CHAPTER XII

PROOF OF THEOREM 2 (EXISTENCE THEOREM)

Let **k** be a finite extension of the rational field **Q** and let **K** be an abelian extension of **k**. In this section, p will denote a rational prime and \wp will denote a prime of **k**.

LEMMA 12.1. Let H be a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ containing \mathbf{k}^* . If there exists an abelian extension \mathbf{L}/\mathbf{k} such that $\ker(\phi_{\mathbf{L}/\mathbf{k}}) \subset H$, then there exists an abelian extension \mathbf{K}/\mathbf{k} such that $\ker(\phi_{\mathbf{K}/\mathbf{k}}) = H$.

PROOF. Let **K** be the fixed field of the image of H in $G(\mathbf{L} : \mathbf{k})$ under the homomorphism $\phi_{\mathbf{L}/\mathbf{k}}$. Then $\phi_{\mathbf{K}/\mathbf{k}}$ is the restriction of $\phi_{\mathbf{L}/\mathbf{k}}$ to **K**. The kernel of $\phi_{\mathbf{K}/\mathbf{k}}$ is precisely H.

LEMMA 12.2. Let H be a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ containing \mathbf{k}^* , and let \mathbf{Z}/\mathbf{k} be a cyclic extension. Let H' be the inverse image of H under the homomorphism $\mathbf{N}_{\mathbf{Z}/\mathbf{k}} : \mathbf{I}_{\mathbf{Z}} \to \mathbf{I}_{\mathbf{k}}$. If Theorem 2 holds for subgroup H' of $\mathbf{I}_{\mathbf{Z}}$, then there exists an abelian extension \mathbf{K} of \mathbf{k} such that $\ker(\phi_{\mathbf{K}/\mathbf{k}}) = H$.

PROOF. Let us check that H' has the required properties. We have \mathbf{Z}^* contained in H', and H' is closed because $\mathbf{N}_{\mathbf{Z}/\mathbf{k}}$ is continuous. We need to show that $[\mathbf{I}_{\mathbf{Z}} : H']$ is finite. Since $H' = \mathbf{N}_{\mathbf{Z}/\mathbf{k}}^{-1}H$ then $\mathbf{N}_{\mathbf{Z}/\mathbf{k}}H' = H \cap \mathbf{N}_{\mathbf{Z}/\mathbf{k}}\mathbf{I}_{\mathbf{Z}}$, so

$$\frac{\mathbf{I}_{\mathbf{Z}}}{H'} \simeq \frac{\mathbf{N}_{\mathbf{Z}/\mathbf{k}}\mathbf{I}_{\mathbf{Z}}}{H \cap \mathbf{N}_{\mathbf{Z}/\mathbf{k}}\mathbf{I}_{\mathbf{Z}}} \simeq \frac{H\mathbf{N}_{\mathbf{Z}/\mathbf{k}}\mathbf{I}_{\mathbf{Z}}}{H} \subset \frac{\mathbf{I}_{\mathbf{k}}}{H}.$$

Therefore $[\mathbf{I}_{\mathbf{Z}} : H']$ is finite. By the hypothesis, there exists an abelian extension \mathbf{T} of \mathbf{Z} so that $\ker(\phi_{\mathbf{T}/\mathbf{Z}}) = H'$. We want to show that \mathbf{T}/\mathbf{k} is abelian. First, we show that \mathbf{T}/\mathbf{k} is normal. Let σ be a generator of $G(\mathbf{Z} : \mathbf{k})$. The automorphism σ can be extended to an isomorphism (also denoted σ) of \mathbf{T} to a conjugate field \mathbf{T}' . By lemma 10.42, for \mathbf{i} in $\mathbf{I}_{\mathbf{Z}}$ we have

$$\phi_{\mathbf{T}'/\mathbf{Z}}(\sigma \mathbf{i}) = \sigma \big(\phi_{\mathbf{T}/\mathbf{Z}}(\mathbf{i}) \big) \sigma^{-1}.$$
147

We have $\mathbf{N}_{\mathbf{Z}/\mathbf{k}}\sigma(\mathbf{i}) = \mathbf{N}_{\mathbf{Z}/\mathbf{k}}\mathbf{i}$, so $\mathbf{N}_{\mathbf{Z}/\mathbf{k}}(\mathbf{i}^{-1}\sigma(\mathbf{i})) = 1$, so $\mathbf{i}^{-1}\sigma(\mathbf{i})$ is in H'. Therefore \mathbf{i} is in H' if and only if $\sigma(\mathbf{i})$ is in H', which is the same as $\sigma^{-1}(\mathbf{j})$ is in H' if and only if \mathbf{j} is in H'. Putting $\mathbf{i} = \sigma^{-1}(\mathbf{j})$, we have

$$\phi_{\mathbf{T}'/\mathbf{Z}}(\mathbf{j}) = \sigma \big(\phi_{\mathbf{T}/\mathbf{Z}}(\sigma^{-1}(\mathbf{j})) \sigma^{-1}.$$

This shows that $\ker(\phi_{\mathbf{T}'/\mathbf{Z}}) = H'$, and therefore $\mathbf{T}' = \mathbf{T}$. Since $\sigma(\mathbf{T}) = \mathbf{T}$ and σ generates $G(\mathbf{Z} : \mathbf{k})$, then \mathbf{T} is invariant under every extension of every automorphism in $G(\mathbf{Z} : \mathbf{k})$. This shows that \mathbf{T} is normal over \mathbf{k} .

To show that \mathbf{T}/\mathbf{k} is abelian, we have $\phi_{\mathbf{T}/\mathbf{Z}}(\mathbf{i}^{-1}\sigma(\mathbf{i})) = 1$ since $\mathbf{i}^{-1}\sigma(\mathbf{i})$ is in H'. Then $\phi_{\mathbf{T}/\mathbf{Z}}(\sigma(\mathbf{i})) = \phi_{\mathbf{T}/\mathbf{Z}}(\mathbf{i})$, so $\sigma(\phi_{\mathbf{T}/\mathbf{k}}(\mathbf{i}))\sigma^{-1} = \phi_{\mathbf{T}/\mathbf{Z}}(\mathbf{i})$. Since $\phi_{\mathbf{T}/\mathbf{Z}}$ is onto $G(\mathbf{T}:\mathbf{Z})$ then σ commutes with every automorphism in $G(\mathbf{T}:\mathbf{Z})$. Every element of $G(\mathbf{T}:\mathbf{k})$ is of the form $\sigma^{a}\tau$ with τ in $G(\mathbf{T}:\mathbf{Z})$, so $G(\mathbf{T}:\mathbf{k})$ is abelian.

We now know that $\phi_{\mathbf{T}/\mathbf{k}}$ is defined. The kernel of $\phi_{\mathbf{T}/\mathbf{k}}$ is $\mathbf{k}^* \mathbf{N}_{\mathbf{T}/\mathbf{k}} \mathbf{I}_{\mathbf{T}}$. Then

$$\mathbf{k}^* \mathbf{N}_{\mathbf{T}/\mathbf{k}} \mathbf{I}_{\mathbf{T}} = \mathbf{k}^* \mathbf{N}_{\mathbf{Z}/\mathbf{k}} (\mathbf{N}_{\mathbf{T}/\mathbf{Z}} \mathbf{I}_{\mathbf{T}}) \subset \mathbf{k}^* \mathbf{N}_{\mathbf{Z}/\mathbf{k}} (H') \subset H$$

Since $\ker(\phi_{\mathbf{T}/\mathbf{k}})$ is contained in H, then by lemma 12.1 there exists an abelian extension \mathbf{K}/\mathbf{k} such that $\ker(\phi_{\mathbf{K}/\mathbf{k}}) = H$. This completes the proof.

LEMMA 12.3. Suppose that p is a prime number, **k** contains the p-th roots of unity, H is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ containing \mathbf{k}^* and $[\mathbf{I}_{\mathbf{k}} : H] = p$. Then there exists an abelian extension \mathbf{K}/\mathbf{k} such that $\ker(\phi_{\mathbf{K}/\mathbf{k}}) = H$.

PROOF. Let *E* be a set of primes of **k** containing all infinite primes, all primes dividing *p*, all primes dividing the conductor of *H*, and so that $\mathbf{I_k} = \mathbf{k^* I_k}(E)$. By corollary 8.20, there exists an abelian extension $\mathbf{L/k}$ such that the kernel of $\phi_{\mathbf{L/k}}$ is $\mathbf{k^* I_k^p}(E)$. Since $[\mathbf{I_k} : H] = p$ then we have

$$\prod_{\wp \in E} (\mathbf{k}_{\wp}^*)^p \prod_{\wp \notin E} \{1\} \subset H$$

and since E contains all primes dividing the conductor of H then

$$\prod_{\wp \in E} \{1\} \prod_{\wp \notin E} \mathbf{u}_{\wp} \subset H.$$

Therefore $\mathbf{I}_{\mathbf{k}}^{p}(E)$ is contained in H, so the kernel of $\phi_{\mathbf{L}/\mathbf{k}}$ is contained in H. By lemma 12.1, there exists an abelian extension \mathbf{K}/\mathbf{k} such that $\ker(\phi_{\mathbf{K}/\mathbf{k}}) = H$.

LEMMA 12.4. Suppose that p is a prime number, H is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ containing \mathbf{k}^* and $[\mathbf{I}_{\mathbf{k}}: H] = p$. Then there exists an abelian extension \mathbf{K}/\mathbf{k} such that ker $(\phi_{\mathbf{K}/\mathbf{k}}) = H$.

PROOF. Let **Z** be the field obtained by adjoining the *p*-th roots of unity to **k**. Then \mathbf{Z}/\mathbf{k} is a cyclic extension. Define H' to be the inverse image of H as in the hypothesis of lemma 12.2. As in the proof of lemma 12.2, we have that $[\mathbf{I}_{\mathbf{Z}} : H']$ is a divisor of $[\mathbf{I}_{\mathbf{k}} : H]$. Since *p* is prime, then $[\mathbf{I}_{\mathbf{Z}} : H']$ is 1 or *p*. In the former case, take $\mathbf{T} = \mathbf{Z}$. In the latter case, we apply lemma 12.3 to \mathbf{Z} and H'. There exists an abelian extension \mathbf{T}/\mathbf{Z} such that $\ker(\phi_{\mathbf{T}/\mathbf{Z}}) = H'$. By lemma 12.2, there exists an abelian extension \mathbf{K}/\mathbf{k} such that $\ker(\phi_{\mathbf{K}/\mathbf{k}}) = H$.

PROPOSITION 12.5. If H is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ and contains \mathbf{k}^* , then there is an abelian extension **K** of **k** such that H is the kernel of $\phi_{\mathbf{K}/\mathbf{k}}$.

PROOF. We proceed by induction on the number of (not distinct) prime divisors of $[\mathbf{I}_{\mathbf{k}} : H] = n$. Choose a subgroup H_1 so that $H \subset H_1 \subset \mathbf{I}_{\mathbf{k}}$ and $[\mathbf{I}_{\mathbf{k}} : H_1] = p$ where p is prime. By lemma 12.4, there exists an abelian extension \mathbf{Z}/\mathbf{k} such that $\ker(\phi_{\mathbf{Z}/\mathbf{k}}) = H_1$. Let H' be the inverse image of H under the homomorphism $\mathbf{N}_{\mathbf{Z}/\mathbf{k}} : \mathbf{I}_{\mathbf{Z}} \to \mathbf{I}_{\mathbf{k}}$. We have

$$\frac{\mathbf{I}_{\mathbf{Z}}}{H'} \simeq \frac{H\mathbf{N}_{\mathbf{Z}/\mathbf{k}}\mathbf{I}_{\mathbf{Z}}}{H} \subset \frac{H_1H}{H} = \frac{H_1}{H}.$$

Therefore $[\mathbf{I}_{\mathbf{Z}} : H']$ divides n/p and so has fewer prime divisors than n. By induction there exists an abelian extension \mathbf{T}/\mathbf{Z} such that $\ker(\phi_{\mathbf{T}/\mathbf{Z}}) = H'$. By lemma 12.2, there exists an abelian extension \mathbf{K}/\mathbf{k} such that $\phi_{\mathbf{K}/\mathbf{k}} = H$.

THEOREM 2 - EXISTENCE THEOREM. The abelian extension \mathbf{K} of \mathbf{k} is uniquely determined by the kernel of $\phi_{\mathbf{K}/\mathbf{k}}$. If H is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{k}}$ and contains \mathbf{k}^* , then there is a unique abelian extension \mathbf{K} of \mathbf{k} such that H is the kernel of $\phi_{\mathbf{K}/\mathbf{k}}$

PROOF. Proposition 12.5 shows that **K** exists, and proposition 2.15 shows that **K** is uniquely determined by H.

Existence theorem for local fields. In this section, p denotes a prime of \mathbf{k} and \wp denotes a prime of \mathbf{K} . Primes of other extensions of \mathbf{k}_p may be denoted by \wp' , or by q, q', etc. The norm residue symbol will be denoted by $(\alpha, \mathbf{K}_{\wp}/\mathbf{k}_p)$. The lemmas and proofs for local fields are essentially line-for-line translations of their counterparts for global fields.

LEMMA 12.6. If \mathbf{K}_{\wp} and $\mathbf{L}_{\wp'}$ are abelian extensions of \mathbf{k}_p , then $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = \mathbf{N}_{\mathbf{L}_{\wp'}/\mathbf{k}_p}\mathbf{L}_{\wp'}^*$ if and only if $\mathbf{K}_{\wp} = \mathbf{L}_{\wp'}$.

PROOF. By proposition 2.11, the natural homomorphism

$$G(\mathbf{K}_{\wp}\mathbf{L}_{\wp'}:\mathbf{k}_p) \to G(\mathbf{K}_{\wp}:\mathbf{k}_p) \times G(\mathbf{L}_{\wp'}:\mathbf{k}_p)$$

is an injection and the image of $(\alpha, \mathbf{K}_{\wp} \mathbf{L}_{\wp'}/\mathbf{k}_p)$ is $((\alpha, \mathbf{K}_{\wp}/\mathbf{k}_p), (\alpha, \mathbf{L}_{\wp'}/\mathbf{k}_p))$. If α is in $\mathbf{N}_{\mathbf{K}_{\wp}\mathbf{L}_{\wp'}/\mathbf{k}_p}(\mathbf{K}_{\wp}\mathbf{L}_{\wp'})^*$ then $(\alpha, \mathbf{K}_{\wp}\mathbf{L}_{\wp'}/\mathbf{k}_p) = 1$, so $(\alpha, \mathbf{K}_{\wp}/\mathbf{k}_p) = 1$ and $(\alpha, \mathbf{L}_{\wp'}/\mathbf{k}_p) = 1$, and therefore α is in $\mathbf{N}_{\mathbf{K}_{\wp}}\mathbf{K}_{\wp}^*$ and in $\mathbf{N}_{\mathbf{L}_{\wp'}}\mathbf{L}_{\wp'}^*$. Suppose that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = \mathbf{N}_{\mathbf{L}_{\wp'}/\mathbf{k}_p}\mathbf{L}_{\wp'}^*$. If α is in $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^*$, then both symbols $(\alpha, \mathbf{K}_{\wp}/\mathbf{k}_p)$ and $(\alpha, \mathbf{L}_{\wp'}/\mathbf{k}_p)$ are trivial, so $(\alpha, \mathbf{K}_{\wp}\mathbf{L}_{\wp'}/\mathbf{k}_p)$ is trivial, so α is in $\mathbf{N}_{\mathbf{K}_{\wp}\mathbf{L}_{\wp'}}(\mathbf{K}_{\wp}\mathbf{L}_{\wp'})^*$, and therefore $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = \mathbf{N}_{\mathbf{K}_{\wp}\mathbf{L}_{\wp'}}(\mathbf{K}_{\wp}\mathbf{L}_{\wp'})^* = \mathbf{N}_{\mathbf{L}_{\wp'}/\mathbf{k}_p}\mathbf{L}_{\wp'}^*$. This implies that $[\mathbf{K}_{\wp}:\mathbf{k}_p] = [\mathbf{K}_{\wp}\mathbf{L}_{\wp'}:\mathbf{k}_p] = [\mathbf{L}_{\wp'}:\mathbf{k}_p]$, so $\mathbf{K}_{\wp} = \mathbf{K}_{\wp}\mathbf{L}_{\wp'} = \mathbf{L}_{\wp'}$.

LEMMA 12.7. If n is prime and \mathbf{k}_p contains the n-th roots of unity, then there exists an abelian extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = (\mathbf{k}_p^*)^n$.

PROOF. By proposition 8.12, if p does not divide n, then $[\mathbf{k}_p^* : (\mathbf{k}_p^*)^n] = n^2$. If p divides n, then $[\mathbf{k}_p^* : (\mathbf{k}_p^*)^n] = n^2(\mathbf{N}p)^a$ where $n\mathbf{o}_p = p^a$, and since n is prime then $\mathbf{N}p = n^f$ so $n^2(\mathbf{N}p)^a = n^{2+af}$. Put m = 2 in the former case and m = 2 + af in the latter. Then $\mathbf{k}_p^*/(\mathbf{k}_p^*)^n$ must be the product of m cyclic groups order n, so let β_1, \ldots, β_m generate \mathbf{k}_p^* modulo $(\mathbf{k}_p^*)^n$. By lemma 8.5 (which applies to any field containing the n-th roots of units), $\mathbf{K}_{\wp} = \mathbf{k}_p \left(\sqrt[n]{\beta_1}, \ldots, \sqrt[n]{\beta_m} \right)$ has degree n^m over \mathbf{k}_p with Galois group isomorphic to the product of m cyclic groups order n. Therefore $\mathbf{k}_p^*/(\mathbf{N}_{\mathbf{K}_\wp}/\mathbf{k}_p\mathbf{K}_{\wp}^*)$ is also isomorphic to the product of m cyclic groups of order n, so $(\mathbf{k}_p^*)^n$ is contained in $\mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}\mathbf{K}_{\wp}^*$ Both of these subgroups have index n^m in \mathbf{k}_p^* , so they must coincide. This completes the proof.

LEMMA 12.8. Let H be a closed subgroup of finite index in \mathbf{k}_p^* . If there exists an abelian extension $\mathbf{L}_{\wp'}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{L}_{\wp'}/\mathbf{k}_p}\mathbf{L}_{\wp'}^* \subset H$, then there exists an abelian extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$.

PROOF. Let \mathbf{K}_{\wp} be the fixed field of the image of H under the mapping $\alpha \to (\alpha, \mathbf{L}_{\wp'}/\mathbf{k}_p)$. Since $(\alpha, \mathbf{K}_{\wp}/\mathbf{k}_p)$ coincides with the restriction to \mathbf{K}_{\wp} of $(\alpha, \mathbf{L}_{\wp'}/\mathbf{k}_p)$ then $(\alpha, \mathbf{K}_{\wp}/\mathbf{k}_p)$ is trivial if and only if α is in H. Therefore H is the kernel of $(\alpha, \mathbf{K}_{\wp}/\mathbf{k}_p)$, so $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$.

LEMMA 12.9. Let H be a closed subgroup of finite index in \mathbf{k}_p^* , and let $\mathbf{Z}_{\wp'}/\mathbf{k}_p$ be a cyclic extension. Let H' be the inverse image of H under the homomorphism $\mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p}: \mathbf{Z}_{\wp'}^* \to \mathbf{k}_p^*$. Then H' is a closed subgroup of finite index in $\mathbf{Z}_{\wp'}^*$. If there exists an abelian extension \mathbf{T}_q of $\mathbf{Z}_{\wp'}$ such that $\mathbf{N}_{\mathbf{T}_q/\mathbf{Z}_{\wp'}}\mathbf{T}_q^* = H'$, then there exists an abelian extension \mathbf{K}_{\wp} of \mathbf{k}_p such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$.

PROOF. H' is closed because $\mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p}$ is continuous, so we need to show that $[\mathbf{Z}_{\wp'}^*: H']$ is finite. Since $H' = \mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p}^{-1} H$ then $\mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p} H' = H \cap \mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p} \mathbf{Z}_{\wp'}^*$, so

$$\frac{\mathbf{Z}^*_{\wp'}}{H'} \simeq \frac{\mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p}\mathbf{Z}^*_{\wp'}}{H \cap \mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p}\mathbf{Z}^*_{\wp'}} \simeq \frac{H\mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p}\mathbf{Z}^*_{\wp'}}{H} \subset \frac{\mathbf{k}^*_p}{H}.$$

Therefore $[\mathbf{Z}_{\wp'}^*: H']$ is finite. By the hypothesis, there exists an abelian extension \mathbf{T}_q of \mathbf{Z} so that $\mathbf{N}_{\mathbf{T}_q/\mathbf{Z}_{\wp'}}\mathbf{T}_q^* = H'$. We want to show that $\mathbf{T}_q/\mathbf{k}_p$ is abelian. First, we show that $\mathbf{T}_q/\mathbf{k}_p$ is normal. Let σ be a generator of $G(\mathbf{Z}_{\wp'}:\mathbf{k}_p)$. The automorphism σ can be extended to an isomorphism (also denoted σ) of \mathbf{T}_q to a conjugate field $\mathbf{T}_{q'}'$. By lemma 10.42, for α in $\mathbf{Z}_{\wp'}$ we have

$$(\alpha, \mathbf{T}'_{q'}/\mathbf{Z}_{\wp'}) = \sigma\big(\sigma^{-1}(\alpha), \mathbf{T}_q/\mathbf{Z}_{\wp'}\big)\sigma^{-1}.$$

We have $\mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_{p}}\sigma^{-1}(\alpha) = \mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_{p}}\alpha$, so $\mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_{p}}\left(\alpha^{-1}\sigma^{-1}(\alpha)\right) = 1$, so $\alpha^{-1}\sigma^{-1}(\alpha)$ is in H'. Therefore $\sigma^{-1}(\alpha)$ is in H' if and only if α is in H'. This shows that $(\alpha, \mathbf{T}'_{q'}/\mathbf{Z}_{\wp'}) = 1$ if and only if α is in H', so $\mathbf{N}_{\mathbf{T}_{q'}/\mathbf{Z}_{\wp'}}\mathbf{T}_{q'} = H'$ and therefore $\mathbf{T}'_{q'} = \mathbf{T}_{q}$. Since $\sigma(\mathbf{T}_{q}) = \mathbf{T}_{q}$ and σ generates $G(\mathbf{Z}_{\wp'}:\mathbf{k}_{p})$, then \mathbf{T}_{q} is invariant under every extension of every automorphism in $G(\mathbf{Z}_{\wp'}:\mathbf{k}_{p})$. This shows that \mathbf{T}_{q} is normal over \mathbf{k}_{p} .

To show that $\mathbf{T}_q/\mathbf{k}_p$ is abelian, we have $(\alpha^{-1}\sigma(\alpha), \mathbf{T}_q/\mathbf{Z}_{\wp'}) = 1$, since $\alpha^{-1}\sigma(\alpha)$ is in H'. Then $(\sigma(\alpha), \mathbf{T}_q/\mathbf{Z}_{\wp'}) = (\alpha, \mathbf{T}_q/\mathbf{Z}_{\wp'})$, so $(\alpha, \mathbf{T}_q/\mathbf{Z}_{\wp'}) = \sigma(\alpha, \mathbf{T}_q/\mathbf{Z}_{\wp'})\sigma^{-1}$. Since the norm residue symbol maps $\mathbf{Z}^*_{\wp'}$ onto $G(\mathbf{T}_q : \mathbf{Z}_{\wp'})$ then σ commutes with every automorphism in $G(\mathbf{T}_q : \mathbf{Z}_{\wp'})$. Every element of $G(\mathbf{T}_q : \mathbf{k}_p)$ is of the form $\sigma^a \tau$ with τ in $G(\mathbf{T}_q : \mathbf{Z}_{\wp'})$, so $G(\mathbf{T}_q : \mathbf{k}_p)$ is abelian.

We now know that the norm residue symbol is defined for $\mathbf{T}_q/\mathbf{k}_p$ is defined, and the kernel is $\mathbf{N}_{\mathbf{T}_q/\mathbf{k}_p}\mathbf{T}_q^*$. Then

$$\mathbf{N}_{\mathbf{T}_q/\mathbf{k}_p}\mathbf{T}_q^* = \mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p}(\mathbf{N}_{\mathbf{T}_q/\mathbf{Z}_{\wp'}}\mathbf{T}_q^*) = \mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p}(H') \subset H.$$

Since $\mathbf{N}_{\mathbf{T}_q/\mathbf{k}_p}\mathbf{T}_q^*$ is contained in H, then by lemma 12.8 there exists an abelian extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$. This completes the proof.

LEMMA 12.10. Suppose that n is a prime number, \mathbf{k}_p contains the n-th roots of unity, H is a closed subgroup of finite index in \mathbf{k}_p^* and $[\mathbf{k}_p^* : H] = n$. Then there exists an abelian extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$.

PROOF. By lemma 12.7, there exists an abelian extension corresponding to the subgroup $(\mathbf{k}_p^*)^n$. Since $[\mathbf{k}_p^*: H] = n$ then $(\mathbf{k}_p^*)^n \subset H$. By lemma 12.8, there exists an abelian extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$.

LEMMA 12.11. Suppose that n is a prime number, H is a closed subgroup of finite index in \mathbf{k}_p^* and $[\mathbf{k}_p^*: H] = n$. Then there exists an abelian extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$.

PROOF. Let $\mathbf{Z}_{\wp'}$ be the field obtained by adjoining the *n*-th roots of unity to \mathbf{k}_p . Then $\mathbf{Z}_{\wp'}/\mathbf{k}_p$ is a cyclic extension since $G(\mathbf{Z}_{\wp'}:\mathbf{k}_p) \subset G(\mathbf{Z}:\mathbf{k})$. Define H' to be the inverse image of H as in the hypothesis of lemma 12.9. As in the proof of lemma 12.9, we have that $[\mathbf{Z}_{\wp'}:\mathbf{k}_p]$ is a divisor of $[\mathbf{k}_p^*:H]$. Since n is prime, then $[\mathbf{Z}_{\wp'}:\mathbf{k}_p]$ is 1 or n. In the former case, take $\mathbf{T}_q = \mathbf{Z}_{\wp'}$. In the latter case, we apply lemma 12.10 to $\mathbf{Z}_{\wp'}$ and H'. There exists an abelian extension $\mathbf{T}_q/\mathbf{Z}_{\wp'}$ such that $\mathbf{N}_{\mathbf{T}_q/\mathbf{Z}_{\wp'}}\mathbf{T}_q^* = H'$. By lemma 12.8, there exists an abelian extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$.

PROPOSITION 12.12. If H is a closed subgroup of finite index in \mathbf{k}_p^* , then there is an abelian extension \mathbf{K}_{\wp} of \mathbf{k}_p such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$.

PROOF. We proceed by induction on the number of (not distinct) prime divisors of $[\mathbf{k}_p^* : H] = m$. Choose a subgroup H_1 so that $H \subset H_1 \subset \mathbf{k}_p^*$ and $[\mathbf{k}_p^* : H_1] = n$ where *n* is prime. By lemma 12.4, there exists an abelian extension $\mathbf{Z}_{\wp'}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p}\mathbf{Z}_{\wp'}^* = H_1$. Let H' be the inverse image of H under the homomorphism $\mathbf{N}_{\mathbf{Z}_{\wp'}/\mathbf{k}_p} : \mathbf{Z}_{\wp'}^* \to \mathbf{k}_p^*$. We have

$$\frac{\mathbf{I}_{\mathbf{Z}}}{H'} \simeq \frac{H\mathbf{N}_{\mathbf{Z}/\mathbf{k}}\mathbf{I}_{\mathbf{Z}}}{H} \subset \frac{H_1H}{H} = \frac{H_1}{H}.$$

Therefore $[\mathbf{I}_{\mathbf{Z}} : H']$ divides m/n and so has fewer prime divisors than m. By induction there exists an abelian extension $\mathbf{T}_q/\mathbf{Z}_{\wp'}$ such that $\mathbf{N}_{\mathbf{T}_q/\mathbf{Z}_{\wp'}}\mathbf{Z}^*_{\wp'} = H'$. By lemma 12.9, there exists an abelian extension $\mathbf{K}_{\wp}/\mathbf{k}_p$ such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}^*_{\wp} = H$.

PROPOSITION 12.13 - EXISTENCE THEOREM FOR LOCAL FIELDS. The abelian extension \mathbf{K}_{\wp} of \mathbf{k}_p is uniquely determined by the kernel of $(\alpha, \mathbf{K}_{\wp}/\mathbf{k}_p)$. If H is a closed subgroup of finite index in \mathbf{k}_p^* , then there is a unique abelian extension \mathbf{K}_{\wp} of \mathbf{k}_p such that $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_p}\mathbf{K}_{\wp}^* = H$

PROOF. Lemma 12.13 shows that \mathbf{K}_{\wp} exists, and lemma 12.6 shows that \mathbf{K}_{\wp} is uniquely determined by H.