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Calabi-Yau threefolds

Definition

A Calabi-Yau threefold is a complex projective manifold Y of dimension 3,
endowed with a nowhere vanishing holomorphic volume form
ωY ∈ Γ(Y ,Ω3

Y ).

Example. Y = Z (x5
0 + . . .+ x5

4 ) ⊂ P4 the Fermat quintic.

Example. More generally, g(x0, . . . , x4) a generic polynomial of degree 5
in 5 variables. Y = Z (g) ⊂ P4 the quintic threefold.

Example. Algebraic torus C3/Z6 (sometimes excluded, because it is not
simply connected).

CY3: the compact part of 10-dimensional space-time according to
superstring theory.
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Moduli spaces of sheaves

Y : Calabi-Yau threefold.
Fix numerical invariants, and a stability condition.
X : associated moduli space of stable sheaves (derived category objects)
on Y .
Example: Fix integer n > 0. X = Hilbn(Y ), Hilbert scheme of n
points on Y . E ∈ X ⇐⇒ E is a (degenerate) set of n points in Y .

degenerate: n = 2: E = (point P, tangent vector to Y at P)
n = 3: E = (point P, two tangent vectors at P), or

E = (2-jet of a curve in Y )
Example: Fix integers n ∈ Z, d > 0. X = In,d(Y ), moduli space of
(degenerate) curves of genus 1− n, degree d in Y .
E ∈ X ⇐⇒ E ideal sheaf of a 1-dimensional subscheme Z ⊂ Y .
Degenerate curves: singular curves, curve with several components, curves
with clusters of points as in Hilbn(Y ).
Example: Fix r > 0, and ci ∈ H2i (Y ,Z). X : moduli space of stable
sheaves (degenerate vector bundles) of rank r , with Chern classes ci on Y .
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Moduli spaces contd.

X : can be a finite set of points.
Example. Y : quintic 3-fold in P4.

X = I1,1(Y ) moduli space of lines on Y . X : 2875 discrete points.
Example. Y : quintic 3-fold in P4.

X = I1,2(Y ) moduli space of conics in Y . X : 609250 discrete points.
(First success of mirror symmetry : continue this sequence.)

Slogan. If the world were without obstructions, all instances of X would
be finite sets of points.

X : almost always very singular.
X : quite often compact: always for examples Hilbn(Y ) and In,d(Y ),
sometimes in the last example (depending on the ci ).
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Gauge Theory: why X ‘looks like’ Crit f

X is trying to look like the critical set of a holomorphic function:

X =complex structures on a fixed bundle E .

L1 = A0,1(Y ,EndE ) almost complex structures on E .
L2 = A0,2(Y ,EndE ).

Curvature: F : L1 −→ L2, F (α) = ∂̄α + α ∧ α.

α is a complex structure⇐⇒ F (α) = 0. X = {F = 0} ⊂ L1.

Serre duality pairing κ(α, β) =
∫
Y tr(α ∧ β) ∧ ωY makes L2 dual to

L1. So F is a 1-form on L1.

f : L1 −→ C, f (α) = 1
2κ(α, ∂̄α) + 1

3κ(α, α ∧ α) holomorphic
Chern-Simons. df = F . X = {F = 0} = Crit f ⊂ L1.

Warning: this is most definitely not rigorous.
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The main theorem

Y : is a complex projective Calabi-Yau threefold.

X : a moduli space of sheaves on Y .

Theorem (B.)

Suppose that X is compact. Then∫
[X ]virt

1 = χ(X , νX ) .

[X ]virt ∈ H0(X ,Z). The virtual fundamental class of X . From
deformation theory and intersection theory.∫

[X ]virt 1 ∈ Z virtual number of points of X , Donaldson-Thomas
counting invariant. Needs X compact to be defined.

νX : X → Z a constructible function

νX (P) ∈ Z an invariant of the singularity of X at P ∈ X .

χ(X , νX ) topological Euler characteristic of X , with respect to weight
function νX .
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Example: X smooth

Y : CY3 X : moduli space Theorem:
∫

[X ]virt
1 = χ(X , νX ) .

Suppose X is smooth. Then

[X ]virt = ctopΩX ∩ [X ] .

Hence, ∫
[X ]virt

1 =

∫
[X ]

ctopΩX

= (−1)dimX

∫
[X ]

ctopTX

= (−1)dimXχ(X ) , by Gauß-Bonnet

= χ(X , νX ) , with νX = (−1)dimX .

Remark: Moduli spaces X are almost never smooth.
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Example: X = Crit f

M smooth complex manifold (not compact),

f : M → C holomorphic function,

X = Crit f ⊂ M. X compact.

Then X is the intersection of two submanifolds in ΩM :

X //

��

M

Γdf

��
M

0 // ΩM

As X is compact, the intersection number
∫

[X ]virt 1 = IΩM
(M, Γdf ) is

well-defined.

Theorem (Singular Gauß-Bonnet. From microlocal geometry)

IΩM
(M, Γdf ) = χ(X , µ)

µ(P) = Milnor number of f at P = (−1)dimM
(

1− χ(FP)
)

FP = Milnor fibre of f at P
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Milnor fibre

X = Crit f ⊂ M f : M → C holomorphic Theorem: IΩM (M, Γdf ) = χ(X , µ)

FP : Milnor fibre of f at P: intersection of a nearby fibre of f with a
small ball around P.

µ(P) = (−1)dimM
(

1− χ(FP)
)

µ : X → Z
Kai Behrend (UBC) Counting invariants for CY threefolds Edmonton, June 5, 2011 8 / 15



Milnor fibre example. f (x , y) = x2 + y 2

X = Crit(f ) = {P}. Isolated singularity.
Near P, the surface f −1(0) is a cone over the link of the singularity. The
cone is contractible.
The Milnor fibre is a manifold with boundary. The boundary is the link.
The Milnor fibre supports the vanishing cycles. The Milnor number

µ(P) = (−1)dimM
(

1− χ(FP)
)

is the number of vanishing cycles.

In this example, IΩM
(M, Γdf ) = 1 = χ(X , µ).
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Milnor fibre example f (x , y) = x2 + y 3

X = Crit(f ) = {(x , y) | 2x = 0, 3y 2 = 0} = SpecC[y ]/y 2. Isolated
singularity of multiplicity 2. IΩM

(M, Γdf ) = 2.
Link: (2, 3) torus knot (trefoil). The singularity is a cone over the knot.
The link bounds the Milnor fibre. Homotopy type (Milnor fibre) =
bouquet of 2 circles. χ(FP) = 1− 2 = −1.

The Milnor number is µ(P) = (−1)2
(

1− (−1)
)

= 2. There are 2

vanishing cycles.
In this example, IΩM

(M, Γdf ) = 2 = χ(X , µ).
For the case dim X = 0 (isolated singularities) it is a theorem of Milnor
that IΩM

(M, Γdf ) = Milnor number = χ(X , µ).
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Special case: X = Crit f concluded

X = Crit f ⊂ M f : M → C holomorphic Theorem: IΩM (M, Γdf ) = χ(X , µ)

Remark: The case X smooth is the special case M = X , and f = 0.

The intersection diagram is X //

��

X

0
��

X
0 // ΩX

(self-intersection)

Hence we have IΩX
(X ,X ) =

∫
[X ] ctop(ΩX ).

This explains why we took [X ]vir = ctop(ΩX ) ∩ [X ].
The Milnor fibre is empty. So µ(P) = (−1)dimX

So in the case where f = 0, the theorem is Gauß-Bonnet.

The general case follows from the micro-local index theorem of
Kashiwara-MacPherson, and the identification of the characteristic variety
of a hypersurface in terms of the Jacobian ideal.
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Lagrangian Intersections

Theorem

Suppose that X is compact. Then
∫

[X ]virt 1 = χ(X , νX ) .

[X ]virt ∈ H0(XZ). X can locally be written as the critical
set of a holomorphic function. Locally defined intersection
classes glue. [B.-Fantechi], [Li-Tian], [Thomas]∫

[X ]virt 1 counting invariant. Is invariant under deformations of Y .

χ(X , νX ) can be computed by cutting up X into pieces.

In fact, νX (P) should be thought of as the contribution of P ∈ X to the
counting invariant. χ(X , ν) makes sense, even when X is not
compact. Unusual: in general, intersection points move away to infinity,
when the intersection is not compact. This works because X //

��

M

Γdf

��
M

0 // ΩM
is a Lagrangian intersection inside a symplectic manifold.
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Application: Hilbert scheme of n points

Theorem (B.-Fantechi, Levine-Pandharipande, Li)

∞∑
n=0

(∫
[Hilbn Y ]virt

1
)

tn =

( ∞∏
n=1

( 1

1− (−t)n

)n)χ(Y )

This theorem makes sense even when Y is not compact, for example
Y = C3. Then χ(Y ) = 1, and

∞∑
n=0

χ(Hilbn C3, ν) tn =
∞∏
n=1

( 1

1− (−t)n

)n
.

This is (up to signs) the generating function for 3-dimensional partitions
[MacMahon]

∞∑
n=0

#{3D partitions of n} tn =
∞∏
n=1

( 1

1− tn

)n
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Application: wall crossing

We can define a number ν(E ) ∈ Z, for every coherent sheaf E on Y .
More generally, for any derived category object E ∈ D(Y ). Because the
singularity at E is always the same, for every moduli space E ∈ X ,
independent of the stability condition.

Joyce, Kontsevich-Soibelman: Define invariants for every stability
condition on a derived category D(Y ), where Y is a CY3. (No need even
for moduli spaces.) Also, study how invariants change, under change of
stability condition (wall crossing).

For example, if Y ′ is a CY3, birational to Y ,

moduli of sheaves on Y ′ = moduli of certain objects of D(Y ) .

Compare counting invariants for Y and Y ′ via wall crossing in D(Y ).

For example [Toda], for every flop,

∑
(n,β)

( ∫
[In,β (Y )]virt 1

)
xβqn

∑
(n,β),f∗β=0

( ∫
[In,β (Y )]virt 1

)
xβqn

does not

change.
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Applications: motivic Donaldson-Thomas invariants

Motivated by our theorem: use more general kind of counting: not just
numbers, but motivic counting: Instead of using Euler characteristic of the
Milnor fibre of local Chern-Simons map f : Ext1(E ,E )→ C to define
ν(E ), use its Poincaré polynomial ∈ Q[t], Hodge polynomial ∈ Q[u, v ], or
even its motive ∈ K0(Var). This is being done by [Kontsevich-Soibelman].

Theorem (B.-Bryan-Szendrői)

∞∑
n=0

[Hilbn Y ]virt tn =

( ∞∏
m=1

m∏
k=1

1

1− qk−2−m
2 tm

)[Y ]

[Hilbn Y ]virt virtual motive of HilbnY , defined using motivic vanishing
cycles of a suitable local Chern-Simons, which is a homo-
geneous polynomial of degree 3, in this simple case,

q = [C] the motive of the affine line,

[Y ] the motive of Y . The formula uses the power structure on
K0(Var).
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