CHAPTER II

FUNDAMENTAL THEOREMS

Let \mathbf{k} be a finite extension of the rational number field \mathbf{Q}. \mathbf{K} is an abelian extension of \mathbf{k} if \mathbf{K} / \mathbf{k} is a finite normal extension and the Galois group $G(\mathbf{K}: \mathbf{k})$ is abelian. If p is a finite prime of \mathbf{k} that is not ramified in \mathbf{K} then the Artin symbol $\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)$ is defined by (1.7). Let E be a finite set of primes of \mathbf{k} containing all infinite primes and all primes that ramify in \mathbf{K}. Let $\mathbf{I}_{\mathbf{k}}\{E\}$ be the subgroup of idele group $\mathbf{I}_{\mathbf{k}}$ defined by

$$
\mathbf{I}_{\mathbf{k}}\{E\}=\left\{\mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid \mathbf{i}_{p}=1 \text { for } p \in E\right\} .
$$

Define $\phi_{\mathbf{K} / \mathbf{k}}: \mathbf{I}_{\mathbf{k}}\{E\} \rightarrow G(\mathbf{K}: \mathbf{k})$ by

$$
\begin{equation*}
\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i})=\prod_{p \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{n_{p}} \quad \text { where }|\mathbf{i}|_{p}=(\mathrm{N} p)^{-n_{p}} \text { for } p \notin E . \tag{2.1}
\end{equation*}
$$

The homomorphism $\mathbf{N}_{\mathbf{K} / \mathbf{k}}: \mathbf{I}_{\mathbf{K}} \rightarrow \mathbf{I}_{\mathbf{k}}$ of idele groups is defined by

$$
\left(\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{i}\right)_{p}=\prod_{\wp \backslash p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \mathbf{i}_{p} \quad \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{K}} .
$$

Theorem 1. Homomorphism (2.1) can be extended in a unique way to a continuous homomorphism $\phi_{\mathbf{K} / \mathbf{k}}$ of $\mathbf{I}_{\mathbf{k}}$ onto $G(\mathbf{K}: \mathbf{k})$ whose kernel contains \mathbf{k}^{*}. The extension is independent of E, the image is all of $G(\mathbf{K}: \mathbf{k})$, and the kernel consists exactly of the subgroup $\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{k}}$.

Theorem 2. The abelian extension \mathbf{K} of \mathbf{k} is uniquely determined by the kernel of $\phi_{\mathbf{K} / \mathbf{k}}$. If H is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ and contains \mathbf{k}^{*} then there is a unique abelian extension \mathbf{K} of \mathbf{k} such that H is the kernel of $\phi_{\mathbf{K} / \mathbf{k}}$.

Remark. Theorems 1 and 2 are the fundamental theorems of class field theory. The proof of Theorem 1 is the subject of this chapter through chapter 8. Theorem 2 is proved in chapter 12. In this chapter, we develop basic properties of the fundamental homomorphism $\phi_{\mathbf{K} / \mathbf{k}}$.

Lemma 2.1. A closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ contains a subgroup of the form

$$
\prod_{p \notin E^{\prime}} \mathbf{u}_{p} \times \prod_{\text {finite } p \in E^{\prime}} W_{p}^{\prime}\left(\epsilon_{p}\right) \times \prod_{\text {real } p} \mathbf{k}_{p}^{+} \times \prod_{\text {complex } p} \mathbf{k}_{p}^{*},
$$

where E^{\prime} is a finite set of finite primes, the ϵ_{p} are real numbers satisfying $\epsilon_{p} \leq 1$ for $p \in E^{\prime}$, sets \mathbf{u}_{p} and $W_{p}^{\prime}\left(\epsilon_{p}\right)$ are defined by

$$
\mathbf{u}_{p}=\left\{\left.\alpha \in \mathbf{k}_{p}^{*}| | \alpha\right|_{p}=1\right\} \quad W_{p}^{\prime}\left(\epsilon_{p}\right)=\left\{\alpha \in \mathbf{k}_{p}^{*}| | \alpha-\left.1\right|_{p}<\epsilon_{p}\right\},
$$

and $\mathbf{k}_{p}^{+} \simeq\left\{x \in \mathbf{R}^{*} \mid x>0\right\}$ for p infinite real.
Proof. A closed subgroup H of finite index must be open, so there is a basic neighborhood $U\left(E^{\prime},\left\{\epsilon_{p}^{\prime}\right\}\right)$ of the identity of $\mathbf{I}_{\mathbf{k}}$ contained in H. Take $\epsilon_{p}=\min \left(\epsilon_{p}^{\prime}, 1\right)$ for finite p and $\epsilon_{p}=\min \left(\epsilon_{p}^{\prime}, \frac{1}{2}\right)$ for infinite p. Then

$$
U\left(E^{\prime},\left\{\epsilon_{p}^{\prime}\right\}\right)=\prod_{p \notin E^{\prime}} \mathbf{u}_{p} \times \prod_{\text {finite } p \in E^{\prime}} W_{p}^{\prime}\left(\epsilon_{p}^{\prime}\right) \quad \times \prod_{\text {infinite } p \in E^{\prime}} W_{p}^{\prime}\left(\epsilon_{p}^{\prime}\right)
$$

H contains the subgroup generated by $U\left(E^{\prime},\left\{\epsilon_{p}^{\prime}\right\}\right)$ which is the subgroup claimed by the lemma.

Lemma 2.2 (Chinese Remainder Theorem). Let a_{1} and a_{2} be non-zero ideals of \mathbf{o} and let α_{1} and α_{2} be integers of \mathbf{o}. There exists α in \mathbf{o} so that $\alpha-\alpha_{1} \in a_{1}$ and $\alpha-\alpha_{2} \in a_{2}$ if and only if $\alpha_{1}-\alpha_{2} \in a_{1}+a_{2}$.

Proof. Remark: $a_{1}+a_{2}$ is the greatest common divisor of a_{1} and a_{2}. Put $a=a_{1}+a_{2} . a$ is invertible, and a divides both a_{1} and a_{2}. Suppose that $\alpha_{1}-\alpha_{2} \in a$. $a_{1} a^{-1}+a_{2} a^{-1}=\mathbf{o}$, so there exist integers $\beta_{1} \in a_{1} a^{-1}$ and $\beta_{2} \in a_{2} a^{-1}$ so that $\beta_{1}+\beta_{2}=1$. Put $\alpha=\beta_{1} \alpha_{2}+\beta_{2} \alpha_{1}$. Then

$$
\begin{aligned}
& \alpha-\alpha_{1}=\beta_{1}\left(\alpha_{2}-\alpha_{1}\right) \in a_{1} \\
& \alpha-\alpha_{2}=\beta_{2}\left(\alpha_{1}-\alpha_{2}\right) \in a_{2}
\end{aligned}
$$

Conversely if $\alpha-\alpha_{1} \in a_{1}$ and $\alpha-\alpha_{2} \in a_{2}$ then $\alpha_{1}-\alpha_{2} \in a_{1}+a_{2}$.
Corollary. Let p_{1}, \ldots, p_{k} be distinct non-trivial prime ideals of \mathbf{o} and let n_{1}, \ldots, n_{k} be rational integers greater than or equal to zero. Let $\alpha_{1}, \ldots, \alpha_{k}$ be elements of $\mathbf{0}$. There exists an element α of \mathbf{o} so that $\alpha-\alpha_{1} \in p_{1}^{n_{1}}, \ldots, \alpha-\alpha_{k} \in p_{k}^{n_{k}}$.

Proof. Since ideals have unique factorization then the greatest common divisor $p_{1}^{n_{1}} \ldots p_{k-1}^{n_{k-1}}+p_{k}^{n_{k}}$ is \mathbf{o}. Use lemma 2.2 and induction.

Lemma 2.3. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for \mathbf{k} over \mathbf{Q}. Let \mathbf{k} have r_{1} real and r_{2} complex infinite primes, and let the distinct isomorphisms of \mathbf{k} into \mathbf{R} or \mathbf{C} be $\sigma_{1}, \ldots, \sigma_{n}$, where $\sigma_{1}, \ldots, \sigma_{r_{1}}$ are the r_{1} isomorphisms into \mathbf{R} and $\sigma_{r_{1}+1}, \ldots, \sigma_{n}$ are the $2 r_{2}$ isomorphisms into \mathbf{C}, Then $\operatorname{det}\left\|\alpha_{i}^{\sigma_{j}}\right\|$ is not zero.

Proof. It is enough to show that the determinant is not zero for some basis. Let α generate \mathbf{k} over \mathbf{Q}. Then $1, \alpha, \ldots, \alpha^{n-1}$ is a basis. The elements $\alpha^{\sigma_{1}} \ldots \alpha^{\sigma_{n}}$ are distinct, so $\left\|\left(\alpha^{\sigma_{j}}\right)^{i-1}\right\|$ is a non-singular Vandermonde matrix.

Lemma 2.4 Approximation theorem. Let E^{\prime} be a finite set of primes and for each prime p in E^{\prime} an element α_{p} in \mathbf{k}_{p} and a positive real number ϵ_{p} are given. Then there is an α in \mathbf{k} so that $\left|\alpha-\alpha_{p}\right|_{p}<\epsilon_{p}$ for all p in E^{\prime}.

Proof. There exists a non-zero β in \mathbf{o} so that $\beta \alpha_{p} \in \mathbf{o}_{p}$ for all finite $p \in E^{\prime}$. By the corollary to lemma 2.2 , there is an $\alpha^{\prime} \in \mathbf{k}$ satisfying the conditions $\alpha^{\prime}-\beta \alpha_{p} \in$ $p^{m_{p}}$ for all finite p in E^{\prime}. By taking m_{p} sufficiently large we have $\left|\alpha^{\prime}-\beta \alpha_{p}\right|_{p}<|\beta|_{p} \epsilon_{p}$, or $\left|\beta^{-1} \alpha^{\prime}-\alpha_{p}\right|_{p}<\epsilon_{p}$ for the finite primes p in E^{\prime}. Put $\alpha^{\prime \prime}=\beta^{-1} \alpha^{\prime}$. Let a be an ideal in \mathbf{o} so that if $\gamma \in a$ then $|\gamma|_{p}<\epsilon_{p}$ for the finite primes p in E^{\prime}. Take a very large rational integer m which is not divisible by any of the finite primes in E^{\prime}, i.e., $|m|_{p}=1$ for finite p in E^{\prime}. Then

$$
\left|m \alpha^{\prime \prime}-\gamma-m \alpha_{p}\right|_{p} \leq \max \left(|\gamma|_{p},\left|m\left(\alpha^{\prime \prime}-\alpha_{p}\right)\right|_{p}\right)<\epsilon_{p} \text { for finite } p \text { in } E^{\prime} \text { and } \gamma \in a
$$

Therefore

$$
\left|\alpha^{\prime \prime}-\frac{\gamma}{m}-\alpha_{p}\right|_{p} \leq \epsilon_{p} \text { for finite } p \in E^{\prime} \text { and } \gamma \in a
$$

so $\alpha=\alpha^{\prime \prime}-\gamma / m$ satisfies our condition for the finite primes in E^{\prime}. We must show how to choose γ and m so that α also satisfies the required condition for infinite primes in E^{\prime}. We claim that there is a positive constant M depending only on ideal a, an element $\gamma=\gamma_{0}$ in a, and an element η in \mathbf{k}^{*} so that,
(2) $\left|\left(\alpha^{\prime \prime} m-\alpha_{p} m\right)-\left(\gamma_{0}+\eta\right)\right|_{p}<\frac{\epsilon_{p}}{2} \quad$ and $\quad|\eta|_{p}<M$ for all infinite p in E^{\prime}.

Then

$$
\left|\left(\alpha^{\prime \prime}-\alpha_{p}\right)-\frac{\gamma_{0}}{m}\right|_{p}<\frac{\epsilon_{p}}{2 m}+\frac{|\eta|_{p}}{m} \leq \frac{\epsilon_{p}}{2 m}+\frac{M}{m} \quad \text { for all infinite } p \text { in } E^{\prime} .
$$

If integer m is chosen large enough so that $\frac{M}{m}<\frac{1}{2} \epsilon$, then

$$
\left|\alpha^{\prime \prime}-\frac{\gamma_{0}}{m}-\alpha_{p}\right|_{p}<\epsilon_{p} \quad \text { for all infinite } p \in E^{\prime}
$$

It remains to establish the claim about M and to choose γ_{0} and η. It is possible to choose a basis $\alpha_{1}, \ldots, \alpha_{n}$ for \mathbf{k} over \mathbf{Q} so that each basis element α_{i} belongs to ideal a. If $\sigma_{1}, \ldots, \sigma_{n}$ are the distinct isomorphisms of \mathbf{k} into \mathbf{R} or \mathbf{C}, then by lemma 2.3 the mapping

$$
k \xrightarrow{\sigma_{1} \oplus \cdots \oplus \sigma_{n}} \mathbf{R}^{r_{1}} \oplus \mathbf{C}^{r_{2}}
$$

takes $\alpha_{1} \mathbf{Z}+\cdots+\alpha_{n} \mathbf{Z}$ to a non-degenerate n-dimensional lattice. Any element in $\mathbf{R}^{r_{1}} \oplus \mathbf{C}^{r_{2}}$ can be closely approximated by an element $u_{1} \alpha_{1}+\cdots+u_{n} \alpha_{n}$ where the u_{i} are elements of \mathbf{Q}. Write $u_{i}=k_{i}+v_{i}$ where k_{i} is in \mathbf{Z} and $0 \leq v_{i}<1$. Choose $\gamma_{0}=k_{1} \alpha_{1}+\cdots+k_{n} \alpha_{n}$ and $\eta=v_{1} \alpha_{1}+\cdots+v_{n} \alpha_{n}$. Then $\gamma_{0} \in a$ and the $|\eta|_{\sigma_{i}}$, for $i=1, \ldots, n$, are all bounded by a constant M that depends only on the basis, so condition (2) is satisfied. This completes the proof of the lemma.

Lemma 2.5. Let E^{\prime} be a finite set of primes and for each prime p in E^{\prime} an element α_{p} in \mathbf{k}_{p}^{*} and a positive real number ϵ_{p} are given. Then there is an α in \mathbf{k}^{*} so that $\left|\alpha \alpha_{p}^{-1}-1\right|_{p}<\epsilon_{p}$ and $\left|\alpha^{-1} \alpha_{p}-1\right|_{p}<\epsilon_{p}$.

Proof. Put $\epsilon_{p}^{\prime}=\min \left(1, \epsilon_{p}\right)$ for finite p in E^{\prime}, and put $\epsilon_{p}^{\prime}=\min \left(\frac{1}{2}, \frac{1}{2} \epsilon_{p}\right)$ for infinite p in E^{\prime}. By lemma 2.4 there is an α in \mathbf{k} so that $\left|\alpha-\alpha_{p}\right|_{p}<\left|\alpha_{p}\right|_{p} \epsilon_{p}^{\prime}$ for all p in E^{\prime}. Therefore $\left|\alpha \alpha_{p}^{-1}-1\right|_{p}<\epsilon_{p}^{\prime}$ for all p in E^{\prime}. A simple calculation shows that $\left|\alpha^{-1} \alpha_{p}-1\right|_{p}<\epsilon_{p}$ for both finite p and infinite p in E^{\prime}.

Proposition 2.6. Let E be a finite set of primes of \mathbf{k}. Let ϕ_{1} and ϕ_{2} be two homomorphisms of $\mathbf{I}_{\mathbf{k}}$ into a finite group G with closed kernels that contain \mathbf{k}^{*}. If ϕ_{1} and ϕ_{2} agree on $\mathbf{I}_{\mathbf{K}}\{E\}$ then $\phi_{1}=\phi_{2}$ on all of $\mathbf{I}_{\mathbf{k}}$.

Proof. Put $H=\operatorname{ker}\left(\phi_{1}\right) \cap \operatorname{ker}\left(\phi_{2}\right) ; H$ is a closed subgroup of finite index in G. By lemma 2.1, H contains a closed subgroup U, where

$$
U=\prod_{p \notin E^{\prime}} \mathbf{u}_{p} \quad \times \prod_{\text {finite }} p \in E^{\prime} W_{p}^{\prime}\left(\epsilon_{p}^{\prime}\right) \quad \times \prod_{\text {real } p \in E^{\prime}} \mathbf{k}_{p}^{+} \quad \times \prod_{\text {complex }} \mathbf{k}_{p \in E^{\prime}}^{*}
$$

Take \mathbf{i} in $\mathbf{I}_{\mathbf{k}}$. For infinite p take $\epsilon_{p}^{\prime}=\frac{1}{2}$. By lemma 2.5 , there exists α in \mathbf{k}^{*} so that $\left|\alpha^{-1} \mathbf{i}_{p}-1\right|_{p}<\epsilon_{p}^{\prime}$ for all p in E^{\prime}. Define \mathbf{j} and \mathbf{j}^{\prime} in $\mathbf{I}_{\mathbf{k}}$ as follows, so that \mathbf{j} is in U, and \mathbf{j}^{\prime} is in $\mathbf{I}_{\mathbf{k}}\{E\}$.

$$
\begin{array}{lll}
\mathbf{j}_{p}=1 & \text { for } p \notin E & \mathbf{j}_{p}=\alpha^{-1} \mathbf{i}_{p} \text { for } p \in E \\
\mathbf{j}_{p}^{\prime}=\alpha^{-1} \mathbf{i}_{p} \text { for } p \notin E & \mathbf{j}_{p}^{\prime}=1 & \text { for } p \in E
\end{array}
$$

(If p is in E but not E^{\prime} then $\mathbf{j}_{p}=1$, so \mathbf{j} is in U.) Since the kernels of ϕ_{1} and ϕ_{2} contain \mathbf{k}^{*}, we have

$$
\phi_{1}(\mathbf{i})=\phi_{1}\left(\alpha^{-1} \mathbf{i}\right)=\phi_{1}\left(\mathbf{j} \mathbf{j}^{\prime}\right)=\phi_{1}\left(\mathbf{j}^{\prime}\right)=\phi_{2}\left(\mathbf{j}^{\prime}\right)=\phi_{2}\left(\mathbf{j} \mathbf{j}^{\prime}\right)=\phi_{2}\left(\alpha^{-1} \mathbf{i}\right)=\phi_{2}(\mathbf{i})
$$

Proposition 2.7. If ϕ is a homomorphism from $\mathbf{I}_{\mathbf{k}}\{E\}$ to a finite group and the kernel of ϕ has closed kernel of finite index, then any extension of ϕ to $\mathbf{I}_{\mathbf{k}}$ whose kernel contains \mathbf{k}^{*} is independent of E.

Proof. Suppose that ϕ_{1} defined on $\mathbf{I}_{\mathbf{K}}\left\{E_{1}\right\}$ and ϕ_{2} defined on $\mathbf{I}_{\mathbf{k}}\left\{E_{2}\right\}$ can be extended to $\mathbf{I}_{\mathbf{k}}$ with kernels containing \mathbf{k}^{*}. Then ϕ_{1} and ϕ_{2} agree on $\mathbf{I}_{\mathbf{k}}\left\{E_{1} \cap E_{2}\right\}$. Therefore $\phi_{1}=\phi_{2}$ by Proposition 2.6.

Composite fields of finite extensions. Let Ω be an algebraic closure of \mathbf{k}. All of our extensions of \mathbf{k} will be subfields of Ω. If \mathbf{K}_{1} and \mathbf{K}_{2} are subfields of Ω then the composite field $\mathbf{K}_{1} \mathbf{K}_{2}$ is the smallest subfield of Ω that contains \mathbf{K}_{1} and \mathbf{K}_{2}.

Lemma 2.8. If \mathbf{K}_{1} and \mathbf{K}_{2} are finite extensions of \mathbf{k}, then composite $\mathbf{K}_{1} \mathbf{K}_{2}$ is a finite extension of \mathbf{k} and

$$
\left[\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right] \leq\left[\mathbf{K}_{1}: \mathbf{k}\right]\left[\mathbf{K}_{2}: \mathbf{k}\right]
$$

If $\mathbf{K}_{2}=\mathbf{k}(\beta)$ then $\mathbf{K}_{1} \mathbf{K}_{2}=\mathbf{K}_{1}(\beta)$.
Proof. Since $\mathbf{K}_{1} / \mathbf{k}$ and $\mathbf{K}_{2} / \mathbf{k}$ are finite separable extensions, let α and β be elements so that $\mathbf{K}_{1}=\mathbf{k}(\alpha)$ and $\mathbf{K}_{2}=\mathbf{k}(\beta)$. Let $\left[\mathbf{K}_{1}: \mathbf{k}\right]=m$ and $\left[\mathbf{K}_{2}: \mathbf{k}\right]=n$. The $m n$ products $\alpha^{i} \beta^{j}(0 \leq i<m, 0 \leq j<n)$ span an algebra A over \mathbf{k} that is contained in $\mathbf{K}_{1} \mathbf{K}_{2}$. It is enough to show that every non-zero element of A has an inverse in A. Let γ be a non-zero element of A.

$$
\gamma=\sum_{j=0}^{n-1} \sum_{i=0}^{m-1} \mu_{i j} \alpha^{i} \beta^{j} \quad \mu_{i j} \in \mathbf{k}
$$

Let $f(Y)$ be the polynomial

$$
f(Y)=\sum_{j=0}^{n-1}\left(\sum_{i=0}^{m-1} \mu_{i j} \alpha^{i}\right) Y^{j}
$$

Then $f(Y)$ is a polynomial in $\mathbf{K}_{1}[Y]$ and $f(\beta)=\gamma$. Let $g(Y)$ be the minimum polynomial of β over \mathbf{K}_{1}. Since $f(\beta) \neq 0$ then $f(Y)$ is not divisible by $g(Y)$. There exist polynomials $h_{1}(Y)$ and $h_{2}(Y)$ in $\mathbf{K}_{1}(Y)$ so that

$$
h_{1}(Y) f(Y)+h_{2}(Y) g(Y)=1
$$

We have $h_{1}(\beta) f(\beta)=1$, so γ has an inverse in A. Since β can be any element that generates \mathbf{K}_{2} over \mathbf{k}, we also have shown that $\mathbf{K}_{1} \mathbf{K}_{2}=\mathbf{k}(\beta)$.

Lemma 2.9. If $\mathbf{K}_{1} / \mathbf{k}$ and $\mathbf{K}_{2} / \mathbf{k}$ are finite normal extensions then composite $\mathbf{K}_{1} \mathbf{K}_{2} / \mathbf{k}$ is a finite normal extension.

Proof. Suppose that σ is an isomorphism of $\mathbf{K}_{1} \mathbf{K}_{2}$ into a subfield of Ω and σ fixes elements of \mathbf{k}. Then $\left(\mathbf{K}_{1} \mathbf{K}_{2}\right)^{\sigma}$ contains both $\mathbf{K}_{1}^{\sigma}=\mathbf{K}_{1}$ and $\mathbf{K}_{2}^{\sigma}=\mathbf{K}_{2}$, so $\left(\mathbf{K}_{1} \mathbf{K}_{2}\right)^{\sigma} \supset \mathbf{K}_{1} \mathbf{K}_{2}$. From the proof of lemma 2.8, elements of composite $\mathbf{K}_{1} \mathbf{K}_{2}$ have the form $\gamma=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \mu_{i j} \alpha^{i} \beta^{j}$ with $\mu_{i j}$ in \mathbf{k}, α in \mathbf{K}_{1}, β in \mathbf{K}_{2}. Then $\gamma^{\sigma}=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \mu_{i j}\left(\alpha^{i}\right)^{\sigma}\left(\beta^{j}\right)^{\sigma}$, so $\left(\mathbf{K}_{1} \mathbf{K}_{2}\right)^{\sigma} \subset \mathbf{K}_{1} \mathbf{K}_{2}$. This shows that $\mathbf{K}_{1} \mathbf{K}_{2}$ is invariant under any isomorphism that fixes \mathbf{k}.

Lemma 2.10. If $\mathbf{K}_{1} / \mathbf{k}$ and $\mathbf{K}_{2} / \mathbf{k}$ are finite normal extensions then

$$
\begin{aligned}
{\left[\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{K}_{1}\right] } & =\left[\mathbf{K}_{2}: \mathbf{K}_{1} \cap \mathbf{K}_{2}\right], \\
{\left[\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right] } & =\left[\mathbf{K}_{1}: \mathbf{k}\right]\left[\mathbf{K}_{2}: \mathbf{k}\right] \text { if and only if } \mathbf{K}_{1} \cap \mathbf{K}_{2}=\mathbf{k} .
\end{aligned}
$$

Proof. Let $\mathbf{K}_{2}=\mathbf{k}(\beta)$. Then $\mathbf{K}_{1} \mathbf{K}_{2}=\mathbf{K}_{1}(\beta)$. Let $f(x)$ be the minimum polynomial of β over \mathbf{k}. Let $g(x)$ be the minimum polynomial of β over \mathbf{K}_{1}. Then $g(x)$ divides $f(x)$. Since $\mathbf{K}_{2} / \mathbf{k}$ is normal, $f(x)$ splits completely into linear factors over \mathbf{K}_{1}. The coefficients of $g(x)$ must be in $\mathbf{K}_{1} \cap \mathbf{K}_{2}$, so $g(x)$ is the minimum polynomial for β over $\mathbf{K}_{1} \cap \mathbf{K}_{2}$. We have $\left[\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{K}_{1}\right]=\operatorname{deg}(g)=\left[\mathbf{K}_{2}: \mathbf{K}_{1} \cap \mathbf{K}_{2}\right]$.

Using the first equality, we have $\left[\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right]=\left[\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{K}_{1}\right]\left[\mathbf{K}_{1}: \mathbf{k}\right]=\left[\mathbf{K}_{2}\right.$: $\left.\mathbf{K}_{1} \cap \mathbf{K}_{2}\right]\left[\mathbf{K}_{1}: \mathbf{k}\right]$. Then $\left[\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right]\left[\mathbf{K}_{1} \cap \mathbf{K}_{2}: \mathbf{k}\right]=\left[\mathbf{K}_{2}: \mathbf{k}\right]\left[\mathbf{K}_{1}: \mathbf{k}\right]$, so the second equality holds if and only if $\left[\mathbf{K}_{1} \cap \mathbf{K}_{2}: \mathbf{k}\right]=1$.

Lemma 2.11. Let $\mathbf{K}_{1} / \mathbf{k}$ and $\mathbf{K}_{2} / \mathbf{k}$ be finite normal extensions. There is a natural homomorphism

$$
G\left(\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right) \longrightarrow G\left(\mathbf{K}_{1}: \mathbf{k}\right) \times G\left(\mathbf{K}_{2}: \mathbf{k}\right)
$$

sending σ in $G\left(\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right)$ to $\left(\sigma\left|\mathbf{K}_{1}, \sigma\right| \mathbf{K}_{2}\right)$. The mapping is an injection, and the image consists of all $\left(\sigma_{1}, \sigma_{2}\right)$ in $G\left(\mathbf{K}_{1}: \mathbf{k}\right) \times G\left(\mathbf{K}_{2}: \mathbf{k}\right)$ such that $\sigma_{1} \mid\left(\mathbf{K}_{1} \cap \mathbf{K}_{2}\right)=$ $\sigma_{2} \mid\left(\mathbf{K}_{1} \cap \mathbf{K}_{2}\right)$.

Proof. Put $G=G\left(\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right)$. Let H_{1} be the subgroup of G that leaves elements of \mathbf{K}_{1} fixed; Let H_{2} be the subgroup of G that leaves elements of \mathbf{K}_{2} fixed. Then $H_{1} \cap H_{2}=\{1\}$. Both H_{1} and H_{2} are normal subgroups of G, and we have $G\left(\mathbf{K}_{1}: \mathbf{k}\right)=G / H_{1}$ and $G\left(\mathbf{K}_{2}: \mathbf{k}\right)=G / H_{2}$. The mapping $\sigma \rightarrow\left(\sigma\left|\mathbf{K}_{1}, \sigma\right| \mathbf{K}_{2}\right)$ is the natural homomorphism

$$
G \xrightarrow{f} \frac{G}{H_{1}} \times \frac{G}{H_{2}}
$$

The smallest subgroup of G containing H_{1} and H_{2} is $H=H_{1} H_{2}=H_{2} H_{1}$. We have $G\left(\mathbf{K}_{1} \cap \mathbf{K}_{2}: \mathbf{k}\right)=G / H$. The restrictions from \mathbf{K}_{1} and \mathbf{K}_{2} to $\mathbf{K}_{1} \cap \mathbf{K}_{2}$ are the natural homomorphisms $G / H_{1} \xrightarrow{g_{1}} G / H$ and $G / H_{2} \xrightarrow{g_{2}} G / H$. We have

$$
G \xrightarrow{f} \frac{G}{H_{1}} \times \frac{G}{H_{2}} \xrightarrow{g_{1} \times g_{2}} \frac{G}{H} \times \frac{G}{H}
$$

Every element of G maps to the diagonal of $G / H \times G / H$. The mapping f is an injection because $H_{1} \cap H_{2}=\{1\}$. The order of the image (f) is [$G: 1$], and

$$
[G: 1]=[G: H]\left[H: H_{1}\right]\left[H_{1}: 1\right] .
$$

The order of $\operatorname{ker}\left(g_{1} \times g_{2}\right)$ is $\left[H: H_{1}\right]\left[H: H_{2}\right]$, so the number of pairs in $G / H_{1} \times G / H_{2}$ which map to the diagonal of $G / H \times G / H$ is $[G: H]\left[H: H_{1}\right]\left[H: H_{2}\right]$. By lemma 2.10 we have $\left[H_{1}: 1\right]=\left[H: H_{2}\right]$, so the number of pairs which map to the diagonal is $[G: 1]$. This shows that the image of f consists exactly of pairs which map to the diagonal, i.e., whose restrictions to $\mathbf{K}_{1} \cap \mathbf{K}_{2}$ coincide.

Lemma 2.12. If $\mathbf{K}_{1} / \mathbf{k}$ and $\mathbf{K}_{2} / \mathbf{k}$ are finite abelian extensions then the composite $\mathbf{K}_{1} \mathbf{K}_{2}$ is an abelian extension of \mathbf{k}.

Proof. $G\left(\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right)$ is isomorphic to a subgroup of abelian group $G\left(\mathbf{K}_{1}\right.$: $\mathbf{k}) \times G\left(\mathbf{K}_{2}: \mathbf{k}\right)$.

Lemma 2.13. If \mathbf{K} / \mathbf{k} is abelian and $\mathbf{K} \supset \mathbf{K}^{\prime} \supset \mathbf{k}$, then $\mathbf{K}^{\prime} / \mathbf{k}$ is abelian and Artin symbol $\left(\frac{\mathbf{K}^{\prime}: \mathbf{k}}{p}\right)$ is the restriction of $\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)$ to \mathbf{K}^{\prime} when p is not ramified in K. If Theorem 1 holds for \mathbf{K} / \mathbf{k} and $\mathbf{K}^{\prime} / \mathbf{k}$, then $\phi_{\mathbf{K}^{\prime} / \mathbf{k}}$ is the restriction of $\phi_{\mathbf{K} / \mathbf{k}}$ to \mathbf{K}^{\prime}.

Proof. The Artin symbol of \mathbf{K}^{\prime} is the only automorphism of $G\left(\mathbf{K}^{\prime}: \mathbf{k}\right)$ satisfying the condition

$$
\begin{equation*}
\alpha^{\sigma}=\alpha^{\mathrm{N} p}\left(\bmod \wp^{\prime}\right) \text { for all } \alpha \in \mathbf{O}_{\wp^{\prime}}^{\prime} \text { and } \wp^{\prime} \mid p \tag{3}
\end{equation*}
$$

where \mathbf{O}^{\prime} is the ring of integers in \mathbf{K}^{\prime} and \wp^{\prime} is prime in \mathbf{O}^{\prime}. The Artin symbol of \mathbf{K} is the only automorphism of $G(\mathbf{K}: \mathbf{k})$ satisfying the condition

$$
\alpha^{\sigma}=\alpha^{N p}(\bmod \wp) \text { for all } \alpha \in \mathbf{O}_{\wp^{\prime}} \text { and } \wp \mid p
$$

where \mathbf{O} is the ring of integers in \mathbf{K} and \wp is prime in \mathbf{O}. If $\sigma=\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)$ and $\alpha \in \mathbf{O}_{\wp^{\prime}}^{\prime}$ then

$$
\alpha^{\sigma}-\alpha^{\mathrm{N} p} \in \wp \cap \mathbf{O}_{\wp^{\prime}}^{\prime}=\wp^{\prime} .
$$

For every prime \wp^{\prime} of \mathbf{O}^{\prime} there is a prime \wp of \mathbf{O} so that $\mathbf{O} \cap \wp=\wp^{\prime}$. Therefore the restriction of $\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)$ to \mathbf{K}^{\prime} satisfies condition (3), proving the first assertion.

Assume that Theorem 1 holds for \mathbf{K} / \mathbf{k} and $\mathbf{K}^{\prime} / \mathbf{k}$. Let E contain all infinite primes of \mathbf{k} and all primes which ramify in \mathbf{K}. For \mathbf{i} in $\mathbf{I}_{\mathbf{k}}\{E\}$, the restriction of $\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i})$ to \mathbf{K}^{\prime} is the restriction of $\prod_{p \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{\operatorname{ord}_{p}(\mathbf{i})}$ to \mathbf{K}^{\prime}, which coincides with $\prod_{p \notin E}\left(\frac{\mathbf{K}^{\prime}: \mathbf{k}}{p}\right)^{\operatorname{ord}_{p}(\mathbf{i})}$, which coincides with $\phi_{\mathbf{K}^{\prime} / \mathbf{k}}(\mathbf{i})$. The extension to $\mathbf{I}_{\mathbf{k}}$ is unique, so the two homomorphisms $\mathbf{I}_{\mathbf{k}} \rightarrow G\left(\mathbf{K}_{1}: \mathbf{k}\right)$ must be identical.

Corollary. Let $\mathbf{K}_{1} / \mathbf{k}$ and $\mathbf{K}_{2} / \mathbf{k}$ be finite abelian extensions, and suppose that Theorem 1 holds for $\mathbf{K}_{1} \mathbf{k}, \mathbf{K}_{2} / \mathbf{k}$ and $\mathbf{K}_{1} \mathbf{K}_{2} / \mathbf{k}$. Then the homomorphism of lemma 2.11 maps $\phi_{\mathbf{K}_{1} \mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})$ to the pair $\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}(\mathbf{i}), \phi_{\mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})\right)$ for all \mathbf{i} in $\mathbf{I}_{\mathbf{k}}$.

Proposition 2.14. Suppose that Theorem 1 holds for a given \mathbf{k} and all finite abelian extensions of \mathbf{k}. Let $\mathbf{K}_{1} / \mathbf{k}$ and $\mathbf{K}_{2} / \mathbf{k}$ be finite abelian extensions. If $\phi_{\mathbf{K}_{1} / \mathbf{k}}$ and $\phi_{\mathbf{K}_{2} / \mathbf{k}}$ have the same kernels then $\mathbf{K}_{1}=\mathbf{K}_{2}$.

Proof. The map $\mathbf{G}\left(\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right) \rightarrow G\left(\mathbf{K}_{1}: \mathbf{k}\right) \times G\left(\mathbf{K}_{2}: \mathbf{k}\right)$ is an injection (lemma 2) which maps $\phi_{\mathbf{K}_{1} \mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})$ to the pair $\left(\phi_{\mathbf{K}_{1} \mathbf{k}}(\mathbf{i}), \phi_{\mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})\right.$) (corollary to lemma 2.13). Suppose that $\operatorname{ker}\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}\right)=\operatorname{ker}\left(\phi_{\mathbf{K}_{2} / \mathbf{k}}\right)$. If \mathbf{i} is in $\operatorname{ker}\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}\right)$ then $\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}(\mathbf{i}), \phi_{\mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})\right)$ is trivial, so $\phi_{\mathbf{K}_{1} \mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})$ is trivial, showing that $\operatorname{ker}\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}\right)$ is contained in $\operatorname{ker}\left(\phi_{\mathbf{K}_{1} \mathbf{K}_{2} / \mathbf{k}}\right)$. Applying Theorem 1, we have $\left[\mathbf{K}_{1}: \mathbf{k}\right] \geq\left[\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right]$. By the same argument we have $\left[\mathbf{K}_{2}: \mathbf{k}\right] \geq\left[\mathbf{K}_{1} \mathbf{K}_{2}: \mathbf{k}\right]$. This shows that $\mathbf{K}_{1}=\mathbf{K}_{2}$

Proposition 2.15. Suppose that Theorem 1 holds for a given \mathbf{k} and all finite abelian extensions of \mathbf{k}. Let $\mathbf{K}_{1} / \mathbf{k}$ and $\mathbf{K}_{2} / \mathbf{k}$ be finite abelian extensions then $\mathbf{K}_{1} \supset$ \mathbf{K}_{2} if and only if $\operatorname{ker}\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}\right) \subset \operatorname{ker}\left(\phi_{\mathbf{K}_{2} / \mathbf{k}}\right)$.

Proof. Assume that $\mathbf{K}_{1} \supset \mathbf{K}_{2}$. Then $\phi_{\mathbf{K}_{1} / \mathbf{k}}(\mathbf{i}) \mid \mathbf{K}_{2}=\phi_{\mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})$, just as in the proof of proposition 2.14. If $\phi_{\mathbf{K}_{1} / \mathbf{k}}(\mathbf{i})=1$ then $\phi_{\mathbf{K}_{2} / \mathbf{k}}(\mathbf{i})=1$, so $\operatorname{ker}\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}\right) \subset$ $\operatorname{ker}\left(\phi_{\mathbf{K}_{2} / \mathbf{k}}\right)$.

Assume that $\operatorname{ker}\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}\right) \subset \operatorname{ker}\left(\phi_{\mathbf{K}_{2} / \mathbf{k}}\right)$. According to theorem 1, $\mathbf{I}_{\mathbf{k}} / \operatorname{ker}\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}\right)$ is isomorphic to $G\left(\mathbf{K}_{1}: \mathbf{k}\right)$. Let the image of $\operatorname{ker}\left(\phi_{\mathbf{K}_{2} / \mathbf{k}}\right) / \operatorname{ker}\left(\phi_{\mathbf{K}_{1} / \mathbf{k}}\right)$ be subgroup G^{\prime} of $G\left(\mathbf{K}_{1}: \mathbf{k}\right)$. Let \mathbf{K}^{\prime} be the subfield of \mathbf{K}_{1} fixed by G^{\prime}. Then $\operatorname{ker}\left(\phi_{\mathbf{K}^{\prime} / \mathbf{k}}\right)=\operatorname{ker}\left(\phi_{\mathbf{K}_{2} / \mathbf{k}}\right)$ because

$$
\begin{aligned}
\mathbf{i} \in \operatorname{ker}\left(\phi_{\mathbf{K}^{\prime} / \mathbf{k}}\right) & \Longleftrightarrow \phi_{\mathbf{K}^{\prime} / \mathbf{k}}(\mathbf{i})=1 \Longleftrightarrow \phi_{\mathbf{K}_{1} / \mathbf{k}}(\mathbf{i}) \mid \mathbf{K}^{\prime}=1 \\
& \Longleftrightarrow \phi_{\mathbf{K}_{1} / \mathbf{k}}(\mathbf{i}) \in G^{\prime} \Longleftrightarrow \mathbf{i} \in \operatorname{ker}\left(\phi_{\mathbf{K}_{2} / \mathbf{k}}\right)
\end{aligned}
$$

Then $\mathbf{K}^{\prime}=\mathbf{K}_{2}$ by proposition 2.14, so $\mathbf{K}_{1} \supset \mathbf{K}_{2}$.
Lemma 2.16. Let \mathbf{T} / \mathbf{k} be a finite extension, and let \mathbf{K} / \mathbf{k} be a finite abelian extension. Then $\mathbf{K T} / \mathbf{T}$ is abelian. Let \wp be a prime ideal of \mathbf{T}, and let $p=\wp \cap \mathbf{o}$. If p is not ramified in \mathbf{K} then \wp is not ramified in KT. Put $\mathrm{N} \wp=(\mathrm{N} p)^{f}$. Then

$$
\left.\left(\frac{\mathbf{K T}: \mathbf{T}}{\wp}\right)\right|_{\mathbf{K}}=\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{f}
$$

Proof. We first show that $\mathbf{K T} / \mathbf{T}$ is normal. (This is like the proof of lemma 2.10, except that here \mathbf{T} / \mathbf{k} may not be normal.) Let $\mathbf{K}=\mathbf{k}(\alpha)$ and let $f(x)$ be the minimum polynomial for α over \mathbf{k}. Then $\mathbf{K T}=\mathbf{T}(\alpha)$ by lemma 2.8. Let $g(x)$
be the minimum polynomial for α over \mathbf{T}. Then $g(x)$ divides $f(x)$ in $\mathbf{T}(x)$. Since $f(x)$ splits completely into linear factors over \mathbf{K} (and over KT) then $g(x)$ splits completely over KT. Therefore $\mathbf{K T} / \mathbf{T}$ is normal. By restriction to \mathbf{K} we have a homomorphism $G(\mathbf{K T}: \mathbf{T}) \longrightarrow G(\mathbf{K} / \mathbf{k})$. The kernel is trivial, so $G(\mathbf{K T}: \mathbf{T})$ is isomorphic to a subgroup of $G(\mathbf{K} / \mathbf{k})$. Therefore $G(\mathbf{K T}: \mathbf{T})$ is abelian.

Let \wp^{\prime} be any prime of $\mathbf{K T}$ that divides \wp. Let $p^{\prime}=\wp^{\prime} \cap \mathbf{O}_{\mathbf{K}}$ be the prime of \mathbf{K} that \wp^{\prime} divides. We need to show that \wp is not ramified in KT. Let $S_{\wp^{\prime}}(\mathbf{K T}: \mathbf{T})$ be the splitting group of \wp^{\prime} in $G(\mathbf{K T}: \mathbf{T})$. Automorphisms σ^{\prime} in $S_{\wp^{\prime}}(\mathbf{K T}: \mathbf{T})$ satisfy the condition $\left(\wp^{\prime}\right) \sigma^{\sigma^{\prime}}=\wp^{\prime}$. We have $\left(\wp^{\prime} \cap \mathbf{O}_{\mathbf{K}}\right)^{\sigma^{\prime}}=\wp^{\prime} \cap \mathbf{O}_{\mathbf{K}}$, or $p^{\prime \sigma^{\prime}}=p^{\prime}$. $\left(\mathbf{O}_{\mathbf{K}}^{\sigma^{\prime}}=\mathbf{O}_{\mathbf{K}}\right.$ because \mathbf{K} / \mathbf{k} is normal.) Therefore σ^{\prime} restricted to \mathbf{K} is in the splitting group $S_{p^{\prime}}(\mathbf{K}: \mathbf{k})$, and extends to an automorphism of $\mathbf{K}_{p^{\prime}}$ over \mathbf{k}_{p}.

To show that \wp is not ramified in KT we need to show that the inertial subgroup of $S_{\wp^{\prime}}(\mathbf{K T} / \mathbf{T})$ is trivial (Chapter 1, normal extensions). An automorphism σ^{\prime} in the inertial subgroup satisfies the condition

$$
\alpha^{\sigma^{\prime}}=\alpha\left(\bmod \wp^{\prime}\right) \text { for all } \alpha \in \mathbf{O}_{\wp^{\prime}}
$$

The restriction of σ^{\prime} to \mathbf{K} satisfies

$$
\alpha^{\sigma^{\prime}}=\alpha\left(\bmod \wp^{\prime} \cap \mathbf{O}_{p^{\prime}}\right) \text { for all } \alpha \in \mathbf{O}_{p^{\prime}}
$$

The restriction of σ^{\prime} to \mathbf{K} is therefore trivial since the inertial group of p^{\prime} is trivial, so σ^{\prime} is trivial on both \mathbf{K} and \mathbf{T}.

Let σ^{\prime} be the Artin symbol $\left(\frac{\mathbf{K T}: \mathbf{T}}{\wp}\right)$. Then $\alpha^{\sigma^{\prime}}=\alpha^{\mathrm{N} \wp}\left(\bmod \wp^{\prime}\right)$ for all α in $\mathbf{O}_{\wp^{\prime}}$, so we have

$$
\alpha^{\sigma^{\prime}}-\alpha^{\mathrm{N} \wp} \in \wp^{\prime} \cap \mathbf{O}_{p^{\prime}} \text { for all } \alpha \in \mathbf{O}_{p^{\prime}}
$$

Since $\mathrm{N} \wp=(\mathrm{N} p)^{f}$, we have

$$
\alpha^{\sigma^{\prime}}-\alpha^{(\mathrm{N} p)^{f}} \in p^{\prime} \text { for all } \alpha \in \mathbf{O}_{p^{\prime}}
$$

By (1.14'), this shows that σ^{\prime} restricted to \mathbf{K} is $\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{f}$ as claimed.
Remark 2.1. To say that " $\phi_{\mathbf{K} / \mathbf{k}}$ can be defined on $\mathbf{I}_{\mathbf{k}}$ " means that the homomorphism $\phi_{\mathbf{K} / \mathbf{k}}$ defined by (1) on $\mathbf{I}_{\mathbf{k}}\{E\}$ for some finite set of primes E can be extended to a continuous homomorphism defined on all of $\mathbf{I}_{\mathbf{k}}$. By propositions 2.7 and 2.8 , the extension is unique and does not depend on the choice of E.

Remark 2.2. The subgroups of lemma 2.1 may also be described using the fact that p-adic valuations take only discrete values $\left\{\mathrm{N} p^{-m_{p}}\right\}$ for rational integers m_{p}. We have

$$
\begin{aligned}
W_{p}^{\prime}\left(\mathrm{N} p^{-\left(m_{p}-1\right)}\right) & =\left\{\begin{array}{ll}
\alpha \in \mathbf{k}_{p} \mid & |\alpha-1|_{p}<\mathrm{N} p^{-\left(m_{p}-1\right)}
\end{array}\right\} \\
& =\left\{\begin{array}{ll}
\alpha \in \mathbf{k}_{p} \mid & |\alpha-1|_{p} \leq \mathrm{N} p^{-m_{p}}
\end{array}\right\}
\end{aligned}
$$

Put

$$
W_{p}\left(m_{p}\right)=W_{p}^{\prime}\left(\mathrm{N} p^{-\left(m_{p}-1\right)}\right)
$$

Note that $W_{p}(0)=\mathbf{u}_{p}$. For real infinite p put $W_{p}(0)=\mathbf{k}_{p}^{*}$ and $W_{p}(1)=\mathbf{k}_{p}^{+}$; for complex infinite p put $W_{p}(0)=W_{p}(1)=\mathbf{k}^{*}$. We can choose integers m_{p}, taking $m_{p}=0$ for p not in E^{\prime}, so that the subgroup of lemma 2.1 can be written

$$
\begin{equation*}
\prod_{p} W_{p}\left(m_{p}\right) . \tag{4}
\end{equation*}
$$

Since all but a finite number of m_{p} are zero, the formal product $\prod_{p} p^{m_{p}}$ over finite and infinite primes is a generalized ideal or modulus of \mathbf{k}. Subgroup (4) is the subgroup belonging to $\prod_{p} p^{m_{p}}$.

Lemma 2.17. Let $\mathbf{T}_{\wp} / \mathbf{k}_{p}$ be a finite extension of local fields with $p=\wp^{e}$. If α in $\mathbf{O}_{\mathbf{T}_{\wp}}$ satisfies $\alpha=1\left(\bmod \wp{ }^{e m}\right)$ then

$$
\mathbf{N}_{\mathbf{T}_{\mathscr{\rho}} / \mathbf{k}_{p}}(\alpha)=1\left(\bmod p^{m}\right)
$$

Proof. Let π be a generator of principal ideal p in \mathbf{o}_{p}. Then $\wp^{e m}=\pi^{m} \mathbf{O}_{\mathbf{T}_{\wp}}$. $\mathbf{O}_{\mathbf{T}_{\wp}}$ is a free \mathbf{o}_{p}-module of degree $n=e f$, so let x_{1}, \ldots, x_{n} be a basis. If $\alpha=$ $1\left(\bmod \wp^{e m}\right)$ then $(\alpha-1) x_{i} \in \wp^{e m}$ so

$$
(\alpha-1) x_{i}=\pi^{m}\left(a_{i 1} x_{1}+\cdots+a_{i n} x_{n}\right) \text { for } i=1, \ldots, n .
$$

The matrix with respect to basis x_{1}, \ldots, x_{n} for linear transformation T_{α} satisfies $T_{\alpha}=I\left(\bmod p^{m}\right)$. Therefore $\mathbf{N}_{\mathbf{T}_{\wp} / \mathbf{k}_{p}}(\alpha)=\operatorname{det}\left(T_{\alpha}\right)=1\left(\bmod p^{m}\right)$.

Lemma 2.18. Let \mathbf{T} / \mathbf{k} be a finite extension, let \mathbf{i} be an element of $\mathbf{I}_{\mathbf{T}}$, and let $a=\prod_{p} p^{m_{p}}$ be an ideal of \mathbf{o}_{k}. There exists β in \mathbf{T}^{*} so that $\beta^{-1} \mathbf{i}$ is in the subgroup belonging to ideal $a \mathbf{O}_{\mathbf{T}}$, and then we have $\mathbf{N}_{\mathbf{T} / \mathbf{k}}\left(\beta^{-1} \mathbf{i}\right)$ is in the subgroup belonging to $\prod_{p} p^{m_{p}}$.

Proof. In the extension $\mathbf{T}, p \mathbf{O}_{\mathbf{T}}$ splits into a product $p=\wp_{1}^{e_{1}} \ldots \wp_{g}^{e_{g}}$ of primes \wp_{i} of $\mathbf{O}_{\mathbf{T}}$. By lemma 2.5, we can find β in \mathbf{T}^{*} so that $\beta^{-1} \mathbf{i}$ is in the subgroup of $\mathbf{I}_{\mathbf{T}}$ belonging to $a \mathbf{O}_{\mathbf{T}}=\prod_{p} \prod_{\wp \mid p} \wp^{m_{p} e_{\wp}}$. By Lemma 2.17, $\mathbf{N}_{\mathbf{T}_{\wp} / k_{p}}\left(\beta^{-1} \mathbf{i}_{\wp}\right)=1\left(\bmod p^{m_{p}}\right)$ if $m_{p}>0$ and p finite. If $m_{p}=0$ then $\beta^{-1} \mathbf{i}_{\wp}$ is in \mathbf{u}_{\wp} and $\left|\mathbf{N}_{\mathbf{T}_{\wp} / k_{p}}\left(\beta^{-1} \mathbf{i}_{\wp}\right)\right|_{p}=$ $\left|\beta^{-1} \mathbf{i}_{\wp}\right|_{\wp}=1$, so $\mathbf{N}_{\mathbf{T}_{\wp} / k_{p}}\left(\beta^{-1} \mathbf{i}_{\wp}\right)$, which is in \mathbf{u}_{p}. If \wp is complex infinite and p is real infinite then $\mathbf{N}_{\mathbf{T}_{\wp} / k_{p}}\left(\beta^{-1} \mathbf{i}_{\wp}\right)=\left(\beta^{-1} \mathbf{i}_{\wp}\right) \overline{\left(\beta^{-1} \mathbf{i}_{\wp}\right)}$, which is in \mathbf{k}_{p}^{+}. Therefore

$$
\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}}\left(\beta^{-1} \mathbf{i}\right)\right)_{p}=\prod_{\wp \mid p} \mathbf{N}_{\mathbf{T}_{\wp} / \mathbf{k}_{p}}\left(\beta^{-1} \mathbf{i}_{\wp}\right) \quad\left\{\begin{array}{l}
=1\left(\bmod p^{m_{p}}\right) \text { if } m_{p}>0 \text { and } p \text { finite }, \\
\in \mathbf{u}_{p} \text { if } m_{p}=0, p \text { finite } \\
\in k_{p}^{+} \text {if } p \text { real and } \wp \text { complex }
\end{array}\right.
$$

Therefore $\mathbf{N}_{\mathbf{T} / \mathbf{k}}\left(\beta^{-1} \mathbf{i}\right)$ is in the subgroup belonging to $\prod_{p} p^{m_{p}}$.

Proposition 2.19. Let \mathbf{T} / \mathbf{k} be a finite extension, and let \mathbf{K} / \mathbf{k} be a finite abelian extension. Suppose that $\phi_{\mathbf{K} / \mathbf{k}}$ can be defined on $\mathbf{I}_{\mathbf{k}}$ and the kernel contains \mathbf{k}^{*}, and that $\phi_{\mathbf{K T} / \mathbf{T}}$ can be defined on $\mathbf{I}_{\mathbf{T}}$ and the kernel contains \mathbf{T}^{*}. Then

$$
\phi_{\mathbf{K T} / \mathbf{T}}(\mathbf{i})=\phi_{\mathbf{K} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right) \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{T}}
$$

Proof. By lemma 2.1, $\operatorname{ker}\left(\phi_{\mathbf{K T} / \mathbf{T}}\right)$ contains a subgroup of $\mathbf{I}_{\mathbf{T}}$ belonging to ideal $\prod_{\wp \in E} \wp^{n_{\wp}}$ of \mathbf{T}, and $\operatorname{ker}\left(\phi_{\mathbf{K} / \mathbf{k}}\right)$ contains a subgroup belonging to ideal $\prod_{p \in F} p^{m_{p}}$ of \mathbf{k}. Add to E all primes \wp of \mathbf{T} which are infinite or ramified in TK. Add to F all primes p of \mathbf{k} which are infinite or ramified in \mathbf{T}. Now to F all primes divisible by a prime of E, then add to E all primes which divide a prime of F. A prime of \mathbf{T} is in E if and only if it divides a prime of F. For those finite primes added to E (or F) set $m_{\wp}=0$ (or $m_{p}=0$; for those infinite primes added to E (or F) set $m_{\wp}=1\left(\right.$ or $\left.m_{p}=1\right)$.

Let \mathbf{i} be an element of $\mathbf{I}_{\mathbf{T}}$. We claim that we can choose β in \mathbf{T}^{*} so that $(\beta \mathbf{i})_{\wp}$ is in $W_{\wp}\left(n_{\wp}\right)$ for all finite \wp in E and $\mathbf{N}_{\mathbf{T}_{\wp} / \mathbf{k}_{p}}(\beta \mathbf{i})_{\wp}$ is in $W_{p}\left(m_{p}\right)$ for all finite p in F. By lemma 2.18, the latter condition will be satisfied if $(\beta \mathbf{i})_{\wp}$ is in $W_{\wp}\left(e_{\wp} m_{\wp}\right)$ for all \wp dividing finite p in F. Both conditions can be satisfied by applying lemma 2.5, choosing β so that $(\beta \mathbf{i})_{\wp}$ is in $W_{\wp}\left(\max \left(n_{\wp}, e_{\wp} m_{\wp}\right)\right)$ for finite \wp in E.

Define \mathbf{j} and \mathbf{j}^{\prime} in \mathbf{I}_{T} so that

$$
\begin{array}{lll}
\mathbf{j}_{\wp}=(\beta \mathbf{i})_{\wp} \text { for } \wp \in E & \mathbf{j}_{\wp}=1 & \text { for } \wp \notin E \\
\mathbf{j}_{\wp}^{\prime}=1 & \text { for } \wp \in E & \mathbf{j}_{\wp}^{\prime}=(\beta \mathbf{i})_{\wp} \text { for } \wp \notin E
\end{array}
$$

Then \mathbf{j} is in $\operatorname{ker}\left(\phi_{\mathbf{K T} / \mathbf{T}}\right)$ and $\mathbf{N}_{\mathbf{T} / \mathbf{k}}(\mathbf{j})$ is in $\operatorname{ker}\left(\phi_{\mathbf{K} / \mathbf{k}}\right)$. We have

$$
\begin{aligned}
\phi_{\mathbf{K T} / \mathbf{T}}(\mathbf{i}) & =\phi_{\mathbf{K T} / \mathbf{T}}(\beta \mathbf{i})=\phi_{\mathbf{K T} / \mathbf{T}}\left(\mathbf{j} \mathbf{j}^{\prime}\right)=\phi_{\mathbf{K T} / \mathbf{T}}\left(\mathbf{j}^{\prime}\right) \\
& =\prod_{\wp \notin E}\left(\frac{\mathbf{K T}: \mathbf{T}}{\wp}\right)^{b_{\wp}} \text { where }\left|\mathbf{j}^{\prime}\right|_{\wp}=|\beta \mathbf{i}|_{\wp}=\mathrm{N}_{\wp}{ }^{-b_{\wp}}
\end{aligned}
$$

By lemma 2.16, we have

$$
\begin{equation*}
\phi_{\mathbf{K T} / \mathbf{T}}(\mathbf{i})=\prod_{p \notin F} \prod_{\wp|p| p}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{f_{\wp} b_{\wp}}=\prod_{p \notin F}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{\sum_{\wp \mid p} f_{\wp} b_{\wp}} \tag{5}
\end{equation*}
$$

We turn to the computation of $\phi_{\mathbf{K} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}}(\mathbf{i})\right)$, which is equal to $\phi_{\mathbf{K} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}}(\beta \mathbf{i})\right)$ because $\mathbf{N}_{\mathbf{T} / \mathbf{k}}(\beta)$ is in \mathbf{k}^{*}, i.e., in the kernel of $\phi_{\mathbf{K} / \mathbf{k}}$. Since

$$
\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right)_{p}=\prod_{\wp \mid p} \mathbf{N}_{\mathbf{T}_{\wp} / \mathbf{k}_{p}} \mathbf{i}_{p} \quad \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{T}}
$$

we have

$$
\begin{aligned}
\left|\mathbf{N}_{\mathbf{T} / \mathbf{k}}(\beta \mathbf{i})\right|_{p} & =\prod_{\wp \mid p}\left|\mathbf{N}_{\mathbf{T}_{\wp} / \mathbf{k}_{p}}\left(\beta \mathbf{i}_{\wp}\right)\right|_{p}=\prod_{\wp \mid p}|\beta \mathbf{i}|_{\wp}=\prod_{\wp \mid p} \mathrm{~N}_{\wp}-^{-b_{\wp}} \\
& =\prod_{\wp \mid p} \mathrm{~N} p^{-f_{\wp} b_{\wp}}=\mathrm{N} p^{-\sum_{\wp \mid p} f_{\wp} b_{\wp}} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\phi_{\mathbf{K} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}}(\mathbf{i})\right)=\phi_{\mathbf{K} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}}(\beta \mathbf{i})\right)=\prod_{p \notin F}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{\sum_{\wp \mid p} f_{\wp} b_{\wp}} . \tag{6}
\end{equation*}
$$

Comparison of (5) and (6) shows that $\phi_{\mathbf{K T} / \mathbf{T}}(\mathbf{i})=\phi_{\mathbf{K} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{T} / \mathbf{k}} \mathbf{i}\right)$, as claimed by the proposition.

Proposition 2.20. If $\phi_{\mathbf{K}}$ can be extended to a homomorphism of $\mathbf{I}_{\mathbf{k}}$ to $G(\mathbf{K}: \mathbf{k})$ with closed kernel containing \mathbf{k}^{*}, then the kernel contains $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$.

Proof. Apply proposition 2.19 with $\mathbf{T}=\mathbf{K}$. If \mathbf{i} is in $\mathbf{I}_{\mathbf{K}}$, we have

$$
\phi_{\mathbf{K} / \mathbf{k}}\left(\mathbf{N}_{\mathbf{K} / \mathbf{k}}(\mathbf{i})\right)=\phi_{\mathbf{K} / \mathbf{K}}(\mathbf{i}) .
$$

But $\phi_{\mathbf{K} / \mathbf{K}}$ maps $\mathbf{I}_{\mathbf{K}}$ to a trivial group $G(\mathbf{K}: \mathbf{K})$.

Remark 2.3. The proof of theorem 1 will require the following fundamental inequalities of class field theory, which will be proved in chapter 7 and chapter 8, respectively.

First fundamental inequality of class field theory. If \mathbf{Z} is a finite cyclic extension of \mathbf{k} then subgroup $\mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{Z}}\right)$ of $\mathbf{I}_{\mathbf{k}}$ is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ and the index $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{Z}}\right)\right]$ is divisible by $[\mathbf{Z}: \mathbf{k}]$.

Second fundamental inequality of class field theory. If \mathbf{K} is a finite abelian extension of \mathbf{k} then subgroup $\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{k}}$ is closed and of finite index in $\mathbf{I}_{\mathbf{k}}$ and the index $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{K}}\right)\right]$ divides $[\mathbf{K}: \mathbf{k}]$.

Proposition 2.21 (Corollary to the first fundamental inequality). Let \mathbf{K} / \mathbf{k} be a finite abelian extension. If $\phi_{\mathbf{K} / \mathbf{k}}$ can be extended to a continuous homomorphism of $\mathbf{I}_{\mathbf{k}}$ whose kernel contains \mathbf{k}^{*}, then the image of $\mathbf{I}_{\mathbf{k}}$ is all of $G(\mathbf{K}$: k).

Proof. Suppose that the image M of $\phi_{\mathbf{K} / \mathbf{k}}\left(\mathbf{I}_{\mathbf{k}}\right)$ is not all of $G=G(\mathbf{K}: \mathbf{k})$. We will show this to be impossible. Let \mathbf{L} be the fixed field of M. Take E to be the set
of primes of \mathbf{k} containing all infinite primes and all finite primes which are ramified in $\mathbf{K} . \phi_{\mathbf{K} / \mathbf{k}}$ is defined on $\mathbf{I}\{E\}$ by (2.1), and by proposition 2.7. Let p be a prime of \mathbf{k} that is not in E. Ideal p of \mathbf{o}_{p} is principal, so $p=(\pi)$ for an element π of \mathbf{o}_{p}. Take idele \mathbf{i} to have component $\mathbf{i}_{p}=\pi^{-1}$; take all other components of \mathbf{i} to be 1 . Then $\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)=\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i})$, so the Artin symbol $\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)$ is an element of M for each prime p not in E. By lemma 2.13, $\left(\frac{\mathbf{L}: \mathbf{k}}{p}\right)$ is the restriction to L of $\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)$, so $\left(\frac{\mathbf{L}: \mathbf{k}}{p}\right)=1$ because \mathbf{L} is the fixed field of subgroup M.

The finite abelian group G / M is not trivial, so there exists a subgroup M^{\prime} so that $M \subset M^{\prime} \subset G$ and G / M^{\prime} is a non-trivial cyclic group. Let \mathbf{Z} be the fixed field of M^{\prime}. Then $\mathbf{L} \supset \mathbf{Z} \supset \mathbf{k}$ and $G(\mathbf{Z} / \mathbf{k})$ is a cyclic group isomorphic to G / M^{\prime}.

Artin symbol $\left(\frac{\mathbf{Z}: \mathbf{k}}{p}\right)$ is the restriction of $\left(\frac{\mathbf{L}: \mathbf{k}}{p}\right)$ to \mathbf{Z}, so $\left(\frac{\mathbf{Z}: \mathbf{k}}{p}\right)=1$. The Artin symbol $\left(\frac{\mathbf{Z} \text { : }}{p}\right)$ generates the Galois group $G\left(\mathbf{Z}_{\wp}: \mathbf{k}_{p}\right)$ for each prime \wp of \mathbf{Z} that divides an unramified prime p (Chapter 1, normal extensions). Therefore if p is unramified in K then $\mathbf{Z}_{\wp}=\mathbf{k}_{p}$. For each \mathbf{i} in $\mathbf{I}_{\mathbf{k}}\{E\}$, this allows us to construct an idele \mathbf{j} in $\mathbf{I}_{\mathbf{Z}}$ such that $\mathbf{N}_{\mathbf{Z} / \mathbf{k}}(\mathbf{j})=\mathbf{i}$. For each prime p not in E, select one prime $\wp(p)$ of \mathbf{Z} which divides p. Put $\mathbf{j}_{\wp(p)}=\mathbf{i}_{p}$, and put $\mathbf{j}_{\wp}=1$ at other primes \wp dividing p. At primes \wp of \mathbf{Z} dividing primes in E, put $\mathbf{j}_{\wp}=1$. We have

$$
\left(\mathbf{N}_{\mathbf{Z} / \mathbf{k}}(\mathbf{j})\right)_{p}=\prod_{\wp \mid p} \mathbf{N}_{\mathbf{Z}_{\wp} / \mathbf{k}_{p}}\left(\mathbf{j}_{\wp}\right)=\left\{\begin{array}{cr}
\mathbf{N}_{\mathbf{Z}_{\wp(p)} / \mathbf{k}_{p}}\left(\mathbf{j}_{\wp(p)}\right)=\mathbf{i}_{p} & \text { for } p \in E \\
1 & \text { for } p \notin E
\end{array}\right.
$$

Therefore $\mathbf{I}_{\mathbf{K}}\{E\}$ is contained in $\mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}$. Consider two homomorphisms from $\mathbf{I}_{\mathbf{k}}$ to $\mathbf{I}_{\mathbf{k}} / \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}$. The first is the natural homomorphism sending each idele to its own coset and the second sends each idele to 1 . Both homomorphisms agree on $\mathbf{I}_{\mathbf{k}}\{E\}$. Both are continuous homomorphisms whose kernels are closed and contain \mathbf{k}^{*}. By proposition 2.6, the two homomorphisms are identical, so $\mathbf{I}_{\mathbf{k}} / \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}$ must be trivial. By the first fundamental inequality, degree $[\mathbf{Z}: \mathbf{k}]$ divides index $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}\right]$, so the group $\mathbf{I}_{\mathbf{k}} / \mathbf{k}^{*} \mathbf{N}_{\mathbf{Z} / \mathbf{k}} \mathbf{I}_{\mathbf{Z}}$ cannot be trivial, and we have reached our contradiction. It must be that M is all of $G(\mathbf{K}: \mathbf{k})$.

Proposition 2.22 (Corollary to the second fundamental inequalITY). Suppose \mathbf{K} / \mathbf{k} is a finite abelian extension. If $\phi_{\mathbf{K} / \mathbf{k}}$ can be extended to a continuous homomorphism of $\mathbf{I}_{\mathbf{k}}$ whose kernel contains \mathbf{k}^{*}, then the kernel of $\phi_{\mathbf{K} / \mathbf{k}}$ is $\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$.

Proof. By proposition 2.1, $\phi_{\mathbf{K} / \mathbf{k}} \operatorname{maps}^{\mathbf{I}_{\mathbf{k}}}$ onto $G(\mathbf{K}: \mathbf{k})$, so $\left[\mathbf{I}_{\mathbf{k}}: \operatorname{ker}\left(\phi_{\mathbf{K} / \mathbf{k}}\right)\right]=$ $[\mathbf{K}: \mathbf{k}]$. By proposition $2.20, \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}$ is contained in $\operatorname{ker}\left(\phi_{\mathbf{K} / \mathbf{k}}\right)$, so

$$
\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=\left[\mathbf{I}_{\mathbf{k}}: \operatorname{ker}\left(\phi_{\mathbf{K} / \mathbf{k}}\right)\right]\left[\operatorname{ker}\left(\phi_{\mathbf{K} / \mathbf{k}}\right): \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]
$$

Therefore $[\mathbf{K}: \mathbf{k}]$ divides $\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right] .\left[\mathbf{I}_{\mathbf{k}}: \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]$ divides $[\mathbf{K}: \mathbf{k}]$ by the second fundamental inequality, so $\left[\operatorname{ker}\left(\phi_{\mathbf{K} / \mathbf{k}}\right): \mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{K}}\right]=1$, which proves the proposition.

Remark 4. We have shown that if $\phi_{\mathbf{K} / \mathbf{k}}$ can be extended to a homomorphism of $\mathbf{I}_{\mathbf{k}}$ whose kernel contains \mathbf{k}^{*} then the extension is unique (proposition 2.6), is independent of E (proposition 2.7), and the kernel is exactly $\mathbf{k}^{*} \mathbf{N}_{\mathbf{K} / \mathbf{k}} \mathbf{I}_{\mathbf{k}}$. It remains to show that $\phi_{\mathbf{K} / \mathbf{k}}$ can be extended, and to prove the two fundamental inequalities.

