CHAPTER XI

NORM RESIDUE SYMBOL FOR KUMMER EXTENSIONS

Throughout this chapter, p will denote a rational prime number; \wp will denote a prime of \mathbf{k}, and \wp^{\prime} will denote a prime of an extension \mathbf{K} of \mathbf{k}. Let m be a positive integer and let \mathbf{k} contain the m-th roots of unity. The general m-power reciprocity law for elements in \mathbf{k} has been found to be

$$
\left(\frac{\alpha}{\beta}\right)_{m}\left(\frac{\beta}{\alpha}\right)_{m}^{-1}=\prod_{\wp \in E}\left(\frac{\alpha, \beta}{\wp}\right)_{m}
$$

where E contains all primes of \mathbf{k} dividing m and all infinite primes, and elements α and β of \mathbf{k} are relatively prime to each other and to m. Our main objective will be to compute the symbol $\left(\frac{\alpha, \beta}{\delta}\right)_{p}$ for odd primes p in the case $\mathbf{k}=\mathbf{Q}(\zeta)$ where ζ is a primitive p-th root of unity, obtaining the p-th power reciprocity law in the process.

Lemma 11.1. Suppose that \mathbf{k} contains the m-th roots of unity and \wp is an infinite prime of \mathbf{k}. Non-trivial norm residue symbols occur only if $m=2$ and \wp is real, in which case we have

$$
\left(\frac{\alpha, \beta}{\wp}\right)_{m}=\left\{\begin{array}{r}
1 \text { if } \alpha>0 \text { or } \beta>0, \\
-1 \text { if } \alpha<0 \text { and } \beta<0 .
\end{array}\right.
$$

Proof. If $m>2$ then all infinite primes of \mathbf{k} are complex because \mathbf{k} contains the m-th roots of unity.

Norm residue symbol for composite powers.
Lemma 11.2. Suppose that \mathbf{k} contains the mn-th roots of unity, \wp is an finite prime of \mathbf{k} and α and β are elements of \mathbf{k}_{\wp}^{*}. Let m and n be relatively prime. If $m a+n b=1$ then

$$
\begin{equation*}
\left(\frac{\alpha, \beta}{\wp}\right)_{m n}=\left(\frac{\alpha, \beta}{\wp}\right)_{m}^{b}\left(\frac{\alpha, \beta}{\wp}\right)_{n}^{a} \tag{11.1}
\end{equation*}
$$

Proof. We can choose β_{0} in \mathbf{k}^{*} sufficiently close to β so that $\beta_{0} \simeq_{m n} \beta$. Then β may be replaced by β_{0} in all norm residue symbol expressions, so we may as well suppose that β is in \mathbf{k}^{*}. For an integer s dividing $m n$, let σ_{s} be the norm residue symbol automorphism.

$$
\sigma_{s}=\left(\frac{\alpha, \mathbf{k}(\sqrt[s]{\beta}) / \mathbf{k}}{\wp}\right)
$$

We have $1 / m n=a / n+b / m$, so $\sqrt[m n]{\beta}=(\sqrt[m]{\beta})^{b}(\sqrt[n]{\beta})^{a}$. Since σ_{m} and σ_{n} are restrictions of $\sigma_{m n}$ to their respective subfields, then

$$
\sigma_{m n}(\sqrt[m n]{\beta})=\sigma_{m n}\left((\sqrt[m]{\beta})^{b}(\sqrt[n]{\beta})^{a}\right)=\left(\sigma_{m}(\sqrt[m]{\beta})\right)^{b}\left(\sigma_{n}(\sqrt[n]{\beta})\right)^{a}
$$

Therefore

$$
\frac{\sigma_{m n}(\sqrt[m n]{\beta})}{\sqrt[m n]{\beta}}=\left(\frac{\sigma_{m}(\sqrt[m]{\beta})}{\sqrt[m]{\beta}}\right)^{b}\left(\frac{\sigma_{n}(\sqrt[n]{\beta})}{\sqrt[n]{\beta}}\right)^{a}
$$

so

$$
\left(\frac{\alpha, \beta}{\wp}\right)_{m n}=\left(\frac{\alpha, \beta}{\wp}\right)_{m}^{b}\left(\frac{\alpha, \beta}{\wp}\right)_{n}^{a}
$$

Lemma 11.3. \mathbf{k}_{\wp} contains the $\left(\mathrm{N}_{\wp}-1\right)$-th roots of unity.
Proof. Let ζ be a primitive $\left(\mathrm{N}_{\wp}-1\right)$-th root of unity. Then $\mathbf{k}_{\wp}(\zeta) / \mathbf{k}_{\wp}$ is unramified since \wp does not divide $\mathrm{N} \wp-1$. Let \wp^{\prime} be the prime of $\mathbf{k}_{\wp}(\zeta)$. In the $\operatorname{map} \mathbf{O}_{\wp^{\prime}} \rightarrow \mathbf{O}_{\wp^{\prime}} / \wp^{\prime}$, element ζ maps to an element of \mathbf{o}_{\wp} / \wp since \mathbf{o}_{\wp} / \wp is the splitting field of $x^{\mathrm{N} \wp-1}-1$. This shows that $\mathbf{O}_{\wp^{\prime}} / \wp^{\prime}=\mathbf{o}_{\wp} / \wp$. Therefore $f=1$, so $\left[\mathbf{k}_{\wp}(\zeta): \mathbf{k}_{\wp}\right]=e f=1$, and we have $\mathbf{k}_{\wp}(\zeta)=\mathbf{k}_{\wp}$.

Lemma 11.4. Let V be the group of $\left(N_{\wp}-1\right)$-th roots of unity in \mathbf{k}_{\wp}. Then the image of V in \mathbf{o}_{\wp} / \wp is all of $\left(\mathbf{o}_{\wp} / \wp\right)^{*}$.

Proof. If v is in V and $v \neq 1$, then v is a root of $x^{\mathrm{N} \wp-2}+\cdots+x+x=0$. If $v=1(\bmod \wp)$ then we would have $\mathrm{N} \wp-1=0(\bmod \wp)$, which is impossible. Therefore the kernel of $V \rightarrow\left(\mathbf{o}_{\wp} / \wp\right)^{*}$ is trivial, so the map is an isomorphism since both V and $\left(\mathbf{o}_{\wp} / \wp\right)^{*}$ have $\left(\mathrm{N}_{\wp}-1\right)$ elements.

Lemma 11.5. Let π be an element of \mathbf{k}_{\wp}^{*} such that $\wp=(\pi)$. For fixed π, every element α of \mathbf{k}_{\wp}^{*} has a unique representation as

$$
\alpha=\pi^{a} v u \quad \text { where } v \in V \text { and } u \in W_{\wp}(1) .
$$

Therefore \mathbf{k}_{\wp}^{*} is a direct product $\langle\pi\rangle V W_{\wp}(1)$.
Proof. Exponent a is determined by $a=\operatorname{ord}_{\wp}(\alpha)$. Put $\alpha^{\prime}=\alpha / \pi^{a}$. Then α^{\prime} is in \mathbf{u}_{\wp}. By lemma 11.4, there is a unique element v in V so that $\alpha^{\prime}=v(\bmod \wp)$. Then $u=\alpha^{\prime} / v$ is in $W_{\wp}(1)$. Since α^{\prime} and v are uniquely determined then so is u.

Lemma 11.6. If n is relatively prime to $N_{\wp}-1$ then $V=V^{n}$ and the map $x \rightarrow x^{n}$ is an isomorphism of $\left(\mathbf{o}_{\wp} / \wp\right)^{*}$.

Proof. Let a and b be integers such that $n a+(\mathrm{N} \wp-1) b=1$. Then $y \rightarrow y^{a}$ is inverse to $x \rightarrow x^{n}$, and we have $V \supset V^{n} \supset V^{n a}=V$, so $V=V^{n}$.

The case of powers relatively prime to \wp. Suppose that $n=p^{x}$ where (p) is the rational prime divisible by \wp and m is relatively prime to p. Lemma 11.2 shows how computation of the norm residue symbol for $m n$-th powers is reduced to separate computations for m-th powers and p^{x}-th powers. Lemma 11.7 gives an explicit formula for the former case.

Lemma 11.7. Let π be an element of \mathbf{k}_{\wp}^{*} such that $\wp=(\pi)$. Suppose that m is relatively prime to \wp. If $\alpha=\pi^{a} v u$ and $\beta=\pi^{b} v^{\prime} u^{\prime}$ as in lemma 11.5, then

$$
\left(\frac{\alpha, \beta}{\wp}\right)_{m}=\left(\frac{-1}{\wp}\right)_{m}^{a b}(v)^{-b \frac{\mathrm{~N}_{\ell}-1}{m}}\left(v^{\prime}\right)^{a \frac{\mathrm{~N} \wp-1}{m}}
$$

Proof. Since \wp does not divide m then we can apply lemma 10.9.

$$
\left(\frac{\alpha, \beta}{\wp}\right)_{m}=\left(\frac{-1}{\wp}\right)_{m}^{a b}\left(\frac{\beta^{a} / \alpha^{b}}{\wp}\right)_{m}=\left(\frac{-1}{\wp}\right)_{m}^{a b}\left(\frac{\left(v^{\prime} u^{\prime}\right)^{a} /(v u)^{b}}{\wp}\right)_{m} .
$$

We have $u=1(\bmod \wp)$ and $u^{\prime}=1(\bmod \wp)$, so both $\left(\frac{u}{\wp}\right)_{m}$ and $\left(\frac{u^{\prime}}{\wp}\right)_{m}$ are trivial. $\left(\frac{v}{\wp}\right)_{m}$ is the unique $(\mathrm{N} \wp-1)$-th root of unity such that $\left(\frac{v}{\wp}\right)_{m}^{m}=v^{\frac{\mathrm{N}_{\ell}-1}{m}}(\bmod \wp)$. But v is an $(\mathrm{N} \wp-1)$-th root of unity, so $\left(\frac{v}{\wp}\right)_{m}=(v)^{\frac{\mathrm{N}_{\varphi}-1}{m}}$, and likewise $\left(\frac{v^{\prime}}{\wp}\right)_{m}=\left(v^{\prime}\right)^{\frac{\mathrm{N}_{\wp}-1}{m}}$.

The case of p^{x}-th powers where \wp divides (p). Take $n=p^{x}$ where \wp divides (p). Then n is relatively prime to $\mathrm{N} \wp-1$. Group V is cyclic of order $\mathrm{N} \wp-1$, so $V^{n}=V$, and every element of V is a n-th power. Since every n-th power norm residue symbol involving an element v in V is trivial, we have

$$
\begin{equation*}
\left(\frac{\alpha, \beta}{\wp}\right)_{n}=\left(\frac{\pi^{a} v u, \pi^{b} v^{\prime} u^{\prime}}{\wp}\right)_{n}=\left(\frac{\pi^{a} u, \pi^{b} u}{\wp}\right)_{n} \tag{11.2}
\end{equation*}
$$

To compute (11.2), it is only necessary to assume that \mathbf{k} contains the n-th roots of unity.

Lemma 11.8. Suppose that \wp is a prime of \mathbf{k} and (p) is the rational prime that \wp divides. Let $n=p^{x}$, and suppose that \mathbf{k} contains the n-th roots of unity. Then $W_{\wp}(1) / W_{\wp}(1)^{n}$ is the direct sum of $d+1$ cyclic groups of order n, where $d=\left[\mathbf{k}_{\wp}: \mathbf{Q}_{(p)}\right]$.

Proof. Every element of $W_{\wp}(1) / W_{\wp}(1)^{n}$ has order dividing n, so the group is the direct product of cyclic subgroups each having order dividing n. Let α map to a generator of any one of these cyclic subgroups having order $n^{\prime}=p^{y}$. Then $y \leq x$, and $\alpha^{n^{\prime}}$ is in $W_{\wp}(1)^{n}$, so $\alpha^{n^{\prime}}=\beta^{n}$ for some element β in $W_{\wp}(1)$. Suppose that $y<x$. Then $\alpha^{p^{y}}=\left(\beta^{p^{x-y}}\right)^{p^{y}}$, so $\alpha=\beta^{p^{x-y}} \zeta^{\prime}$, where ζ^{\prime} is a p^{y}-th root of unity. Since \mathbf{k} contains the p^{x}-th roots of unity then $\zeta^{\prime}=\zeta^{p^{x-y}}$ where ζ is some p^{x}-th root of unity, and we have $\alpha=(\beta \zeta)^{p^{x-y}}$. But α cannot be a p-th power, so it impossible to have $y<x$. Therefore each cyclic subgroup in the direct product has order exactly p^{x}. By lemma $11.5, \mathbf{u}_{\wp}$ is a direct product $V W_{\wp}(1)$. Since $\mathrm{N}_{\wp} \wp-1$ and $n=p^{x}$ are relatively prime then $V^{n}=V$. We therefore have

$$
\frac{\mathbf{u}_{\wp}}{\mathbf{u}_{\wp}^{n}}=\frac{V W_{\wp}(1)}{V W_{\wp}(1)^{n}}=\frac{W_{\wp}(1)}{V W_{\wp}(1)^{n} \cap W_{\wp}(1)}=\frac{W_{\wp}(1)}{W_{\wp}(1)^{n}} .
$$

Since $\left[\mathbf{k}_{\wp}: \mathbf{Q}_{(p)}\right]=d$ and $n=p^{x}$, we have $|n|_{\wp}=\left|\mathbf{N}_{\mathbf{k}_{\wp} / \mathbf{Q}_{(p)}} n\right|_{p}=\left|n^{d}\right|_{p}=n^{-d}$. By lemma 8.11, we have $\left[\mathbf{u}_{\wp}: \mathbf{u}_{\wp}^{n}\right]=n|n|_{\wp}^{-1}$, so

$$
\left[W_{\wp}(1): W_{\wp}(1)^{n}\right]=\left[\mathbf{u}_{\wp}: \mathbf{u}_{\wp}^{n}\right]=n\left(n^{d}\right)=n^{d+1}
$$

Therefore $W_{\wp}(1) / W_{\wp}(1)^{n}$ must be the product of $d+1$ cyclic groups of order n.

Definition. An element α in $W_{\wp}(1)$ is n-primary if $\mathbf{k}_{\wp}(\sqrt[n]{\alpha}) / \mathbf{k}_{\wp}$ is unramified.
Lemma 11.9. With the hypothesis of lemma 11.8, the image in $W_{\wp}(1) / W_{\wp}(1)^{n}$ of the set of n-primary elements is a cyclic group of order n.

Proof. Since \mathbf{k}_{\wp}^{*} is a direct product $\langle\pi\rangle V W_{\wp}(1)$ and $V=V^{n}$ we have

$$
\frac{\mathbf{k}_{\wp}^{*}}{\left(\mathbf{k}_{\wp}^{*}\right)^{n}}=\frac{\langle\pi\rangle V W_{\wp}(1)}{\left\langle\pi^{n}\right\rangle V^{n} W_{\wp}(1)^{n}}=\frac{\langle\pi\rangle}{\left\langle\pi^{n}\right\rangle} \times \frac{W_{\wp}(1)}{W_{\wp}(1)^{n}} .
$$

By lemma $11.8, \mathbf{k}_{\wp}^{*} /\left(\mathbf{k}_{\wp}^{*}\right)^{n}$ is the direct sum of $d+2$ cyclic groups of order n, where $\left.d=\left[\mathbf{k}_{\wp}: \mathbf{Q}_{(} p\right)\right]$. Let $\beta_{1}, \ldots \beta_{d+2}$ be a set of generators for $\mathbf{k}_{\wp}^{*} /\left(\mathbf{k}_{\wp}^{*}\right)^{n}$, and the β_{i} may be chosen to be elements of \mathbf{k}^{*}. The β_{i} are independent modulo n, so by lemma 8.5 the extension $\mathbf{k}_{\wp}\left(\sqrt[n]{\beta_{1}}, \ldots, \sqrt[n]{\beta_{d+2}}\right)$ of \mathbf{k}_{\wp} has degree n^{d+2}, with Galois
group isomorphic to the direct sum of the $d+2$ Galois groups $G\left(\mathbf{k}_{\wp}\left(\sqrt[n]{\beta_{i}}\right): \mathbf{k}_{\wp}\right)$, where $1 \leq i \leq d+2$. Every extension of the form $\mathbf{k}_{\wp}(\sqrt[n]{\beta})$ where β is in \mathbf{k}_{\wp}^{*} is a subfield of $\mathbf{k}_{\wp}\left(\sqrt[n]{\beta_{1}}, \ldots, \sqrt[n]{\beta_{d+2}}\right)$. Put $\mathbf{K}=\mathbf{k}\left(\sqrt[n]{\beta_{1}}, \ldots, \sqrt[n]{\beta_{d+2}}\right)$. The kernel of $\alpha \rightarrow\left(\frac{\alpha, \mathbf{K} / \mathbf{k}}{\wp}\right)_{n}$ has index n^{d+2} in \mathbf{k}_{\wp}^{*} and contains $\left(\mathbf{k}_{\wp}^{*}\right)^{n}$. Since $\left[\mathbf{k}_{\wp}^{*}:\left(\mathbf{k}_{\wp}^{*}\right)^{n}\right]=n^{d+2}$, then the kernel is exactly $\left(\mathbf{k}_{\wp}^{*}\right)^{n}$.

Let H be the image in $G=G\left(\mathbf{k}_{\wp}\left(\sqrt[n]{\beta_{1}}, \ldots, \sqrt[n]{\beta_{d+2}}\right): \mathbf{k}_{\wp}\right)$ of the units \mathbf{u}_{\wp} of \mathbf{k}_{\wp}. An element β of \mathbf{k}_{\wp}^{*} is in the fixed field of H if and only if $\left(\frac{\alpha, \mathbf{K} / \mathbf{k}}{\wp}\right)_{n} \sqrt[n]{\beta}=\sqrt[n]{\beta}$ for every α in \mathbf{u}_{\wp}, which is if and only if $\left(\frac{\alpha, \beta}{\wp}\right)_{n}=1$ for every α in \mathbf{u}_{\wp}, which is if and only if $\mathbf{k}_{\wp}(\sqrt[n]{\beta}) / \mathbf{k}_{\wp}$ is unramified.

The kernel of the homomorphism $\mathbf{k}_{\wp}^{*} \rightarrow G / H$ is $\mathbf{u}_{\wp}\left(\mathbf{k}_{\wp}^{*}\right)^{n}$, so we have

$$
\frac{G}{H}=\frac{\mathbf{k}_{\wp}^{*}}{\mathbf{u}_{\wp}\left(\mathbf{k}_{\wp}\right)^{n}}=\frac{\langle\pi\rangle V W_{\wp}(1)}{V W_{\wp}(1)\left\langle\pi^{n}\right\rangle V^{n} W_{\wp}(1)^{n}}=\frac{\langle\pi\rangle V W_{\wp}(1)}{\left\langle\pi^{n}\right\rangle V W_{\wp}(1)}=\frac{\langle\pi\rangle}{\left\langle\pi^{n}\right\rangle} .
$$

Therefore the fixed field of H is a cyclic extension of degree n and, by lemma 8.5, is of the form $\mathbf{k}_{\wp}\left(\sqrt[n]{\gamma_{2}}\right) / \mathbf{k}_{\wp}$ for some element γ_{2} of \mathbf{k}_{\wp}^{*}. By lemma 8.2, n is the smallest positive value of x such that $\gamma_{2}^{x} \simeq_{n} 1$. Let $\left(\gamma_{2}\right)=\wp^{c}$ where $c=n q+r$ and $0 \leq r<n$. Put $\gamma_{1}=\gamma_{2} / \pi^{q n}$. Then $\gamma_{2} \simeq_{n} \gamma_{1}$, so the fixed field of H is $\mathbf{k}_{\wp}\left(\sqrt[n]{\gamma_{1}}\right)$, and $\left(\gamma_{1}\right)=\wp^{r}$. The map $\alpha \rightarrow\left(\frac{\alpha, \gamma_{1}}{\wp}\right)_{n}$ is a homomorphism $\mathbf{k}_{\wp}^{*} \rightarrow G\left(\mathbf{k}_{\wp}\left(\sqrt[n]{\gamma_{1}}\right): \mathbf{k}_{\wp}\right)$. The kernel has index n and contains $\mathbf{u}_{\wp}\left(\mathbf{k}_{\wp}^{*}\right)^{n}$, so the kernel is exactly $\mathbf{u}_{\wp}\left(\mathbf{k}_{\wp}^{*}\right)^{n}$. Since -1 is in \mathbf{u}_{\wp}, we have

$$
\left(\frac{\gamma_{1}, \gamma_{1}}{\wp}\right)_{n}=\left(\frac{-\gamma_{1}, \gamma_{1}}{\wp}\right)_{n}\left(\frac{-1, \gamma_{1}}{\wp}\right)_{n}=1 .
$$

Therefore γ_{1} is in the kernel, so γ_{1} is in $\mathbf{u}_{\wp}\left(\mathbf{k}_{\wp}^{*}\right)^{n}$. This shows that $r=0$, so γ_{1} is in \mathbf{u}_{\wp}. Put $\gamma_{1}=\delta \gamma_{0}$ where δ is in V and γ_{0} is in $W_{\wp}(1)$. Since $V=V^{n}$, we have $\gamma_{1} \simeq_{n} \gamma_{0}$. Therefore the fixed field of H is $\mathbf{k}_{\wp}\left(\sqrt[n]{\gamma_{0}}\right)$. Since $\gamma_{0} \simeq_{n} \gamma_{1} \simeq_{n} \gamma_{2}$ then n is the smallest positive value of x such that $\gamma_{0}^{x} \simeq_{n} 1$.

If β is n-primary then β is in $W_{\wp}(1)$ and $\mathbf{k}_{\wp}(\sqrt[n]{\beta}) / \mathbf{k}_{\wp}$ is unramified. Therefore β is in the fixed field of H, so β is in $\mathbf{k}_{\wp}\left(\sqrt[n]{\gamma_{0}}\right)$, and therefore $\beta \simeq_{n} \gamma_{0}^{x}$ for some x by lemma 8.3. Put $\beta=\alpha^{n} \gamma_{0}^{x}$. Since γ_{0} and β are both in $W_{\wp}(1)$ then $\alpha^{n}=1(\bmod \wp)$, so $\alpha=1(\bmod \wp)$ by lemma 11.6. We have shown that the image in $W_{\wp}(1) / W_{\wp}(1)^{n}$ of an n-primary element is a coset $\left(\gamma_{0}\right)^{x} W_{\wp}(1)^{n}$ and that n is the smallest positive value of x such that γ_{0}^{x} is in $W_{\wp}(1)^{n}$. Therefore the image of the n-primary elements is the cyclic group of order n generated by the image of γ_{0}. This concludes the proof of lemma 11.9.

Lemma 11.10. With the hypothesis of lemma 11.8, choose a fixed element π so that $\wp=(\pi)$. Put

$$
W_{\pi}=\left\{\alpha \in W_{\wp>}(1) \left\lvert\,\left(\frac{\pi, \alpha}{\wp}\right)_{n}=1\right.\right\} .
$$

Let γ_{0} in $W_{\wp}(1)$ be a generator of group the n-primary elements modulo $W_{\wp}(1)^{n}$ and let $\overline{\gamma_{0}}$ be the coset $\gamma_{0} W_{\wp}(1)^{n}$. Then $W_{\wp}(1) / W_{\wp}(1)^{n}$ is a direct product

$$
\frac{W_{\wp}(1)}{W_{\wp}(1)^{n}}=\frac{W_{\pi}}{W_{\wp}(1)^{n}} \times\left\langle\overline{\gamma_{0}}\right\rangle .
$$

Proof. Suppose that α is n-primary and in W_{π}. Then $\left(\frac{\beta, \alpha}{\wp}\right)_{n}=1$ for every element β of \mathbf{k}_{\wp}^{*}, and in particular for a set of generators $\beta_{1}, \ldots, \beta_{d+2}$ generators of $\mathbf{k}_{\wp} /\left(\mathbf{k}_{\wp}^{*}\right)^{n}$. Therefore for $1 \leq i \leq d+2$, the norm residue symbols $\left(\frac{\alpha, \mathbf{k}_{\wp}\left(\sqrt[n]{\beta_{i}}\right) / \mathbf{k}_{\wp}}{\wp}\right)_{n}$ are trivial, so $\left(\frac{\alpha, \mathbf{k}_{\wp}\left(\sqrt[n]{\beta_{1}}, \ldots, \sqrt[n]{\beta_{d+2}}\right) / \mathbf{k}_{\wp}}{\wp}\right)_{n}$ is trivial by lemma 8.5, and therefore α is in $\left(\mathbf{k}_{\wp}^{*}\right)^{n} \cap W_{\wp}(1)$. Then $\alpha=v^{n} u^{n}$ with v in V and u in $W_{\wp}(1)$. We have $v^{n}=1(\bmod \wp)$, so $v=1$, and therefore α is in $W_{\wp}(1)^{n}$. We have shown that $W_{\wp}(1) / W_{\wp}(1)^{n} \cap\left\langle\overline{\gamma_{0}}\right\rangle$ is a trivial group.

Now suppose that α is an arbitrary element of $W_{\wp}(1)$. It remains to show that W_{π} and γ_{0} generate $W_{\wp}(1)$ modulo $W_{\wp}(1)^{n}$. Since $\mathbf{k}_{\wp}\left(\sqrt[n]{\gamma_{0}}\right)$ has degree n over \mathbf{k}_{\wp} then there exists an element β in \mathbf{k}_{\wp}^{*} such that $\left(\frac{\beta, \gamma_{0}}{\wp}\right)_{n}$ is a primitive n-th root of unity. Let $\beta=\pi^{b} v u$. Then $\left(\frac{\beta, \gamma_{0}}{\wp}\right)_{n}=\left(\frac{\pi, \gamma_{0}}{\wp}\right)_{n}^{b}$, so $\left(\frac{\pi, \gamma_{0}}{\wp}\right)_{n}$ must be a primitive n-th root of unity. There exists an a so that $\left(\frac{\pi, \alpha}{\wp}\right)_{n}=\left(\frac{\pi, \gamma_{0}}{\wp}\right)_{n}^{a}$. We have $\alpha=\left(\alpha \gamma_{0}^{-a}\right) \gamma^{a}$. Then $\alpha \gamma_{0}^{-a}$ is in W_{π} because $\left(\frac{\pi, \alpha \gamma_{0}^{-a}}{\wp}\right)_{n}=\left(\frac{\pi, \alpha}{\wp}\right)_{n}\left(\frac{\pi, \gamma_{0}}{\wp}\right)_{n}^{-a}=1$. This completes the proof of the lemma.

The computation of the norm residue symbol for p^{x}-th powers has been reduced to the following. An element α of \mathbf{k}_{\wp}^{*} may be expressed as $x=\pi^{a} v w$ where v is in V and w is in $W_{\wp}(1)$. Let $w \simeq_{n} u \gamma_{0}^{a^{\prime}}$ with u in W_{π}. Likewise, let β in \mathbf{k}_{\wp}^{*} be expressed as $\beta=\pi^{b} v^{\prime} w^{\prime}$ where v^{\prime} is in V and $w^{\prime} \simeq_{n} u^{\prime} \gamma_{0}^{b^{\prime}}$ with u^{\prime} in W_{π}. Then

$$
\left(\frac{x, y}{\wp}\right)_{n}=\left(\frac{\pi^{a} v u \gamma_{0}^{a^{\prime}}, \pi^{b} v^{\prime} u^{\prime} \gamma_{0}^{b^{\prime}}}{\wp}\right)_{n}=\left(\frac{\pi, \pi}{\wp}\right)_{n}^{a b}\left(\frac{\pi, \gamma_{0}}{\wp}\right)_{n}^{a b^{\prime}}\left(\frac{u, u^{\prime}}{\wp}\right)_{n}\left(\frac{\gamma_{0}, \pi}{\wp}\right)_{n}^{b a^{\prime}}
$$

Therefore

$$
\left(\frac{x, y}{\wp}\right)_{n}=\left(\frac{\pi,-1}{\wp}\right)_{n}^{a b}\left(\frac{\pi, \gamma_{0}}{\wp}\right)_{n}^{a b^{\prime}-b a^{\prime}}\left(\frac{u, u^{\prime}}{\wp}\right)_{n}
$$

The problems that remain are essentially two.
(1) Find a generator γ_{0} for the n-primary elements and calculate $\left(\frac{\pi, \gamma_{0}}{\wp}\right)_{n}$.
(2) Find a basis v_{1}, \ldots, v_{d} of W_{π} modulo $W_{\wp}(1)^{n}$ and calculate $\left(\frac{v_{i}, v_{j}}{\wp}\right)_{n}$.

The p-primary elements for odd primes. We specialize to the case $n=p$ and $p>2$. Let $\mathbf{k}=\mathbf{Q}(\zeta)$ where ζ is a primitive p-th root of unity. Then $[\mathbf{k}: \mathbf{Q}]=$ $p-1$. The prime (p) is completely ramified in \mathbf{k}; if $\pi=1-\zeta$ then $(p)=\wp^{p-1}$ where $\wp=(\pi)$. We have $\left[\mathbf{k}_{\wp}: \mathbf{Q}_{(p)}\right]=p-1$ with ramification index $e=p-1$; since $f=1$ then the rational integers $0,1, \ldots, p-1$ are a complete residue system for \mathbf{o}_{\wp} / \wp.

Lemma 11.11. $\left[W_{\wp}(1): W_{\wp}(k+1)\right]=p^{k}$
Proof. Every element of $W_{\wp}(1)$ may be uniquely represented modulo π^{k+1} by $1+a_{1} \pi+a_{2} \pi^{2}+\cdots+a_{k} \pi^{k}$ with coefficients a_{i} belonging to a complete residue system for \mathbf{o}_{\wp} / \wp. There are p^{k} choices for the coefficients a_{1}, \ldots, a_{k}.

Lemma 11.12. $W_{\wp}(1)^{p}=W_{\wp}(p+1)$
Proof. Let $b=\operatorname{ord}_{\wp}(p)$. By lemma 4.13, every element x of \mathbf{k}_{\wp} such that $\operatorname{ord}_{\wp}(x)>b /(p-1)+\operatorname{ord}_{\wp}(p)$ is the p-th power of some element y in \mathbf{k}_{\wp} such that $\operatorname{ord}_{\wp}(y)>b /(p-1)$. Since $\operatorname{ord}_{\wp}(p)=p-1$, then every x such that $\operatorname{ord}_{\wp}(x)>p$ is the p-th power of some y such that $\operatorname{ord}_{\wp}(y)>1$, that is $W_{\wp}(p+1) \subset W_{\wp}(2)^{p}$. Let $V_{p}=\langle\zeta\rangle$ be the group of p-power roots of unity. Since $\zeta=1(\bmod \wp)$ then

$$
W_{\wp}(p+1) \subset W_{\wp}(2)^{p} \subset\left(W_{\wp}(2) V_{p}\right)^{p} \subset W_{\wp}(1)^{p} \subset W_{\wp}(1)
$$

By lemma 11.8 and lemma 11.11, subgroups $W_{\wp}(p+1)$ and $W_{\wp}(1)^{p}$ both have index p^{p} in $W_{\wp}(1)$, so the two must coincide.

Lemma 11.13. If element α of \mathbf{k}_{\wp} is in $W_{\wp}(p)$ then $\frac{\sqrt[p]{\alpha}-1}{\pi}$ is integral over \mathbf{o}_{\wp}.
Proof. The element in question is a root of polynomial $(p \pi)^{-1}\left((\pi x+1)^{p}-\alpha\right)$ having coefficients in \mathbf{k}_{\wp}, and

$$
\frac{(\pi x+1)^{p}-\alpha}{p \pi}=\frac{\pi^{p}}{p \pi} x^{p}+\frac{\binom{p}{1} \pi^{p-1}}{p \pi} x^{p-1}+\cdots+\frac{\binom{p}{p-1} \pi}{p \pi} x+\frac{1-\alpha}{p \pi} .
$$

The leading coefficient is a unit and the other coefficients except possibly the constant term are elements of \mathbf{o}_{\wp}. If $\alpha=1\left(\bmod \wp^{p}\right)$ then the constant term is also in \mathbf{o}_{\wp}.

Lemma 11.14. Let α of \mathbf{k}_{\wp} be in $W_{\wp}(1)$. Then α is p-primary if and only if α is in $W_{\wp}(p)$.

Proof. Let P be the group of p-primary elements in $W_{\wp}(1)$. Then we have $\left[W_{\wp}(1): W_{\wp}(1)^{p}\right]=p^{p}$ and $\left[P: W_{\wp}(1)^{p}\right]=p$ by lemma 11.8 and lemma 11.9, so $\left[W_{\wp}(1): P\right]=p^{p-1}$. Also we have $\left[W_{\wp}(1): W_{\wp}(p)\right]=p^{p-1}$ by lemma 11.11, so it will be enough to show that $W_{\wp}(p)$ is contained in P, i.e. $\mathbf{k}_{\wp}(\sqrt[p]{\alpha}) / \mathbf{k}_{\wp}$ is unramified if $\alpha=1\left(\bmod \wp^{p}\right)$. Let τ be an automorphism in the inertial subgroup of $G\left(\mathbf{k}_{\wp}(\sqrt[p]{\alpha}): \mathbf{k}_{\wp}\right)$, and let $\tau(\sqrt[p]{\alpha})=\zeta^{\prime} \sqrt[p]{\alpha}$ where ζ^{\prime} is a p-th root of unity. (We need to show that ζ^{\prime} must be 1.) Let \wp^{\prime} be the prime of $\mathbf{k}_{\wp}(\sqrt[p]{\alpha})$ dividing \wp. Then $\tau(\gamma)=\gamma\left(\bmod \wp^{\prime}\right)$ for every γ that is integral over \mathbf{o}_{\wp}. The element $(\sqrt[p]{\alpha}-1) / \pi$ is integral over \mathbf{o}_{\wp} by lemma 11.13, so we have

$$
\frac{\zeta^{\prime} \sqrt[p]{\alpha}-1}{\pi}=\frac{\sqrt[p]{\alpha}-1}{\pi}\left(\bmod \wp^{\prime}\right)
$$

Therefore

$$
\frac{\left(\zeta^{\prime}-1\right) \sqrt[p]{\alpha}}{\pi}=0\left(\bmod \wp^{\prime}\right)
$$

If $\zeta^{\prime} \neq 1$ then $\left(\zeta^{\prime}-1\right) / \pi$ is a unit, but that is impossible since $\sqrt[p]{\alpha}$ is also a unit. This shows that $\zeta^{\prime}=1$, the inertial group is trivial, and $\mathbf{k}_{\wp \rho}(\sqrt[p]{\alpha}) / \mathbf{k}_{\wp}$ is unramified, which concludes the proof.

Lemma 11.15. With $\pi=1-\zeta$ we have

$$
\zeta^{i}=1-i \pi\left(\bmod \wp^{2}\right) \quad \text { and } \quad \frac{\pi^{p-1}}{p}=-1(\bmod \wp) .
$$

Proof. Since $\zeta=1(\bmod \wp)$ then, for $1 \leq i<p$, we have

$$
\frac{1-\zeta^{i}}{1-\zeta}=1+\zeta+\cdots+\zeta^{i-1}=i(\bmod \wp)
$$

so $1-\zeta^{i}=i \pi\left(\bmod \wp^{2}\right)$, which establishes the first conclusion. For the second, substitute $x=1$ in $x^{p-1}+\cdots+x+1=(x-\zeta)\left(x-\zeta^{2}\right) \cdots\left(x-\zeta^{p-1}\right)$ to obtain

$$
\begin{equation*}
p=(1-\zeta)\left(1-\zeta^{2}\right) \ldots\left(1-\zeta^{p-1}\right) \tag{11.3}
\end{equation*}
$$

Therefore

$$
\frac{\pi^{p-1}}{p}=\frac{(1-\zeta)(1-\zeta) \ldots(1-\zeta)}{(1-\zeta)\left(1-\zeta^{2}\right) \ldots\left(1-\zeta^{p-1}\right)}=\frac{1}{(p-1)!}(\bmod \wp) .
$$

Since $(p-1)!=-1(\bmod p)$ then the second conclusion follows.

Lemma 11.16. If α in \mathbf{k}_{\wp} is a p-primary element, there is a rational integer a such that $0 \leq a<p$ and $\alpha=1+a p \pi\left(\bmod \wp^{p+1}\right)$. With $\pi=1-\zeta$, we have

$$
\left(\frac{\pi, \alpha}{\wp}\right)_{p}=\zeta^{a} .
$$

Proof. Let α be p-primary. There is an integer a so that $\alpha=1+a p \pi$ modulo \wp^{p+1} since the integers $0,1, \ldots, p-1$ are a complete residue system for \mathbf{o}_{\wp} / \wp. We can choose an element α^{\prime} in \mathbf{k} that is sufficiently close to α so that $\alpha^{\prime} \simeq_{p} \alpha$ and $\alpha^{\prime}=\alpha\left(\bmod \wp^{p+1}\right)$, so we may assume that α is in \mathbf{k}. In that case, put $\mathbf{K}=\mathbf{k}(\sqrt[p]{\alpha})$ and let \wp^{\prime} be a prime of \mathbf{K} dividing \wp. If α is p-primary then \wp is unramified in \mathbf{K} so in the completion we have $\wp^{\prime}=\wp \mathbf{O}_{\wp^{\prime}}$ and therefore $\wp^{\prime}=(\pi)$. Put

$$
\sqrt[p]{\alpha}=1+b \pi \quad \text { where } b \in \mathbf{O}_{\wp^{\prime}}
$$

Then

$$
\alpha=(1+b \pi)^{p}=1+p b \pi+b^{p} \pi^{p}\left(\bmod \wp^{\prime p+1}\right) .
$$

By lemma 11.15, $\pi^{p}=-p \pi\left(\bmod \wp^{p+1}\right)$, so $\pi^{p}=-p \pi\left(\bmod \wp^{\prime p+1}\right)$, and

$$
\alpha=1+p b \pi-b^{p} p \pi\left(\bmod \wp^{\prime p+1}\right) .
$$

Therefore we have

$$
\begin{equation*}
a=b-b^{p}\left(\bmod \wp^{\prime}\right) \tag{11.4}
\end{equation*}
$$

Let $\left(\frac{\pi, \alpha}{\wp}\right)_{p} \sqrt[p]{\alpha}=\zeta^{a^{\prime}} \sqrt[p]{\alpha}$. Since \mathbf{K} / \mathbf{k} is unramified then we have

$$
\left(\frac{\pi, \mathbf{K} / \mathbf{k}}{\wp}\right)=\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i}(\pi, \wp, \mathbf{k}))=\left(\frac{\mathbf{K} / \mathbf{k}}{\wp}\right) .
$$

and therefore for any β in $\mathbf{O}_{\wp^{\prime}}$ we have

$$
\left(\frac{\pi, \mathbf{K} / \mathbf{k}}{\wp}\right) \beta=\beta^{\mathrm{N} \wp}=\beta^{p}\left(\bmod \wp^{\prime}\right) .
$$

Choose $\beta=(\sqrt[p]{\alpha}-1) / \pi$, which is in $\mathbf{O}_{\wp^{\prime}}$ by lemma 11.13. Then

$$
\left(\frac{\pi, \mathbf{K} / \mathbf{k}}{\wp}\right) \beta=\frac{\zeta^{a^{\prime}} \sqrt[p]{\alpha}-1}{\pi}
$$

so

$$
\frac{\zeta^{a^{\prime}} \sqrt[p]{\alpha}-1}{\pi}=\left(\frac{\sqrt[p]{\alpha}-1}{\pi}\right)^{p}=b^{p}\left(\bmod \wp^{\prime}\right)
$$

We have $\zeta^{a^{\prime}}=1-a^{\prime} \pi\left(\bmod \wp^{2}\right)$ by lemma 11.15 , so

$$
\frac{\left(1-a^{\prime} \pi\right)(1+b \pi)-1}{\pi}=b^{p}\left(\bmod \wp^{\prime}\right) .
$$

This shows that $-a^{\prime}+b=b^{p}\left(\bmod \wp^{\prime}\right)$, or $a^{\prime}=b-b^{p}\left(\bmod \wp^{\prime}\right)$. Comparison with (11.4) shows $a=a^{\prime}\left(\bmod \wp^{\prime}\right)$. Both a and a^{\prime} are rational integers, so have

$$
a=a^{\prime}(\bmod p),
$$

which completes the proof of the lemma.

We have solved the first basic problem for prime p. The generator of the p primary elements modulo $W_{\wp}(1)^{p}=W_{\wp}(p+1)$ is $\gamma_{0}=1+p \pi$, and

$$
\left(\frac{\pi, \gamma_{0}}{\wp}\right)_{p}=\zeta \quad \text { where } \pi=1-\zeta
$$

Generators of $W_{\pi} / W(1)^{p}$ and the p-th power reciprocity law. If we can find a set of generators $u_{1}, \ldots u_{p-1}$ for $W_{\wp}(1) / W_{\wp}(p)$, then every element α of $W_{\wp}(1)$ will be expressible as $\alpha=u_{1}^{t_{1}} \ldots u_{p-1}^{t_{p-1}} \gamma_{0}^{t_{0}}\left(\bmod \wp^{p+1}\right)$, so if $\left(\frac{\pi, u_{i}}{\wp}\right)=\zeta^{c_{i}}$ then we will have

$$
W_{\pi}=\left\{\alpha \in W_{\wp}(1) \mid \quad c_{1} t_{1}+\ldots c_{p-1} t_{p-1}+t_{0}=0(\bmod p)\right\} .
$$

The constants c_{i} will be determined in the last section.
Lemma 11.17. If r is a primitive root modulo p then

$$
r^{i} \prod_{\substack{k=1 \\ k \neq i}}^{p-1}\left(r^{i}-r^{k}\right)=-1(\bmod p)
$$

Proof. Since $r, r^{2}, \ldots, r^{p-1}$ form a reduced residue system modulo p, then

$$
\prod_{k=1}^{p-1}\left(x-r^{k}\right)=x^{p-1}-1(\bmod p)
$$

Then

$$
\frac{d}{d x} \prod_{k=1}^{p-1}\left(x-r^{k}\right)=\frac{d}{d x}\left(x^{p-1}-1\right)(\bmod p)
$$

or

$$
\sum_{\substack{\ell=1}}^{p-1} \prod_{\substack{k=1 \\ k \neq \ell}}^{p-1}\left(x-r^{k}\right)=(p-1) x^{p-2}(\bmod p)
$$

Set $x=r^{i}$ and multiply both sides by r^{i} to obtain the desired result.

$$
r^{i} \prod_{\substack{k=1 \\ k \neq i}}^{p-1}\left(r^{i}-r^{k}\right)=(p-1) r^{i(p-1)}=-1(\bmod p)
$$

Lemma 11.18. Let σ be a generator of $G\left(\mathbf{k}_{\wp}: \mathbf{Q}_{(p)}\right)$ and let $\zeta^{\sigma}=\zeta^{r}$. Then r is a primitive root modulo p. For $i=1, \ldots, p-1$, set

$$
u_{i}=\left(1-\pi^{i}\right)^{-r^{i}(\sigma-r)\left(\sigma-r^{2}\right) \ldots\left(\sigma-r^{i-1}\right)\left(\sigma-r^{i+1}\right) \ldots\left(\sigma-r^{p-1}\right)}
$$

Then

$$
u_{i}^{\sigma} \simeq_{p} u_{i}^{r_{i}} \quad \text { and } \quad u_{i}=1-\pi^{i}\left(\bmod \wp^{i+1}\right) .
$$

Proof. If $f(x)$ and $g(x)$ are polynomials in $\mathbf{Z}[x]$ and $f(x)=g(x)(\bmod p)$ then $\alpha^{f(\sigma)} \simeq_{p} \alpha^{g(\sigma)}$ for α in \mathbf{k}^{*}. Since $f(x)=(x-r)\left(x-r^{2}\right) \ldots\left(x-r^{p-1}\right)$ is a polynomial of degree $p-1$ having roots $1,2, \ldots, p-1$, modulo p, then $f(x)=x^{p-1}-1(\bmod p)$. Therefore $\alpha^{f(\sigma)} \simeq_{p} 1$. We have $u_{i}^{\sigma-r^{i}}=\left(1-\pi^{i}\right)^{-r^{i} f(\sigma)} \simeq_{p} 1$, so $u_{i}^{\sigma} \simeq_{p} u^{r^{i}}$, which is the first part of the lemma. For the second part, we have $\pi=1-\zeta$, so

$$
\pi^{\sigma}=1-\zeta^{\sigma}=1-\zeta^{r}=\left(1-(1-\pi)^{r}\right)=r \pi\left(\bmod \wp^{2}\right)
$$

Put $\pi^{\sigma}=r \pi+\beta \pi^{2}$. Then $\left(\pi^{\sigma}\right)^{i}=\left(r \pi+\beta \pi^{2}\right)^{i}=r^{i} \pi^{i}\left(\bmod \wp^{i+1}\right)$, so

$$
\left(\pi^{i}\right)^{\sigma}=r^{i} \pi^{i}\left(\bmod \wp^{i+1}\right)
$$

Before proceeding further, we make the following observation. If j_{1}, \ldots, j_{s+1} are any given integers, then we have

$$
\begin{aligned}
& \left(1+r^{i}\left(r^{i}-r^{j_{1}}\right) \ldots\left(r^{i}-r^{j_{s}}\right) \pi^{i}\right)^{\sigma-r^{j_{s}+1}} \\
& =\left(1+r^{i}\left(r^{i}-r^{j_{1}}\right) \ldots\left(r^{i}-r^{j_{s}}\right) \pi^{i}\right)^{\sigma}\left(1+r^{i}\left(r^{i}-r^{j_{1}}\right) \ldots\left(r^{i}-r^{j_{s}}\right) \pi^{i}\right)^{-r^{j_{s}+1}} \\
& =\left(1+r^{i}\left(r^{i}-r^{j_{1}}\right) \ldots\left(r^{i}-r^{j_{s}}\right) r^{i} \pi^{i}\right) \\
& \quad\left(1-r^{i}\left(r^{i}-r^{j_{1}}\right) \ldots\left(r^{i}-r^{j_{s}}\right) r^{j_{s+1}} \pi^{i}\right)^{-1}\left(\bmod \wp^{i+1}\right) \\
& =\left(1+r^{i}\left(r^{i}-r^{j_{1}}\right) \ldots\left(r^{i}-r^{j_{s}}\right)\left(r^{i}-r^{j_{s+1}}\right) \pi^{i}\right)\left(\bmod \wp^{i+1}\right)
\end{aligned}
$$

To compute u_{i}, we start from $\left(1-\pi^{i}\right)^{-r^{i}}=1+r^{i} \pi^{i}\left(\bmod \wp^{i+1}\right)$, then successively apply $\sigma-r, \sigma-r^{2}$, up to $\sigma-r^{p-1}$, but omit $\sigma-r^{i}$. By applying the above observation at each step, we arrive at

$$
u_{i}=\left(1+r^{i}\left(r^{i}-r\right) \ldots\left(r^{i}-r^{i-1}\right)\left(r^{i}-r^{i+1}\right) \ldots\left(r^{i}-r^{p-1}\right) \pi^{i}\right)\left(\bmod \wp^{i+1}\right) .
$$

By lemma 11.17, we obtain $u_{i}=1-\pi^{i}\left(\bmod \wp^{i+1}\right)$, which completes the proof.
Lemma 11.19. For $1 \leq i \leq p-1$ and $1 \leq j \leq p-1$, we have

$$
\left(\frac{u_{i}, u_{j}}{\wp}\right)_{p}= \begin{cases}\zeta^{-i} & \text { if } i+j=p \\ 0 & \text { if } i+j \neq p\end{cases}
$$

Proof. We apply automorphisms on the left in this proof, so we have $\sigma \zeta=\zeta^{r}$ and $\sigma u_{i} \simeq_{p} u_{i}^{r^{i}}$. First, we have

$$
\begin{equation*}
\left(\frac{\sigma u_{i}, \sigma u_{j}}{\wp}\right)_{p}=\left(\frac{u_{i}^{r^{i}}, u_{j}^{r_{j}^{j}}}{\wp}\right)_{p}=\left(\frac{u_{i}, u_{j}}{\wp}\right)_{p}^{r^{i+j}} \tag{11.5}
\end{equation*}
$$

We also have

$$
\left(\frac{\sigma u_{i}, \sigma u_{j}}{\wp}\right)_{p} \sqrt[p]{\sigma u_{j}}=\left(\frac{\sigma u_{i}, \mathbf{k}\left(\sqrt[p]{\sigma u_{j}}\right) / \mathbf{k}}{\wp}\right)_{p} \sqrt[p]{\sigma u_{j}}
$$

Automorphism $\sigma: \mathbf{k} \rightarrow \mathbf{k}$ may be extended to an isomorphism $\sigma: \mathbf{k}\left(\sqrt[p]{u_{j}}\right) \rightarrow$ $\mathbf{k}\left(\sqrt[p]{\sigma u_{j}}\right)$. (In the notation of lemma 10.43 , we have $\mathbf{K}=\mathbf{k}\left(\sqrt[p]{u_{j}}\right), \mathbf{K}^{\prime}=\mathbf{k}\left(\sqrt[p]{\sigma u_{j}}\right)$, $\mathbf{k}^{\prime}=\mathbf{k}$, and $\wp^{\prime}=\wp$.) Since $\left(\sigma \sqrt[p]{u_{j}}\right)^{p}=\sigma u_{j}$, then $\sigma \sqrt[p]{u_{j}}$ is a root of $x^{p}-\sigma u_{j}$, and we may write $\sigma \sqrt[p]{u_{j}}=\sqrt[p]{\sigma u_{j}}$. (The particular choice of $\sqrt[p]{\sigma u_{j}}$ determines the extension of σ.) Using the notation of lemma 10.43, we have

$$
\begin{aligned}
&\left(\frac{\sigma u_{i}, \mathbf{k}\left(\sqrt[p]{\sigma u_{j}}\right) / \mathbf{k}}{\wp}\right)=\left(\frac{u_{i}^{\prime}, \mathbf{K}^{\prime} / \mathbf{k}^{\prime}}{\wp^{\prime}}\right) \\
&=\sigma\left(\frac{u_{i}, \mathbf{K} / \mathbf{k}}{\wp}\right) \sigma^{-1}=\sigma\left(\frac{u_{i}, \mathbf{k}\left(\sqrt[p]{u_{j}}\right) / \mathbf{k}}{\wp}\right) \sigma^{-1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(\frac{\sigma u_{i}, \mathbf{k}\left(\sqrt[p]{\sigma u_{j}}\right) / \mathbf{k}}{\wp}\right) \sqrt[p]{\sigma u_{j}}=\sigma\left(\frac{u_{i}, \mathbf{k}\left(\sqrt[p]{u_{j}}\right) / \mathbf{k}}{\wp}\right) \sigma^{-1}\left(\sigma \sqrt[p]{u_{j}}\right) \\
=\sigma\left(\left(\frac{u_{i}, u_{j}}{\wp}\right) \sqrt[p]{u_{j}}\right)=\left(\frac{u_{i}, u_{j}}{\wp}\right)_{p}^{r} \sqrt[p]{\sigma u_{j}}
\end{aligned}
$$

or

$$
\left(\frac{\sigma u_{i}, \sigma u_{j}}{\wp}\right)_{p}=\left(\frac{u_{i}, u_{j}}{\wp}\right)_{p}^{r}
$$

Comparison with (11.5) shows that

$$
\left(\frac{u_{i}, u_{j}}{\wp}\right)_{p}^{r}=\left(\frac{u_{i}, u_{j}}{\wp}\right)_{p}^{r^{i+j}}
$$

If $\left(\frac{u_{i}, u_{j}}{\wp}\right) \neq 1$, then we must have $r=r^{i+j}(\bmod p)$, so $1=i+j(\bmod p-1)$. For i and j in the range $1 \leq i \leq p-1$ and $1 \leq j \leq p-1$, the only value of $i+j$ which satisfies the condition $1=i+j(\bmod p-1)$ is $i+j=p$. So far, we have established that

$$
\left(\frac{u_{i}, u_{j}}{\wp}\right)_{p}=0 \quad \text { if } i+j \neq p
$$

We need to compute $\left(\frac{u_{i}, u_{p-i}}{\wp}\right)_{p}$. Since $u_{k}=1-\pi^{k}\left(\bmod \wp^{k+1}\right)$ for $1 \leq k<p$, and $\gamma_{0}=1+p \pi$, then we can find integers a_{k} for $i+1 \leq k \leq p$ such that $0 \leq a_{k}<p$ and

$$
1-\pi^{i}=u_{i} u_{i+1}^{a_{i+1}} \ldots u_{p-1}^{a_{p-1}} \gamma_{0}^{a_{p}}\left(\bmod \wp^{p+1}\right)
$$

Likewise, we can find integers b_{ℓ} for $p-i+1 \leq \ell \leq p$ such that $0 \leq b_{\ell}<p$ and

$$
1-\pi^{p-i}=u_{p-i} u_{p-i+1}^{b_{p-i+1}} \ldots u_{p-1}^{b_{p-1}} \gamma_{0}^{b_{p}}\left(\bmod \wp^{p+1}\right) .
$$

Since $\left(\frac{u_{i}, u_{j}}{\wp}\right)_{p}=0$ unless $i+j=p$, and since γ_{0} is p-primary, we have

$$
\begin{align*}
& \left(\frac{1-\pi^{i}, 1-\pi^{p-i}}{\wp}\right)_{p} \tag{11.6}\\
& \quad=\left(\frac{u_{i} u_{i+1}^{a_{i+1}} \ldots u_{p-1}^{a_{p-1}} \gamma_{0}^{a_{p}}, u_{p-i} u_{p-i+1}^{b_{p-i+1}} \ldots u_{p-1}^{b_{p-1}} \gamma_{0}^{b_{p}}}{\wp}\right)_{p}=\left(\frac{u_{i}, u_{p-i}}{\wp}\right)_{p}
\end{align*}
$$

The problem now is to compute $\left(\frac{1-\pi^{i}, 1-\pi^{p-i}}{\wp}\right)_{p}$. Suppose that $\alpha+\beta=\gamma$, and put $\mu=\alpha / \gamma$. Then $1-\mu=\beta / \gamma$. By lemma 10.6(f), we have

$$
1=\left(\frac{1-\mu, \mu}{\wp}\right)_{p}=\left(\frac{\frac{\beta}{\gamma}, \frac{\alpha}{\gamma}}{\wp}\right)_{p}=\left(\frac{\beta, \alpha}{\wp}\right)_{p}\left(\frac{\beta, \gamma}{\wp}\right)_{p}^{-1}\left(\frac{\gamma, \alpha}{\wp}\right)_{p}^{-1}\left(\frac{\gamma, \gamma}{\wp}\right)_{p}
$$

Since $\left(\frac{\gamma, \gamma}{\wp}\right)_{p}=1$ for $p>2$, we have

$$
\left(\frac{\beta, \alpha}{\wp}\right)_{p}=\left(\frac{\beta, \gamma}{\wp}\right)_{p}\left(\frac{\gamma, \alpha}{\wp}\right)_{p} .
$$

Choose $\alpha=\pi^{p-i}\left(1-\pi^{i}\right)$ and $\beta=1-\pi^{p-i}$. Then $\gamma=1-\pi^{p}$, and we have

$$
\left(\frac{1-\pi^{p-i}, \pi^{p-i}\left(1-\pi^{i}\right)}{\wp}\right)_{p}=\left(\frac{1-\pi^{p-i}, 1-\pi^{p}}{\wp}\right)_{p}\left(\frac{1-\pi^{p}, \pi^{p-i}\left(1-\pi^{i}\right)}{\wp}\right)_{p}
$$

Apply lemma $10.6(\mathrm{f})$ to the left side, and apply the fact that $1-\pi^{p}$ is p-primary (annihilates units) to the right to obtain

$$
\left(\frac{1-\pi^{p-i}, 1-\pi^{i}}{\wp}\right)_{p}=\left(\frac{1-\pi^{p}, \pi^{p-i}}{\wp}\right)_{p} .
$$

We have $1-\pi^{p}=1+p \pi\left(\bmod \wp^{p+1}\right)$ by lemma 11.15 , so

$$
\left(\frac{1-\pi^{i}, 1-\pi^{p-i}}{\wp}\right)_{p}=\left(\frac{\pi^{p-i}, 1+p \pi}{\wp}\right)_{p}
$$

Apply (11.6) on the left side, and apply lemma 11.16 on the right to obtain

$$
\left(\frac{u_{i}, u_{p-i}}{\wp}\right)_{p}=\zeta^{p-i}=\zeta^{-i}
$$

The completes the proof of lemma 11.19.
Theorem 11.20 - RECIPROCITY LAW FOR ODD PRIME POWERS. If α and β are elements of $W_{\wp}(1)$, then let a_{i} and $b_{i}(1 \leq i<p)$ be integers such that $0 \leq a_{i}<p$ and $0 \leq b_{i}<p$ and

$$
\alpha=u_{1}^{a_{1}} \ldots u_{p-1}^{a_{p-1}}\left(\bmod \wp^{p}\right) \quad \text { and } \quad \beta=u_{1}^{b_{1}} \ldots u_{p-1}^{b_{p-1}}\left(\bmod \wp^{p}\right) .
$$

Then

$$
\left(\frac{\alpha}{\beta}\right)_{p}\left(\frac{\beta}{\alpha}\right)_{p}^{-1}=\zeta^{-\sum_{i=1}^{p-1} i a_{i} b_{p-i}}
$$

Proof. Since α and $u_{1}^{a_{1}} \ldots u_{p-1}^{a_{p-1}}$ differ only by a factor that is p-primary, and likewise for β and $u_{1}^{b_{1}} \ldots u_{p-1}^{b_{p-1}}$, then we have

$$
\begin{aligned}
&\left(\frac{\alpha}{\beta}\right)_{p}\left(\frac{\beta}{\alpha}\right)_{p}^{-1}=\left(\frac{\alpha, \beta}{\wp}\right)_{p}=\prod_{i=1}^{p-1} \prod_{j=1}^{p-1}\left(\frac{u_{i}, u_{j}}{\wp}\right)_{p}^{a_{i} b_{j}} \\
&=\prod_{i=1}^{p-1}\left(\frac{u_{i}, u_{p-i}}{\wp}\right)_{p}^{a_{i} b_{p-i}}=\prod_{i=1}^{p-1} \zeta^{-i a_{i} b_{p-i}}=\zeta^{-\sum_{i=1}^{p-1} i a_{i} b_{p-i}}
\end{aligned}
$$

Computation of symbols $\left(\frac{\pi, u_{i}}{\wp}\right)_{p}$.
Lemma 11.21.

$$
\left(\frac{p, u_{i}}{\wp}\right)_{p}=1 \quad \text { for } i=1, \ldots, p-1
$$

Proof. By lemma 11.18, we have

$$
\begin{equation*}
\left(\frac{p, \sigma u_{i}}{\wp}\right)_{p}=\left(\frac{p, u_{i}^{r^{i}}}{\wp}\right)_{p}=\left(\frac{p, u_{i}}{\wp}\right)_{p}^{r^{i}} \tag{10.7}
\end{equation*}
$$

We can compute $\left(\frac{p, \sigma u_{i}}{\wp}\right)_{p}$ in another way using lemma 10.43. Proceeding as in the proof of lemma 11.19, we have $\sqrt[p]{\sigma u_{i}}=\sigma \sqrt[p]{u_{i}}$ and

$$
\left(\frac{p, \mathbf{k}\left(\sqrt[p]{\sigma u_{i}}\right) / \mathbf{k}}{\wp}\right)_{p}=\sigma\left(\frac{p, \mathbf{k}\left(\sqrt[p]{u_{i}}\right) / \mathbf{k}}{\wp}\right)_{p} \sigma^{-1}
$$

so

$$
\left(\frac{p, \mathbf{k}\left(\sqrt[p]{\sigma u_{i}}\right) / \mathbf{k}}{\wp}\right)_{p} \sqrt[p]{\sigma u_{i}}=\sigma\left(\frac{p, \mathbf{k}\left(\sqrt[p]{u_{i}}\right) / \mathbf{k}}{\wp}\right)_{p} \sqrt[p]{u_{i}}
$$

Therefore

$$
\left(\frac{p, \sigma u_{i}}{\wp}\right)_{p} \sqrt[p]{\sigma u_{i}}=\sigma\left(\left(\frac{p, u_{i}}{\wp}\right)_{p} \sqrt[p]{u_{i}}\right)=\left(\frac{p, u_{i}}{\wp}\right)_{p}^{r} \sqrt[p]{\sigma u_{i}}
$$

Comparison with (10.7) shows that $\left(\frac{p, u_{i}}{\wp}\right)_{p}^{r}=\left(\frac{p, u_{i}}{\wp}\right)_{p}^{r^{i}}$. If $\left(\frac{p, u_{i}}{\wp}\right)_{p} \neq 1$ then we must have $r=r^{i}(\bmod p)$, or $i=1$.

It remains to prove the lemma in the case $i=1$. We have $1-\pi=\zeta$, and by lemma 11.17 with $i=1$ we have $r\left(r-r^{2}\right) \ldots\left(r-r^{p-1}\right)=-1(\bmod p)$, so

$$
\begin{equation*}
\left.u_{1}=\zeta^{-r\left(\sigma-r^{2}\right) \ldots\left(\sigma-r^{p-1}\right)}=\zeta^{-r\left(r-r^{2}\right) \ldots\left(r-r^{p-1}\right.}\right)=\zeta . \tag{10.8}
\end{equation*}
$$

We have $p=(1-\zeta)\left(1-\zeta^{2}\right) \ldots\left(1-\zeta^{p-1}\right)$, so the lemma is proved if $\left(\frac{1-\zeta^{j}, \zeta}{\wp}\right)_{p}=1$ for $1 \leq j<p$. For each j there is a j^{\prime} so that $j j^{\prime}=1(\bmod p)$, and

$$
\left(\frac{1-\zeta^{j}, \zeta}{\wp}\right)_{p}=\left(\frac{1-\zeta^{j}, \zeta^{j j^{\prime}}}{\wp}\right)_{p}=\left(\frac{1-\zeta^{j}, \zeta^{j}}{\wp}\right)_{p}^{j^{\prime}}=1
$$

This completes the proof of the lemma.

Lemma 11.22. Put $\xi=-\frac{\pi^{p-1}}{p}$. Then

$$
\left(\frac{\pi, u_{i}}{\wp}\right)_{p}=\left(\frac{\xi, u_{i}}{\wp}\right)_{p} \quad \text { for } 1 \leq i<p
$$

Proof. Since p is odd then $-1=(-1)^{p}$, so by lemma 11.21 we have

$$
\left(\frac{\pi, u_{i}}{\wp}\right)_{p}=\left(\frac{\pi^{p-1}, u_{i}}{\wp}\right)_{p}^{-1}=\left(\frac{-\pi^{p-1} / p, u_{i}}{\wp}\right)_{p}^{-1}=\left(\frac{\xi, u_{i}}{\wp}\right)_{p}^{-1}
$$

which proves the lemma.

For any α in $W_{\pi}(1)$, let $t_{1}(\alpha), \ldots, t_{p-1}(\alpha)$ be the unique integers satisfying

$$
\begin{equation*}
\alpha=u_{1}^{t_{1}(\alpha)} \ldots u_{p-1}^{t_{p-1} \alpha}\left(\bmod \wp^{p}\right) \quad \text { and } 0 \leq t_{i}(\alpha)<p \tag{11.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\frac{\xi, u_{i}}{\wp}\right)_{p}=\left(\frac{u_{p-i}^{t_{p-i}(\xi)}, u_{i}}{\wp}\right)_{p}=\zeta^{i t_{p-i}(\xi)} \tag{11.10}
\end{equation*}
$$

The problem is to compute $t_{1}(\xi), \ldots, t_{p-1}(\xi)$ for $1 \leq i \leq p-2$, since the next lemma shows that $t_{p-1}(\xi)=1$.

Lemma 11.23.

$$
\left(\frac{\xi, u_{1}}{\wp}\right)_{p}=1, \quad \text { or } \quad t_{p-1}(\xi)=0
$$

Proof. By (11.3) and (11.8) we have

$$
\left(\frac{\xi, u_{i}}{\wp}\right)_{p}=\left(\frac{-\pi^{p-1} p^{-1}, u_{i}}{\wp}\right)_{p}=\left(\frac{-1, \zeta}{\wp}\right)_{p}\left(\frac{1-\zeta, \zeta}{\wp}\right)_{p}^{p-1} \prod_{j=1}^{p-1}\left(\frac{1-\zeta^{j}, \zeta}{\wp}\right)_{p}
$$

We have $-1=(-1)^{p}$, and $\left(\frac{1-\zeta^{j}, \zeta}{\wp}\right)_{p}=1$ was shown in the proof of lemma 11.21.

Kummer's logarithmic differential quotient for $p>2$. Every element α in \mathbf{o}_{\wp} is a linear combination of $1, \zeta, \ldots, \zeta^{p-2}$ with coefficients in $\left.\mathbf{Z}_{(} p\right)$. Suppose that $\phi(x)$ and $\psi(x)$ are polynomials over $\left.\mathbf{Z}_{(} p\right)$ such that $\alpha=\phi(\zeta)=\psi(\zeta)$. Then ζ is a root of $\phi(x)-\psi(x)$, so $\phi(x)-\psi(x)$ is divisible by the minimal polynomial of ζ over $\mathbf{Z}_{(p)}$, which is $f_{0}(x)=x^{p-1}+\cdots+x+1$ because $\left[\mathbf{Q}_{(2)}(\zeta): \mathbf{Q}_{(2)}\right]=p-1$. Let $\eta(x)$ be a polynomial with coefficients in $\mathbf{Z}_{(p)}$ such that

$$
\phi(x)-\psi(x)=f_{0}(x) \eta(x) .
$$

Applying formal differentiation, we obtain

$$
\begin{equation*}
\phi^{(n)}(x)-\psi^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} f_{0}^{(k)}(x) \eta^{(n-k)}(x) \quad \text { for } 0 \leq n \leq p-1 \tag{11.11}
\end{equation*}
$$

as an identity of polynomials over $\mathbf{Z}_{(p)}$.
Lemma 11.24. Let $f_{0}(x)=x^{p-1}+\cdots+x+1$. Then

$$
f_{0}^{(k)}(1)=0(\bmod p) \quad \text { for } 0 \leq k \leq p-2
$$

and

$$
f_{0}^{(p-1)}(1)=-1(\bmod p) .
$$

Proof. Both sides of the identity

$$
(p-1)!f_{0}(x)=\sum_{k=0}^{p-1} f_{0}^{(k)}(1) \frac{(p-1)!}{k!}(x-1)^{k}
$$

are polynomials with integer coefficients, and $f_{0}^{(k)}(1)$ and $(p-1)!/ k!$ are integers. We have $(x-1) f_{0}(x)=x^{p}-1=(x-1)^{p}(\bmod p)$, so $f_{0}(x)=(x-1)^{p-1}(\bmod p)$. Therefore

$$
(p-1)!(x-1)^{p-1}=\sum_{k=0}^{p-1} f_{0}^{(k)}(1) \frac{(p-1)!}{k!}(x-1)^{k}(\bmod p)
$$

The coefficients of $(x-1)^{k}$ for $0 \leq k \leq p-1$ must be identical on both sides, so

$$
f_{0}^{(k)}(1)=0(\bmod p) \quad \text { for } 0 \leq k \leq p-2
$$

and

$$
f_{0}^{(p-1)}(1)=(p-1)!=-1(\bmod p)
$$

Lemma 11.25. If α is an element of $\mathbf{Q}_{(p)}(\zeta)$ and $\alpha=\phi(\zeta)=\psi(\zeta)$ where $\phi(x)$ and $\psi(x)$ are polynomials with coefficients in $\mathbf{Z}_{(p)}$, then

$$
\phi^{(n)}(1)-\psi^{(n)}(1)=0(\bmod p) \quad \text { for } 0 \leq n \leq p-2
$$

and

$$
\phi^{(p-1)}(1)-\psi^{(p-1)}(1)=-\frac{\phi(1)-\psi(1)}{p}(\bmod p)
$$

Proof. The result for $0 \leq n \leq p-2$ is obtained by setting $x=1$ in (11.11) and applying lemma 11.24. For $n=p-1$ we have

$$
\phi^{(p-1)}(1)-\psi^{(p-1)}(1)=f_{0}^{(p-1)}(1) \eta(1)=-\eta(1)(\bmod p) .
$$

We have $\phi(1)-\psi(1)=f_{0}(1) \eta(1)$. Since $f_{0}(1)=p$ then $\phi(1)-\psi(1)$ is divisible by p and $\eta(1)=(\phi(1)-\psi(1)) / p$, which gives the desired result for $n=p-1$.

Lemma 11.26. Suppose that α is in $W_{\wp}(1)$ and $\alpha=\phi(\zeta)=\psi(\zeta)$. Then we have $1=\phi(1)=\psi(1)(\bmod 0)$, and

$$
\phi^{(n)}(1)=\psi^{(n)}(1)(\bmod p) \quad \text { for } 0 \leq n<p-1
$$

and

$$
\phi^{(p-1)}(1)+\frac{\phi(1)-1}{p}=\psi^{(p-1)}(1)+\frac{\psi(1)-1}{p}(\bmod p)
$$

Proof. Since $\alpha=1(\bmod \wp)$ and $\zeta=1(\bmod \wp)$ then we have $1=\phi(1)=$ $\psi(1)(\bmod \wp)$. Therefore $1=\phi(1)=\psi(1)(\bmod p)$, so $\phi(1)-1$ and $\psi(1)-1$ are divisible by p. The results now follow immediately from lemma 11.25 .

We consider the formal power series $F(z)=\log \left(\phi\left(e^{z}\right)\right)$.

$$
F(z)=\log (\phi(1))+\frac{\phi^{\prime}(1)}{\phi(1)} z+\frac{\left(\phi^{\prime \prime}(1)+\phi^{\prime}(1)\right) \phi(1)-\phi^{\prime}(1)^{2}}{\phi(1)^{2}} z^{2}+\ldots
$$

If $\phi(1)$ is in $W_{\wp}(1)$ then $\log (\phi(1))$ is defined, but we are actually interested only in coefficients of z^{n} for $1 \leq n \leq p-1$.

Lemma 11.27.

$$
\frac{d^{n}}{d z^{n}} F(z)=\frac{\phi^{(n)}\left(e^{z}\right) e^{n z}}{\phi\left(e^{z}\right)}+R_{n}(z)
$$

where $R_{n}(z)$ is a rational expression in $e^{z}, \phi\left(e^{z}\right), \phi^{\prime}\left(e^{z}\right), \ldots, \phi^{(n-1)}\left(e^{z}\right)$. The numerator of $R_{n}(z)$ is a sum of terms each of which is divisible by at least one of $\phi^{\prime}\left(e^{z}\right), \ldots, \phi^{(n-1)}\left(e^{z}\right)$, and the denominator is a power of $\phi\left(e^{z}\right)$.

Proof. Put $w=e^{z}, u_{0}=\phi\left(e^{z}\right)$, and $u_{i}=\phi^{(i)}\left(e^{z}\right)$ for $i \geq 0$. Then $w^{\prime}=w$ and $u_{i}^{\prime}=u_{i+1} w$ for $i \geq 0$. We have $F(z)=\log \left(u_{0}\right)$, so $d F(z) / d z=u_{1} w / u_{0}$. Therefore $R_{1}(z)=0$, so the conclusion holds for $n=1$. For $n=2$, we have

$$
\frac{d^{2}}{d z^{2}} F(z)=\frac{u_{2} w^{2}}{u_{0}}+\frac{u_{1} w}{u_{0}}-\frac{u_{1}^{2} w^{2}}{u_{0}^{2}}=\frac{u_{2} w^{2}}{u_{0}}+\frac{u_{1} u_{0} w-u_{2} u_{1} w^{2}}{u_{0}^{2}}
$$

so every term of the numerator of $R_{2}(z)$ is divisible by u_{1}.
Assume that the lemma is true for n. Then

$$
\frac{d^{n}}{d z^{n}} F(z)=\frac{u_{n} w^{n}}{u_{0}}+R_{n}(z)
$$

and

$$
R_{n}(z)=\frac{S_{1} u_{1}+\cdots+S_{n-1} u_{n-1}}{u_{0}^{k_{n}}}
$$

where $S_{1}(z), \ldots S_{n-1}(z)$ are polynomials in $w, u_{0}, \ldots, u_{n-1}$. We have

$$
\frac{d}{d z} R_{n}(z)=\frac{\sum_{j=1}^{n-1}\left(\left(S_{j}^{\prime} u_{j}+S_{j} u_{j+1} w\right) u_{0}^{k_{n}}-k_{n} S_{j} u_{j} u_{0}^{k_{n}-1} u_{1} w\right)}{u_{0}^{2 k_{n}}}
$$

and every term of the numerator is divisible by at least one of u_{1}, \ldots, u_{n}. Then

$$
\begin{aligned}
& \frac{d^{n+1}}{d z^{n+1}} F(z)= \\
& \quad=\frac{u_{n+1} w^{n+1}}{u_{0}}+\frac{n u_{n} w^{n}}{u_{0}}-\frac{u_{n} u_{1} w^{n+1}}{u_{0}^{2}}+\frac{d}{d z} R_{n}(z)=\frac{u_{n+1} w^{n+1}}{u_{0}}+R_{n+1}(z)
\end{aligned}
$$

We see that $R_{n+1}(z)$ is a rational expression in $w, u_{0}, u_{1} \ldots, u_{n}$ with denominator $u_{0}^{2 k_{n}}$, and every term of the numerator contains at least one factor from the list u_{1}, \ldots, u_{n}, and the conclusion therefore follows.

Lemma 11.28. If $\alpha=\phi(\zeta)$ is in $W_{\wp}(1)$, define $\ell_{n}(\alpha)$ by

$$
\ell_{n}(\alpha)=\left\{\begin{array}{l}
\frac{d^{n}}{d z^{n}} F(0) \quad \text { for } 1 \leq n \leq p-2 \\
\frac{d^{(p-1)}}{d z^{(p-1)}} F(0)+\frac{\phi(1)-1}{p} \quad \text { for } n=p-1
\end{array}\right.
$$

Then $\ell_{n}(\alpha)$ depends only on α and not on $\phi(x)$ for $1 \leq n \leq p-1$.
Proof. By lemma 11.27, $\frac{d^{n}}{d z^{n}} F(0)=\frac{\phi^{(n)}(1)}{\phi(1)}+R_{n}(0)$, where $R_{n}(0)$ is a rational expression in $1, \phi(1), \ldots, \phi^{n-1}(1)$ with denominator a power of $\phi(1)$. By lemma 11.26, $\phi(1)=1(\bmod p)$ and $\ell_{1}(\alpha), \ldots, \ell_{p-2}(\alpha)$ depend modulo p only on α and not on $\phi(x)$. For $n=p-1$, we have

$$
\ell_{p-1}(\alpha)=\phi^{(p-1)}(1)+\frac{\phi(1)-1}{p}+R_{p-1}(0)(\bmod p)
$$

By lemma 11.26, this expression depends modulo p only on α and not on $\phi(x)$.
LEMMA 11.29. For α_{1} and α_{2} in $W_{\wp}(1)$, we have

$$
\begin{align*}
\ell_{j}\left(\alpha_{1} \alpha_{2}\right) & =\ell_{j}\left(\alpha_{1}\right)+\ell_{j}\left(\alpha_{2}\right)(\bmod p), \tag{1}\\
\ell_{j}\left(\alpha_{1} \alpha_{2}^{-1}\right) & =\ell_{j}\left(\alpha_{1}\right)-\ell_{j}\left(\alpha_{2}\right)(\bmod p) \tag{2}
\end{align*}
$$

If $\alpha_{1}=\alpha_{2}\left(\bmod \wp^{p-1}\right)$ then

$$
\begin{equation*}
\ell_{j}\left(\alpha_{1}\right)=\ell_{j}\left(\alpha_{2}\right)(\bmod p) \quad \text { for } 1 \leq j \leq p-2 \tag{3}
\end{equation*}
$$

If $\alpha_{1}=\alpha_{2}\left(\bmod \wp^{p}\right)$ then

$$
\begin{equation*}
\ell_{p-1}\left(\alpha_{1}\right)=\ell_{p-1}\left(\alpha_{2}\right)(\bmod p) \tag{4}
\end{equation*}
$$

If σ generates $G\left(\mathbf{Q}_{(p)}(\zeta): \mathbf{Q}_{(p)}\right)$ and $\zeta^{\sigma}=\zeta^{r}$ then

$$
\begin{equation*}
\ell_{j}\left(\alpha^{\sigma}\right)=r^{j} \ell_{j}(\alpha)(\bmod p) \quad \text { for } 1 \leq j \leq p-1 \tag{5}
\end{equation*}
$$

Proof. If $\alpha_{1}=\phi_{1}(\zeta)$ and $\alpha_{2}=\phi_{2}(\zeta)$ then $\alpha_{1} \alpha_{2}=\phi_{1}(\zeta) \phi_{2}(\zeta)$, and (1) follows from the identity of formal power series

$$
\log \left(\phi_{1}\left(e^{z}\right) \phi_{2}\left(e^{z}\right)\right)=\log \left(\phi_{1}\left(e^{z}\right)\right)+\log \left(\phi_{2}\left(e^{z}\right)\right)
$$

Then (2) follows from

$$
\ell_{j}\left(\left(\alpha_{1} \alpha_{2}^{-1}\right) \alpha_{2}\right)=\ell_{j}\left(\alpha_{1} \alpha_{2}^{-1}\right)+\ell_{j}\left(\alpha_{2}\right)(\bmod p)
$$

As to (3), it is enough to show that if $\alpha=1\left(\bmod \wp^{p-1}\right)$ then $\ell_{j}(\alpha)=0(\bmod p)$ for $1 \leq j \leq p-2$. Put

$$
\alpha=a_{0}+\sum_{k=0}^{p-2} a_{k} \pi^{k} .
$$

Then $a_{0}=1(\bmod p)$, and $a_{k}=0(\bmod p)$ for $1 \leq k \leq p-2$. We have $\alpha=$ $a_{0}+\sum_{k=0}^{p-2} a_{k}(1-\zeta)^{k}$, so $\alpha=\phi(\zeta)$ with

$$
\phi(x)=a_{0}+\sum_{k=0}^{p-2} a_{k}(1-x)^{k}
$$

We have $\phi(x)=1(\bmod p)$, and $\phi^{(n)}(x)=0(\bmod p)$ for $n \geq 1$. By lemma 11.27 we have

$$
\ell_{1}(\alpha)=\cdots=\ell_{p-2}(\alpha)=0(\bmod p)
$$

As to (4), since all derivatives of $\phi(x)$ vanish modulo p then all derivatives of $\log \left(\phi\left(e^{z}\right)\right)$ vanish modulo p at $z=0$. If $\alpha=1\left(\bmod \wp^{p}\right)$ then $a_{0}=1\left(\bmod p^{2}\right)$, so we have

$$
\ell_{p-1}(\alpha)=\frac{\phi(1)-1}{p}=\frac{a_{0}-1}{p}=0(\bmod p) .
$$

As to (5), if $\alpha=\sum_{k=0}^{p-2} b_{k} \zeta^{k}=\phi(\zeta)$ and $\zeta^{\sigma}=\zeta^{r}$ then $\alpha^{\sigma}=\sum_{k=0}^{p-2} b_{k} \zeta^{r k}=$ $\phi\left(\zeta^{r}\right)=\psi(\zeta)$ where $\psi(x)=\phi\left(x^{r}\right)$. If $\log \left(\phi\left(e^{z}\right)\right)=\sum_{n=0}^{\infty} c_{n} z^{n}$, then $\log \left(\psi\left(e^{z}\right)\right)=$ $\log \left(\phi\left(e^{r z}\right)\right)=\sum_{n=0}^{\infty} c_{n} r^{n} z^{n}$. Therefore

$$
\ell_{j}\left(\alpha^{\sigma}\right)=r^{j} \ell_{j}(\alpha) \text { for } 1 \leq j \leq p-2
$$

For $j=p-1$, we have $r^{p-1}=1(\bmod p)$ so we are claiming that $\ell_{p-1}\left(\alpha^{\sigma}\right)=$ $\ell_{p-1}(\alpha)(\bmod p)$. Since all derivatives of $\log \left(\phi\left(e^{z}\right)\right)$ vanish modulo p at $z=0$, this reduces to

$$
\left.\frac{\phi(x)-1}{p}\right|_{x=1}=\left.\frac{\phi\left(x^{r}\right)-1}{p}\right|_{x=1}(\bmod p)
$$

This completes the proof of lemma 11.29.

Lemma 11.30. If α is in $W_{\wp}(1)$ and $t_{1}(\alpha), \ldots t_{p-1}(\alpha)$ are as in (11.9), then

$$
t_{j}(\alpha)=\frac{(-1)^{j-1}}{j!} \ell_{j}(\alpha)(\bmod p) \quad \text { for } 1 \leq j \leq p-1
$$

Proof. We have $\ell_{j}\left(u_{i}^{\sigma}\right)=r^{j} \ell_{j}\left(u_{i}\right)(\bmod p)$ for $1 \leq j \leq p-1$ by lemma 11.29(5). Also, we have $u_{i}^{\sigma}=u_{i}^{r^{i}}\left(\bmod \wp^{p}\right)$ by lemma 11.18, so $\ell_{j}\left(u_{i}^{\sigma}\right)=\ell_{j}\left(u_{i}^{r^{i}}\right)(\bmod p)$ for $1 \leq j \leq p-2$ by lemma 11.29(3) and for $j=p-1$ by lemma 11.29(4). Therefore, if $\ell_{j}\left(u_{i}\right) \neq 0(\bmod p)$ then $r^{i}=r^{j}(\bmod p)$, or $i=j$. Since $u_{i}=1-\pi^{i}\left(\bmod \wp^{i+1}\right)$ by lemma 11.18, we have

$$
u_{j}=\left(1-\pi^{j}\right) u_{j+1}^{a_{j+1}} \ldots u_{p-1}^{a_{p-1}}(\bmod p),
$$

so $\ell_{j}\left(u_{j}\right)=\ell_{j}\left(1-\pi^{j}\right)(\bmod p)$. Since $1-\pi^{j}=1-(1-\zeta)^{j}$, then we take $\phi(x)=$ $1-(1-x)^{j}$. Then

$$
\phi\left(e^{z}\right)=1-\left(1-e^{z}\right)^{j}=1+(-1)^{j-1} z^{j}+\ldots
$$

so

$$
\log \left(\phi\left(e^{z}\right)\right)=(-1)^{j} z^{j}+\ldots
$$

In this case we have $\phi(1)=1$, so $(\phi(1)-1) / p=0$, and therefore

$$
\ell_{j}\left(u_{j}\right)=\ell_{j}\left(1-\pi^{j}\right)=\left.\frac{d^{j}}{d z^{j}} \log \left(\phi\left(e_{z}\right)\right)\right|_{z=0}=(-1)^{j} j!(\bmod p)
$$

Putting $\alpha=u_{1}^{t_{1}(\alpha)} \ldots u_{p-1}^{t_{p-1}(\alpha)}\left(\bmod \wp^{p}\right)$, we have

$$
\ell_{j}(\alpha)=t_{j}(\alpha) \ell_{j}\left(u_{j}\right)=(-1)^{j} j!t_{j}(\alpha)(\bmod p),
$$

which proves the lemma.
We will be completely finished if we can compute $\ell_{j}(\xi)$ for $1 \leq j \leq p-2$, since we have already established that $t_{p-1}(\xi)=0$ (lemma 11.23). The Bernoulli numbers B_{a} are defined by

$$
\log \left(\frac{e^{z}-1}{z}\right)=\sum_{a=1}^{\infty} \frac{B_{a}}{a} \frac{z^{a}}{a!}
$$

The denominators of B_{1}, \ldots, B_{p-2} cannot be divisible by p.

Lemma 11.31. For $1 \leq j \leq p-2$ we have

$$
\ell_{j}(\xi)=-\frac{B_{j}}{j}(\bmod p)
$$

Proof. We have

$$
\xi^{-1}=-\frac{p}{\pi^{p-1}}=-\prod_{k=1}^{p-1} \frac{1-\zeta^{k}}{1-\zeta}=-(p-1)!\prod_{k=1}^{p-1} \frac{1}{k} \frac{1-\zeta^{k}}{1-\zeta}=-(p-1)!\prod_{k=1}^{p-1} \gamma_{k}
$$

where $\gamma_{k}=\left(1+\zeta+\cdots+\zeta^{k-1}\right) / k$ is in $W_{\wp}(1)$. Since $-(p-1)!=1\left(\bmod \wp^{p-1}\right)$, then by lemma $11.29(3)$ we have $\ell_{j}(-(p-1)!)=\ell_{j}(1)=0$, so

$$
\ell_{j}\left(\xi^{-1}\right)=\sum_{k=1}^{p-1} \ell_{j}\left(\gamma_{k}\right) \quad \text { for } 1 \leq j \leq p-2
$$

To compute $\ell_{j}\left(\gamma_{k}\right)$, we use $\phi_{k}(x)=\left(1+x+\cdots+x^{k-1}\right) / k=\frac{x^{k}-1}{k(x-1)}$.

$$
\begin{aligned}
& \log \left(\phi_{k}\left(e^{z}\right)\right)=\log \left(\frac{e^{k z}-1}{k z} \frac{z}{e^{z}-1}\right) \\
&=\log \frac{e^{k z}-1}{k z}-\log \frac{e^{z}-1}{z}=\sum_{a=1}^{\infty} \frac{B_{a}}{a}\left(k^{a}-1\right) \frac{z^{a}}{a!}
\end{aligned}
$$

Therefore for $1 \leq j \leq p-2$ we have

$$
\ell_{j}\left(\gamma_{k}\right)=\left.\frac{d^{j}}{d z^{j}} \log \left(\phi_{k}\left(e^{z}\right)\right)\right|_{z=0}=\frac{B_{j}}{j}\left(k^{j}-1\right) \quad \text { for } 1 \leq j \leq p-2
$$

so

$$
\ell_{j}\left(\xi^{-1}\right)=\sum_{k=1}^{p-1} \frac{B_{j}}{j}\left(k^{j}-1\right) .
$$

If r is a primitive root modulo p and $1 \leq j \leq p-2$, then

$$
\sum_{\nu=1}^{p-1} k^{j}=\sum_{\nu=1}^{p-1} r^{\nu j}=\frac{r^{p j}-1}{r^{j}-1}=0(\bmod p)
$$

so

$$
\ell_{j}\left(\xi^{-1}\right)=-(p-1) \frac{B_{j}}{j}=\frac{B_{j}}{j}(\bmod p)
$$

which proves the lemma.

