CHAPTER XI

NORM RESIDUE SYMBOL FOR KUMMER EXTENSIONS

Throughout this chapter, p will denote a rational prime number; \wp will denote a prime of \mathbf{k} , and \wp' will denote a prime of an extension \mathbf{K} of \mathbf{k} . Let m be a positive integer and let \mathbf{k} contain the m-th roots of unity. The general m-power reciprocity law for elements in \mathbf{k} has been found to be

$$\left(\frac{\alpha}{\beta}\right)_m \left(\frac{\beta}{\alpha}\right)_m^{-1} = \prod_{\wp \in E} \left(\frac{\alpha, \beta}{\wp}\right)_m$$

where E contains all primes of \mathbf{k} dividing m and all infinite primes, and elements α and β of \mathbf{k} are relatively prime to each other and to m. Our main objective will be to compute the symbol $\left(\frac{\alpha,\beta}{\wp}\right)_p$ for odd primes p in the case $\mathbf{k} = \mathbf{Q}(\zeta)$ where ζ is a primitive p-th root of unity, obtaining the p-th power reciprocity law in the process.

LEMMA 11.1. Suppose that \mathbf{k} contains the m-th roots of unity and \wp is an infinite prime of \mathbf{k} . Non-trivial norm residue symbols occur only if m = 2 and \wp is real, in which case we have

$$\left(\frac{\alpha,\beta}{\wp}\right)_{m} = \begin{cases} 1 \ if \ \alpha > 0 \ or \ \beta > 0, \\ -1 \ if \ \alpha < 0 \ and \ \beta < 0. \end{cases}$$

PROOF. If m > 2 then all infinite primes of **k** are complex because **k** contains the *m*-th roots of unity.

Norm residue symbol for composite powers.

LEMMA 11.2. Suppose that \mathbf{k} contains the mn-th roots of unity, \wp is an finite prime of \mathbf{k} and α and β are elements of \mathbf{k}_{\wp}^* . Let m and n be relatively prime. If ma + nb = 1 then

(11.1)
$$\left(\frac{\alpha,\beta}{\wp}\right)_{mn} = \left(\frac{\alpha,\beta}{\wp}\right)_m^b \left(\frac{\alpha,\beta}{\wp}\right)_n^a$$

PROOF. We can choose β_0 in \mathbf{k}^* sufficiently close to β so that $\beta_0 \simeq_{mn} \beta$. Then β may be replaced by β_0 in all norm residue symbol expressions, so we may as well suppose that β is in \mathbf{k}^* . For an integer *s* dividing mn, let σ_s be the norm residue symbol automorphism.

$$\sigma_s = \left(\frac{\alpha, \mathbf{k}\left(\sqrt[s]{\beta}\right)/\mathbf{k}}{\wp}\right)$$

We have 1/mn = a/n + b/m, so $\sqrt[m_n]{\beta} = (\sqrt[m]{\beta})^b (\sqrt[n]{\beta})^a$. Since σ_m and σ_n are restrictions of σ_{mn} to their respective subfields, then

$$\sigma_{mn}\left(\sqrt[mn]{\beta}\right) = \sigma_{mn}\left(\left(\sqrt[m]{\beta}\right)^{b}\left(\sqrt[n]{\beta}\right)^{a}\right) = \left(\sigma_{m}\left(\sqrt[m]{\beta}\right)\right)^{b}\left(\sigma_{n}\left(\sqrt[n]{\beta}\right)\right)^{a}.$$

Therefore

$$\frac{\sigma_{mn}\left(\frac{mn\sqrt{\beta}}{\sqrt[m]{\beta}}\right)}{\frac{mn\sqrt{\beta}}{\sqrt[m]{\beta}}} = \left(\frac{\sigma_m\left(\frac{m\sqrt{\beta}}{\sqrt[m]{\beta}}\right)}{\frac{m\sqrt{\beta}}{\sqrt[m]{\beta}}}\right)^b \left(\frac{\sigma_n\left(\frac{n\sqrt{\beta}}{\sqrt[m]{\beta}}\right)}{\frac{n\sqrt{\beta}}{\sqrt[m]{\beta}}}\right)^a,$$
$$\left(\frac{\alpha,\beta}{\wp}\right)_{mn} = \left(\frac{\alpha,\beta}{\wp}\right)_m^b \left(\frac{\alpha,\beta}{\wp}\right)_n^a.$$

 \mathbf{SO}

LEMMA 11.3. \mathbf{k}_{\wp} contains the $(N\wp - 1)$ -th roots of unity.

PROOF. Let ζ be a primitive $(N\wp - 1)$ -th root of unity. Then $\mathbf{k}_{\wp}(\zeta)/\mathbf{k}_{\wp}$ is unramified since \wp does not divide $N\wp - 1$. Let \wp' be the prime of $\mathbf{k}_{\wp}(\zeta)$. In the map $\mathbf{O}_{\wp'} \to \mathbf{O}_{\wp'}/\wp'$, element ζ maps to an element of \mathbf{o}_{\wp}/\wp since \mathbf{o}_{\wp}/\wp is the splitting field of $x^{N\wp - 1} - 1$. This shows that $\mathbf{O}_{\wp'}/\wp' = \mathbf{o}_{\wp}/\wp$. Therefore f = 1, so $[\mathbf{k}_{\wp}(\zeta) : \mathbf{k}_{\wp}] = ef = 1$, and we have $\mathbf{k}_{\wp}(\zeta) = \mathbf{k}_{\wp}$.

LEMMA 11.4. Let V be the group of $(N\wp - 1)$ -th roots of unity in \mathbf{k}_{\wp} . Then the image of V in \mathbf{o}_{\wp}/\wp is all of $(\mathbf{o}_{\wp}/\wp)^*$.

PROOF. If v is in V and $v \neq 1$, then v is a root of $x^{N\wp-2} + \cdots + x + x = 0$. If $v = 1 \pmod{\wp}$ then we would have $N\wp - 1 = 0 \pmod{\wp}$, which is impossible. Therefore the kernel of $V \to (\mathbf{o}_{\wp}/\wp)^*$ is trivial, so the map is an isomorphism since both V and $(\mathbf{o}_{\wp}/\wp)^*$ have $(N\wp - 1)$ elements.

LEMMA 11.5. Let π be an element of \mathbf{k}_{\wp}^* such that $\wp = (\pi)$. For fixed π , every element α of \mathbf{k}_{\wp}^* has a unique representation as

 $\alpha = \pi^a v u$ where $v \in V$ and $u \in W_{\wp}(1)$.

Therefore \mathbf{k}_{ω}^{*} is a direct product $\langle \pi \rangle VW_{\omega}(1)$.

PROOF. Exponent *a* is determined by $a = \operatorname{ord}_{\wp}(\alpha)$. Put $\alpha' = \alpha/\pi^a$. Then α' is in \mathbf{u}_{\wp} . By lemma 11.4, there is a unique element *v* in *V* so that $\alpha' = v \pmod{\wp}$. Then $u = \alpha'/v$ is in $W_{\wp}(1)$. Since α' and *v* are uniquely determined then so is *u*.

LEMMA 11.6. If n is relatively prime to $N\wp - 1$ then $V = V^n$ and the map $x \to x^n$ is an isomorphism of $(\mathbf{o}_{\wp}/\wp)^*$.

PROOF. Let a and b be integers such that $na + (N\wp - 1)b = 1$. Then $y \to y^a$ is inverse to $x \to x^n$, and we have $V \supset V^n \supset V^{na} = V$, so $V = V^n$.

The case of powers relatively prime to \wp . Suppose that $n = p^x$ where (p) is the rational prime divisible by \wp and m is relatively prime to p. Lemma 11.2 shows how computation of the norm residue symbol for mn-th powers is reduced to separate computations for m-th powers and p^x -th powers. Lemma 11.7 gives an explicit formula for the former case.

LEMMA 11.7. Let π be an element of \mathbf{k}_{\wp}^* such that $\wp = (\pi)$. Suppose that m is relatively prime to \wp . If $\alpha = \pi^a vu$ and $\beta = \pi^b v' u'$ as in lemma 11.5, then

$$\left(\frac{\alpha,\beta}{\wp}\right)_m = \left(\frac{-1}{\wp}\right)_m^{ab} (v)^{-b\frac{N\wp-1}{m}} (v')^{a\frac{N\wp-1}{m}}$$

PROOF. Since \wp does not divide *m* then we can apply lemma 10.9.

$$\left(\frac{\alpha,\beta}{\wp}\right)_{m} = \left(\frac{-1}{\wp}\right)_{m}^{ab} \left(\frac{\beta^{a}/\alpha^{b}}{\wp}\right)_{m} = \left(\frac{-1}{\wp}\right)_{m}^{ab} \left(\frac{\left(v'u'\right)^{a}/\left(vu\right)^{b}}{\wp}\right)_{m}$$

We have $u = 1 \pmod{\wp}$ and $u' = 1 \pmod{\wp}$, so both $\left(\frac{u}{\wp}\right)_m$ and $\left(\frac{u'}{\wp}\right)_m$ are trivial. $\left(\frac{v}{\wp}\right)_m$ is the unique $(N\wp - 1)$ -th root of unity such that $\left(\frac{v}{\wp}\right)_m = v^{\frac{N\wp - 1}{m}} \pmod{\wp}$. But v is an $(N\wp - 1)$ -th root of unity, so $\left(\frac{v}{\wp}\right)_m = (v)^{\frac{N\wp - 1}{m}}$, and likewise $\left(\frac{v'}{\wp}\right)_m = (v')^{\frac{N\wp - 1}{m}}$.

The case of p^x -th powers where \wp divides (p). Take $n = p^x$ where \wp divides (p). Then n is relatively prime to N $\wp - 1$. Group V is cyclic of order N $\wp - 1$, so $V^n = V$, and every element of V is a n-th power. Since every n-th power norm residue symbol involving an element v in V is trivial, we have

(11.2)
$$\left(\frac{\alpha,\beta}{\wp}\right)_n = \left(\frac{\pi^a v u, \pi^b v' u'}{\wp}\right)_n = \left(\frac{\pi^a u, \pi^b u}{\wp}\right)_n$$

To compute (11.2), it is only necessary to assume that \mathbf{k} contains the *n*-th roots of unity.

LEMMA 11.8. Suppose that \wp is a prime of \mathbf{k} and (p) is the rational prime that \wp divides. Let $n = p^x$, and suppose that \mathbf{k} contains the n-th roots of unity. Then $W_{\wp}(1)/W_{\wp}(1)^n$ is the direct sum of d + 1 cyclic groups of order n, where $d = [\mathbf{k}_{\wp} : \mathbf{Q}_{(p)}].$

PROOF. Every element of $W_{\wp}(1)/W_{\wp}(1)^n$ has order dividing n, so the group is the direct product of cyclic subgroups each having order dividing n. Let α map to a generator of any one of these cyclic subgroups having order $n' = p^y$. Then $y \leq x$, and $\alpha^{n'}$ is in $W_{\wp}(1)^n$, so $\alpha^{n'} = \beta^n$ for some element β in $W_{\wp}(1)$. Suppose that y < x. Then $\alpha^{p^y} = (\beta^{p^{x-y}})^{p^y}$, so $\alpha = \beta^{p^{x-y}}\zeta'$, where ζ' is a p^y -th root of unity. Since **k** contains the p^x -th roots of unity then $\zeta' = \zeta^{p^{x-y}}$ where ζ is some p^x -th root of unity, and we have $\alpha = (\beta\zeta)^{p^{x-y}}$. But α cannot be a p-th power, so it impossible to have y < x. Therefore each cyclic subgroup in the direct product has order exactly p^x . By lemma 11.5, \mathbf{u}_{\wp} is a direct product $VW_{\wp}(1)$. Since $N_{\wp} - 1$ and $n = p^x$ are relatively prime then $V^n = V$. We therefore have

$$\frac{\mathbf{u}_{\wp}}{\mathbf{u}_{\wp}^n} = \frac{VW_{\wp}(1)}{VW_{\wp}(1)^n} = \frac{W_{\wp}(1)}{VW_{\wp}(1)^n \cap W_{\wp}(1)} = \frac{W_{\wp}(1)}{W_{\wp}(1)^n}$$

Since $[\mathbf{k}_{\wp}: \mathbf{Q}_{(p)}] = d$ and $n = p^x$, we have $|n|_{\wp} = \left| \mathbf{N}_{\mathbf{k}_{\wp}/\mathbf{Q}_{(p)}} n \right|_p = |n^d|_p = n^{-d}$. By lemma 8.11, we have $[\mathbf{u}_{\wp}: \mathbf{u}_{\wp}^n] = n|n|_{\wp}^{-1}$, so

$$[W_{\wp}(1):W_{\wp}(1)^{n}] = [\mathbf{u}_{\wp}:\mathbf{u}_{\wp}^{n}] = n(n^{d}) = n^{d+1}.$$

Therefore $W_{\wp}(1)/W_{\wp}(1)^n$ must be the product of d+1 cyclic groups of order n.

DEFINITION. An element α in $W_{\wp}(1)$ is *n*-primary if $\mathbf{k}_{\wp}(\sqrt[n]{\alpha})/\mathbf{k}_{\wp}$ is unramified.

LEMMA 11.9. With the hypothesis of lemma 11.8, the image in $W_{\wp}(1)/W_{\wp}(1)^n$ of the set of n-primary elements is a cyclic group of order n.

PROOF. Since \mathbf{k}_{\wp}^* is a direct product $\langle \pi \rangle VW_{\wp}(1)$ and $V = V^n$ we have

$$\frac{\mathbf{k}_{\wp}^{*}}{(\mathbf{k}_{\wp}^{*})^{n}} = \frac{\langle \pi \rangle \ V \ W_{\wp}(1)}{\langle \pi^{n} \rangle V^{n} W_{\wp}(1)^{n}} = \frac{\langle \pi \rangle}{\langle \pi^{n} \rangle} \times \frac{W_{\wp}(1)}{W_{\wp}(1)^{n}}$$

By lemma 11.8, $\mathbf{k}_{\wp}^*/(\mathbf{k}_{\wp}^*)^n$ is the direct sum of d+2 cyclic groups of order n, where $d = [\mathbf{k}_{\wp} : \mathbf{Q}_{(p)}]$. Let $\beta_1, \ldots, \beta_{d+2}$ be a set of generators for $\mathbf{k}_{\wp}^*/(\mathbf{k}_{\wp}^*)^n$, and the β_i may be chosen to be elements of \mathbf{k}^* . The β_i are independent modulo n, so by lemma 8.5 the extension $\mathbf{k}_{\wp} \left(\sqrt[n]{\beta_1}, \ldots, \sqrt[n]{\beta_{d+2}} \right)$ of \mathbf{k}_{\wp} has degree n^{d+2} , with Galois

group isomorphic to the direct sum of the d + 2 Galois groups $G(\mathbf{k}_{\wp}(\sqrt[n]{\beta_i}) : \mathbf{k}_{\wp})$, where $1 \leq i \leq d+2$. Every extension of the form $\mathbf{k}_{\wp}(\sqrt[n]{\beta})$ where β is in \mathbf{k}_{\wp}^* is a subfield of $\mathbf{k}_{\wp}(\sqrt[n]{\beta_1}, \ldots, \sqrt[n]{\beta_{d+2}})$. Put $\mathbf{K} = \mathbf{k}(\sqrt[n]{\beta_1}, \ldots, \sqrt[n]{\beta_{d+2}})$. The kernel of $\alpha \to \left(\frac{\alpha, \mathbf{K}/\mathbf{k}}{\wp}\right)_n$ has index n^{d+2} in \mathbf{k}_{\wp}^* and contains $(\mathbf{k}_{\wp}^*)^n$. Since $[\mathbf{k}_{\wp}^* : (\mathbf{k}_{\wp}^*)^n] = n^{d+2}$, then the kernel is exactly $(\mathbf{k}_{\wp}^*)^n$.

Let *H* be the image in $G = G(\mathbf{k}_{\wp} \left(\sqrt[n]{\beta_1}, \dots, \sqrt[n]{\beta_{d+2}}\right) : \mathbf{k}_{\wp})$ of the units \mathbf{u}_{\wp} of \mathbf{k}_{\wp} . An element β of \mathbf{k}_{\wp}^* is in the fixed field of *H* if and only if $\left(\frac{\alpha, \mathbf{K}/\mathbf{k}}{\wp}\right)_n \sqrt[n]{\beta} = \sqrt[n]{\beta}$ for every α in \mathbf{u}_{\wp} , which is if and only if $\left(\frac{\alpha, \beta}{\wp}\right)_n = 1$ for every α in \mathbf{u}_{\wp} , which is if and only if $\left(\frac{\alpha, \beta}{\wp}\right)_n = 1$ for every α in \mathbf{u}_{\wp} , which is if and only if $\left(\frac{\alpha, \beta}{\wp}\right)_n = 1$ for every α in \mathbf{u}_{\wp} , which is if and only if $\mathbf{k}_{\wp}(\sqrt[n]{\beta})/\mathbf{k}_{\wp}$ is unramified.

The kernel of the homomorphism $\mathbf{k}_{\wp}^* \to G/H$ is $\mathbf{u}_{\wp}(\mathbf{k}_{\wp}^*)^n$, so we have

$$\frac{G}{H} = \frac{\mathbf{k}_{\wp}^*}{\mathbf{u}_{\wp}(\mathbf{k}_{\wp})^n} = \frac{\langle \pi \rangle V W_{\wp}(1)}{V W_{\wp}(1) \langle \pi^n \rangle V^n W_{\wp}(1)^n} = \frac{\langle \pi \rangle V W_{\wp}(1)}{\langle \pi^n \rangle V W_{\wp}(1)} = \frac{\langle \pi \rangle}{\langle \pi^n \rangle}$$

Therefore the fixed field of H is a cyclic extension of degree n and, by lemma 8.5, is of the form $\mathbf{k}_{\wp}(\sqrt[n]{\gamma_2})/\mathbf{k}_{\wp}$ for some element γ_2 of \mathbf{k}_{\wp}^* . By lemma 8.2, n is the smallest positive value of x such that $\gamma_2^x \simeq_n 1$. Let $(\gamma_2) = \wp^c$ where c = nq + r and $0 \le r < n$. Put $\gamma_1 = \gamma_2/\pi^{qn}$. Then $\gamma_2 \simeq_n \gamma_1$, so the fixed field of H is $\mathbf{k}_{\wp} \left(\sqrt[n]{\gamma_1}\right)$, and $(\gamma_1) = \wp^r$. The map $\alpha \to \left(\frac{\alpha, \gamma_1}{\wp}\right)_n$ is a homomorphism $\mathbf{k}_{\wp}^* \to G(\mathbf{k}_{\wp}(\sqrt[n]{\gamma_1}) : \mathbf{k}_{\wp})$. The kernel has index n and contains $\mathbf{u}_{\wp}(\mathbf{k}_{\wp}^*)^n$, so the kernel is exactly $\mathbf{u}_{\wp}(\mathbf{k}_{\wp}^*)^n$. Since -1 is in \mathbf{u}_{\wp} , we have

$$\left(\frac{\gamma_1,\gamma_1}{\wp}\right)_n = \left(\frac{-\gamma_1,\gamma_1}{\wp}\right)_n \left(\frac{-1,\gamma_1}{\wp}\right)_n = 1.$$

Therefore γ_1 is in the kernel, so γ_1 is in $\mathbf{u}_{\wp}(\mathbf{k}_{\wp}^*)^n$. This shows that r = 0, so γ_1 is in \mathbf{u}_{\wp} . Put $\gamma_1 = \delta \gamma_0$ where δ is in V and γ_0 is in $W_{\wp}(1)$. Since $V = V^n$, we have $\gamma_1 \simeq_n \gamma_0$. Therefore the fixed field of H is $\mathbf{k}_{\wp}(\sqrt[n]{\gamma_0})$. Since $\gamma_0 \simeq_n \gamma_1 \simeq_n \gamma_2$ then nis the smallest positive value of x such that $\gamma_0^x \simeq_n 1$.

If β is *n*-primary then β is in $W_{\wp}(1)$ and $\mathbf{k}_{\wp}(\sqrt[n]{\beta})/\mathbf{k}_{\wp}$ is unramified. Therefore β is in the fixed field of H, so β is in $\mathbf{k}_{\wp}(\sqrt[n]{\gamma_0})$, and therefore $\beta \simeq_n \gamma_0^x$ for some x by lemma 8.3. Put $\beta = \alpha^n \gamma_0^x$. Since γ_0 and β are both in $W_{\wp}(1)$ then $\alpha^n = 1 \pmod{\wp}$, so $\alpha = 1 \pmod{\wp}$ by lemma 11.6. We have shown that the image in $W_{\wp}(1)/W_{\wp}(1)^n$ of an *n*-primary element is a coset $(\gamma_0)^x W_{\wp}(1)^n$ and that n is the smallest positive value of x such that γ_0^x is in $W_{\wp}(1)^n$. Therefore the image of the *n*-primary elements is the cyclic group of order n generated by the image of γ_0 . This concludes the proof of lemma 11.9.

LEMMA 11.10. With the hypothesis of lemma 11.8, choose a fixed element π so that $\wp = (\pi)$. Put

$$W_{\pi} = \left\{ \alpha \in W_{\wp}(1) \mid \left(\frac{\pi, \alpha}{\wp} \right)_n = 1 \right\}.$$

Let γ_0 in $W_{\wp}(1)$ be a generator of group the n-primary elements modulo $W_{\wp}(1)^n$ and let $\overline{\gamma_0}$ be the coset $\gamma_0 W_{\wp}(1)^n$. Then $W_{\wp}(1)/W_{\wp}(1)^n$ is a direct product

$$\frac{W_{\wp}(1)}{W_{\wp}(1)^n} = \frac{W_{\pi}}{W_{\wp}(1)^n} \times \langle \overline{\gamma_0} \rangle.$$

PROOF. Suppose that α is *n*-primary and in W_{π} . Then $\left(\frac{\beta,\alpha}{\wp}\right)_n = 1$ for every element β of \mathbf{k}_{\wp}^* , and in particular for a set of generators $\beta_1, \ldots, \beta_{d+2}$ generators of $\mathbf{k}_{\wp}/(\mathbf{k}_{\wp}^*)^n$. Therefore for $1 \leq i \leq d+2$, the norm residue symbols $\left(\frac{\alpha, \mathbf{k}_{\wp}(\sqrt[n]{\beta_i})/\mathbf{k}_{\wp}}{\wp}\right)_n$ are trivial, so $\left(\frac{\alpha, \mathbf{k}_{\wp}(\sqrt[n]{\beta_1}, \ldots, \sqrt[n]{\beta_{d+2}})/\mathbf{k}_{\wp}}{\wp}\right)_n$ is trivial by lemma 8.5, and therefore α is in $(\mathbf{k}_{\wp}^*)^n \cap W_{\wp}(1)$. Then $\alpha = v^n u^n$ with v in V and u in $W_{\wp}(1)$. We have $v^n = 1 \pmod{\wp}$, so v = 1, and therefore α is in $W_{\wp}(1)^n$. We have shown that $W_{\wp}(1)/W_{\wp}(1)^n \cap \langle \overline{\gamma_0} \rangle$ is a trivial group.

Now suppose that α is an arbitrary element of $W_{\wp}(1)$. It remains to show that W_{π} and γ_0 generate $W_{\wp}(1)$ modulo $W_{\wp}(1)^n$. Since $\mathbf{k}_{\wp}(\sqrt[n]{\gamma_0})$ has degree n over \mathbf{k}_{\wp} then there exists an element β in \mathbf{k}_{\wp}^* such that $\left(\frac{\beta,\gamma_0}{\wp}\right)_n$ is a primitive n-th root of unity. Let $\beta = \pi^b v u$. Then $\left(\frac{\beta,\gamma_0}{\wp}\right)_n = \left(\frac{\pi,\gamma_0}{\wp}\right)_n^b$, so $\left(\frac{\pi,\gamma_0}{\wp}\right)_n$ must be a primitive n-th root of unity. There exists an a so that $\left(\frac{\pi,\alpha}{\wp}\right)_n = \left(\frac{\pi,\gamma_0}{\wp}\right)_n^a$. We have $\alpha = (\alpha\gamma_0^{-a})\gamma^a$. Then $\alpha\gamma_0^{-a}$ is in W_{π} because $\left(\frac{\pi,\alpha\gamma_0^{-a}}{\wp}\right)_n = \left(\frac{\pi,\alpha}{\wp}\right)_n \left(\frac{\pi,\gamma_0}{\wp}\right)_n^{-a} = 1$. This completes the proof of the lemma.

The computation of the norm residue symbol for p^x -th powers has been reduced to the following. An element α of \mathbf{k}_{\wp}^* may be expressed as $x = \pi^a v w$ where v is in V and w is in $W_{\wp}(1)$. Let $w \simeq_n u \gamma_0^{a'}$ with u in W_{π} . Likewise, let β in \mathbf{k}_{\wp}^* be expressed as $\beta = \pi^b v' w'$ where v' is in V and $w' \simeq_n u' \gamma_0^{b'}$ with u' in W_{π} . Then

$$\left(\frac{x,y}{\wp}\right)_n = \left(\frac{\pi^a \upsilon u \gamma_0^{a'}, \pi^b \upsilon' u' \gamma_0^{b'}}{\wp}\right)_n = \left(\frac{\pi,\pi}{\wp}\right)_n^{ab} \left(\frac{\pi,\gamma_0}{\wp}\right)_n^{ab'} \left(\frac{u,u'}{\wp}\right)_n \left(\frac{\gamma_0,\pi}{\wp}\right)_n^{ba'}$$

Therefore

$$\left(\frac{x,y}{\wp}\right)_n = \left(\frac{\pi,-1}{\wp}\right)_n^{ab} \left(\frac{\pi,\gamma_0}{\wp}\right)_n^{ab'-ba'} \left(\frac{u,u'}{\wp}\right)_n$$

The problems that remain are essentially two.

- (1) Find a generator γ_0 for the *n*-primary elements and calculate $\left(\frac{\pi,\gamma_0}{\wp}\right)_n$.
- (2) Find a basis v_1, \ldots, v_d of W_{π} modulo $W_{\wp}(1)^n$ and calculate $\left(\frac{v_i, v_j}{\wp}\right)_n$.

The *p*-primary elements for odd primes. We specialize to the case n = pand p > 2. Let $\mathbf{k} = \mathbf{Q}(\zeta)$ where ζ is a primitive *p*-th root of unity. Then $[\mathbf{k} : \mathbf{Q}] = p - 1$. The prime (p) is completely ramified in \mathbf{k} ; if $\pi = 1 - \zeta$ then $(p) = \wp^{p-1}$ where $\wp = (\pi)$. We have $[\mathbf{k}_{\wp} : \mathbf{Q}_{(p)}] = p - 1$ with ramification index e = p - 1; since f = 1 then the rational integers $0, 1, \ldots, p - 1$ are a complete residue system for \mathbf{o}_{\wp}/\wp .

LEMMA 11.11. $[W_{\wp}(1):W_{\wp}(k+1)] = p^k$

PROOF. Every element of $W_{\wp}(1)$ may be uniquely represented modulo π^{k+1} by $1 + a_1\pi + a_2\pi^2 + \cdots + a_k\pi^k$ with coefficients a_i belonging to a complete residue system for \mathbf{o}_{\wp}/\wp . There are p^k choices for the coefficients a_1, \ldots, a_k .

LEMMA 11.12. $W_{\wp}(1)^p = W_{\wp}(p+1)$

PROOF. Let $b = \operatorname{ord}_{\wp}(p)$. By lemma 4.13, every element x of \mathbf{k}_{\wp} such that $\operatorname{ord}_{\wp}(x) > b/(p-1) + \operatorname{ord}_{\wp}(p)$ is the *p*-th power of some element y in \mathbf{k}_{\wp} such that $\operatorname{ord}_{\wp}(y) > b/(p-1)$. Since $\operatorname{ord}_{\wp}(p) = p - 1$, then every x such that $\operatorname{ord}_{\wp}(x) > p$ is the *p*-th power of some y such that $\operatorname{ord}_{\wp}(y) > 1$, that is $W_{\wp}(p+1) \subset W_{\wp}(2)^p$. Let $V_p = \langle \zeta \rangle$ be the group of *p*-power roots of unity. Since $\zeta = 1 \pmod{\wp}$ then

$$W_{\wp}(p+1) \subset W_{\wp}(2)^p \subset \left(W_{\wp}(2)V_p\right)^p \subset W_{\wp}(1)^p \subset W_{\wp}(1)$$

By lemma 11.8 and lemma 11.11, subgroups $W_{\wp}(p+1)$ and $W_{\wp}(1)^p$ both have index p^p in $W_{\wp}(1)$, so the two must coincide.

LEMMA 11.13. If element α of \mathbf{k}_{\wp} is in $W_{\wp}(p)$ then $\frac{\sqrt[p]{\alpha}-1}{\pi}$ is integral over \mathbf{o}_{\wp} . PROOF. The element in question is a root of polynomial $(p\pi)^{-1}((\pi x+1)^p - \alpha)$ having coefficients in \mathbf{k}_{\wp} , and

$$\frac{(\pi x+1)^p - \alpha}{p\pi} = \frac{\pi^p}{p\pi} x^p + \frac{\binom{p}{1}\pi^{p-1}}{p\pi} x^{p-1} + \dots + \frac{\binom{p}{p-1}\pi}{p\pi} x + \frac{1-\alpha}{p\pi}.$$

The leading coefficient is a unit and the other coefficients except possibly the constant term are elements of \mathbf{o}_{\wp} . If $\alpha = 1 \pmod{\wp^p}$ then the constant term is also in \mathbf{o}_{\wp} .

LEMMA 11.14. Let α of \mathbf{k}_{\wp} be in $W_{\wp}(1)$. Then α is p-primary if and only if α is in $W_{\wp}(p)$.

PROOF. Let P be the group of p-primary elements in $W_{\wp}(1)$. Then we have $[W_{\wp}(1) : W_{\wp}(1)^p] = p^p$ and $[P : W_{\wp}(1)^p] = p$ by lemma 11.8 and lemma 11.9, so $[W_{\wp}(1) : P] = p^{p-1}$. Also we have $[W_{\wp}(1) : W_{\wp}(p)] = p^{p-1}$ by lemma 11.11, so it will be enough to show that $W_{\wp}(p)$ is contained in P, *i.e.* $\mathbf{k}_{\wp}(\sqrt[p]{\alpha})/\mathbf{k}_{\wp}$ is unramified if $\alpha = 1 \pmod{\wp^p}$. Let τ be an automorphism in the inertial subgroup of $G(\mathbf{k}_{\wp}(\sqrt[p]{\alpha}) : \mathbf{k}_{\wp})$, and let $\tau(\sqrt[p]{\alpha}) = \zeta'\sqrt[p]{\alpha}$ where ζ' is a p-th root of unity. (We need to show that ζ' must be 1.) Let \wp' be the prime of $\mathbf{k}_{\wp}(\sqrt[p]{\alpha})$ dividing \wp . Then $\tau(\gamma) = \gamma \pmod{\wp'}$ for every γ that is integral over \mathbf{o}_{\wp} . The element $(\sqrt[p]{\alpha} - 1)/\pi$ is integral over \mathbf{o}_{\wp} by lemma 11.13, so we have

$$\frac{\zeta'\sqrt[p]{\alpha}-1}{\pi} = \frac{\sqrt[p]{\alpha}-1}{\pi} \pmod{\wp'}.$$

Therefore

$$\frac{(\zeta'-1)\sqrt[p]{\alpha}}{\pi} = 0 \pmod{\wp'}.$$

If $\zeta' \neq 1$ then $(\zeta' - 1)/\pi$ is a unit, but that is impossible since $\sqrt[p]{\alpha}$ is also a unit. This shows that $\zeta' = 1$, the inertial group is trivial, and $\mathbf{k}_{\wp}(\sqrt[p]{\alpha})/\mathbf{k}_{\wp}$ is unramified, which concludes the proof.

LEMMA 11.15. With $\pi = 1 - \zeta$ we have

$$\zeta^i = 1 - i\pi (mod \ \wp^2)$$
 and $\frac{\pi^{p-1}}{p} = -1 (mod \ \wp).$

PROOF. Since $\zeta = 1 \pmod{p}$ then, for $1 \leq i < p$, we have

$$\frac{1-\zeta^i}{1-\zeta} = 1+\zeta+\dots+\zeta^{i-1} = i \pmod{\wp},$$

so $1 - \zeta^i = i\pi \pmod{\wp^2}$, which establishes the first conclusion. For the second, substitute x = 1 in $x^{p-1} + \cdots + x + 1 = (x - \zeta)(x - \zeta^2) \dots (x - \zeta^{p-1})$ to obtain

(11.3)
$$p = (1 - \zeta)(1 - \zeta^2) \dots (1 - \zeta^{p-1}).$$

Therefore

$$\frac{\pi^{p-1}}{p} = \frac{(1-\zeta)(1-\zeta) \dots (1-\zeta)}{(1-\zeta)(1-\zeta^2) \dots (1-\zeta^{p-1})} = \frac{1}{(p-1)!} (\text{mod } \wp).$$

Since $(p-1)! = -1 \pmod{p}$ then the second conclusion follows.

LEMMA 11.16. If α in \mathbf{k}_{\wp} is a p-primary element, there is a rational integer a such that $0 \leq a < p$ and $\alpha = 1 + ap\pi \pmod{\wp^{p+1}}$. With $\pi = 1 - \zeta$, we have

$$\left(\frac{\pi,\alpha}{\wp}\right)_p = \zeta^a.$$

PROOF. Let α be *p*-primary. There is an integer *a* so that $\alpha = 1 + ap\pi$ modulo \wp^{p+1} since the integers $0, 1, \ldots, p-1$ are a complete residue system for \mathbf{o}_{\wp}/\wp . We can choose an element α' in **k** that is sufficiently close to α so that $\alpha' \simeq_p \alpha$ and $\alpha' = \alpha \pmod{\wp^{p+1}}$, so we may assume that α is in **k**. In that case, put $\mathbf{K} = \mathbf{k} \binom{p}{\alpha}$ and let \wp' be a prime of **K** dividing \wp . If α is *p*-primary then \wp is unramified in **K** so in the completion we have $\wp' = \wp \mathbf{O}_{\wp'}$ and therefore $\wp' = (\pi)$. Put

$$\sqrt[p]{\alpha} = 1 + b\pi$$
 where $b \in \mathbf{O}_{\wp'}$.

Then

$$\alpha = (1 + b\pi)^p = 1 + pb\pi + b^p \pi^p \left(\mod \wp'^{p+1} \right).$$

By lemma 11.15, $\pi^p = -p\pi \pmod{\wp^{p+1}}$, so $\pi^p = -p\pi \pmod{\wp'^{p+1}}$, and

$$\alpha = 1 + pb\pi - b^p p\pi \left(\mod \wp'^{p+1} \right).$$

Therefore we have

(11.4)
$$a = b - b^p \pmod{\wp'}.$$

Let $\left(\frac{\pi,\alpha}{\wp}\right)_p \sqrt[p]{\alpha} = \zeta^{a'} \sqrt[p]{\alpha}$. Since **K**/**k** is unramified then we have

$$\left(\frac{\pi, \mathbf{K}/\mathbf{k}}{\wp}\right) = \phi_{\mathbf{K}/\mathbf{k}} \left(\mathbf{i}(\pi, \wp, \mathbf{k})\right) = \left(\frac{\mathbf{K}/\mathbf{k}}{\wp}\right).$$

and therefore for any β in $\mathbf{O}_{\wp'}$ we have

$$\left(\frac{\pi, \mathbf{K}/\mathbf{k}}{\wp}\right)\beta = \beta^{\mathsf{N}\wp} = \beta^p (\mathrm{mod} \ \wp').$$

Choose $\beta = (\sqrt[p]{\alpha} - 1)/\pi$, which is in $\mathbf{O}_{\wp'}$ by lemma 11.13. Then

$$\left(\frac{\pi, \mathbf{K}/\mathbf{k}}{\wp}\right)\beta = \frac{\zeta^{a'}\sqrt[p]{\alpha} - 1}{\pi},$$

$$\frac{\zeta^{a'}\sqrt[p]{\alpha}-1}{\pi} = \left(\frac{\sqrt[p]{\alpha}-1}{\pi}\right)^p = b^p \pmod{\wp'}.$$

We have $\zeta^{a'} = 1 - a' \pi \pmod{\wp^2}$ by lemma 11.15, so

$$\frac{(1-a'\pi)(1+b\pi)-1}{\pi} = b^p \pmod{\wp'}.$$

This shows that $-a' + b = b^p \pmod{\wp'}$, or $a' = b - b^p \pmod{\wp'}$. Comparison with (11.4) shows $a = a' \pmod{\wp'}$. Both a and a' are rational integers, so have

$$a = a' \pmod{p},$$

which completes the proof of the lemma.

We have solved the first basic problem for prime p. The generator of the p-primary elements modulo $W_{\wp}(1)^p = W_{\wp}(p+1)$ is $\gamma_0 = 1 + p\pi$, and

$$\left(\frac{\pi, \gamma_0}{\wp}\right)_p = \zeta \qquad \text{where } \pi = 1 - \zeta.$$

Generators of $W_{\pi}/W(1)^p$ and the *p*-th power reciprocity law. If we can find a set of generators $u_1, \ldots u_{p-1}$ for $W_{\wp}(1)/W_{\wp}(p)$, then every element α of $W_{\wp}(1)$ will be expressible as $\alpha = u_1^{t_1} \ldots u_{p-1}^{t_{p-1}} \gamma_0^{t_0} \pmod{\wp^{p+1}}$, so if $\left(\frac{\pi, u_i}{\wp}\right) = \zeta^{c_i}$ then we will have

$$W_{\pi} = \left\{ \alpha \in W_{\wp}(1) \mid c_1 t_1 + \dots c_{p-1} t_{p-1} + t_0 = 0 \pmod{p} \right\}.$$

The constants c_i will be determined in the last section.

LEMMA 11.17. If r is a primitive root modulo p then

$$r^{i} \prod_{\substack{k=1 \ k \neq i}}^{p-1} (r^{i} - r^{k}) = -1 \pmod{p}.$$

PROOF. Since r, r^2, \ldots, r^{p-1} form a reduced residue system modulo p, then

$$\prod_{k=1}^{p-1} (x - r^k) = x^{p-1} - 1 \pmod{p}.$$

Then

$$\frac{d}{dx} \prod_{k=1}^{p-1} (x - r^k) = \frac{d}{dx} \left(x^{p-1} - 1 \right) \pmod{p},$$
$$\sum_{\ell=1}^{p-1} \prod_{\substack{k=1\\k \neq \ell}}^{p-1} (x - r^k) = (p-1)x^{p-2} \pmod{p}.$$

Set $x = r^i$ and multiply both sides by r^i to obtain the desired result.

$$r^{i} \prod_{\substack{k=1\\k\neq i}}^{p-1} (r^{i} - r^{k}) = (p-1)r^{i(p-1)} = -1 \pmod{p}.$$

LEMMA 11.18. Let σ be a generator of $G(\mathbf{k}_{\wp} : \mathbf{Q}_{(p)})$ and let $\zeta^{\sigma} = \zeta^{r}$. Then r is a primitive root modulo p. For $i = 1, \ldots, p - 1$, set

$$u_i = (1 - \pi^i)^{-r^i(\sigma - r)(\sigma - r^2)\dots(\sigma - r^{i-1})(\sigma - r^{i+1})\dots(\sigma - r^{p-1})}$$

Then

$$u_i^{\sigma} \simeq_p u_i^{r_i}$$
 and $u_i = 1 - \pi^i (mod \ \wp^{i+1})$.

PROOF. If f(x) and g(x) are polynomials in $\mathbb{Z}[x]$ and $f(x) = g(x) \pmod{p}$ then $\alpha^{f(\sigma)} \simeq_p \alpha^{g(\sigma)}$ for α in \mathbf{k}^* . Since $f(x) = (x-r)(x-r^2) \dots (x-r^{p-1})$ is a polynomial of degree p-1 having roots $1, 2, \dots, p-1$, modulo p, then $f(x) = x^{p-1} - 1 \pmod{p}$. Therefore $\alpha^{f(\sigma)} \simeq_p 1$. We have $u_i^{\sigma-r^i} = (1-\pi^i)^{-r^i f(\sigma)} \simeq_p 1$, so $u_i^{\sigma} \simeq_p u^{r^i}$, which is the first part of the lemma. For the second part, we have $\pi = 1 - \zeta$, so

$$\pi^{\sigma} = 1 - \zeta^{\sigma} = 1 - \zeta^{r} = \left(1 - (1 - \pi)^{r}\right) = r\pi \pmod{\wp^{2}}.$$

Put $\pi^{\sigma} = r\pi + \beta \pi^{2}$. Then $(\pi^{\sigma})^{i} = (r\pi + \beta \pi^{2})^{i} = r^{i}\pi^{i} \pmod{\wp^{i+1}}$, so
 $(\pi^{i})^{\sigma} = r^{i}\pi^{i} \pmod{\wp^{i+1}}.$

Before proceeding further, we make the following observation. If j_1, \ldots, j_{s+1} are any given integers, then we have

$$(1 + r^{i}(r^{i} - r^{j_{1}}) \dots (r^{i} - r^{j_{s}})\pi^{i})^{\sigma - r^{j_{s+1}}}$$

$$= (1 + r^{i}(r^{i} - r^{j_{1}}) \dots (r^{i} - r^{j_{s}})\pi^{i})^{\sigma} (1 + r^{i}(r^{i} - r^{j_{1}}) \dots (r^{i} - r^{j_{s}})\pi^{i})^{-r^{j_{s+1}}}$$

$$= (1 + r^{i}(r^{i} - r^{j_{1}}) \dots (r^{i} - r^{j_{s}})r^{i}\pi^{i})$$

$$(1 - r^{i}(r^{i} - r^{j_{1}}) \dots (r^{i} - r^{j_{s}})r^{j_{s+1}}\pi^{i})^{-1} (\text{mod } \wp^{i+1})$$

$$= (1 + r^{i}(r^{i} - r^{j_{1}}) \dots (r^{i} - r^{j_{s}})(r^{i} - r^{j_{s+1}})\pi^{i}) (\text{mod } \wp^{i+1})$$

134

or

To compute u_i , we start from $(1 - \pi^i)^{-r^i} = 1 + r^i \pi^i \pmod{\wp^{i+1}}$, then successively apply $\sigma - r$, $\sigma - r^2$, up to $\sigma - r^{p-1}$, but omit $\sigma - r^i$. By applying the above observation at each step, we arrive at

$$u_i = \left(1 + r^i (r^i - r) \dots (r^i - r^{i-1}) (r^i - r^{i+1}) \dots (r^i - r^{p-1}) \pi^i\right) (\text{mod } \wp^{i+1}).$$

By lemma 11.17, we obtain $u_i = 1 - \pi^i \pmod{\wp^{i+1}}$, which completes the proof.

LEMMA 11.19. For $1 \le i \le p-1$ and $1 \le j \le p-1$, we have

$$\left(\frac{u_i, u_j}{\wp}\right)_p = \begin{cases} \zeta^{-i} & \text{if } i+j=p\\ 0 & \text{if } i+j\neq p \end{cases}$$

PROOF. We apply automorphisms on the left in this proof, so we have $\sigma\zeta = \zeta^r$ and $\sigma u_i \simeq_p u_i^{r^i}$. First, we have

(11.5)
$$\left(\frac{\sigma u_i, \sigma u_j}{\wp}\right)_p = \left(\frac{u_i^{r^i}, u_j^{r^j}}{\wp}\right)_p = \left(\frac{u_i, u_j}{\wp}\right)_p^{r^{i+j}}$$

We also have

$$\left(\frac{\sigma u_i, \sigma u_j}{\wp}\right)_p \sqrt[p]{\sigma u_j} = \left(\frac{\sigma u_i, \mathbf{k}\left(\sqrt[p]{\sigma u_j}\right)/\mathbf{k}}{\wp}\right)_p \sqrt[p]{\sigma u_j}.$$

Automorphism $\sigma : \mathbf{k} \to \mathbf{k}$ may be extended to an isomorphism $\sigma : \mathbf{k} \left(\sqrt[p]{u_j} \right) \to \mathbf{k} \left(\sqrt[p]{\sigma u_j} \right)$. (In the notation of lemma 10.43, we have $\mathbf{K} = \mathbf{k} \left(\sqrt[p]{u_j} \right), \mathbf{K}' = \mathbf{k} \left(\sqrt[p]{\sigma u_j} \right)$, $\mathbf{k}' = \mathbf{k}$, and $\wp' = \wp$.) Since $\left(\sigma \sqrt[p]{u_j} \right)^p = \sigma u_j$, then $\sigma \sqrt[p]{u_j}$ is a root of $x^p - \sigma u_j$, and we may write $\sigma \sqrt[p]{u_j} = \sqrt[p]{\sigma u_j}$. (The particular choice of $\sqrt[p]{\sigma u_j}$ determines the extension of σ .) Using the notation of lemma 10.43, we have

$$\left(\frac{\sigma u_i, \mathbf{k}\left(\frac{p}{\sqrt{\sigma u_j}\right)/\mathbf{k}}{\wp}\right) = \left(\frac{u_i', \mathbf{K}'/\mathbf{k}'}{\wp'}\right)$$
$$= \sigma\left(\frac{u_i, \mathbf{K}/\mathbf{k}}{\wp}\right)\sigma^{-1} = \sigma\left(\frac{u_i, \mathbf{k}\left(\frac{p}{\sqrt{u_j}}\right)/\mathbf{k}}{\wp}\right)\sigma^{-1}$$

Therefore

$$\left(\frac{\sigma u_i, \mathbf{k} \left(\sqrt[p]{\sigma u_j} \right) / \mathbf{k}}{\wp} \right) \sqrt[p]{\sigma u_j} = \sigma \left(\frac{u_i, \mathbf{k} \left(\sqrt[p]{u_j} \right) / \mathbf{k}}{\wp} \right) \sigma^{-1} \left(\sigma \sqrt[p]{u_j} \right)$$
$$= \sigma \left(\left(\frac{u_i, u_j}{\wp} \right) \sqrt[p]{u_j} \right) = \left(\frac{u_i, u_j}{\wp} \right)_p^r \sqrt[p]{\sigma u_j}$$

or

$$\left(\frac{\sigma u_i, \sigma u_j}{\wp}\right)_p = \left(\frac{u_i, u_j}{\wp}\right)_p^r$$

Comparison with (11.5) shows that

$$\left(\frac{u_i, u_j}{\wp}\right)_p^r = \left(\frac{u_i, u_j}{\wp}\right)_p^{r^{i+j}}$$

If $\left(\frac{u_i, u_j}{\wp}\right) \neq 1$, then we must have $r = r^{i+j} \pmod{p}$, so $1 = i + j \pmod{p-1}$. For i and j in the range $1 \leq i \leq p-1$ and $1 \leq j \leq p-1$, the only value of i+j which satisfies the condition $1 = i + j \pmod{p-1}$ is i+j=p. So far, we have established that

$$\left(\frac{u_i, u_j}{\wp}\right)_p = 0$$
 if $i + j \neq p$.

We need to compute $\left(\frac{u_i, u_{p-i}}{\wp}\right)_p$. Since $u_k = 1 - \pi^k \pmod{\wp^{k+1}}$ for $1 \le k < p$, and $\gamma_0 = 1 + p\pi$, then we can find integers a_k for $i+1 \le k \le p$ such that $0 \le a_k < p$ and

$$1 - \pi^{i} = u_{i} u_{i+1}^{a_{i+1}} \dots u_{p-1}^{a_{p-1}} \gamma_{0}^{a_{p}} \pmod{p^{p+1}}$$

Likewise, we can find integers b_{ℓ} for $p - i + 1 \leq \ell \leq p$ such that $0 \leq b_{\ell} < p$ and

$$1 - \pi^{p-i} = u_{p-i} u_{p-i+1}^{b_{p-i+1}} \dots u_{p-1}^{b_{p-1}} \gamma_0^{b_p} \pmod{\wp^{p+1}}.$$

Since $\left(\frac{u_i, u_j}{\wp}\right)_p = 0$ unless i + j = p, and since γ_0 is *p*-primary, we have

(11.6)
$$\begin{pmatrix} \frac{1-\pi^{i}, 1-\pi^{p-i}}{\wp} \end{pmatrix}_{p} = \left(\frac{u_{i}u_{i+1}^{a_{i+1}} \dots u_{p-1}^{a_{p-1}}\gamma_{0}^{a_{p}}, u_{p-i}u_{p-i+1}^{b_{p-i+1}} \dots u_{p-1}^{b_{p-1}}\gamma_{0}^{b_{p}}}{\wp} \right)_{p} = \left(\frac{u_{i}, u_{p-i}}{\wp} \right)_{p}.$$

The problem now is to compute $\left(\frac{1-\pi^i, 1-\pi^{p-i}}{\wp}\right)_p$. Suppose that $\alpha + \beta = \gamma$, and put $\mu = \alpha/\gamma$. Then $1 - \mu = \beta/\gamma$. By lemma 10.6(f), we have

$$1 = \left(\frac{1-\mu,\mu}{\wp}\right)_p = \left(\frac{\frac{\beta}{\gamma},\frac{\alpha}{\gamma}}{\wp}\right)_p = \left(\frac{\beta,\alpha}{\wp}\right)_p \left(\frac{\beta,\gamma}{\wp}\right)_p^{-1} \left(\frac{\gamma,\alpha}{\wp}\right)_p^{-1} \left(\frac{\gamma,\gamma}{\wp}\right)_p$$

Since $\left(\frac{\gamma,\gamma}{\wp}\right)_p = 1$ for p > 2, we have

$$\left(\frac{\beta,\alpha}{\wp}\right)_p = \left(\frac{\beta,\gamma}{\wp}\right)_p \left(\frac{\gamma,\alpha}{\wp}\right)_p$$

Choose $\alpha = \pi^{p-i}(1-\pi^i)$ and $\beta = 1-\pi^{p-i}$. Then $\gamma = 1-\pi^p$, and we have

$$\left(\frac{1-\pi^{p-i},\pi^{p-i}(1-\pi^{i})}{\wp}\right)_{p} = \left(\frac{1-\pi^{p-i},1-\pi^{p}}{\wp}\right)_{p} \left(\frac{1-\pi^{p},\pi^{p-i}(1-\pi^{i})}{\wp}\right)_{p}.$$

Apply lemma 10.6(f) to the left side, and apply the fact that $1 - \pi^p$ is *p*-primary (annihilates units) to the right to obtain

$$\left(\frac{1-\pi^{p-i},1-\pi^i}{\wp}\right)_p = \left(\frac{1-\pi^p,\pi^{p-i}}{\wp}\right)_p.$$

We have $1 - \pi^p = 1 + p\pi \pmod{p^{p+1}}$ by lemma 11.15, so

$$\left(\frac{1-\pi^i, 1-\pi^{p-i}}{\wp}\right)_p = \left(\frac{\pi^{p-i}, 1+p\pi}{\wp}\right)_p.$$

Apply (11.6) on the left side, and apply lemma 11.16 on the right to obtain

$$\left(\frac{u_i, u_{p-i}}{\wp}\right)_p = \zeta^{p-i} = \zeta^{-i}.$$

The completes the proof of lemma 11.19.

THEOREM 11.20 - RECIPROCITY LAW FOR ODD PRIME POWERS. If α and β are elements of $W_{\wp}(1)$, then let a_i and b_i $(1 \le i < p)$ be integers such that $0 \le a_i < p$ and $0 \le b_i < p$ and

$$\alpha = u_1^{a_1} \dots u_{p-1}^{a_{p-1}} (mod \ \wp^p) \quad and \quad \beta = u_1^{b_1} \dots u_{p-1}^{b_{p-1}} (mod \ \wp^p).$$

Then

$$\left(\frac{\alpha}{\beta}\right)_p \left(\frac{\beta}{\alpha}\right)_p^{-1} = \zeta^{-\sum_{i=1}^{p-1} ia_i b_{p-i}}$$

PROOF. Since α and $u_1^{a_1} \dots u_{p-1}^{a_{p-1}}$ differ only by a factor that is *p*-primary, and likewise for β and $u_1^{b_1} \dots u_{p-1}^{b_{p-1}}$, then we have

$$\left(\frac{\alpha}{\beta}\right)_p \left(\frac{\beta}{\alpha}\right)_p^{-1} = \left(\frac{\alpha,\beta}{\wp}\right)_p = \prod_{i=1}^{p-1} \prod_{j=1}^{p-1} \left(\frac{u_i, u_j}{\wp}\right)_p^{a_i b_j}$$
$$= \prod_{i=1}^{p-1} \left(\frac{u_i, u_{p-i}}{\wp}\right)_p^{a_i b_{p-i}} = \prod_{i=1}^{p-1} \zeta^{-ia_i b_{p-i}} = \zeta^{-\sum_{i=1}^{p-1} ia_i b_{p-i}}$$

Computation of symbols $\left(\frac{\pi, u_i}{\wp}\right)_p$.

LEMMA 11.21.

$$\left(\frac{p, u_i}{\wp}\right)_p = 1$$
 for $i = 1, \dots, p-1$

PROOF. By lemma 11.18, we have

(10.7)
$$\left(\frac{p,\sigma u_i}{\wp}\right)_p = \left(\frac{p,u_i^{r^i}}{\wp}\right)_p = \left(\frac{p,u_i}{\wp}\right)_p^{r^i}.$$

We can compute $\left(\frac{p,\sigma u_i}{\wp}\right)_p$ in another way using lemma 10.43. Proceeding as in the proof of lemma 11.19, we have $\sqrt[p]{\sigma u_i} = \sigma \sqrt[p]{u_i}$ and

$$\left(\frac{p,\mathbf{k}(\sqrt[p]{\sigma u_i})/\mathbf{k}}{\wp}\right)_p = \sigma\left(\frac{p,\mathbf{k}(\sqrt[p]{u_i})/\mathbf{k}}{\wp}\right)_p \sigma^{-1},$$

 \mathbf{SO}

$$\left(\frac{p,\mathbf{k}(\sqrt[p]{\sigma u_i})/\mathbf{k}}{\wp}\right)_p \sqrt[p]{\sigma u_i} = \sigma \left(\frac{p,\mathbf{k}(\sqrt[p]{u_i})/\mathbf{k}}{\wp}\right)_p \sqrt[p]{u_i}$$

Therefore

$$\left(\frac{p,\sigma u_i}{\wp}\right)_p \sqrt[p]{\sigma u_i} = \sigma \left(\left(\frac{p,u_i}{\wp}\right)_p \sqrt[p]{u_i}\right) = \left(\frac{p,u_i}{\wp}\right)_p^r \sqrt[p]{\sigma u_i}.$$

Comparison with (10.7) shows that $\left(\frac{p,u_i}{\wp}\right)_p^r = \left(\frac{p,u_i}{\wp}\right)_p^r$. If $\left(\frac{p,u_i}{\wp}\right)_p \neq 1$ then we must have $r = r^i \pmod{p}$, or i = 1.

It remains to prove the lemma in the case i = 1. We have $1 - \pi = \zeta$, and by lemma 11.17 with i = 1 we have $r(r - r^2) \dots (r - r^{p-1}) = -1 \pmod{p}$, so

(10.8)
$$u_1 = \zeta^{-r(\sigma - r^2) \dots (\sigma - r^{p-1})} = \zeta^{-r(r - r^2) \dots (r - r^{p-1})} = \zeta.$$

We have $p = (1 - \zeta)(1 - \zeta^2) \dots (1 - \zeta^{p-1})$, so the lemma is proved if $\left(\frac{1 - \zeta^j, \zeta}{\wp}\right)_p = 1$ for $1 \le j < p$. For each j there is a j' so that $jj' = 1 \pmod{p}$, and

$$\left(\frac{1-\zeta^j,\zeta}{\wp}\right)_p = \left(\frac{1-\zeta^j,\zeta^{jj'}}{\wp}\right)_p = \left(\frac{1-\zeta^j,\zeta^j}{\wp}\right)_p^{j'} = 1.$$

This completes the proof of the lemma.

LEMMA 11.22. Put $\xi = -\frac{\pi^{p-1}}{p}$. Then

$$\left(\frac{\pi, u_i}{\wp}\right)_p = \left(\frac{\xi, u_i}{\wp}\right)_p \quad \text{for } 1 \le i < p.$$

PROOF. Since p is odd then $-1 = (-1)^p$, so by lemma 11.21 we have

$$\left(\frac{\pi, u_i}{\wp}\right)_p = \left(\frac{\pi^{p-1}, u_i}{\wp}\right)_p^{-1} = \left(\frac{-\pi^{p-1}/p, u_i}{\wp}\right)_p^{-1} = \left(\frac{\xi, u_i}{\wp}\right)_p^{-1},$$

which proves the lemma.

For any α in $W_{\pi}(1)$, let $t_1(\alpha), \ldots, t_{p-1}(\alpha)$ be the unique integers satisfying

(11.9)
$$\alpha = u_1^{t_1(\alpha)} \dots u_{p-1}^{t_{p-1}\alpha} \pmod{\wp^p} \quad \text{and} \ 0 \le t_i(\alpha) < p$$

Then

(11.10)
$$\left(\frac{\xi, u_i}{\wp}\right)_p = \left(\frac{u_{p-i}^{t_{p-i}(\xi)}, u_i}{\wp}\right)_p = \zeta^{it_{p-i}(\xi)}.$$

The problem is to compute $t_1(\xi), \ldots, t_{p-1}(\xi)$ for $1 \le i \le p-2$, since the next lemma shows that $t_{p-1}(\xi) = 1$.

LEMMA 11.23.

$$\left(\frac{\xi, u_1}{\wp}\right)_p = 1, \quad or \ t_{p-1}(\xi) = 0.$$

PROOF. By (11.3) and (11.8) we have

$$\left(\frac{\xi, u_i}{\wp}\right)_p = \left(\frac{-\pi^{p-1}p^{-1}, u_i}{\wp}\right)_p = \left(\frac{-1, \zeta}{\wp}\right)_p \left(\frac{1-\zeta, \zeta}{\wp}\right)_p^{p-1} \prod_{j=1}^{p-1} \left(\frac{1-\zeta^j, \zeta}{\wp}\right)_p$$

We have $-1 = (-1)^p$, and $\left(\frac{1-\zeta^j,\zeta}{\wp}\right)_p = 1$ was shown in the proof of lemma 11.21.

Kummer's logarithmic differential quotient for p > 2. Every element α in \mathbf{o}_{\wp} is a linear combination of $1, \zeta, \ldots, \zeta^{p-2}$ with coefficients in $\mathbf{Z}_{(p)}$. Suppose that $\phi(x)$ and $\psi(x)$ are polynomials over $\mathbf{Z}_{(p)}$ such that $\alpha = \phi(\zeta) = \psi(\zeta)$. Then ζ is a root of $\phi(x) - \psi(x)$, so $\phi(x) - \psi(x)$ is divisible by the minimal polynomial of ζ over $\mathbf{Z}_{(p)}$, which is $f_0(x) = x^{p-1} + \cdots + x + 1$ because $[\mathbf{Q}_{(2)}(\zeta) : \mathbf{Q}_{(2)}] = p - 1$. Let $\eta(x)$ be a polynomial with coefficients in $\mathbf{Z}_{(p)}$ such that

$$\phi(x) - \psi(x) = f_0(x)\eta(x).$$

Applying formal differentiation, we obtain

(11.11)
$$\phi^{(n)}(x) - \psi^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f_0^{(k)}(x) \eta^{(n-k)}(x) \text{ for } 0 \le n \le p-1$$

as an identity of polynomials over $\mathbf{Z}_{(p)}$.

LEMMA 11.24. Let $f_0(x) = x^{p-1} + \dots + x + 1$. Then

$$f_0^{(k)}(1) = 0 \pmod{p}$$
 for $0 \le k \le p - 2$

and

$$f_0^{(p-1)}(1) = -1 \pmod{p}.$$

PROOF. Both sides of the identity

$$(p-1)!f_0(x) = \sum_{k=0}^{p-1} f_0^{(k)}(1) \frac{(p-1)!}{k!} (x-1)^k$$

are polynomials with integer coefficients, and $f_0^{(k)}(1)$ and (p-1)!/k! are integers. We have $(x-1)f_0(x) = x^p - 1 = (x-1)^p \pmod{p}$, so $f_0(x) = (x-1)^{p-1} \pmod{p}$. Therefore

$$(p-1)!(x-1)^{p-1} = \sum_{k=0}^{p-1} f_0^{(k)}(1) \frac{(p-1)!}{k!} (x-1)^k \pmod{p}$$

The coefficients of $(x-1)^k$ for $0 \le k \le p-1$ must be identical on both sides, so

$$f_0^{(k)}(1) = 0 \pmod{p}$$
 for $0 \le k \le p - 2$,

and

$$f_0^{(p-1)}(1) = (p-1)! = -1 \pmod{p}.$$

LEMMA 11.25. If α is an element of $\mathbf{Q}_{(p)}(\zeta)$ and $\alpha = \phi(\zeta) = \psi(\zeta)$ where $\phi(x)$ and $\psi(x)$ are polynomials with coefficients in $\mathbf{Z}_{(p)}$, then

$$\phi^{(n)}(1) - \psi^{(n)}(1) = 0 \pmod{p} \quad \text{for } 0 \le n \le p - 2$$

and

$$\phi^{(p-1)}(1) - \psi^{(p-1)}(1) = -\frac{\phi(1) - \psi(1)}{p} \pmod{p}$$

PROOF. The result for $0 \le n \le p-2$ is obtained by setting x = 1 in (11.11) and applying lemma 11.24. For n = p - 1 we have

$$\phi^{(p-1)}(1) - \psi^{(p-1)}(1) = f_0^{(p-1)}(1)\eta(1) = -\eta(1) \pmod{p}.$$

We have $\phi(1) - \psi(1) = f_0(1)\eta(1)$. Since $f_0(1) = p$ then $\phi(1) - \psi(1)$ is divisible by p and $\eta(1) = (\phi(1) - \psi(1))/p$, which gives the desired result for n = p - 1.

LEMMA 11.26. Suppose that α is in $W_{\wp}(1)$ and $\alpha = \phi(\zeta) = \psi(\zeta)$. Then we have $1 = \phi(1) = \psi(1) \pmod{0}$, and

$$\phi^{(n)}(1) = \psi^{(n)}(1) \pmod{p}$$
 for $0 \le n$

and

$$\phi^{(p-1)}(1) + \frac{\phi(1) - 1}{p} = \psi^{(p-1)}(1) + \frac{\psi(1) - 1}{p} \pmod{p}$$

PROOF. Since $\alpha = 1 \pmod{\wp}$ and $\zeta = 1 \pmod{\wp}$ then we have $1 = \phi(1) = \psi(1) \pmod{\wp}$. Therefore $1 = \phi(1) = \psi(1) \pmod{\wp}$, so $\phi(1) - 1$ and $\psi(1) - 1$ are divisible by p. The results now follow immediately from lemma 11.25.

We consider the formal power series $F(z) = \log(\phi(e^z))$.

$$F(z) = \log(\phi(1)) + \frac{\phi'(1)}{\phi(1)}z + \frac{(\phi''(1) + \phi'(1))\phi(1) - \phi'(1)^2}{\phi(1)^2}z^2 + \dots$$

If $\phi(1)$ is in $W_{\wp}(1)$ then $\log(\phi(1))$ is defined, but we are actually interested only in coefficients of z^n for $1 \le n \le p-1$.

LEMMA 11.27.

$$\frac{d^n}{dz^n}F(z) = \frac{\phi^{(n)}(e^z)e^{nz}}{\phi(e^z)} + R_n(z)$$

where $R_n(z)$ is a rational expression in e^z , $\phi(e^z)$, $\phi'(e^z)$, ..., $\phi^{(n-1)}(e^z)$. The numerator of $R_n(z)$ is a sum of terms each of which is divisible by at least one of $\phi'(e^z)$, ..., $\phi^{(n-1)}(e^z)$, and the denominator is a power of $\phi(e^z)$.

PROOF. Put $w = e^z$, $u_0 = \phi(e^z)$, and $u_i = \phi^{(i)}(e^z)$ for $i \ge 0$. Then w' = w and $u'_i = u_{i+1}w$ for $i \ge 0$. We have $F(z) = \log(u_0)$, so $dF(z)/dz = u_1w/u_0$. Therefore $R_1(z) = 0$, so the conclusion holds for n = 1. For n = 2, we have

$$\frac{d^2}{dz^2}F(z) = \frac{u_2w^2}{u_0} + \frac{u_1w}{u_0} - \frac{u_1^2w^2}{u_0^2} = \frac{u_2w^2}{u_0} + \frac{u_1u_0w - u_2u_1w^2}{u_0^2}$$

so every term of the numerator of $R_2(z)$ is divisible by u_1 .

Assume that the lemma is true for n. Then

$$\frac{d^n}{dz^n}F(z) = \frac{u_n w^n}{u_0} + R_n(z)$$

and

$$R_n(z) = \frac{S_1 u_1 + \dots + S_{n-1} u_{n-1}}{u_0^{k_n}}$$

where $S_1(z), \ldots S_{n-1}(z)$ are polynomials in w, u_0, \ldots, u_{n-1} . We have

$$\frac{d}{dz}R_n(z) = \frac{\sum_{j=1}^{n-1} \left(\left(S'_j u_j + S_j u_{j+1} w \right) u_0^{k_n} - k_n S_j u_j u_0^{k_n - 1} u_1 w \right)}{u_0^{2k_n}}$$

and every term of the numerator is divisible by at least one of u_1, \ldots, u_n . Then

$$\frac{d^{n+1}}{dz^{n+1}}F(z) = \frac{u_{n+1}w^{n+1}}{u_0} + \frac{nu_nw^n}{u_0} - \frac{u_nu_1w^{n+1}}{u_0^2} + \frac{d}{dz}R_n(z) = \frac{u_{n+1}w^{n+1}}{u_0} + R_{n+1}(z)$$

We see that $R_{n+1}(z)$ is a rational expression in w, u_0, u_1, \ldots, u_n with denominator $u_0^{2k_n}$, and every term of the numerator contains at least one factor from the list u_1, \ldots, u_n , and the conclusion therefore follows.

LEMMA 11.28. If $\alpha = \phi(\zeta)$ is in $W_{\wp}(1)$, define $\ell_n(\alpha)$ by

$$\ell_n(\alpha) = \begin{cases} \frac{d^n}{dz^n} F(0) & \text{for } 1 \le n \le p-2\\ \frac{d^{(p-1)}}{dz^{(p-1)}} F(0) + \frac{\phi(1)-1}{p} & \text{for } n = p-1. \end{cases}$$

Then $\ell_n(\alpha)$ depends only on α and not on $\phi(x)$ for $1 \leq n \leq p-1$.

PROOF. By lemma 11.27, $\frac{d^n}{dz^n}F(0) = \frac{\phi^{(n)}(1)}{\phi(1)} + R_n(0)$, where $R_n(0)$ is a rational expression in $1, \phi(1), \ldots, \phi^{n-1}(1)$ with denominator a power of $\phi(1)$. By lemma 11.26, $\phi(1) = 1 \pmod{p}$ and $\ell_1(\alpha), \ldots, \ell_{p-2}(\alpha)$ depend modulo p only on α and not on $\phi(x)$. For n = p - 1, we have

$$\ell_{p-1}(\alpha) = \phi^{(p-1)}(1) + \frac{\phi(1) - 1}{p} + R_{p-1}(0) \pmod{p}.$$

By lemma 11.26, this expression depends modulo p only on α and not on $\phi(x)$.

LEMMA 11.29. For α_1 and α_2 in $W_{\wp}(1)$, we have

(1)
$$\ell_j(\alpha_1\alpha_2) = \ell_j(\alpha_1) + \ell_j(\alpha_2) (mod \ p),$$

(2)
$$\ell_j(\alpha_1\alpha_2^{-1}) = \ell_j(\alpha_1) - \ell_j(\alpha_2) (mod \ p).$$

If $\alpha_1 = \alpha_2 \pmod{\wp^{p-1}}$ then

(3)
$$\ell_j(\alpha_1) = \ell_j(\alpha_2) (mod \ p) \quad for \ 1 \le j \le p-2.$$

If $\alpha_1 = \alpha_2 (mod \ \wp^p)$ then

(4)
$$\ell_{p-1}(\alpha_1) = \ell_{p-1}(\alpha_2) (mod \ p).$$

If σ generates $G(\mathbf{Q}_{(p)}(\zeta):\mathbf{Q}_{(p)})$ and $\zeta^{\sigma} = \zeta^{r}$ then

(5)
$$\ell_j(\alpha^{\sigma}) = r^j \ell_j(\alpha) \pmod{p} \quad \text{for } 1 \le j \le p-1$$

PROOF. If $\alpha_1 = \phi_1(\zeta)$ and $\alpha_2 = \phi_2(\zeta)$ then $\alpha_1 \alpha_2 = \phi_1(\zeta)\phi_2(\zeta)$, and (1) follows from the identity of formal power series

$$\log\left(\phi_1(e^z)\phi_2(e^z)\right) = \log\left(\phi_1(e^z)\right) + \log\left(\phi_2(e^z)\right).$$

Then (2) follows from

$$\ell_j((\alpha_1\alpha_2^{-1})\alpha_2) = \ell_j(\alpha_1\alpha_2^{-1}) + \ell_j(\alpha_2) \pmod{p}.$$

As to (3), it is enough to show that if $\alpha = 1 \pmod{p^{p-1}}$ then $\ell_j(\alpha) = 0 \pmod{p}$ for $1 \le j \le p-2$. Put

$$\alpha = a_0 + \sum_{k=0}^{p-2} a_k \pi^k.$$

Then $a_0 = 1 \pmod{p}$, and $a_k = 0 \pmod{p}$ for $1 \leq k \leq p-2$. We have $\alpha = a_0 + \sum_{k=0}^{p-2} a_k (1-\zeta)^k$, so $\alpha = \phi(\zeta)$ with

$$\phi(x) = a_0 + \sum_{k=0}^{p-2} a_k (1-x)^k$$

We have $\phi(x) = 1 \pmod{p}$, and $\phi^{(n)}(x) = 0 \pmod{p}$ for $n \ge 1$. By lemma 11.27 we have

$$\ell_1(\alpha) = \dots = \ell_{p-2}(\alpha) = 0 \pmod{p}.$$

As to (4), since all derivatives of $\phi(x)$ vanish modulo p then all derivatives of $\log(\phi(e^z))$ vanish modulo p at z = 0. If $\alpha = 1 \pmod{\wp^p}$ then $a_0 = 1 \pmod{p^2}$, so we have

$$\ell_{p-1}(\alpha) = \frac{\phi(1) - 1}{p} = \frac{a_0 - 1}{p} = 0 \pmod{p}.$$

As to (5), if $\alpha = \sum_{k=0}^{p-2} b_k \zeta^k = \phi(\zeta)$ and $\zeta^{\sigma} = \zeta^r$ then $\alpha^{\sigma} = \sum_{k=0}^{p-2} b_k \zeta^{rk} = \phi(\zeta^r) = \psi(\zeta)$ where $\psi(x) = \phi(x^r)$. If $\log(\phi(e^z)) = \sum_{n=0}^{\infty} c_n z^n$, then $\log(\psi(e^z)) = \log(\phi(e^{rz})) = \sum_{n=0}^{\infty} c_n r^n z^n$. Therefore

$$\ell_j(\alpha^{\sigma}) = r^j \ell_j(\alpha) \quad \text{for } 1 \le j \le p-2.$$

For j = p - 1, we have $r^{p-1} = 1 \pmod{p}$ so we are claiming that $\ell_{p-1}(\alpha^{\sigma}) = \ell_{p-1}(\alpha) \pmod{p}$. Since all derivatives of $\log(\phi(e^z))$ vanish modulo p at z = 0, this reduces to

$$\left. \frac{\phi(x) - 1}{p} \right|_{x=1} = \left. \frac{\phi(x^r) - 1}{p} \right|_{x=1} \pmod{p}.$$

This completes the proof of lemma 11.29.

LEMMA 11.30. If α is in $W_{\wp}(1)$ and $t_1(\alpha), \ldots t_{p-1}(\alpha)$ are as in (11.9), then

$$t_j(\alpha) = \frac{(-1)^{j-1}}{j!} \ell_j(\alpha) \pmod{p} \quad \text{for } 1 \le j \le p-1$$

PROOF. We have $\ell_j(u_i^{\sigma}) = r^j \ell_j(u_i) \pmod{p}$ for $1 \leq j \leq p-1$ by lemma 11.29(5). Also, we have $u_i^{\sigma} = u_i^{r^i} \pmod{\wp^p}$ by lemma 11.18, so $\ell_j(u_i^{\sigma}) = \ell_j(u_i^{r^i}) \pmod{p}$ for $1 \leq j \leq p-2$ by lemma 11.29(3) and for j = p-1 by lemma 11.29(4). Therefore, if $\ell_j(u_i) \neq 0 \pmod{p}$ then $r^i = r^j \pmod{p}$, or i = j. Since $u_i = 1 - \pi^i \pmod{\wp^{i+1}}$ by lemma 11.18, we have

$$u_j = (1 - \pi^j) u_{j+1}^{a_{j+1}} \dots u_{p-1}^{a_{p-1}} \pmod{p},$$

so $\ell_j(u_j) = \ell_j(1 - \pi^j) \pmod{p}$. Since $1 - \pi^j = 1 - (1 - \zeta)^j$, then we take $\phi(x) = 1 - (1 - x)^j$. Then

$$\phi(e^z) = 1 - (1 - e^z)^j = 1 + (-1)^{j-1} z^j + \dots$$

 \mathbf{SO}

$$\log\left(\phi(e^z)\right) = (-1)^j z^j + \dots$$

In this case we have $\phi(1) = 1$, so $(\phi(1) - 1)/p = 0$, and therefore

$$\ell_j(u_j) = \ell_j(1 - \pi^j) = \left. \frac{d^j}{dz^j} \log\left(\phi(e_z)\right) \right|_{z=0} = (-1)^j j! (\text{mod } p).$$

Putting $\alpha = u_1^{t_1(\alpha)} \dots u_{p-1}^{t_{p-1}(\alpha)} \pmod{\wp^p}$, we have

$$\ell_j(\alpha) = t_j(\alpha)\ell_j(u_j) = (-1)^j j! t_j(\alpha) \pmod{p},$$

which proves the lemma.

We will be completely finished if we can compute $\ell_j(\xi)$ for $1 \le j \le p-2$, since we have already established that $t_{p-1}(\xi) = 0$ (lemma 11.23). The Bernoulli numbers B_a are defined by

$$\log\left(\frac{e^z-1}{z}\right) = \sum_{a=1}^{\infty} \frac{B_a}{a} \frac{z^a}{a!}$$

The denominators of B_1, \ldots, B_{p-2} cannot be divisible by p.

LEMMA 11.31. For $1 \leq j \leq p-2$ we have

$$\ell_j(\xi) = -\frac{B_j}{j} (mod \ p)$$

PROOF. We have

$$\xi^{-1} = -\frac{p}{\pi^{p-1}} = -\prod_{k=1}^{p-1} \frac{1-\zeta^k}{1-\zeta} = -(p-1)! \prod_{k=1}^{p-1} \frac{1-\zeta^k}{1-\zeta} = -(p-1)! \prod_{k=1}^{p-1} \gamma_k$$

where $\gamma_k = (1 + \zeta + \dots + \zeta^{k-1})/k$ is in $W_{\wp}(1)$. Since $-(p-1)! = 1 \pmod{\wp^{p-1}}$, then by lemma 11.29(3) we have $\ell_j (-(p-1)!) = \ell_j(1) = 0$, so

$$\ell_j(\xi^{-1}) = \sum_{k=1}^{p-1} \ell_j(\gamma_k) \text{ for } 1 \le j \le p-2.$$

To compute $\ell_j(\gamma_k)$, we use $\phi_k(x) = (1 + x + \dots + x^{k-1})/k = \frac{x^k - 1}{k(x-1)}$.

$$\log (\phi_k(e^z)) = \log \left(\frac{e^{kz} - 1}{kz} \frac{z}{e^z - 1}\right) \\ = \log \frac{e^{kz} - 1}{kz} - \log \frac{e^z - 1}{z} = \sum_{a=1}^{\infty} \frac{B_a}{a} (k^a - 1) \frac{z^a}{a!}$$

Therefore for $1 \leq j \leq p-2$ we have

$$\ell_j(\gamma_k) = \left. \frac{d^j}{dz^j} \log\left(\phi_k(e^z)\right) \right|_{z=0} = \frac{B_j}{j}(k^j - 1) \quad \text{for } 1 \le j \le p - 2,$$

 \mathbf{SO}

$$\ell_j(\xi^{-1}) = \sum_{k=1}^{p-1} \frac{B_j}{j} (k^j - 1).$$

If r is a primitive root modulo p and $1 \le j \le p-2$, then

$$\sum_{\nu=1}^{p-1} k^j = \sum_{\nu=1}^{p-1} r^{\nu j} = \frac{r^{pj} - 1}{r^j - 1} = 0 \pmod{p}.$$

 \mathbf{SO}

$$\ell_j(\xi^{-1}) = -(p-1)\frac{B_j}{j} = \frac{B_j}{j} \pmod{p},$$

which proves the lemma.