Counting invariants for Calabi-Yau threefolds

Kai Behrend

The University of British Columbia
Edmonton, June 5, 2011
http://www.math.ubc.ca/~behrend/talks/edmonton11.pdf

Calabi-Yau threefolds

Definition

A Calabi-Yau threefold is a complex projective manifold Y of dimension 3, endowed with a nowhere vanishing holomorphic volume form $\omega_{Y} \in \Gamma\left(Y, \Omega_{Y}^{3}\right)$.

Example. $Y=Z\left(x_{0}^{5}+\ldots+x_{4}^{5}\right) \subset \mathbb{P}^{4} \quad$ the Fermat quintic.
Example. More generally, $g\left(x_{0}, \ldots, x_{4}\right)$ a generic polynomial of degree 5 in 5 variables. $\quad Y=Z(g) \subset \mathbb{P}^{4}$ the quintic threefold.
Example. Algebraic torus $\mathbb{C}^{3} / \mathbb{Z}^{6}$ (sometimes excluded, because it is not simply connected).

CY3: the compact part of 10-dimensional space-time according to superstring theory.

Moduli spaces of sheaves

Y: Calabi-Yau threefold.
Fix numerical invariants, and a stability condition.
X : associated moduli space of stable sheaves (derived category objects) on Y.
Example: Fix integer $n>0 . \quad X=\operatorname{Hilb}^{n}(Y)$, Hilbert scheme of n points on $Y . \quad E \in X \Longleftrightarrow E$ is a (degenerate) set of n points in Y.
degenerate: $\quad n=2: \quad E=($ point P, tangent vector to Y at P)

$$
\begin{aligned}
n=3: & E=(\text { point } P, \text { two tangent vectors at } P), \text { or } \\
& E=(2 \text {-jet of a curve in } Y)
\end{aligned}
$$

Example: Fix integers $n \in \mathbb{Z}, d>0 . \quad X=I_{n, d}(Y)$, moduli space of (degenerate) curves of genus $1-n$, degree d in Y.
$E \in X \Longleftrightarrow E$ ideal sheaf of a 1-dimensional subscheme $Z \subset Y$.
Degenerate curves: singular curves, curve with several components, curves with clusters of points as in $\operatorname{Hilb}^{n}(Y)$.
Example: Fix $r>0$, and $c_{i} \in H^{2 i}(Y, \mathbb{Z})$. $\quad X$: moduli space of stable sheaves (degenerate vector bundles) of rank r, with Chern classes c_{i} on Y.

Moduli spaces contd.

X : can be a finite set of points.
Example. Y : quintic 3-fold in \mathbb{P}^{4}.
$X=I_{1,1}(Y)$ moduli space of lines on $Y . \quad X: 2875$ discrete points.
Example. Y : quintic 3-fold in \mathbb{P}^{4}.
$X=I_{1,2}(Y)$ moduli space of conics in $Y . \quad X: 609250$ discrete points.
(First success of mirror symmetry: continue this sequence.)
Slogan. If the world were without obstructions, all instances of X would be finite sets of points.
X : almost always very singular.
X : quite often compact: always for examples $\operatorname{Hilb}^{n}(Y)$ and $I_{n, d}(Y)$, sometimes in the last example (depending on the c_{i}).

Gauge Theory: why X 'looks like' Crit f

X is trying to look like the critical set of a holomorphic function:
$X=$ complex structures on a fixed bundle E.
$L^{1}=A^{0,1}(Y$, End $E) \quad$ almost complex structures on E. $L^{2}=A^{0,2}(Y, \operatorname{End} E)$.
Curvature: $\quad F: L^{1} \longrightarrow L^{2}, \quad F(\alpha)=\bar{\partial} \alpha+\alpha \wedge \alpha$. α is a complex structure $\Longleftrightarrow F(\alpha)=0 . \quad X=\{F=0\} \subset L^{1}$.
Serre duality pairing $\kappa(\alpha, \beta)=\int_{Y} \operatorname{tr}(\alpha \wedge \beta) \wedge \omega_{Y}$ makes L^{2} dual to L^{1}. So F is a 1 -form on L^{1}.
$f: L^{1} \longrightarrow \mathbb{C}, \quad f(\alpha)=\frac{1}{2} \kappa(\alpha, \bar{\partial} \alpha)+\frac{1}{3} \kappa(\alpha, \alpha \wedge \alpha)$ holomorphic Chern-Simons. $\quad d f=F . \quad X=\{F=0\}=\operatorname{Crit} f \subset L^{1}$.

Warning: this is most definitely not rigorous.

The main theorem

Y : is a complex projective Calabi-Yau threefold.
X : a moduli space of sheaves on Y.

Theorem (B.)

Suppose that X is compact. Then

$$
\int_{[X]^{\mathrm{virt}}} 1=\chi\left(X, \nu_{X}\right)
$$

$[X]^{\text {virt }} \in H_{0}(X, \mathbb{Z})$. The virtual fundamental class of X. From deformation theory and intersection theory.
$\int_{[X] \text { virt }} 1 \in \mathbb{Z} \quad$ virtual number of points of X, Donaldson-Thomas counting invariant. Needs X compact to be defined.
$\nu_{X}: X \rightarrow \mathbb{Z} \quad$ a constructible function
$\nu_{X}(P) \in \mathbb{Z} \quad$ an invariant of the singularity of X at $P \in X$.
$\chi\left(X, \nu_{X}\right)$ topological Euler characteristic of X, with respect to weight function ν_{X}.

Example: X smooth

Y: CY3 $\quad X$: moduli space \quad Theorem: $\int_{[X] \text { virt }} 1=\chi\left(X, \nu_{X}\right)$.

Suppose X is smooth. Then

$$
[X]^{\mathrm{virt}}=c_{\mathrm{top}} \Omega_{X} \cap[X]
$$

Hence,

$$
\begin{aligned}
\int_{[X]^{\text {virt }}} 1 & =\int_{[X]} c_{\mathrm{top}} \Omega_{X} \\
& =(-1)^{\operatorname{dim} X} \int_{[X]} c_{\mathrm{top}} T_{X} \\
& =(-1)^{\operatorname{dim} X} \chi(X), \quad \text { by Gauß-Bonnet } \\
& =\chi\left(X, \nu_{X}\right), \quad \text { with } \nu_{X}=(-1)^{\operatorname{dim} X .}
\end{aligned}
$$

Remark: Moduli spaces X are almost never smooth.

Example: $X=\operatorname{Crit} f$

M smooth complex manifold (not compact), $f: M \rightarrow \mathbb{C}$ holomorphic function, $X=\operatorname{Crit} f \quad \subset M . \quad X$ compact.

Then X is the intersection of two submanifolds in Ω_{M} :

As X is compact, the intersection number $\int_{[X]^{\text {virt }}} 1=\mathcal{I}_{\Omega_{M}}\left(M, \Gamma_{d f}\right)$ is well-defined.

Theorem (Singular Gauß-Bonnet. From microlocal geometry)

$$
\mathcal{I}_{\Omega_{M}}\left(M, \Gamma_{d f}\right)=\chi(X, \mu)
$$

$\mu(P)=$ Milnor number of f at $P=(-1)^{\operatorname{dim} M}\left(1-\chi\left(F_{P}\right)\right)$
$F_{P}=$ Milnor fibre of f at P

Milnor fibre

$X=\operatorname{Crit} f \subset M \quad f: M \rightarrow \mathbb{C}$ holomorphic
Theorem: $\mathcal{I}_{\Omega_{M}}\left(M, \Gamma_{d f}\right)=\chi(X, \mu)$
F_{P} : Milnor fibre of f at P : intersection of a nearby fibre of f with a small ball around P.

$$
\begin{aligned}
& \mu(P)=(-1)^{\operatorname{dim} M}\left(1-\chi\left(F_{P}\right)\right) \\
& \mu: X \rightarrow \mathbb{Z}
\end{aligned}
$$

Milnor fibre example.
 $f(x, y)=x^{2}+y^{2}$

$X=\operatorname{Crit}(f)=\{P\}$. Isolated singularity.
Near P, the surface $f^{-1}(0)$ is a cone over the link of the singularity. The cone is contractible.
The Milnor fibre is a manifold with boundary. The boundary is the link.
The Milnor fibre supports the vanishing cycles. The Milnor number $\mu(P)=(-1)^{\operatorname{dim} M}\left(1-\chi\left(F_{P}\right)\right)$ is the number of vanishing cycles. In this example, $\mathcal{I}_{\Omega_{M}}\left(M, \Gamma_{d f}\right)=1=\chi(X, \mu)$.

Milnor fibre example $f(x, y)=x^{2}+y^{3}$

$X=\operatorname{Crit}(f)=\left\{(x, y) \mid 2 x=0,3 y^{2}=0\right\}=\operatorname{Spec} \mathbb{C}[y] / y^{2}$. Isolated singularity of multiplicity $2 . \quad \mathcal{I}_{\Omega_{M}}\left(M, \Gamma_{d f}\right)=2$.
Link: $(2,3)$ torus knot (trefoil). The singularity is a cone over the knot. The link bounds the Milnor fibre. Homotopy type (Milnor fibre) $=$ bouquet of 2 circles. $\chi\left(F_{P}\right)=1-2=-1$.
The Milnor number is $\mu(P)=(-1)^{2}(1-(-1))=2$. There are 2 vanishing cycles.
In this example, $\mathcal{I}_{\Omega_{M}}\left(M, \Gamma_{d f}\right)=2=\chi(X, \mu)$.
For the case $\operatorname{dim} X=0$ (isolated singularities) it is a theorem of Milnor that $\quad \mathcal{I}_{\Omega_{M}}\left(M, \Gamma_{d f}\right)=$ Milnor number $=\chi(X, \mu)$.

Special case: $X=$ Crit f concluded

$X=\operatorname{Crit} f \subset M \quad f: M \rightarrow \mathbb{C}$ holomorphic \quad Theorem: $\mathcal{I}_{\Omega_{M}}\left(M, \Gamma_{d f}\right)=\chi(X, \mu)$
Remark: The case X smooth is the special case $M=X$, and $f=0$.
The intersection diagram is $X \longrightarrow X$ (self-intersection)

Hence we have $\mathcal{I}_{\Omega_{X}}(X, X)=\int_{[X]} c_{\text {top }}\left(\Omega_{X}\right)$.
This explains why we took $[X]^{\mathrm{vir}}=c_{\text {top }}\left(\Omega_{X}\right) \cap[X]$.
The Milnor fibre is empty. So $\mu(P)=(-1)^{\operatorname{dim} X}$
So in the case where $f=0$, the theorem is Gauß-Bonnet.
The general case follows from the micro-local index theorem of Kashiwara-MacPherson, and the identification of the characteristic variety of a hypersurface in terms of the Jacobian ideal.

Lagrangian Intersections

Theorem

Suppose that X is compact. Then $\int_{[X]^{\text {virt }}} 1=\chi\left(X, \nu_{X}\right)$.
$[X]^{\text {virt }} \in H_{0}(X \mathbb{Z}) . \quad X$ can locally be written as the critical set of a holomorphic function. Locally defined intersection classes glue. [B.-Fantechi], [Li-Tian], [Thomas]
$\int_{[X]^{\text {virt }}} 1$ counting invariant. Is invariant under deformations of Y. $\chi\left(X, \nu_{X}\right)$ can be computed by cutting up X into pieces.
In fact, $\nu_{X}(P)$ should be thought of as the contribution of $P \in X$ to the counting invariant. $\quad \chi(X, \nu)$ makes sense, even when X is not compact. Unusual: in general, intersection points move away to infinity, when the intersection is not compact. This works because

is a Lagrangian intersection inside a symplectic manifold.

Application: Hilbert scheme of n points

Theorem (B.-Fantechi, Levine-Pandharipande, Li)

$$
\sum_{n=0}^{\infty}\left(\int_{\left[\operatorname{Hilb}^{n} Y\right]^{\mathrm{virt}}} 1\right) t^{n}=\left(\prod_{n=1}^{\infty}\left(\frac{1}{1-(-t)^{n}}\right)^{n}\right)^{\chi(Y)}
$$

This theorem makes sense even when Y is not compact, for example $Y=\mathbb{C}^{3}$. Then $\chi(Y)=1$, and

$$
\sum_{n=0}^{\infty} \chi\left(\operatorname{Hilb}^{n} \mathbb{C}^{3}, \nu\right) t^{n}=\prod_{n=1}^{\infty}\left(\frac{1}{1-(-t)^{n}}\right)^{n}
$$

This is (up to signs) the generating function for 3-dimensional partitions [MacMahon]

$$
\sum_{n=0}^{\infty} \#\{3 \mathrm{D} \text { partitions of } n\} t^{n}=\prod_{n=1}^{\infty}\left(\frac{1}{1-t^{n}}\right)^{n}
$$

Application: wall crossing

We can define a number $\nu(E) \in \mathbb{Z}$, for every coherent sheaf E on Y. More generally, for any derived category object $E \in D(Y)$. Because the singularity at E is always the same, for every moduli space $E \in X$, independent of the stability condition.

Joyce, Kontsevich-Soibelman: Define invariants for every stability condition on a derived category $D(Y)$, where Y is a CY3. (No need even for moduli spaces.) Also, study how invariants change, under change of stability condition (wall crossing).
For example, if Y^{\prime} is a CY3, birational to Y,

$$
\text { moduli of sheaves on } Y^{\prime}=\text { moduli of certain objects of } D(Y) \text {. }
$$

Compare counting invariants for Y and Y^{\prime} via wall crossing in $D(Y)$.
For example [Toda], for every flop, $\frac{\sum_{(n, \beta)}\left(\int_{\left[I_{n, \beta}(Y)\right]^{\text {virt }} 1}\right) \times \times^{\beta} q^{n}}{\sum_{(n, \beta), f_{*} \beta=0}\left(\int_{\left[\eta_{n, \beta}(Y)\right]^{\text {virt }} 1} 1\right) \times \times^{\beta} q^{n}}$ does not change.

Applications: motivic Donaldson-Thomas invariants

Motivated by our theorem: use more general kind of counting: not just numbers, but motivic counting: Instead of using Euler characteristic of the Milnor fibre of local Chern-Simons map $f: \operatorname{Ext}^{1}(E, E) \rightarrow \mathbb{C}$ to define $\nu(E)$, use its Poincaré polynomial $\in \mathbb{Q}[t]$, Hodge polynomial $\in \mathbb{Q}[u, v]$, or even its motive $\in K_{0}$ (Var). This is being done by [Kontsevich-Soibelman].

Theorem (B.-Bryan-Szendrői)

$$
\sum_{n=0}^{\infty}\left[\operatorname{Hilb}^{n} Y\right]^{\mathrm{virt}} t^{n}=\left(\prod_{m=1}^{\infty} \prod_{k=1}^{m} \frac{1}{1-q^{k-2-\frac{m}{2}} t^{m}}\right)^{[Y]}
$$

$\left[\operatorname{Hilb}^{n} Y\right]^{\text {virt }} \quad$ virtual motive of $\operatorname{Hilb}^{n} Y$, defined using motivic vanishing cycles of a suitable local Chern-Simons, which is a homogeneous polynomial of degree 3 , in this simple case,
$q=[\mathbb{C}]$ the motive of the affine line,
$\begin{array}{ll}{[Y]} & \text { the motive } \\ & K_{0}(\text { Var }) .\end{array}$

