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1. Introduction and results. Throughout the present note, we will
denote by b ≥ 2 an integer, P the set of prime factors of b, and ξ a real alge-
braic number of degree d ≥ 2. We are interested in studying combinatorial
properties of the b-ary expansion of ξ.

By Liouville’s inequality, there exists an effectively computable constant
c(ξ) such that

(1.1) ‖qξ‖ > c(ξ)q−d+1

for q ≥ 1, where ‖x‖ denotes the distance from a real number x to the
nearest integer. Setting q = bn for n ≥ 1, this implies in particular that
the nth decimal digit of ξ cannot be followed by a block of (d − 1)n +
d(log c(ξ))/(log 10)e digits 0.

A much stronger result is a consequence of Ridout’s theorem [14]. Indeed,
for every positive real number ε, there exists a positive constant c(ξ,P, ε)
such that

(1.2) ‖bnξ‖ > c(ξ,P, ε)b−εn

for n ≥ 1. This implies that, for every positive real number ε and for n
sufficiently large in terms of ε, the nth decimal digit of ξ cannot be followed
by a block of dεne digits 0. It is a notorious fact that the constant c(ξ,P, ε)
is ineffective, in that it is not possible to find an explicit value for it from
the proof in [14].

When d ≥ 3, an effective strengthening of (1.1) was obtained by Feld-
man [12], by means of a sharpening [11] of Baker’s theory of linear forms in
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(at least three) logarithms [1]. He established that

(1.3) ‖qξ‖ > c(ξ)q−d+1+τ(ξ)

for q ≥ 1, where c(ξ) and τ(ξ) are effectively computable positive numbers.
The key argument in the proof of (1.3) is the introduction of the so-called
parameter b′ (see (2.1)) in the estimates for linear forms in logarithms (see
also [4], where it is shown that estimates for linear forms in two logarithms,
e.g. those obtained in [13], are sufficient to obtain (1.3)). An alternative
approach has been developed by Bombieri [5].

It is convenient to restate the above results in terms of the exponents
of approximation vb and veff

b . We denote by vb(ξ) the infimum of the real
numbers v for which the inequality

‖bnξ‖ > (bn)−v

holds for every sufficiently large positive integer n. Likewise, veff
b (ξ) denotes

the infimum of the real numbers v for which there exists an effectively com-
putable constant c(ξ, v) such that

‖bnξ‖ > c(ξ, v)(bn)−v

for n ≥ 1. In view of (1.2) and (1.3), we have vb(ξ) = 0 and, assuming that
ξ is of degree at least three,

(1.4) veff
b (ξ) ≤ d− 1− τ(ξ)

for some effectively computable positive real number τ(ξ). As noted pre-
viously, the values vb(ξ) and veff

b (ξ) provide information on the lengths of
blocks of the digit 0 (and of the digit b− 1) in the b-ary expansion of ξ.

It only remains for us to consider the case when ξ is of degree two. In this
situation, the first effective estimates for ‖bnξ‖ were given by Schinzel [15]
in a landmark paper published in 1967, in which he developed the theory of
linear forms in two p-adic logarithms, making completely explicit the bounds
of Gelfond.

Theorem 1.1 (Schinzel). For every integer b ≥ 2 and every quadratic
real number ξ, we have

‖bnξ‖ > b−n exp{c(ξ, b)n1/7}

for n ≥ 1, where c(ξ, b) is a positive effectively computable constant depend-
ing only on ξ and b.

Since the publication of Schinzel’s paper, there have been important
improvements in the theory of linear forms in two p-adic logarithms. It is
now possible to improve Theorem 1.1 as follows.
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Theorem 1.2. For every integer b ≥ 2 and every quadratic real num-
ber ξ, we have

‖bnξ‖ > c(ξ, b)b−(1−τ(ξ,P))n

for n ≥ 1, where c(ξ, b) and τ(ξ,P) are positive effectively computable con-
stants depending only on ξ and b, and on ξ and on the set P of prime factors
of b, respectively. In particular, we have

(1.5) veff
b (ξ) ≤ 1− τ(ξ,P).

We obtain in (1.5) an improvement upon (1.1) of a similar strength
to (1.4). Again, the source of the strengthening is the introduction of the
parameter b′ (see (2.1)) in the estimates for linear forms in non-Archimedean
logarithms.

We point out that the numerical constant occurring in (1.5) depends on
the set of prime divisors of b, while in Schinzel’s theorem the dependence is
in terms of b itself.

The effective improvement of Liouville’s inequality in (1.4) is fully inde-
pendent of the base b. While this is not the case in Theorem 1.2, the theory
of linear forms in logarithms enables us to establish the following ‘uniform’
result.

Theorem 1.3. Let p be a prime number. There exists an effectively com-
putable absolute positive constant τ1 such that

(1.6) veff
p (
√
p2 + 1) ≤ 1− τ1.

Further progress on estimates for linear forms in two non-Archimedean
logarithms enables us to somewhat generalize (1.6). In particular, one can
deduce the existence of an effectively computable absolute positive constant
τ2 such that

veff
b (
√
b2k + 1) ≤ 1− τ2

for every positive integer k and every b ≥ 2; we explain this at the end of
Section 2.

As is often the case when applicable, the theory of Padé approximants
leads to sharper bounds and, in particular, considerable effective improve-
ments of Liouville’s inequality. The main result of the present note shows
that, for a special class of quadratic numbers, the exponent veff

b can be
proved to be very small.

Theorem 1.4. For every integers b ≥ 2 and k ≥ 1, we have

veff
b (
√
b2k + 1) ≤ (log 48)/(k log b).

This theorem shows that, for every integer b ≥ 2, there exist arbitrarily
large quadratic real numbers ξ such that

veff
b (ξ) ≤ 9/(2 log ξ).
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In particular, for every positive real number ε, there exist quadratic real
numbers ξ such that veff

b (ξ) < ε.

Theorem 1.2 is not entirely satisfactory since the right-hand side of (1.5)
is dependent upon the base b, in contrast to the situation in (1.4). This
suggests the following

Open problem. Prove that for every quadratic number ξ there exists
an effectively computable positive number τ(ξ) such that

veff
b (ξ) ≤ 1− τ(ξ)

for every b ≥ 2.

Remark 1. The effective results on the number of digit changes in the
b-ary expansion of algebraic irrational numbers ξ obtained in [8] tend to
suggest that veff

b (ξ) is small, but do not actually provide explicit evidence
in this regard.

Remark 2. The method of proof of Theorem 1.4 is flexible enough
to yield analogous results for certain more general families of quadratic
numbers.

2. Proofs of Theorems 1.2 and 1.3: linear forms in logarithms.
We state below a slightly simplified version of Théorème 3 of [10]. This is
the key tool for the proofs of Theorems 1.2 and 1.3.

Let p be a prime number and denote by Qp an algebraic closure of the

p-adic field Qp. We equip the field Qp with the ultrametric absolute value

|x|p = p−νp(x), where νp denotes the unique extension to Qp of the standard
p-adic valuation over Qp normalized by νp(p) = 1 (we set νp(0) = +∞). Let
α1 and α2 be algebraic over Q and regard them as elements of the field Qp.
Write D = [Q(α1, α2) : Q]. Our goal is to deduce a lower bound for the
ultrametric absolute value of

Λ = αb11 − α
b2
2 ,

where b1 and b2 are arbitrary positive rational integers.

We assume that νp(α1) = νp(α2) = 0 and denote by g the smallest
positive integer such that

νp(α
g
1 − 1) > 0 and νp(α

g
2 − 1) > 0.

It is easily seen that

g ≤ pD − 1.

Let A1, A2 > 1 be real numbers such that

logAi ≥ max

{
h(αi),

log p

D

}
for i = 1, 2,
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where h denotes the logarithmic Weil height. Set

(2.1) b′ =
b1

D logA2
+

b2
D logA1

.

As a historical note, we should mention that in the early estimates for lin-
ear forms in logarithms, the term b′ was replaced by the larger quantity
max{b1, b2, 3}.

Theorem 2.1. With the above notation, if the algebraic numbers α1 and
α2 are multiplicatively independent, then νp(Λ) is bounded above by

24pg

(p− 1)(log p)4
D4

(
max

{
log b′+log log p+0.4,

10 log p

D
, 10

})2

logA1 logA2.

To proceed with the proof of Theorem 1.2, we simply reproduce Schinzel’s
argument, replacing the use of his estimates for linear forms in two p-adic
logarithms by Theorem 2.1. Without loss of generality, we assume that ξ
is the positive root of the non-square positive integer a. We shall keep this
notation in the remainder of this section.

Proof of Theorem 1.2. Let x be a positive integer and write

x2 − ab2n = (x+ ξbn)(x− ξbn) =: ∆.

Suppose that η is the fundamental unit of the quadratic field generated
by
√
a. We use the sign · to denote Galois conjugacy in Q(

√
a). Write

x− ξbn = δηm,

where δ and m are such that

|∆η|1/2η−1 < |δ| ≤ |∆η|1/2, δδ = ∆.

Observe that

(2.2) (x2 − ξ2b2n)− (x− ξbn)2 = ∆− δ2η2m = 2(ξbnx+ ξ2b2n).

Let us factor b = pl11 · · · plss as a product of powers of distinct prime numbers,
choose j so that lj = max{l1, . . . , ls}, and put p = pj and l = lj .

We wish to bound νp(∆ − δ2η2m) = νp(δ/δ − η2m). Observe that the
logarithmic Weil height of δ/δ is� log∆ (here and henceforth, the constant
implied by � depends at most on a). Using Theorem 2.1, it follows that

νp(δ/δ − η2m)� p2(log∆) log2(m/log∆).

On the other hand, we derive from (2.2) that

νp(δ/δ − η2m) ≥ nl,
whereby our choice of δ and m yields

m� n.

We thus have
nl� p2(log∆) log2(n/log∆),
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whence

n�
(
p2

l
log2 p

l

)
log∆

and
log∆

log b
� n

p2 log2 p
· l

l1 log p1 + · · ·+ ls log ps
� n

p2(log2 p)(log p1 · · · ps)
.

Choosing x to be the nearest integer to
√
a bn, this proves that there exists

an effectively computable positive constant κ depending only on p1, . . . , ps
and a such that

‖bn
√
a‖ = |x− ξbn| ≥ (2ξbn + 1)−1 · bκn.

This concludes the proof of Theorem 1.2.

An annoying feature of estimates for linear forms in p-adic logarithms
is the strong dependence of the bound on the prime number p, unless the
algebraic numbers involved are p-adically close to 1. This is expressed in
Theorem 2.1 by means of the parameter g. Actually, one obtains a stronger
result for certain special numbers ξ. Let b ≥ 2 be an integer and, for k ≥ 1,
set

ak = b2k + 1.

Then
ηk := bk +

√
ak

is the fundamental unit (of norm −1) in Q(
√
ak). Observe that ηk is con-

gruent to 1 modulo p2kl, where l is such that pl divides b but pl+1 does not.
When p divides b, this shows that Theorem 2.1 applies with g = 1. In this
case, this yields an inequality of the shape

‖bn
√
ak‖ > c(b, k)b−npτ3n

for an effectively computable absolute positive constant τ3 and an effectively
computable positive constant c(b, k).

For the particular case b = p and k = 1, we have

‖pn
√
p2 + 1‖ > c(p)p−(1−τ4)n

for an effectively computable absolute positive constant τ4 and an effectively
computable positive constant c(p). This proves Theorem 1.3.

A further refinement of estimates for linear forms in two p-adic log-
arithms appeared in [6]. A new parameter was introduced, which proves
useful when the two algebraic numbers involved are both congruent to 1
modulo a large power of the prime p. We are in precisely this situation for
numbers of the shape

√
p2k + 1; in this case, we deduce the existence of an

effectively computable absolute positive constant τ5 such that

(2.3) ‖pn
√
p2k + 1‖ > p−(1−τ5)n
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for every integer n exceeding some effectively computable number depending
on p and k. Note that, in [6], the main corollaries rely upon the assumption
that the algebraic numbers α1 and α2 involved are in fact rational. While
this is not the case in the present situation, we can still deduce (2.3) from
the rather less “user-friendly” Theorem 1 of [6]. A further generalization of
the results of [6] to b-adic logarithms was obtained in [7], again under the
assumption that the arguments of the logarithms α1 and α2 are rational
numbers. The techniques of [7], however, yield similar estimates when both
αi are more general algebraic numbers (provided that, of course, the ana-
logues of hypotheses (H1) and (H2) are satisfied). Ultimately, this allows us
to show the existence of an effectively computable absolute positive constant
τ6 such that

‖bn
√
b2k + 1‖ > b−(1−τ6)n

for every integer n exceeding some effectively computable number depending
on b and k.

In many questions where one may employ the theory of linear forms
in logarithms of algebraic numbers close to 1, it transpires that the hy-
pergeometric method is equally applicable and often provides spectacular
improvements (see e.g. most of the problems considered in the survey [9]).
This is the case in the present situation, as we shall see in the next section.

3. Proof of Theorem 1.4: Padé approximants to (1−z)1/2. In this
section, we will prove Theorem 1.4. This result can also be obtained from
careful analysis of the proof of Theorem 1.3 of [2]; the argument we provide
here is a rather simplified version.

Let us define

In1,n2(x) =
1

2πi

�

γ

(1− zx)n2(1− zx)1/2

zn1+1(1− z)n2+1
dz

for n1 and n2 positive integers, γ a closed, counter-clockwise contour en-
closing z = 0 and z = 1, and |x| < 1. Cauchy’s theorem readily implies
that

(3.1) In1,n2(x) = Pn1,n2(x)− (1− x)1/2 Qn1,n2(x)

where Pn1,n2(x) and Qn1,n2(x) are polynomials with rational coefficients and
degrees n1 and n2, respectively. These are, in fact, Padé approximants to
(1−z)1/2, though we will not explicitly use this fact. Calculating the relevant
residues, we have

Pn1,n2(x) =

n1∑
k=0

(
n2 + 1/2

k

)(
n1 + n2 − k

n2

)
(−x)k
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and

Qn1,n2(x) =

n2∑
k=0

(
n1 − 1/2

k

)(
n1 + n2 − k

n1

)
(−x)k.

In particular, if n1 ≥ n2, since(
n+ 1/2

k

)
4k ∈ Z

for n ≥ 1, we have

4n1Pn1,n2(x), 4n1Qn1,n2(x) ∈ Z[x].

We proceed as follows. For fixed positive integers b, n and k, with b > 1,
we define ε and an integer m such that

ε =
√
b2k + 1 bn −m and |ε| = ‖bn

√
b2k + 1‖.

Our goal, thus, is to derive a lower bound upon |ε|. Since |ε| < 1/2, we see
that m <

√
b2k + 1 bn + 1/2. Let us define

α = 1 +
k log b

log 2
≥ 2,

and suppose that

(3.2) n2 =

[
n log 2

2k2 log b
+

log 2

2k log b

]
+ 1 and n1 = [αn2] + δ + 1,

where δ is one of 0 or 1. Assume further that

(3.3) n >
9k3 log2 b

log2 2
.

Note that

n1 − n2 > (α− 1)n2 =
kn2 log b

log 2
>

n

2k
+

1

2

and so, if we define τ = 2k(n1 − n2) − n − k, then τ > 0. Substituting
x = −1/b2k into (3.1) and defining

P = 4n1b2kn1Pn1,n2(−1/b2k), Q = 4n1b2kn2+τQn1,n2(−1/b2k)

and
I = 4n1b2kn1In1,n2(−1/b2k),

it follows that P and Q are integers, with

P −
√
b2k + 1bnQ = I.

We therefore have√
b2k + 1(εP + Im) = (b2k + 1)bn(P −Qm).

Arguing as in Lemma 4 of [3], for at least one choice of δ ∈ {0, 1} in (3.2)
we necessarily have P 6= Qm, whereby

|ε| · |P | ≥
√
b2k + 1 bn − |I| · |m|.
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Since m <
√
b2k + 1 bn + 1

2 <
3
2

√
b2k + 1 bn, if we can show that |I| < 1/3,

then we may conclude that

(3.4) |ε| > 1

2

√
b2k + 1 bn|P |−1.

We now proceed to find an upper bound upon |I|. Arguing as in [2], we
have

|In1,n2(x)| = |x|
n1+n2+1

π

1�

0

vn2+1/2(1− v)n1−1/2 dv

(1− (1− v)x)n2+1

and so

|I| = 4n1b2kn1 |In1,n2(−1/b2k)| < 4n1b−2k(n2+1)π−1
1�

0

vn2+1/2(1− v)n1−1/2 dv.

If bk = 2, then k = 1, b = 2, α = 2, n2 = [(n+ 3)/2], n1 = 2n2 + δ + 1 and
so

|I| < 4n2+1π−1(4/27)n2+1/2 < 1/3.

Otherwise,

|I| < 4n1b−2k(n2+1)π−1
1�

0

vn2−1/(2α)(1− v)α(n2−1/(2α)) dv,

whereby

|I| < 4n1b−2k(n2+1)π−1

(
αα

(1 + α)1+α

)n2−1/(2α)

< 4αn2+2b−2k(n2+1)(2α)−n2 .

Since (3.2) and (3.3) together imply that n2 ≥ 10, it follows from our choice
of α that

|I| < 4n2+2b−2k(2α)−n2 < 1/3,

as desired, where the last inequality is a consequence of bk ≥ 3.

To conclude, we will combine inequality (3.4) with an upper bound
for |P |. If 0 < r < 1, then

Pn1,n2(x) =
1

2πi

�

Γ

(1− zx)n2(1− zx)1/2

zn1+1(1− z)n2+1
dz

where Γ is defined by |z| = r, oriented positively. Writing z = reiθ, we have

|Pn1,n2(x)| ≤ 1

2π

2π�

0

∣∣∣∣(1− zx)n2(1− zx)1/2

zn1+1(1− z)n2+1

∣∣∣∣ dθ
and so

|Pn1,n2(x)| ≤ 1

rn1+1
max

0≤θ≤2π

∣∣∣∣(1− reiθx)n2+1/2

(1− reiθ)n2+1

∣∣∣∣.
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Since |x| < 1 and 0 < r < 1, both |1 − reiθ| and
∣∣ 1−reiθ

1−reiθx

∣∣ are increasing

functions of θ on the interval [0, π] (and hence minimal at θ = 0), whereby

(3.5) |Pn1,n2(x)| ≤
√

1− rx
rn1+1(1− r)

(
1− rx
1− r

)n2

.

Taking x = −1/b2k and r = α/(1 + α), using only the fact that bk ≥ 2,
(3.5) implies that

|P | < 5 · 12n1b2kn1 .

With (3.4), we thus have

|ε| > 1

10
bn+k−2kn1 · 12−n1 .

Since (3.2) yields

n1 <
n

2k

(
1 +

log 2

k log b

)
+
k log b

log 2
+ 4,

it follows that

|ε| > 1

10
b−τ · 12−n1 ,

where

τ =
n log 2

k log b
+

2k2 log b

log 2
+ 7k.

Applying (3.3), we may conclude that τ < 2n log 2
k log b and hence

‖bn
√
b2k + 1‖ > 10−7 · 48−n/k,

which immediately implies Theorem 1.4.
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