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Abstract. Binomial Thue equations of the shape Aan − Bbn = 1 possess,

for A and B positive integers and n ≥ 3, at most a single solution in positive
integers a and b. In case n ≥ 4 is even and A = 1, an old result of Tartakowsky

characterizes this solution, should it exist, in terms of the fundamental unit in

Q(
√

B). In this note, we extend this to certain values of A > 1.

1. Introduction

If F (x, y) is an irreducible binary form of degree n ≥ 3, then the Thue equation

F (x, y) = m

has, for a fixed nonzero integer m, at most finitely many solutions which may, via a
variety of techniques from the theory of Diophantine approximation, be effectively
determined (see e.g. Tzanakis and de Weger [14]). In general, the number of such
solutions may depend upon the degree of F , but, as proven by Mueller and Schmidt
[10], is bounded solely in terms of m and the number of monomials of F . In the
special case where m ≤ 2 and the number of monomials is minimal, we have the
following recent theorem of the author’s :

Theorem 1.1. ([2]) If A,B and n are nonzero integers with n ≥ 3, then the
inequality

|Aan −Bbn| ≤ 2

has at most one solution in positive integers (a, b).

In particular, an equation of the form

(1.1) Aan −Bbn = 1

has, for fixed AB 6= 0 and n ≥ 3, at most a single positive solution (a, b) (this
is, in fact, the main result of [1]). This statement, while in some sense sharp,
fails to precisely characterize the solutions that occur. Given the existence of a
pair of integers (a, b) satisfying (1.1), for instance, it would be of some interest to
determine their relationship with the structure of Q( n

√
B/A), in particular with

the fundamental unit(s) in the ring of integers of this field. A prototype of the
result we have in mind is the following special case of a theorem of Ljunggren [9]
(cf. Nagell [11]) :
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Theorem 1.2. (Ljunggren) If A and B are positive integers, then if a and b are
positive integers for which

Aa3 −Bb3 = 1,
we necessarily have that (

a
3
√

A− b
3
√

B
)3

is either the fundamental unit or its square in the field Q( 3
√

A/B).

For larger (even) values of n, where, additionally, we assume that A = 1, we
have a result stated by Tartakowsky [13] and proved by Af Ekenstam [6] :

Theorem 1.3. (Tartakowsky, Af Ekenstam) Let n and B be integers with n ≥ 2,
B positive and nonsquare and (n, B) 6= (2, 7140). If there exist positive integers a
and b such that

(1.2) a2n −Bb2n = 1,

then
u1 = an and v1 = bn.

If (n, B) = (2, 7140), then equation (1.2) has precisely one solution in positive
integers, corresponding to

u2 = 2392 and v2 = 262.

Here and subsequently, we define u1 and v1 to be the smallest positive integers such
that u2

1 −Bv2
1 = 1 and set

uk + vk

√
B = (u1 + v1

√
B)k.

Our goal in this paper is to consider the more general equation

(1.3) M2a2n −Bb2n = 1.

In case M = 2n−1, an analogous result to Theorem 1.3 is noted without proof by
Ljunggren (as Theorem II of [8]). In [3], this is generalized to M = 2α for arbitrary
nonnegative integer α. Here, we extend this result to (certain) larger values of M .
Specifically, defining P (M) to be the largest prime divisor of M , we prove

Theorem 1.4. Let M,n and B be positive integers with M,n ≥ 2, B nonsquare
and P (M) ≤ 13. If there exist positive integers a and b satisfying (1.3) then either
u1 = Man and v1 = bn, or one of (M,n, B) = (1, 2, 7140) or (7, 2, 3). In these
latter cases, we have u2 = Man and v2 = bn.

2. The case n = 2

We begin our proof of Theorem 1.4 by treating the case n = 2. Here, we will
deduce something a bit stronger, generalizing Corollary 1.3 of [5] in the process :

Proposition 2.1. Let M,B > 1 be squarefree integers with P (M) ≤ 13. Then if
there exist positive integers a and c satisfying the Diophantine equation

(2.1) M2a4 −Bc2 = 1,

we necessarily have Ma2 = uk with k = 1 unless either M = 7 (in which case k = 1
or k = 2, but not both) or

(2.2) (M,B) ∈ {(11, 2), (26, 3), (26, 16383), (55, 1139), (1001, 571535)} ,

where we have k = 3.
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The aforementioned Corollary 1.3 of [5] is just the above result under the more
restrictive assumption P (M) ≤ 11. We will thus assume for the remainder of this
section that 13 | M . Our argument is similar to that given in [5]; we will suppress
many of the details.

From Theorem 1.2 and Lemma 5.1 of [5], we have Ma2 = uk with k a positive
integral divisor of 420. Since u2j = 2u2

j − 1 and 13 | M , we may suppose that k is
odd. Now, by the classical theory of Pell’s equation, we have that

uk = Tk(u1),

where Tk(x) denotes the kth Tschebyscheff polynomial (of the first kind), satisfying

Tk(x) = cos (k arccos x) = xk +
(

k

2

)
xk−2(x2 − 1) + · · ·

for k a nonnegative integer. Since Tk1k2(x) = Tk1(Tk2(x)) for positive integers k1

and k2, to conclude as desired, we need only solve the Diophantine equations

(2.3) Tk(x) = Ma2, k ∈ {3, 5, 7}
in integers x and a with x > 1. If k = 5 or k = 7, we note that Tk(x) = x(16x4 −
20x2 + 5) or x(64x6 − 112x4 + 56x2 − 7), respectively. Since

gcd(16x4 − 20x2 + 5, 2 · 3 · 7 · 11 · 13) = 1,

in the first case, from (2.3), we necessarily have

16x4 − 20x2 + 5 = 5δu2

for some u ∈ Z and δ ∈ {0, 1}. Arguing as in the proof of Corollary 1.3 of [5] leads
to a contradiction if x > 1. In case k = 7, since

gcd(64x6 − 112x4 + 56x2 − 7, 2 · 3 · 5 · 11 · 13) = 1,

it follows that
64x6 − 112x4 + 56x2 − 7 = 7δu2,

again for u ∈ Z and δ ∈ {0, 1}. From the inequalities

(8x3 − 7x)2 < 64x6 − 112x4 + 56x2 − 7 < (8x3 − 7x + 1)2

valid for x > 1, we may suppose that δ = 1 (so that 7 | x). It follows that 7 | u2 +1,
again a contradiction.

Finally, if k = 3, we are left to consider equations of the form

x(4x2 − 3) = Ma2, P (M) ≤ 13.

Via (nowadays) routine computations using linear forms in elliptic logarithms and
lattice basis reduction (as implemented, for example, in Simath), we find that the
only solutions to these equations with x > 1 correspond to

x ∈ {2, 3, 128, 135, 756} .

This, after a simple calculation, completes the proof of Proposition 2.1.
To apply this to Theorem 1.4 in case n = 2, let us begin by supposing that there

exist positive integers a and b such that

(2.4) M2a4 −Bb4 = 1.

Writing B = B0B
2
1 with B0 squarefree, we will, as previously, take u1 and v1 for

the smallest positive integers with u2
1 − Bv2

1 = 1 and suppose that u∗1 and v∗1 are
the smallest positive integers satisfying (u∗i )

2−B0(v∗1)2 = 1. From Proposition 2.1,
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it follows that Ma2 = u∗k and B1b
2 = v∗k for k ≤ 3. Since u∗k ≤ uk for all k, it

remains to show that k = 1. If k = 3, from (2.2),

Ma2 ∈ {26, 99, 8388224, 9841095, 1728322596} .

In each case, we find that M2a4 − 1 is fourth-power free, except if Ma2 = 9841095
where 16 | M2a4 − 1. It follows that either B or 16B is equal to M2a4 − 1,
contradicting, in every case, k > 1.

If k = 2, then, from Proposition 2.1, we have M = 7 and hence

7a2 = u∗2 = 2(u∗1)
2 − 1, B1b

2 = v∗2 = 2u∗1v
∗
1 .

If u∗1 < u1 then necessarily 7a2 = u1, as desired. We may thus suppose that u1 = u∗1
and hence that u∗1 is coprime to B1. From the first of the above two equations, we
may conclude that u∗1 is even whereby, from the second, u∗1 = 2r2 for some integer
r. The first equation then implies that

8r4 − 7a2 = 1

whence, from Proposition 2.1, |ar| = 1. We thus have Bb4 = 48, as claimed.

3. Larger values of n

Let us now suppose that n ≥ 3 is prime. Let ε = u + v
√

B where u and v are
positive integers (to be chosen later) with u2 −Bv2 = 1. Defining

Ek =
εk − ε−k

ε− ε−1
,

if p is an odd positive integer, then we have the following identities :

(
E p+1

2
− E p−1

2

) (
E p+1

2
+ E p−1

2

)
= Ep(3.1)

(u + 1)
(
E p+1

2
− E p−1

2

)2

− (u− 1)
(
E p+1

2
+ E p−1

2

)2

= 2(3.2)

(u + 1)
(
E p+1

2
− E p−1

2

)2

+ (u− 1)
(
E p+1

2
+ E p−1

2

)2

= εp + ε−p.(3.3)

If we suppose that there exist positive integers a and b with M2a2n −Bb2n = 1,
we may write

(3.4) Man + bn
√

B = (u1 + v1

√
B)m

for some positive integer m. We separate our proof into two cases, depending on
whether or not m has an odd prime divisor p. If such a prime p exists, define

ε = a1 + b1

√
B = (u1 + v1

√
B)m/p,

so that

(3.5) Man + bn
√

B = (a1 + b1

√
B)p.

Expanding via the binomial theorem and equating coefficients, we thus may write

Man = a1 · a2, bn = b1 · b2

where a2 and b2 are odd integers with

gcd(a1, a2), gcd(b1, b2) ∈ {1, p}
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and neither a2 nor b2 divisible by p2. It follows that there exists a positive integer s
such that either b1 = sn or b1 = pn−1sn. In the first case, Ep = (b/s)n and so, from
(3.1) and the fact that the two factors on the left hand side of (3.1) are coprime,

E p+1
2
− E p−1

2
= Pn and E p+1

2
+ E p−1

2
= Qn,

for some positive integers P and Q. Equation (3.2) thus yields

(a1 + 1)P 2n − (a1 − 1)Q2n = 2

and so, via Theorem 1.1, P = Q = 1, contradicting p > 1.
We may thus suppose that b1 = pn−1sn (so that, in particular, p fails to divide

a1 · a2, whence a1 and a2 are coprime). Then we have Ep = pyn
0 for some positive

integer y0 and so (3.1) implies that

E p+1
2
± E p−1

2
= pPn and E p+1

2
∓ E p−1

2
= Qn,

for P and Q positive integers. Applying (3.2) and (3.3), we thus have either

(a1 + 1) p2P 2n − (a1 − 1) Q2n = 2, (a1 + 1) p2P 2n + (a1 − 1) Q2n = 2Man

or

(a1 + 1) Q2n − (a1 − 1) p2P 2n = 2, (a1 + 1) Q2n + (a1 − 1) p2P 2n = 2Man.

It follows that
2(a1 ± 1)Q2n ∓ 2 = 2Man.

If we suppose that a1 = Mrn, for some integer r, then∣∣(Mrn ± 1)Q2n −Man
∣∣ = 1,

whereby, applying Theorem 1.1, we have Q = 1, a = r, again a contradiction.
Finally, if a1 6= Mrn for any integer r, then gcd(M,a2) > 1. Since we assume

that P (M) ≤ 13, it follows that a2 has a prime divisor in the set {2, 3, 5, 7, 11, 13}.
As is well known, we may write

(3.6) a1 · a2 = Tp(a1)

where Tp(x) is, again, the pth Tschebyscheff polynomial of the first kind. These
satisfy the recursion

T2k+1(x) = (4x2 − 2)T2k−1(x)− T2k−3(x),

where T1(x) = x and T3(x) = 4x3−3x. From this recursion, (3.6), and the fact that
gcd(a1, a2) = 1, it is easy to check that a2 is coprime to 210. For example, if we have
a1 ≡ ±1 (mod 7), then a2 ≡ 1 (mod 7) for all odd p, while a1 ≡ ±2 (mod 7) implies
that a2 ≡ 1 (mod 7) if p ≡ ±1 (mod 8), a2 ≡ −1 (mod 7) if p ≡ ±3 (mod 8).
Finally, if a1 ≡ ±3 (mod 7), then a2 ≡ 1 (mod 7) unless p = 3 (whence a2 ≡
−2 (mod 7)).

The situation modulo 11 or 13 is slightly more complicated. In each case, since
p is an odd prime, we have, from the above recursion, that 11 | a2 or 13 | a2 only
when p = 3. In this case, b2 = 4a2

1 − 1 = 3tn for some integer t whereby, upon
factoring, we deduce the existence of integers c and d for which cn − 3dn = 2 with
|cd| = t. It follows, from Theorem 1.1, that t = 1, contradicting a1 > 1.



6 MICHAEL A. BENNETT

We are thus left to treat equation (3.4) with m = 2α for α a nonnegative integer.
Our claim will follow directly if we can show that α = 0. If α > 0, then there exist
integers u and v for which

Man + bn
√

B =
(
u + v

√
B

)2

,

whereby

(3.7) 2u2 − 1 = Man

and

(3.8) 2uv = bn.

The first of these equations implies, since we assume 3 ≤ P (M) ≤ 13, that M = 7β

for some positive integer β.
Now either u is even, in which case, from (3.8), there exist integers l and w for

which u = 2n−1ln, v = wn, or u is odd, whence u = ln, v = 2n−1wn. In the first of
these cases, from (3.7), we conclude that

22n−1l2n − 7βan = 1.

Arguing as in Kraus [7] (with minor complications at n = 5 and n = 7), this
equation has no solutions with n ≥ 5 prime. Modulo 7, the same is true for n = 3.
In the second case, we have

(3.9) 2l2n − 7βan = 1,

where l is an odd integer. To treat this equation, we consider the Frey curve

E : Y 2 = X3 + 2X2 + 2l2nX.

If p is a prime, coprime to 14aln, define

ap = p + 1−#E(Fp).

For n ≥ 11 is prime, applying techniques of [4], there exists a weight 2, level 896
cuspidal newform f =

∑
cnqn such that, if p is a prime, again coprime to 14aln,

we have

(3.10) NormKf /Q (cp − ap) ≡ 0 (mod n).

Similarly, if p | al but p fails to divide 14n,

(3.11) NormKf /Q (cp ± (p + 1)) ≡ 0 (mod n).

From Stein’s Modular Forms Database [12], we see that all the one dimensional
forms at level 896 have c3 = 0. A simple calculation shows that a3 = 2 for our
Frey curve, provided 3 fails to divide l and hence one of (3.10) or (3.11) implies
that f is not one dimensional. For the higher dimensional forms labelled (in Stein’s
notation) 5–12, we have c3 = θ with θ2 ± 2θ − 2 = 0 or θ3 ± 2θ2 − 6θ ∓ 8 = 0.
Calculating with (3.10) and (3.11) shows that necessarily n = 11 and 3 | la. In
this case, modulo 23, we have that 11 | β, contradicting Theorem 1.1 (since the
equation X11 − 2Y 11 = 1 has no solutions with |XY | > 1).

To deal with the remaining values of n ∈ {3, 5, 7}, we employ (mostly) local
considerations. For example, equation (3.9) has no solutions modulo 7, provided
n = 3. For n = 5, considering (3.9) modulo 11, we find that necessarily 5 | β. Since
the equation X5 − 2Y 5 = 1 has, by Theorem 1.1, no solutions in integers X and Y
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with |XY | > 1, this leads to a contradiction. If n = 7, (3.9) is insoluble modulo 49
if β ≥ 2. We are left then to deal with the Diophantine equation

2l14 − 7a7 = 1.

Here, we may show that there are no local obstructions to solubility but employing,
for instance, a “Thue-solver” such as that implemented in Simath, we find that
there are, in fact no solutions in integers l and a. This completes the proof of
Theorem 1.4.
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Math. 4 (1925), 209–270.
[12] W. Stein, Modular forms database, http://modular.fas.harvard.edu/Tables/

[13] W. Tartakowsky, Auflösung der Gleichung x4 − ρy4 = 1, Bull. de l’Académie des Sciences
URSS 20 (1926), 310–324.

[14] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J.

Number Theory 31 (1989), 99–132.

Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T
1Z2 Canada

E-mail address: bennett@math.ubc.ca


