
CHAPTER II

FUNDAMENTAL THEOREMS

Let k be a finite extension of the rational number field Q. K is an abelian
extension of k if K/k is a finite normal extension and the Galois group G(K : k) is
abelian. If p is a finite prime of k that is not ramified in K then the Artin symbol
(

K:k
p

)

is defined by (1.7). Let E be a finite set of primes of k containing all infinite

primes and all primes that ramify in K. Let Ik {E} be the subgroup of idele group
Ik defined by

Ik {E} =
{

i ∈ Ik
∣

∣ ip = 1 for p ∈ E
}

.

Define φK/k : Ik {E} → G(K : k) by

(2.1) φK/k(i) =
∏

p/∈E

(

K : k

p

)np

where |i|p = (Np)−np for p /∈ E.

The homomorphism NK/k : IK → Ik of idele groups is defined by

(

NK/ki
)

p
=
∏

℘|p

NK℘/kp
ip for i ∈ IK.

Theorem 1. Homomorphism (2.1) can be extended in a unique way to a con-
tinuous homomorphism φK/k of Ik onto G(K : k) whose kernel contains k∗. The
extension is independent of E, the image is all of G(K : k), and the kernel consists
exactly of the subgroup k∗NK/kIk.

Theorem 2. The abelian extension K of k is uniquely determined by the kernel
of φK/k. If H is a closed subgroup of finite index in Ik and contains k∗ then there
is a unique abelian extension K of k such that H is the kernel of φK/k.

Remark. Theorems 1 and 2 are the fundamental theorems of class field theory.
The proof of Theorem 1 is the subject of this chapter through chapter 8. Theorem
2 is proved in chapter 12. In this chapter, we develop basic properties of the
fundamental homomorphism φK/k.

10
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Lemma 2.1. A closed subgroup of finite index in Ik contains a subgroup of the
form

∏

p/∈E′

up ×
∏

finite p∈E′

W ′
p(εp) ×

∏

real p

k+
p ×

∏

complex p

k∗
p,

where E′ is a finite set of finite primes, the εp are real numbers satisfying εp ≤ 1
for p ∈ E′, sets up and W ′

p(εp) are defined by

up =
{

α ∈ k∗
p

∣

∣ |α|p = 1
}

W ′
p(εp) =

{

α ∈ k∗
p

∣

∣ |α − 1|p < εp

}

,

and k+
p '

{

x ∈ R∗
∣

∣ x > 0
}

for p infinite real.

Proof. A closed subgroup H of finite index must be open, so there is a basic
neighborhood U(E′, {ε′p}) of the identity of Ik contained in H. Take εp = min(ε′p, 1)

for finite p and εp = min
(

ε′p,
1
2

)

for infinite p. Then

U(E′, {ε′p}) =
∏

p/∈E′

up ×
∏

finite p∈E′

W ′
p(ε

′
p) ×

∏

infinite p∈E′

W ′
p(ε

′
p).

H contains the subgroup generated by U(E′, {ε′p}) which is the subgroup claimed
by the lemma.

Lemma 2.2 (Chinese Remainder Theorem). Let a1 and a2 be non-zero ideals
of o and let α1 and α2 be integers of o. There exists α in o so that α − α1 ∈ a1

and α − α2 ∈ a2 if and only if α1 − α2 ∈ a1 + a2.

Proof. Remark: a1 + a2 is the greatest common divisor of a1 and a2. Put
a = a1 +a2. a is invertible, and a divides both a1 and a2. Suppose that α1−α2 ∈ a.
a1a

−1 + a2a
−1 = o, so there exist integers β1 ∈ a1a

−1 and β2 ∈ a2a
−1 so that

β1 + β2 = 1. Put α = β1α2 + β2α1. Then

α − α1 = β1(α2 − α1) ∈ a1

α − α2 = β2(α1 − α2) ∈ a2

Conversely if α − α1 ∈ a1 and α − α2 ∈ a2 then α1 − α2 ∈ a1 + a2.

Corollary. Let p1, . . . , pk be distinct non-trivial prime ideals of o and let
n1, . . . , nk be rational integers greater than or equal to zero. Let α1, . . . , αk be ele-
ments of o. There exists an element α of o so that α−α1 ∈ pn1

1 , . . . , α−αk ∈ pnk

k .

Proof. Since ideals have unique factorization then the greatest common divisor
pn1
1 . . . p

nk−1

k−1 + pnk

k is o. Use lemma 2.2 and induction.
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Lemma 2.3. Let α1, . . . , αn be a basis for k over Q. Let k have r1 real and r2

complex infinite primes, and let the distinct isomorphisms of k into R or C be
σ1, . . . , σn, where σ1, . . . , σr1

are the r1 isomorphisms into R and σr1+1, . . . , σn are
the 2r2 isomorphisms into C, Then det ‖α

σj

i ‖ is not zero.

Proof. It is enough to show that the determinant is not zero for some basis.
Let α generate k over Q. Then 1, α, . . . , αn−1 is a basis. The elements ασ1 . . . ασn

are distinct, so ‖ (ασj )
i−1

‖ is a non-singular Vandermonde matrix.

Lemma 2.4 Approximation theorem. Let E′ be a finite set of primes and for
each prime p in E ′ an element αp in kp and a positive real number εp are given.
Then there is an α in k so that |α − αp|p < εp for all p in E′.

Proof. There exists a non-zero β in o so that βαp ∈ op for all finite p ∈ E′. By
the corollary to lemma 2.2, there is an α′ ∈ k satisfying the conditions α′ − βαp ∈
pmp for all finite p in E′. By taking mp sufficiently large we have |α′−βαp|p < |β|pεp,
or |β−1α′ − αp|p < εp for the finite primes p in E′. Put α′′ = β−1α′. Let a be an
ideal in o so that if γ ∈ a then |γ|p < εp for the finite primes p in E′. Take a very
large rational integer m which is not divisible by any of the finite primes in E′, i.e.,
|m|p = 1 for finite p in E′. Then

|mα′′ − γ − mαp|p ≤ max (|γ|p, |m(α′′ − αp)|p) < εp for finite p in E′ and γ ∈ a.

Therefore
∣

∣

∣
α′′ −

γ

m
− αp

∣

∣

∣

p
≤ εp for finite p ∈ E′ and γ ∈ a,

so α = α′′ − γ/m satisfies our condition for the finite primes in E′. We must show
how to choose γ and m so that α also satisfies the required condition for infinite
primes in E′. We claim that there is a positive constant M depending only on ideal
a, an element γ = γ0 in a, and an element η in k∗ so that,

(2) |(α′′m − αpm) − (γ0 + η)|p <
εp

2
and |η|p < M for all infinite p in E′.

Then

∣

∣

∣
(α′′ − αp) −

γ0

m

∣

∣

∣

p
<

εp

2m
+

|η|p
m

≤
εp

2m
+

M

m
for all infinite p in E′.

If integer m is chosen large enough so that M
m

< 1
2
ε, then

∣

∣

∣
α′′ −

γ0

m
− αp

∣

∣

∣

p
< εp for all infinite p ∈ E′
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It remains to establish the claim about M and to choose γ0 and η. It is possible
to choose a basis α1, . . . , αn for k over Q so that each basis element αi belongs to
ideal a. If σ1, . . . , σn are the distinct isomorphisms of k into R or C, then by lemma
2.3 the mapping

k
σ1⊕···⊕σn−−−−−−−→ Rr1 ⊕Cr2

takes α1Z + · · · + αnZ to a non-degenerate n-dimensional lattice. Any element in
Rr1 ⊕Cr2 can be closely approximated by an element u1α1 + · · ·+ unαn where the
ui are elements of Q. Write ui = ki + vi where ki is in Z and 0 ≤ vi < 1. Choose
γ0 = k1α1 + · · ·+ knαn and η = v1α1 + · · · + vnαn. Then γ0 ∈ a and the |η|σi

, for
i = 1, . . . , n, are all bounded by a constant M that depends only on the basis, so
condition (2) is satisfied. This completes the proof of the lemma.

Lemma 2.5. Let E′ be a finite set of primes and for each prime p in E ′ an
element αp in k∗

p and a positive real number εp are given. Then there is an α in k*

so that
∣

∣αα−1
p − 1

∣

∣

p
< εp and

∣

∣α−1αp − 1
∣

∣

p
< εp.

Proof. Put ε′p = min(1, εp) for finite p in E′, and put ε′p = min
(

1
2
, 1

2
εp

)

for
infinite p in E′. By lemma 2.4 there is an α in k so that |α − αp|p < |αp|pε

′
p for all

p in E′. Therefore |αα−1
p − 1|p < ε′p for all p in E ′. A simple calculation shows that

|α−1αp − 1|p < εp for both finite p and infinite p in E′.

Proposition 2.6. Let E be a finite set of primes of k. Let φ1 and φ2 be two
homomorphisms of Ik into a finite group G with closed kernels that contain k∗. If
φ1 and φ2 agree on IK{E} then φ1 = φ2 on all of Ik.

Proof. Put H = ker(φ1)∩ ker(φ2); H is a closed subgroup of finite index in G.
By lemma 2.1, H contains a closed subgroup U , where

U =
∏

p/∈E′

up ×
∏

finite p∈E′

W ′
p(ε

′
p) ×

∏

real p∈E′

k+
p ×

∏

complex p∈E′

k∗
p

Take i in Ik. For infinite p take ε′p = 1
2
. By lemma 2.5, there exists α in k∗ so that

∣

∣α−1ip − 1
∣

∣

p
< ε′p for all p in E ′. Define j and j′ in Ik as follows, so that j is in U ,

and j′ is in Ik{E}.

jp = 1 for p /∈ E jp = α−1ip for p ∈ E

j′p = α−1ip for p /∈ E j′p = 1 for p ∈ E

(If p is in E but not E′ then jp = 1, so j is in U .) Since the kernels of φ1 and φ2

contain k∗, we have

φ1(i) = φ1(α
−1i) = φ1(j j

′) = φ1(j
′) = φ2(j

′) = φ2(j j
′) = φ2(α

−1i) = φ2(i).
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Proposition 2.7. If φ is a homomorphism from Ik{E} to a finite group and
the kernel of φ has closed kernel of finite index, then any extension of φ to Ik whose
kernel contains k∗ is independent of E.

Proof. Suppose that φ1 defined on IK{E1} and φ2 defined on Ik{E2} can be
extended to Ik with kernels containing k∗. Then φ1 and φ2 agree on Ik{E1 ∩ E2}.
Therefore φ1 = φ2 by Proposition 2.6.

Composite fields of finite extensions. Let Ω be an algebraic closure of k.
All of our extensions of k will be subfields of Ω. If K1 and K2 are subfields of Ω
then the composite field K1K2 is the smallest subfield of Ω that contains K1 and
K2.

Lemma 2.8. If K1 and K2 are finite extensions of k, then composite K1K2 is
a finite extension of k and

[K1K2 : k] ≤ [K1 : k] [K2 : k] .

If K2 = k(β) then K1K2 = K1(β).

Proof. Since K1/k and K2/k are finite separable extensions, let α and β be
elements so that K1 = k(α) and K2 = k(β). Let [K1 : k] = m and [K2 : k] = n.
The mn products αiβj (0 ≤ i < m, 0 ≤ j < n) span an algebra A over k that is
contained in K1K2. It is enough to show that every non-zero element of A has an
inverse in A. Let γ be a non-zero element of A.

γ =

n−1
∑

j=0

m−1
∑

i=0

µijα
iβj µij ∈ k

Let f(Y ) be the polynomial

f(Y ) =
n−1
∑

j=0

(

m−1
∑

i=0

µijα
i

)

Y j .

Then f(Y ) is a polynomial in K1[Y ] and f(β) = γ. Let g(Y ) be the minimum
polynomial of β over K1. Since f(β) 6= 0 then f(Y ) is not divisible by g(Y ). There
exist polynomials h1(Y ) and h2(Y ) in K1(Y ) so that

h1(Y )f(Y ) + h2(Y )g(Y ) = 1.

We have h1(β)f(β) = 1, so γ has an inverse in A. Since β can be any element that
generates K2 over k, we also have shown that K1K2 = k(β).
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Lemma 2.9. If K1/k and K2/k are finite normal extensions then composite
K1K2/k is a finite normal extension.

Proof. Suppose that σ is an isomorphism of K1K2 into a subfield of Ω and
σ fixes elements of k. Then (K1K2)

σ
contains both Kσ

1 = K1 and Kσ
2 = K2, so

(K1K2)
σ
⊃ K1K2. From the proof of lemma 2.8, elements of composite K1K2

have the form γ =
∑m−1

i=0

∑n−1
j=0 µijα

iβj with µij in k, α in K1, β in K2. Then

γσ =
∑m−1

i=0

∑n−1
j=0 µij(α

i)σ(βj)σ, so (K1K2)
σ
⊂ K1K2. This shows that K1K2 is

invariant under any isomorphism that fixes k.

Lemma 2.10. If K1/k and K2/k are finite normal extensions then

[K1K2 : K1] = [K2 : K1 ∩ K2] ,

[K1K2 : k] = [K1 : k] [K2 : k] if and only if K1 ∩ K2 = k.

Proof. Let K2 = k(β). Then K1K2 = K1(β). Let f(x) be the minimum
polynomial of β over k. Let g(x) be the minimum polynomial of β over K1. Then
g(x) divides f(x). Since K2/k is normal, f(x) splits completely into linear factors
over K1. The coefficients of g(x) must be in K1 ∩ K2, so g(x) is the minimum
polynomial for β over K1 ∩ K2. We have [K1K2 : K1] = deg(g) = [K2 : K1 ∩ K2].

Using the first equality, we have [K1K2 : k] = [K1K2 : K1][K1 : k] = [K2 :
K1 ∩ K2][K1 : k]. Then [K1K2 : k][K1 ∩ K2 : k] = [K2 : k][K1 : k], so the second
equality holds if and only if [K1 ∩ K2 : k] = 1.

Lemma 2.11. Let K1/k and K2/k be finite normal extensions. There is a nat-
ural homomorphism

G (K1K2 : k) −−−−→ G (K1 : k) × G (K2 : k)

sending σ in G (K1K2 : k) to (σ|K1, σ|K2). The mapping is an injection, and the
image consists of all (σ1, σ2) in G (K1 : k) × G (K2 : k) such that σ1|(K1 ∩ K2) =
σ2|(K1 ∩K2).

Proof. Put G = G (K1K2 : k). Let H1 be the subgroup of G that leaves
elements of K1 fixed; Let H2 be the subgroup of G that leaves elements of K2 fixed.
Then H1 ∩ H2 = {1}. Both H1 and H2 are normal subgroups of G, and we have
G(K1 : k) = G/H1 and G(K2 : k) = G/H2. The mapping σ → (σ|K1, σ|K2) is the
natural homomorphism

G
f

−−−−→ G
H1

× G
H2

.

The smallest subgroup of G containing H1 and H2 is H = H1H2 = H2H1. We have
G(K1 ∩ K2 : k) = G/H. The restrictions from K1 and K2 to K1 ∩ K2 are the

natural homomorphisms G/H1
g1
−→ G/H and G/H2

g2
−→ G/H. We have

G
f

−−−−→ G
H1

× G
H2

g1×g2
−−−−→ G

H × G
H .
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Every element of G maps to the diagonal of G/H × G/H. The mapping f is an
injection because H1 ∩ H2 = {1}. The order of the image(f) is [G : 1], and

[G : 1] = [G : H][H : H1][H1 : 1].

The order of ker(g1×g2) is [H : H1][H : H2], so the number of pairs in G/H1×G/H2

which map to the diagonal of G/H × G/H is [G : H][H : H1][H : H2]. By lemma
2.10 we have [H1 : 1] = [H : H2], so the number of pairs which map to the diagonal
is [G : 1]. This shows that the image of f consists exactly of pairs which map to
the diagonal, i.e., whose restrictions to K1 ∩K2 coincide.

Lemma 2.12. If K1/k and K2/k are finite abelian extensions then the composite
K1K2 is an abelian extension of k.

Proof. G(K1K2 : k) is isomorphic to a subgroup of abelian group G(K1 :
k) × G(K2 : k).

Lemma 2.13. If K/k is abelian and K ⊃ K′ ⊃ k, then K′/k is abelian and

Artin symbol
(

K
′:k
p

)

is the restriction of
(

K:k
p

)

to K′ when p is not ramified in K.

If Theorem 1 holds for K/k and K′/k, then φK′/k is the restriction of φK/k to K′.

Proof. The Artin symbol of K′ is the only automorphism of G(K′ : k) satisfying
the condition

(3) ασ = αNp( mod ℘′) for all α ∈ O′
℘′ and ℘′|p

where O′ is the ring of integers in K′ and ℘′ is prime in O′. The Artin symbol of
K is the only automorphism of G(K : k) satisfying the condition

ασ = αNp( mod ℘) for all α ∈ O℘′ and ℘|p

where O is the ring of integers in K and ℘ is prime in O. If σ =
(

K:k
p

)

and α ∈ O′
℘′

then
ασ − αNp ∈ ℘ ∩ O′

℘′ = ℘′.

For every prime ℘′ of O′ there is a prime ℘ of O so that O∩℘ = ℘′. Therefore the

restriction of
(

K:k
p

)

to K′ satisfies condition (3), proving the first assertion.

Assume that Theorem 1 holds for K/k and K′/k. Let E contain all infinite
primes of k and all primes which ramify in K. For i in Ik{E}, the restriction of

φK/k(i) to K′ is the restriction of
∏

p/∈E

(

K:k
p

)ordp(i)

to K′, which coincides with

∏

p/∈E

(

K
′:k
p

)ordp(i)

, which coincides with φK′/k(i). The extension to Ik is unique,

so the two homomorphisms Ik → G(K1 : k) must be identical.
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Corollary. Let K1/k and K2/k be finite abelian extensions, and suppose that
Theorem 1 holds for K1k, K2/k and K1K2/k. Then the homomorphism of lemma
2.11 maps φK1K2/k(i) to the pair

(

φK1/k(i), φK2/k(i)
)

for all i in Ik.

Proposition 2.14. Suppose that Theorem 1 holds for a given k and all finite
abelian extensions of k. Let K1/k and K2/k be finite abelian extensions. If φK1/k

and φK2/k have the same kernels then K1 = K2.

Proof. The map G(K1K2 : k) → G(K1 : k) × G(K2 : k) is an injection
(lemma 2) which maps φK1K2/k(i) to the pair

(

φK1k
(i), φK2/k(i)

)

(corollary to
lemma 2.13). Suppose that ker(φK1/k) = ker(φK2/k). If i is in ker(φK1/k) then
(

φK1/k(i), φK2/k(i)
)

is trivial, so φK1K2/k(i) is trivial, showing that ker(φK1/k) is
contained in ker(φK1K2/k). Applying Theorem 1, we have [K1 : k] ≥ [K1K2 : k].
By the same argument we have [K2 : k] ≥ [K1K2 : k]. This shows that K1 = K2

Proposition 2.15. Suppose that Theorem 1 holds for a given k and all finite
abelian extensions of k. Let K1/k and K2/k be finite abelian extensions then K1 ⊃
K2 if and only if ker(φK1/k) ⊂ ker(φK2/k).

Proof. Assume that K1 ⊃ K2. Then φK1/k(i)|K2 = φK2/k(i), just as in the
proof of proposition 2.14. If φK1/k(i) = 1 then φK2/k(i) = 1, so ker(φK1/k) ⊂
ker(φK2/k).

Assume that ker(φK1/k) ⊂ ker(φK2/k). According to theorem 1, Ik/ker(φK1/k) is
isomorphic to G(K1 : k). Let the image of ker(φK2/k)/ker(φK1/k) be subgroup G′ of
G(K1 : k). Let K′ be the subfield of K1 fixed by G′. Then ker(φK′/k) = ker(φK2/k)
because

i ∈ ker(φK′/k) ⇐⇒ φK′/k(i) = 1 ⇐⇒ φK1/k(i)|K′ = 1

⇐⇒ φK1/k(i) ∈ G′ ⇐⇒ i ∈ ker(φK2/k).

Then K′ = K2 by proposition 2.14, so K1 ⊃ K2.

Lemma 2.16. Let T/k be a finite extension, and let K/k be a finite abelian
extension. Then KT/T is abelian. Let ℘ be a prime ideal of T, and let p = ℘ ∩ o.
If p is not ramified in K then ℘ is not ramified in KT. Put N℘ = (Np)f . Then

(

KT : T

℘

)
∣

∣

∣

∣

K

=

(

K : k

p

)f

.

Proof. We first show that KT/T is normal. (This is like the proof of lemma
2.10, except that here T/k may not be normal.) Let K = k(α) and let f(x) be
the minimum polynomial for α over k. Then KT = T(α) by lemma 2.8. Let g(x)



18 II. FUNDAMENTAL THEOREMS

be the minimum polynomial for α over T. Then g(x) divides f(x) in T(x). Since
f(x) splits completely into linear factors over K (and over KT) then g(x) splits
completely over KT. Therefore KT/T is normal. By restriction to K we have a
homomorphism G(KT : T) −→ G(K/k). The kernel is trivial, so G(KT : T) is
isomorphic to a subgroup of G(K/k). Therefore G(KT : T) is abelian.

Let ℘′ be any prime of KT that divides ℘. Let p′ = ℘′ ∩OK be the prime of K

that ℘′ divides. We need to show that ℘ is not ramified in KT. Let S℘′(KT : T)
be the splitting group of ℘′ in G(KT : T). Automorphisms σ′ in S℘′(KT : T)

satisfy the condition (℘′)σ′

= ℘′. We have (℘′ ∩ OK)
σ′

= ℘′ ∩ OK, or p′
σ′

= p′.

(Oσ′

K
= OK because K/k is normal.) Therefore σ′ restricted to K is in the splitting

group Sp′(K : k), and extends to an automorphism of Kp′ over kp.
To show that ℘ is not ramified in KT we need to show that the inertial subgroup

of S℘′(KT/T) is trivial (Chapter 1, normal extensions). An automorphism σ ′ in
the inertial subgroup satisfies the condition

ασ′

= α(mod ℘′) for all α ∈ O℘′ .

The restriction of σ′ to K satisfies

ασ′

= α(mod ℘′ ∩ Op′) for all α ∈ Op′

The restriction of σ′ to K is therefore trivial since the inertial group of p′ is trivial,
so σ′ is trivial on both K and T.

Let σ′ be the Artin symbol
(

KT:T
℘

)

. Then ασ′

= αN℘(mod ℘′) for all α in O℘′ ,

so we have
ασ′

− αN℘ ∈ ℘′ ∩ Op′ for all α ∈ Op′ .

Since N℘ = (Np)f , we have

ασ′

− α(Np)f

∈ p′ for all α ∈ Op′ .

By (1.14′), this shows that σ′ restricted to K is
(

K:k
p

)f

as claimed.

Remark 2.1. To say that “φK/k can be defined on Ik” means that the homo-
morphism φK/k defined by (1) on Ik{E} for some finite set of primes E can be
extended to a continuous homomorphism defined on all of Ik. By propositions 2.7
and 2.8, the extension is unique and does not depend on the choice of E.

Remark 2.2. The subgroups of lemma 2.1 may also be described using the fact
that p-adic valuations take only discrete values {Np−mp} for rational integers mp.
We have

W ′
p

(

Np−(mp−1)
)

=
{

α ∈ kp

∣

∣ |α − 1|p < Np−(mp−1)
}

=
{

α ∈ kp

∣

∣ |α − 1|p ≤ Np−mp

}

.
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Put
Wp (mp) = W ′

p

(

Np−(mp−1)
)

.

Note that Wp (0) = up. For real infinite p put Wp(0) = k∗
p and Wp(1) = k+

p ; for
complex infinite p put Wp(0) = Wp(1) = k∗. We can choose integers mp, taking
mp = 0 for p not in E′, so that the subgroup of lemma 2.1 can be written

(4)
∏

p

Wp (mp) .

Since all but a finite number of mp are zero, the formal product
∏

p pmp over finite

and infinite primes is a generalized ideal or modulus of k. Subgroup (4) is the
subgroup belonging to

∏

p pmp .

Lemma 2.17. Let T℘/kp be a finite extension of local fields with p = ℘e. If α
in OT℘

satisfies α = 1(mod ℘em) then

NT℘/kp
(α) = 1(mod pm).

Proof. Let π be a generator of principal ideal p in op. Then ℘em = πmOT℘
.

OT℘
is a free op-module of degree n = ef , so let x1, . . . , xn be a basis. If α =

1(mod ℘em) then (α − 1)xi ∈ ℘em so

(α − 1)xi = πm(ai1x1 + · · ·+ ainxn) for i = 1, . . . , n.

The matrix with respect to basis x1, . . . , xn for linear transformation Tα satisfies
Tα = I(mod pm). Therefore NT℘/kp

(α) = det(Tα) = 1(mod pm).

Lemma 2.18. Let T/k be a finite extension, let i be an element of IT, and let
a =

∏

p pmp be an ideal of ok. There exists β in T∗ so that β−1i is in the subgroup

belonging to ideal aOT, and then we have NT/k(β−1i) is in the subgroup belonging
to
∏

p pmp .

Proof. In the extension T, pOT splits into a product p = ℘e1
1 . . . ℘

eg
g of primes

℘i of OT. By lemma 2.5, we can find β in T∗ so that β−1i is in the subgroup of IT be-
longing to aOT =

∏

p

∏

℘|p ℘mpe℘ . By Lemma 2.17, NT℘/kp

(

β−1i℘
)

= 1(mod pmp)

if mp > 0 and p finite. If mp = 0 then β−1i℘ is in u℘ and |NT℘/kp

(

β−1i℘
)

|p =

|β−1i℘|℘ = 1, so NT℘/kp

(

β−1i℘
)

, which is in up. If ℘ is complex infinite and p is

real infinite then NT℘/kp

(

β−1i℘
)

=
(

β−1i℘
)

(β−1i℘), which is in k+
p . Therefore

(

NT/k(β−1i)
)

p
=
∏

℘|p

NT℘/kp
(β−1i℘)











= 1(mod pmp) if mp > 0 and p finite,

∈ up if mp = 0, p finite,

∈ k+
p if p real and ℘ complex

Therefore NT/k(β−1i) is in the subgroup belonging to
∏

p pmp .
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Proposition 2.19. Let T/k be a finite extension, and let K/k be a finite abelian
extension. Suppose that φK/k can be defined on Ik and the kernel contains k∗, and
that φKT/T can be defined on IT and the kernel contains T∗. Then

φKT/T(i) = φK/k(NT/ki) for i ∈ IT.

Proof. By lemma 2.1, ker(φKT/T) contains a subgroup of IT belonging to ideal
∏

℘∈E ℘n℘ of T, and ker(φK/k) contains a subgroup belonging to ideal
∏

p∈F pmp

of k. Add to E all primes ℘ of T which are infinite or ramified in TK. Add to F
all primes p of k which are infinite or ramified in T. Now to F all primes divisible
by a prime of E, then add to E all primes which divide a prime of F . A prime of
T is in E if and only if it divides a prime of F . For those finite primes added to
E (or F ) set m℘ = 0 (or mp = 0; for those infinite primes added to E (or F ) set
m℘ = 1 (or mp = 1).

Let i be an element of IT. We claim that we can choose β in T∗ so that (βi)℘ is
in W℘(n℘) for all finite ℘ in E and NT℘/kp

(βi)℘ is in Wp(mp) for all finite p in F .
By lemma 2.18, the latter condition will be satisfied if (β i)℘ is in W℘(e℘m℘) for all
℘ dividing finite p in F . Both conditions can be satisfied by applying lemma 2.5,
choosing β so that (β i)℘ is in W℘ (max(n℘, e℘m℘)) for finite ℘ in E.

Define j and j′ in IT so that

j℘ = (βi)℘ for ℘ ∈ E j℘ = 1 for ℘ /∈ E
j′℘ = 1 for ℘ ∈ E j′℘ = (βi)℘ for ℘ /∈ E

Then j is in ker(φKT/T) and NT/k(j) is in ker(φK/k). We have

φKT/T(i) = φKT/T(βi) = φKT/T(j j′) = φKT/T(j′)

=
∏

℘/∈E

(

KT : T

℘

)b℘

where | j′|℘ = |βi|℘ = N℘−b℘

By lemma 2.16, we have

(5) φKT/T(i) =
∏

p/∈F

∏

℘|p

(

K : k

p

)f℘b℘

=
∏

p/∈F

(

K : k

p

)

∑

℘|p
f℘b℘

.

We turn to the computation of φK/k(NT/k(i)), which is equal to φK/k(NT/k(β i))
because NT/k(β) is in k∗, i.e., in the kernel of φK/k. Since

(

NT/ki
)

p
=
∏

℘|p

NT℘/kp
ip for i ∈ IT,
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we have
∣

∣NT/k(β i)
∣

∣

p
=
∏

℘|p

∣

∣NT℘/kp
(β i℘)

∣

∣

p
=
∏

℘|p

|β i|℘ =
∏

℘|p

N℘−b℘

=
∏

℘|p

Np−f℘b℘ = Np
−
∑

℘|p
f℘b℘

.

Therefore

(6) φK/k(NT/k(i)) = φK/k(NT/k(β i)) =
∏

p/∈F

(

K : k

p

)

∑

℘|p
f℘b℘

.

Comparison of (5) and (6) shows that φKT/T(i) = φK/k(NT/ki), as claimed by the
proposition.

Proposition 2.20. If φK can be extended to a homomorphism of Ik to G(K : k)
with closed kernel containing k∗, then the kernel contains NK/kIK.

Proof. Apply proposition 2.19 with T = K. If i is in IK, we have

φK/k(NK/k(i)) = φK/K(i).

But φK/K maps IK to a trivial group G(K : K).

Remark 2.3. The proof of theorem 1 will require the following fundamental
inequalities of class field theory, which will be proved in chapter 7 and chapter 8,
respectively.

First fundamental inequality of class field theory. If Z is a finite
cyclic extension of k then subgroup k∗NZ/k (IZ) of Ik is a closed subgroup of finite

index in Ik and the index
[

Ik : k∗NZ/k (IZ)
]

is divisible by [Z : k].

Second fundamental inequality of class field theory. If K is a finite
abelian extension of k then subgroup k∗NK/kIk is closed and of finite index in Ik
and the index

[

Ik : k∗NK/k (IK)
]

divides [K : k].

Proposition 2.21 (Corollary to the first fundamental inequality).
Let K/k be a finite abelian extension. If φK/k can be extended to a continuous
homomorphism of Ik whose kernel contains k∗, then the image of Ik is all of G(K :
k).

Proof. Suppose that the image M of φK/k(Ik) is not all of G = G(K : k). We
will show this to be impossible. Let L be the fixed field of M . Take E to be the set
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of primes of k containing all infinite primes and all finite primes which are ramified
in K. φK/k is defined on I{E} by (2.1), and by proposition 2.7. Let p be a prime of
k that is not in E. Ideal p of op is principal, so p = (π) for an element π of op. Take
idele i to have component ip = π−1; take all other components of i to be 1. Then
(

K:k
p

)

= φK/k(i), so the Artin symbol
(

K:k
p

)

is an element of M for each prime

p not in E. By lemma 2.13,
(

L:k
p

)

is the restriction to L of
(

K:k
p

)

, so
(

L:k
p

)

= 1

because L is the fixed field of subgroup M .
The finite abelian group G/M is not trivial, so there exists a subgroup M ′ so

that M ⊂ M ′ ⊂ G and G/M ′ is a non-trivial cyclic group. Let Z be the fixed field
of M ′. Then L ⊃ Z ⊃ k and G(Z/k) is a cyclic group isomorphic to G/M ′.

Artin symbol
(

Z:k
p

)

is the restriction of
(

L:k
p

)

to Z, so
(

Z:k
p

)

= 1. The Artin

symbol
(

Z:k
p

)

generates the Galois group G(Z℘ : kp) for each prime ℘ of Z that

divides an unramified prime p (Chapter 1, normal extensions). Therefore if p is
unramified in K then Z℘ = kp. For each i in Ik{E}, this allows us to construct an
idele j in IZ such that NZ/k(j) = i. For each prime p not in E, select one prime
℘(p) of Z which divides p. Put j℘(p) = ip, and put j℘ = 1 at other primes ℘ dividing
p. At primes ℘ of Z dividing primes in E, put j℘ = 1. We have

(

NZ/k(j)
)

p
=
∏

℘|p

NZ℘/kp
(j℘) =

{

NZ℘(p)/kp
(j℘(p)) = ip for p ∈ E

1 for p /∈ E

Therefore IK{E} is contained in NZ/kIZ. Consider two homomorphisms from Ik
to Ik/k∗NZ/k IZ. The first is the natural homomorphism sending each idele to its
own coset and the second sends each idele to 1. Both homomorphisms agree on
Ik{E}. Both are continuous homomorphisms whose kernels are closed and contain
k∗. By proposition 2.6, the two homomorphisms are identical, so Ik/k∗NZ/k IZ
must be trivial. By the first fundamental inequality, degree [Z : k] divides index
[Ik : k∗NZ/k IZ], so the group Ik/k∗NZ/k IZ cannot be trivial, and we have reached
our contradiction. It must be that M is all of G(K : k).

Proposition 2.22 (Corollary to the second fundamental inequal-
ity). Suppose K/k is a finite abelian extension. If φK/k can be extended to a
continuous homomorphism of Ik whose kernel contains k∗, then the kernel of φK/k

is k∗NK/k IK.

Proof. By proposition 2.1, φK/k maps Ik onto G(K : k), so
[

Ik : ker(φK/k)
]

=
[K : k]. By proposition 2.20, k∗NK/k IK is contained in ker(φK/k), so

[

Ik : k∗NK/k IK
]

=
[

Ik : ker(φK/k)
] [

ker(φK/k) : k∗NK/k IK
]

.
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Therefore [K : k] divides
[

Ik : k∗NK/k IK
]

.
[

Ik : k∗NK/k IK
]

divides [K : k] by

the second fundamental inequality, so
[

ker(φK/k) : k∗NK/k IK
]

= 1, which proves
the proposition.

Remark 4. We have shown that if φK/k can be extended to a homomorphism
of Ik whose kernel contains k∗ then the extension is unique (proposition 2.6), is
independent of E (proposition 2.7), and the kernel is exactly k∗NK/kIk. It remains
to show that φK/k can be extended, and to prove the two fundamental inequalities.


