZS} = \mathbf{ZK}$ contained in a cyclotomic extension of \mathbf{S} and $\mathbf{TW} = \mathbf{KW}$ contained in a cyclotomic extension of \mathbf{T} , so $\mathbf{ZKW} = \mathbf{ZSW} = \mathbf{ZTW}$ is contained in a cyclotomic extension of \mathbf{TS} . Therefore Theorem 1 holds for $\mathbf{ZKW/TS}$. The restriction of $\phi_{\mathbf{ZKW/TS}}$ to \mathbf{ZST} is $\phi_{\mathbf{ZST/TS}}(\mathbf{i}) = \phi_{\mathbf{Z/k}}(\mathbf{N_{ST/k}}(\mathbf{i}))$, and the restriction of $\phi_{\mathbf{ZKW/TS}}$ to \mathbf{STW} is $\phi_{\mathbf{STW/TS}}(\mathbf{i}) = \phi_{\mathbf{W/k}}(\mathbf{N_{ST/k}}(\mathbf{i}))$. (Let σ_1 denote the restriction of $\phi_{\mathbf{ZKW/TS}}$ to \mathbf{K} .) The mapping $(\rho, \sigma, \tau) \to \Theta(\rho)^{-u} \Xi(\tau)^v$ is a homomorphism $G(\mathbf{ZKW} : \mathbf{k}) \to \mathbf{C}$ which maps $\phi_{\mathbf{ZKW/ST}}(\mathbf{i}) = (\phi_{\mathbf{Z/k}}(\mathbf{N_{ST/k}}\mathbf{i}), \sigma_1, \phi_{\mathbf{W/k}}(\mathbf{N_{ST/k}}\mathbf{i}))$ to 1 by (4.10). The homomorphism $\phi_{\mathbf{ZKW/ST}}$ maps $\mathbf{I_{ST}}$ onto $G(\mathbf{ZKW} : \mathbf{ST})$. Therefore

$$\Theta(\rho)^{-u} \Xi(\tau)^v = 1$$
 for any $(\rho, \sigma, \tau) \in G(\mathbf{ZKW} : \mathbf{k})$ leaving **ST** fixed.

In particular, the automorphism $(\rho_0^r, \sigma_0^a, \tau_0^{as})$ leaves both **S** and **T** fixed. Therefore

$$\Theta\left(\rho_0^r\right)^{-u} \Xi\left(\tau_0^{as}\right)^v = 1.$$

We have $\exp(2\pi i r/(rn))^{-u} \exp(2\pi i a s/(sn))^{v} = \exp(2\pi i (-u/n + av/n)) = 1$, or

$$(4.11) u = av (mod n).$$

We show that v is independent of \mathbf{Z} and $\mathbf{Z'}$. The construction leading from \mathbf{W} to v is symmetric in \mathbf{Z} and $\mathbf{Z'}$. We can reverse the roles of \mathbf{Z} and $\mathbf{Z'}$, and the $v(\mathbf{Z}, \mathbf{Z'})$ that satisfies (4.11) for $u(\mathbf{Z})$ also satisfies (4.11) for $u(\mathbf{Z'})$.

$$v(\mathbf{W}, \mathbf{Z}, \mathbf{Z}')a = u(a, \mathbf{Z}) \pmod{n}$$
$$v(\mathbf{W}, \mathbf{Z}, \mathbf{Z}')a = u(a, \mathbf{Z}') \pmod{n}$$

We can also start from either \mathbf{Z}' or \mathbf{Z}'' , obtaining

$$v(\mathbf{W}, \mathbf{Z}', \mathbf{Z}'')a = u(a, \mathbf{Z}') \pmod{n}$$
$$v(\mathbf{W}, \mathbf{Z}', \mathbf{Z}'')a = u(a, \mathbf{Z}'') \pmod{n}$$

We choose a = 1 to conclude that $v(\mathbf{W}, \mathbf{Z}, \mathbf{Z}') = u(1, \mathbf{Z}) = u(1, \mathbf{Z}') = v(\mathbf{W}, \mathbf{Z}', \mathbf{Z}'')$. In like manner we have $v(\mathbf{W}, \mathbf{Z}', \mathbf{Z}'') = v(\mathbf{W}, \mathbf{Z}'', \mathbf{Z}'')$. Therefore $v_{\mathbf{W}}$ is independent of \mathbf{Z} and \mathbf{Z}' . v is independent of **W**. If **W'** is chosen then, since u is independent of **W**, we have

$$v(\mathbf{W})a = u(a, \mathbf{Z}) = v(\mathbf{W}')a \pmod{n}.$$

Choose a = 1 to conclude that $v(\mathbf{W}) = u(1, \mathbf{Z}) = v(\mathbf{W}')1 \pmod{n}$.

v is independent of p and p'. The construction leading from \mathbf{W} to v is symmetric in p and p'. We can start from either $\mathbf{Z} = \mathbf{Z}(p, n, \mathbf{K})$ or $\mathbf{Z}' = \mathbf{Z}'(p', n, \mathbf{K})$, concluding that

$$v(p, p')a = u(p, \mathbf{Z}) \pmod{n}$$
$$v(p, p')a = u(p', \mathbf{Z}') \pmod{n}$$

We can start from $\mathbf{Z}' = \mathbf{Z}(p', n, \mathbf{K})$ or $\mathbf{Z}'' = \mathbf{Z}''(p'', n, \mathbf{K})$, concluding that

$$v(p', p'')a = u(p', \mathbf{Z}') \pmod{n}$$
$$v(p', p'')a = u(p'', \mathbf{Z}'') \pmod{n}$$

Choose a = 1 to conclude that $v(p, p') = v(p', p'') \pmod{n}$. Likewise, $v(p', p'') = v(p'', p''') \pmod{n}$. Therefore v is independent of p. We have shown the independence of u and v from p, Z and W.

Now let p be a prime not ramified in **K**. Choose $\mathbf{Z} = \mathbf{Z}(p, n, \mathbf{K})$. Artin symbol $\left(\frac{\mathbf{Z}:\mathbf{k}}{p}\right)$ has order n. Since $[\mathbf{Z}:\mathbf{k}] = rn$, we have

(4.12)
$$\left(\frac{\mathbf{Z}:\mathbf{k}}{p}\right) = \rho_0^{x_1r} \quad \text{where } (x_1,n) = 1.$$

Artin symbol $\left(\frac{\mathbf{K}:\mathbf{k}}{p}\right)$ is some power of σ_0 , so let

(4.13)
$$\left(\frac{\mathbf{K}:\mathbf{k}}{p}\right) = \sigma_0^{y_1}.$$

S is the fixed field of $\{(\rho_0^x, \sigma_0^y) \mid xa - yr = 0 \pmod{n}\}$. $\left(\frac{\mathbf{S}:\mathbf{k}}{p}\right)$ and $\left(\frac{\mathbf{K}:\mathbf{k}}{p}\right)$ are the restrictions of $\left(\frac{\mathbf{Z}\mathbf{K}:\mathbf{k}}{p}\right)$ to **S** and **K**, respectively, so

$$\left(\frac{\mathbf{Z}\mathbf{K}:\mathbf{k}}{p}\right) = \left(\left(\frac{\mathbf{Z}:\mathbf{k}}{p}\right), \left(\frac{\mathbf{K}:\mathbf{k}}{p}\right)\right) = \left(\rho_0^{x_1r}, \sigma_0^{y_1}\right).$$

Choose a so that $x_1a - y_1 = 0 \pmod{n}$. Then

$$rx_1a - ry_1 = 0 \pmod{n},$$

so $\left(\frac{\mathbf{Z}\mathbf{K}:\mathbf{k}}{p}\right)$ fixes \mathbf{S} , so $\left(\frac{\mathbf{S}:\mathbf{k}}{p}\right) = 1$. If \wp is a prime of \mathbf{S} dividing p then $\left(\frac{\mathbf{S}:\mathbf{k}}{p}\right)$ generates $G(\mathbf{S}_{\wp}/\mathbf{k}_p)$, so $\mathbf{S}_{\wp} = \mathbf{k}_p$.

For $\alpha \in \mathbf{k}_p$, let $\mathbf{i} = \mathbf{i}(\alpha, p)$ be the idele in \mathbf{I}_k so that

$$\mathbf{i}_q = \begin{cases} \alpha \text{ at } q = p \\ 1 \text{ at } q \neq p \end{cases}$$

Since $\mathbf{S}_{\wp} = \mathbf{k}_p$, choose $\mathbf{j} = \mathbf{j}(\alpha, \wp)$ for a prime \wp of \mathbf{K} dividing p. Then

$$\mathbf{N}_{\mathbf{S}/\mathbf{k}} \mathbf{j}(\alpha, \wp) = \mathbf{i}(\alpha, p)$$

and by (4.5) we have

(4.14)
$$\chi_{\omega}(\mathbf{i}(\alpha, p)) = \chi_{\omega}(\mathbf{N}_{\mathbf{S}/\mathbf{k}} \mathbf{j}(\alpha, \wp))$$

= $\Theta(\phi_{\mathbf{Z}/\mathbf{k}}(\mathbf{N}_{\mathbf{S}/\mathbf{k}} \mathbf{j}(\alpha, \wp))^{u} = \Theta(\phi_{\mathbf{Z}/\mathbf{k}} \mathbf{i}(\alpha, p))^{u}$

Prime p is not ramified in \mathbf{Z} , so

(4.15)
$$\phi_{\mathbf{Z}/\mathbf{k}}(\mathbf{i}(\alpha, p)) = \left(\frac{\mathbf{Z} : \mathbf{k}}{p}\right)^{b} \quad \text{where } |\alpha|_{p} = Np^{-b}$$

By (4.14), (4.15), and (4.12) we have

$$\chi_{\omega}(\mathbf{i}(\alpha, p)) = \Theta\left(\left(\frac{\mathbf{Z} : \mathbf{k}}{p}\right)\right)^{bu} = \Theta\left(\rho_0^{rx_1bu}\right)$$
$$= \exp\left(\frac{2\pi i r x_1 b u}{rn}\right) = \exp\left(\frac{2\pi i x_1 b u}{n}\right)$$

Since $va = u \pmod{n}$, and since a was chosen so that $x_1a = y_1 \pmod{n}$, we have $x_1bu = x_1bva = y_1bv \pmod{n}$. By 4.13, we have

$$\chi_{\omega}(\mathbf{i}(\alpha, p)) = \exp\left(\frac{2\pi i y_1 b v}{n}\right) = \chi\left(\sigma_0^{y_1 b v}\right) = \chi\left(\left(\frac{\mathbf{K}:\mathbf{k}}{p}\right)\right)^{b v}$$

To summarize, suppose that p is not ramified in \mathbf{K} , α is an element of \mathbf{k}_p , and $\mathbf{i} = \mathbf{i}(\alpha, p)$ is an idele in $\mathbf{I}_{\mathbf{k}}$ with components $\mathbf{i}_q = \alpha$ at prime q = p and $\mathbf{i}_q = 1$ at primes $q \neq p$. Then there is an integer v independent of p so that 0 < v < n and

(4.16)
$$\chi_{\omega}(\mathbf{i}(\alpha, p)) = \chi\left(\left(\frac{\mathbf{K} : \mathbf{k}}{p}\right)\right)^{bv} \quad \text{where } |\alpha|_p = Np^{-b}$$

If $\mathbf{i} \in \mathbf{I}_{\mathbf{k}} \{ E \}$, then (2.1) defines $\phi_{\mathbf{K}/\mathbf{k}}$ by

$$\phi_{\mathbf{K}/\mathbf{k}}(\mathbf{i}) = \prod_{p \neq E} \left(\frac{\mathbf{K} : \mathbf{k}}{p}\right)^{b_p} \quad \text{where } \mathbf{I}_p = Np^{-b_p}.$$

The only non-trivial terms of the product over E are for primes in $F = \{p \mid |\mathbf{i}_p| \neq 1\},$ so

$$\chi(\phi_{\mathbf{K}/\mathbf{k}}(\mathbf{i}))^v = \prod_{p \notin F} \chi\left(\frac{\mathbf{K} : \mathbf{k}}{p}\right)^{opv} = \prod_{p \notin F} \chi_\omega(\mathbf{i}(\mathbf{i}_p, p)).$$

Idele **i** in $\mathbf{I}_{\mathbf{k}}\{E\}$ as a direct product is

$$\mathbf{i} = \prod_{\mathbf{p} \in F} \mathbf{i}(\mathbf{i}_p, p) \times \prod_{\mathbf{p} \notin F} \mathbf{i}(\mathbf{i}_p, p)$$

For a prime p not in F, each component \mathbf{i}_p is the norm of an β_{\wp} element in \mathbf{K}_{\wp} for prime \wp of \mathbf{K} dividing p, by proposition 4.7. By setting $\mathbf{j}_{\wp} = \beta$ at one prime \wp dividing each prime p not in F and $\mathbf{j}_{\wp} = 1$ otherwise, we have

$$\prod_{p\notin F} \mathbf{i}(\mathbf{i}_p, p) \in \mathbf{N}_{\mathbf{K}/\mathbf{k}} \, \mathbf{I}_{\mathbf{K}} \subset \ker(\chi_{\omega})$$

therefore

(4.17)
$$\chi(\phi_{\mathbf{K}/\mathbf{k}}(\mathbf{i}))^{v} = \chi_{\omega}\left(\prod_{p \in F} \mathbf{i}(\mathbf{i}_{p}, p)\right) = \chi_{\omega}(\mathbf{i}) \quad \text{for } \mathbf{i} \in \mathbf{I}_{\mathbf{k}}\{E\}.$$

Since $\mathbf{I}_{\mathbf{k}} = \mathbf{I}_{\mathbf{k}} \{E\} \mathbf{k}^* \mathbf{N}_{\mathbf{K}/\mathbf{k}} \mathbf{I}_{\mathbf{K}}$, then $\chi_{\omega}(\mathbf{i})$ is completely determined by its values at \mathbf{i} in $\mathbf{I}_{\mathbf{k}} \{E\}$. The *n* functions χ_{ω} are all distinct because if $\chi_{\omega_1} = \chi_{\omega_2}$ then $1 = \chi_{\omega_1}(\mathbf{i})\chi_{\omega_2}(\mathbf{i})^{-1} = \chi_{(\omega_1-\omega_2)}(\mathbf{i})$. But if $\omega_1 - \omega_2 \neq (0)$ then $\chi_{(\omega_1-\omega_2)}(\mathbf{i}) \neq 1$ for some \mathbf{i} in $\mathbf{I}_{\mathbf{k}} \{E\}$, so we must have $\omega_1 = \omega_2$. There are *n* homomorphisms χ_{ω} corresponding to *n* values of *v*, so the correspondence is one-to-one. There is therefore some ω_0 that corresponds to v = 1, and we have

(4.18)
$$\chi(\phi_{\mathbf{K}/\mathbf{k}}(\mathbf{i})) = \chi_{\omega_0}(\mathbf{i}) \quad \text{for } \mathbf{i} \in \mathbf{I}_{\mathbf{k}}\{E\}.$$

The right side of (4.18) is defined for all **i** in $\mathbf{I}_{\mathbf{k}}$. χ is an isomorphism from $G[\mathbf{K} : \mathbf{k}]$ to the *n*-th roots of unity. Define

(4.19)
$$\phi_{\mathbf{K}/\mathbf{k}}(\mathbf{i}) = \chi^{-1}(\chi_{\omega_0}(\mathbf{i})) \quad \text{for } \mathbf{i} \in \mathbf{I}_{\mathbf{k}}.$$

This definition agrees with (2.1) for **i** in $\mathbf{I}_{\mathbf{k}}\{E\}$ and the kernel contains \mathbf{k}^* . This completes the proof of theorem 1 for cyclic extensions.