On the Virtual Fundamental Class

Kai Behrend

The University of British Columbia

Seoul, August 14, 2014

http://www.math.ubc.ca/~behrend/talks/seoul14.pdf

Donaldson-Thomas theory: counting invariants of sheaves on Calabi-Yau threefolds.

Symmetric obstruction theories and the virtual fundamental class.

Additivity (over stratifications) of Donaldson-Thomas invariants.

Motivic Donaldson-Thomas invariants.

Categorification of Donaldson-Thomas invariants.

Begin with: review of the local case: critical loci.

The singular Gauß-Bonnet theorem

M smooth complex manifold (not compact),

$$f: M
ightarrow \mathbb{C}$$
 holomorphic function,

 $X = \operatorname{Crit} f \subset M$. Assume X compact.

Then X is the intersection of two Lagrangian submanifolds in Ω_M (complementary dimensions):



X is compact:

intersection number $\#^{\text{virt}}(X) = \mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = \int_{[X]^{\text{virt}}} 1$ well-defined. $[X]^{\text{virt}} \in A_0(X)$ virtual fundamental class of the intersection scheme X.

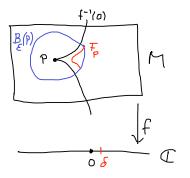
Theorem (Singular Gauß-Bonnet)

$$\mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = \chi(X, \mu)$$

 $\mu: X \to \mathbb{Z}$ constructible function.

Milnor fibre

 $X = \operatorname{Crit} f \subset M$ $f: M \to \mathbb{C}$ holomorphic Theorem: $\mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = \chi(X, \mu)$ F_P : **Milnor fibre** of f at P: intersection of a nearby fibre of f with a small ball around P.

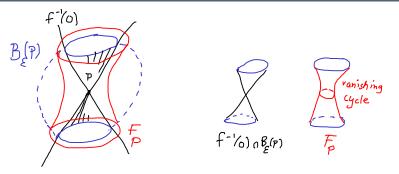


 $\mu(P) = (-1)^{\dim M} \left(1 - \chi(F_P) \right)$: Milnor number of f at $P \in X = \operatorname{Crit} f$.

Consider two cases of the theorem: $\dim X = 0$, X smooth.

Case dim X = 0

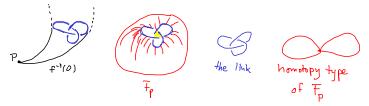
Milnor fibre example: $f(x, y) = x^2 + y^2$



 $X = \operatorname{Crit}(f) = \{P\}$. Isolated singularity. $\mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = 1$. Near P, the surface $f^{-1}(0)$ is a cone over the link of the singularity. The cone is contractible.

The Milnor fibre is a manifold with boundary. The boundary is the link. The Milnor fibre supports the *vanishing cycles*. The Milnor number $\mu(P) = (-1)^{\dim M} (1 - \chi(F_P))$ is the number of vanishing cycles. Here, $\chi(X, \mu) = \mu(P) = 1$, and hence $\mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = \chi(X, \mu)$.

Milnor fibre example: $f(x, y) = x^2 + y^3$



$$\begin{split} X &= \operatorname{Crit}(f) = \{(x,y) \mid 2x = 0, 3y^2 = 0\} = \operatorname{Spec} \mathbb{C}[y]/y^2. \text{ Isolated} \\ \text{singularity of multiplicity 2.} \qquad \mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = 2. \\ \text{Link: (2,3) torus knot (trefoil). The singularity is a cone over the knot.} \\ \text{The link bounds the Milnor fibre. Homotopy type (Milnor fibre)} = \\ \text{bouquet of 2 circles.} \quad \chi(F_P) = 1 - 2 = -1. \\ \text{The Milnor number is } \mu(P) = (-1)^2 (1 - (-1)) = 2. \\ \text{There are 2 vanishing cycles.} \end{split}$$

In this example, $\mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = 2 = \chi(X, \mu).$

Theorem (Milnor, 1969)

For the case dim X = 0 (isolated singularities) $\mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = Milnor number = \chi(X, \mu).$

The excess bundle

 $X = \operatorname{Crit} f \subset M \qquad f : M \to \mathbb{C} \text{ holomorphic} \qquad \text{Theorem: } \mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = \chi(X, \mu)$ Suppose X is smooth. So $\mathcal{N}_{X/M}^{\vee} = \mathscr{I}_X/\mathscr{I}_X^2$ is a vector bundle on X. Epimorphism $T_M \xrightarrow{df} \mathscr{I}_X \subset \mathscr{O}_M$. Restrict to X: $T_M|_X \xrightarrow{df} \mathscr{I}/\mathscr{I}^2 \xrightarrow{d} \Omega_M|_X$.

(Recall:
$$\mathscr{I}/\mathscr{I}^2 \xrightarrow{d} \Omega_M |_X \longrightarrow \Omega_X \longrightarrow 0.$$
)

The Hessian matrix H(f) is symmetric, so taking duals we get the same diagram, so that $\mathscr{I}/\mathscr{I}^2 = \mathscr{N}_{X/M}$.

So the excess bundle (or obstruction bundle) is

Intrinsic to the intersection X.

Always so for Lagrangian intersections.

Case X smooth

The excess bundle

 $X = \operatorname{Crit} f \subset M$ $f: M \to \mathbb{C}$ holomorphic Theorem: $\mathcal{I}_{\Omega_M}(M, \Gamma_{df}) = \chi(X, \mu)$

In the case of clean intersection, the virtual fundamental class is the top Chern class of the excess bundle, so:

Proposition

 $[X]^{\mathrm{virt}} = c_{\mathrm{top}}\Omega_X \cap [X]$

Hence,

$$\begin{split} \mathcal{I}_{\Omega_M}(M, \Gamma_{df}) &= \int_{[X]} c_{\text{top}} \Omega_X \\ &= (-1)^{\dim X} \int_{[X]} c_{\text{top}} T_X \\ &= (-1)^{\dim X} \chi(X), \qquad \text{by Gauß-Bonnet} \\ &= \chi(X, \mu_X), \qquad \text{with } \mu_X = (-1)^{\dim X}. \end{split}$$

and for smooth X it turns out the $\mu_X \equiv (-1)^{\dim X}$. For X smooth, the theorem is equivalent to Gauß-Bonnet.

Additive nature of $\#^{\text{virt}}(X)$.

 $f: M \to \mathbb{C}, \quad X = \operatorname{Crit} f.$

Theorem (Singular Gauß-Bonnet)

 $\#^{\operatorname{virt}}(X) = \chi(X,\mu)$

is a result of microlocal geometry, in the 1970s.

Main ingredient in proof: microlocal index theorem of Kashiwara, MacPherson.

Also: determination of the characteristic variety of the perverse sheaf of vanishing cycles.

Major significance: intersection number is motivic, i.e.,

- intersection number makes sense for non-compact schemes: $\#^{\text{virt}}(X) = \chi(X, \mu)$,
- intersection number is additive over stratifications:

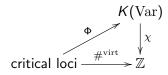
 $\chi(X, \mu_X) = \chi(X \setminus Z, \mu_X) + \chi(Z, \mu_X)$, if $Z \hookrightarrow X$ is closed.

This is unusual for intersection numbers, only true for Lagrangian intersections.

Motivic critical loci

Group of **motivic weights** K(Var): Grothendieck group of \mathbb{C} -varieties modulo scissor relations: $[X] = [X \setminus Z] + [Z]$, whenever $Z \to X$ is a closed immersion.

There exists a lift (motivic virtual count of critical loci):



where $\Phi(M, f) = -q^{-\frac{\dim M}{2}}[\phi_f]$,

 $q = [\mathbb{C}]$ motivic weight of the affine line,

 $[\phi_f]$ motivic vanishing cycles of Denef-Loeser (2000): motivic version of Milnor fibres. (From their work on motivic integration.)

Generalization:

Example: Hilbⁿ(\mathbb{C}^3)

Hilb^{*n*}(\mathbb{C}^3): scheme of three commuting matrices: critical locus of $(M_{n \times n}(\mathbb{C})^3 \times \mathbb{C}^n)^{\text{stab}}/GL_n \longrightarrow \mathbb{C}, \quad (A, B, C, v) \longmapsto \text{tr}([A, B]C).$

Theorem (B.-Bryan-Szendrői)

$$\sum_{n=0}^{\infty} \Phi\big(\operatorname{Hilb}^{n}(\mathbb{C}^{3})\big) t^{n} = \prod_{m=1}^{\infty} \prod_{k=1}^{m} \frac{1}{1 - q^{k+1 - \frac{m}{2}} t^{m}}$$

Specialize: $q^{\frac{1}{2}} \rightarrow -1$, get

$$\sum_{n=0}^{\infty} \#^{\operatorname{virt}} \left(\operatorname{Hilb}^{n}(\mathbb{C}^{3}) \right) t^{n} = \prod_{m=1}^{\infty} \left(\frac{1}{1 - (-t)^{m}} \right)^{m}$$

This is (up to signs) the generating function for 3-dimensional partitions

$$\sum_{n=0}^{\infty} \# \{ \text{3D partitions of } n \} t^n = \prod_{m=1}^{\infty} \left(\frac{1}{1-t^m} \right)^m$$

Categorified critical locus

$$f: M \to \mathbb{C}, \quad X = \operatorname{Crit} f.$$

Let $\widetilde{\Phi}_f = \Phi_f[\dim M - 1] \in D_c(\mathbb{C}_X)$ be the **perverse sheaf** of (shifted) vanishing cycles for f (Deligne, 1967).

 Φ_f globalizes the reduced cohomology of the Milnor fibre: $H^i(\Phi_f|_P) = \overline{H}^i(F_P).$

Theorem

$$\sum_{i}(-1)^{i} \dim H^{i}(X,\widetilde{\Phi}_{f}) = \chi(X,\mu)$$

So $(X, \widetilde{\Phi}_f)$ categorifies the virtual count.

De Rham model: twisted de Rham complex. Pass to ground field $\mathbb{C}((\hbar))$.

Theorem (Sabbah, 2010)

 $(\Omega^{\bullet}_{\mathcal{M}}(\hbar)), df + \hbar d)[\dim M] \in D_{c}(\mathbb{C}((\hbar))_{X})$ is a perverse sheaf, and

 $\sum_{i} (-1)^{i} \dim_{\mathbb{C}((\hbar))} H^{i}(\Omega^{\bullet}_{M}((\hbar)), df + \hbar d) = \chi(X, \mu).$

Calabi-Yau threefolds

Definition

A Calabi-Yau threefold is a complex projective manifold Y of dimension 3, endowed with a nowhere vanishing holomorphic volume form $\omega_Y \in \Gamma(Y, \Omega_Y^3)$.

Example. $Y = Z(x_0^5 + \ldots + x_4^5) \subset \mathbb{P}^4$ the Fermat quintic.

Example. More generally, $g(x_0, \ldots, x_4)$ a generic polynomial of degree 5 in 5 variables. $Y = Z(g) \subset \mathbb{P}^4$ the *quintic threefold*.

Example. Algebraic torus $\mathbb{C}^3/\mathbb{Z}^6$ (sometimes excluded, because it is not simply connected).

CY3: the compact part of 10-dimensional space-time according to superstring theory.

Moduli spaces of sheaves

Y: Calabi-Yau threefold.

Fix numerical invariants, and a stability condition.

X: associated moduli space of stable sheaves (derived category objects) on Y.

Example: Fix integer n > 0. $X = Hilb^n(Y)$, Hilbert scheme of n points on Y.

 $E \in X \iff E$ is the ideal sheaf of a (degenerate) set of *n* points in *Y*.

Example: Fix integers $n \in \mathbb{Z}$, d > 0. $X = I_{n,d}(Y)$, [MNOP] moduli space of (degenerate) curves of genus 1 - n, degree d in Y. $E \in X \iff E$ ideal sheaf of a 1-dimensional subscheme $Z \subset Y$.

Example: Fix r > 0, and $c_i \in H^{2i}(Y, \mathbb{Z})$. X: moduli space of stable sheaves (degenerate vector bundles) of rank r, with Chern classes c_i on Y.

Donaldson-Thomas theory

X: can be a finite set of points.

Example. *Y*: quintic 3-fold in \mathbb{P}^4 .

 $X = I_{1,1}(Y)$ moduli space of lines on Y. X: 2875 discrete points.

 $X = I_{1,2}(Y)$ moduli space of conics in Y. X: 609250 discrete points.

Slogan. If the world were *without obstructions*, all instances of X would be finite sets of points.

Goal (of Donaldson-Thomas theory)

Count the (virtual) number of points of X.

Bad news. X almost never zero-dimensional, almost always very singular. **Good news.** X is quite often compact: always for examples $\operatorname{Hilb}^n(Y)$ and $I_{n,d}(Y)$, sometimes in the last example (depending on the c_i). **Thomas:** constructs a virtual fundamental class $[X]^{\operatorname{virt}} \in A_0(X)$, and defines $\#^{\operatorname{virt}}(X) = \int_{[X]^{\operatorname{virt}}} 1 \in \mathbb{Z}$, if X compact.

Kuranishi: X is locally isomorphic to $\operatorname{Crit} f$, for suitable f (restrict Chern-Simons to local Kuranishi slices).

Derived schemes: virtual fundamental class

More fundamental geometrical object, the *derived moduli scheme* $X \hookrightarrow \mathfrak{X}$. Induces morphism $\mathbb{T}_X \to \mathbb{T}_{\mathfrak{X}}|_X$ in $D(\mathscr{O}_X)$ of tangent complexes. This morphism is an **obstruction theory** for X.

All derived schemes come with an *amplitude of smoothness*: $\mathbb{T}_{\mathfrak{X}}|_{X} \in D^{[0,n]}(X) \iff \text{amplitude} \leq n.$ (e.g. classical smooth schemes are derived schemes of amplitude 0) Derived schemes \mathfrak{X} of amplitude ≤ 1 have a **virtual fundamental class** $[X]^{\text{virt}} \in A_{\text{rk} \mathbb{T}_{\mathfrak{X}}|_{X}}(X).$

$$[X]^{\mathrm{virt}} = 0^!_{\mathfrak{V}}[\mathfrak{C}]\,,$$

- \mathfrak{V} : the **vector bundle stack** associated to the obstruction theory $\mathbb{T}_{\mathfrak{X}}|_X$, if $\mathbb{T}_{\mathfrak{X}}|_X = [V^0 \to V^1]$, $\mathfrak{V} = [V^1/V^0]$,
- $\mathfrak{C}: \text{ the intrinsic normal cone of } X, \quad [\mathfrak{C}] \text{ its fundamental cycle } \in A_0(\mathfrak{E}), \\ \mathfrak{C} = [C_{X/M}/T_M|_X], \quad \text{if } X \hookrightarrow M,$

 $\mathfrak{C} \hookrightarrow \mathfrak{V} \quad (\text{cone stack in vector bundle stack}) \text{ comes from } \mathbb{T}_X \hookrightarrow \mathbb{T}_{\mathfrak{X}}|_X, \\ [X]^{\text{virt}} = 0^{\mathsf{l}}_{\mathfrak{V}}[\mathfrak{C}] \quad \text{the Gysin pullback, via} \quad 0_{\mathfrak{V}} : X \to \mathfrak{V}, \quad \text{of } [\mathfrak{C}].$

Shifted symplectic structures

$$\begin{split} &X: \text{ moduli space } \pi: X \times Y \to X \quad \mathscr{E} \text{ on } X \times Y \text{ universal sheaf.} \\ &\mathbb{T}_{\mathfrak{X}}|_X = \big(\tau_{[1,2]} R\pi_* R \, \mathscr{H}\!\mathit{om}(\mathscr{E}, \mathscr{E})\big)[1] \in D^{[0,1]}(X). \\ &\text{ If } P = [E], \quad H^0(\mathbb{T}_{\mathfrak{X}}|_P) = \operatorname{Ext}^1_{\mathscr{O}_Y}(E, E) = T_X|_P, \text{ deformation space,} \\ &H^1(\mathbb{T}_{\mathfrak{X}}|_P) = \operatorname{Ext}^2_{\mathscr{O}_Y}(E, E), \text{ obstruction space.} \end{split}$$

Serre duality: Deformation space dual of obstruction space $H^0(\mathbb{T}_{\mathfrak{X}}|_P) = H^1(\mathbb{T}_{\mathfrak{X}}|_P)^{\vee}.$

$$X = \operatorname{Crit} f, \quad \mathbb{T}_{\mathfrak{X}}|_{X} = [T_{M}|_{X} \xrightarrow{H(f)} \Omega_{M}|_{X}].$$

In both cases, $\mathbb{T}_{\mathfrak{X}}|_X$ is a **symmetric** obstruction theory,

i.e., isomorphism $\theta : \mathbb{T}_{\mathfrak{X}}|_X \xrightarrow{\sim} (\mathbb{T}_{\mathfrak{X}}|_X)^{\vee}[-1]$, such that $\theta^{\vee}[-1] = -\theta$. As a pairing: $\theta : \Lambda^2 \mathbb{T}_{\mathfrak{X}}|_X \to \mathscr{O}_X[-1]$.

This is the 'classical shadow' on the classical locus $X \hookrightarrow \mathfrak{X}$ of a **shifted** symplectic structure on \mathfrak{X} .

Shifted Darboux theorem. Every -1 shifted symplectic structure is locally a derived critical locus.

Symmetric obstruction theories

Global version and generalization of singular Gauß-Bonnet

- Y: is a complex projective Calabi-Yau threefold.
- X: a moduli space of sheaves on Y,

or any scheme endowed with a symmetric obstruction theory.

Theorem (B.)

Suppose that X is compact. Then the Donaldson-Thomas virtual count is

$$\int_{[X]^{\mathrm{virt}}} 1 = \chi(X, \nu_X).$$

 $\nu_X: X \to \mathbb{Z}$ constructible function

- $u_X(P) \in \mathbb{Z}$ invariant of the singularity of X at $P \in X$ Contribution of $P \in X$ to the virtual count
- $u_X(P) = \mu(P)$ if there exists a holomorphic function $f : M \to \mathbb{C}$, such that $X = \operatorname{Crit} f$, near P.

Construction. ν_X is the local Euler obstruction of the image of $[\mathfrak{C}]$ in X. **Proof.** Globally embed $X \hookrightarrow M$. When performing deformation to the normal cone (locally) inside Ω_M , you get *Lagrangian* cone. Then use K-M. Applications

Additivity of DT invariants

Now Donaldson-Thomas invariants exist for X not compact, and are additive over stratifications.

Example: global version of $\sum_{n=0}^{\infty} \left(\#^{\text{virt}} \operatorname{Hilb}^{n}(\mathbb{C}^{3}) \right) t^{n} = \prod_{m=1}^{\infty} \left(\frac{1}{1-(-t)^{m}} \right)^{m}$

Theorem (B.-Fantechi, Levine-Pandharipande, Li, 2008)

Y: Calabi-Yau threefold.

$$\sum_{n=0}^{\infty} \left(\#^{\operatorname{virt}} \operatorname{Hilb}^{n} Y \right) t^{n} = \left(\prod_{m=1}^{\infty} \left(\frac{1}{1 - (-t)^{m}} \right)^{m} \right)^{\chi(Y)}$$

Simplest non-trivial computation of Donaldson-Thomas invariants using additive nature of the invariants.

More in Toda's talk.

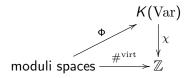
Applications

Motivic Donaldson-Thomas invariants

X moduli space of sheaves on Calabi-Yau threefold Y.

To define motivic Donaldson-Thomas invariants, use

- X is locally Crit f,
- motivic vanishing cycles
- orientation data



Theorem (B.-Bryan-Szendrői, 2013)

$$\sum_{n=0}^{\infty} \Phi(\operatorname{Hilb}^{n} Y) t^{n} = \Big(\prod_{m=1}^{\infty} \prod_{k=1}^{m} \frac{1}{1 - q^{k-2 - \frac{m}{2}} t^{m}}\Big)^{[Y]}$$

This formula uses the *power structure* on K(Var).

Elaborate theory of motivic invariants by Kontsevich-Soibelman.

Applications

Categorification by gluing perverse sheaves

Kiem-Li, Joyce et al, (2013) have constructed a perverse sheaf Φ on X, such that

$$\#^{\operatorname{virt}}(X) = \chi(X, \nu_X) = \sum (-1)^i \dim H^i(X, \Phi),$$

by gluing the locally defined perverse sheaves of vanishing cycles for locally existing Chern-Simons potentials.

Categorification via quantization

To globalize the de Rham categorification to moduli spaces X, expect to need derived geometry, not just its 'classical shadows', such as $\mathbb{T}_{\mathfrak{X}}|_X$. (More: see Toën's talk.)

Consider the local case $X = \operatorname{Crit} f$, $f : M \to \mathbb{C}$, M smooth. The derived critical leaves

The derived critical locus:

 \mathscr{A} , with $\mathscr{A}^{-i} = \Lambda^{i} T_{M}$, the graded algebra of polyvector fields.

Contraction with *df* defines a derivation $Q : \mathscr{A}^i \to \mathscr{A}^{i+1}$, such that $Q \circ Q = \frac{1}{2}[Q, Q] = 0$.

The differential graded scheme $\mathfrak{X} = (M, \mathscr{A}, Q)$ is one model of the derived scheme \mathfrak{X} .

 \mathfrak{X} has a -1-shifted symplectic structure on it, of which $[T_M|_X \xrightarrow{H(f)} \Omega_M|_X]$ is the classical shadow.

 \mathscr{A} has the *Lie Schouten bracket* {,} of degree +1 on it. This is the Poisson bracket on the algebra of functions of the shifted symplectic scheme \mathfrak{X} . (*Q* is a derivation with respect to this bracket.)

Categorification via quantization

 $\mathfrak{X} = (M, \mathscr{A}, Q) \text{ dg scheme,} \quad \mathscr{A} = \Lambda T_M, \quad Q = \, \lrcorner \, df \quad \{\,,\}$

Suppose given a **volume form** on M, (or just a **flat connection** on the canonical line bundle on M.)

This defines a **divergence operator** $\Delta : T_M \to \mathcal{O}_M$, wich extends to $\Delta : \mathscr{A} \to \mathscr{A}[1]$, such that $\Delta^2 = 0$.

 Δ generates the bracket $\{\,,\}$

$$\Delta(xy) - (-1)^{x} x \Delta(y) - \Delta(x)y = \{x, y\}$$

and commutes with Q. (Batalin-Vilkovisky operator).

Then $(\mathscr{A}((\hbar)), Q + \hbar\Delta)$ categorifies $\#^{\operatorname{virt}}(\operatorname{Crit} f)$.

(Using a volume form on M, giving rise to the divergence Δ , we can identify $\Lambda T_M = \Omega^{\bullet}_M[\dim M]$, and then $(\mathscr{A}((\hbar)), Q + \hbar\Delta) = (\Omega^{\bullet}_M((\hbar)), df + \hbar d)[\dim M]$ the *twisted de Rham*

complex from above.)

For Lagrangian intersections in complex symplectic manifolds, Kashiwara-Schapira (2007) globalized this construction, thus categorifying Lagrangian intersection numbers.

Thanks!

http://www.math.ubc.ca/~behrend/talks/seoul14.pdf