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Abstract

We suggest a construction of virtual fundamental classes of certain
types of moduli spaces.
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0 Introduction

Moduli spaces in algebraic geometry often have an expected dimension at
each point, which is a lower bound for the dimension at that point. For
instance, the moduli space of smooth, complex projective n-dimensional
varieties with ample canonical class has expected dimension h1(V, TV ) −
h2(V, TV ) at a point [V ]. In general, the expected dimension will vary with
the point; however, in some significant cases it will stay constant on con-
nected components. In the previous example, this is the case if n ≤ 2,
for then the expected dimension is −χ(V, TV ). In some cases the dimen-
sion coincides with the expected dimension, in others it does so under some
genericity assumptions. However, it can happen that there is no way to get
a space of the expected dimension; it is also possible that special cases with
bigger dimension are easier to understand and to deal with than the generic
case.

When we have a moduli space X which has a well-defined expected
dimension, it can be useful to be able to construct in its Chow ring a class of
the expected dimension. The main examples we have in mind are Donaldson
theory (with X the moduli space of torsion-free, semi-stable sheaves on a
surface) and the Gromov-Witten invariants (with X the moduli space of
stable maps from curves of genus g to a fixed projective variety). In this
paper we deal with the problem of defining such a class in a very general
set-up; the construction is divided into two steps.

First, given any Deligne-Mumford stack X, we associate to it an alge-
braic stack CX over X of pure dimension zero, its intrinsic normal cone.
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This has nothing to do with X being a moduli space; it is just an intrin-
sic invariant, whose structure is related to the singularities of X (see for
instance Proposition 3.12).

Then, we define the concept of an obstruction theory and of a perfect
obstruction theory for X. To say that X has an obstruction theory means,
very roughly speaking, that we are given locally on X an (equivalence class
of) morphisms of vector bundles such that at each point the kernel of the
induced linear map of vector spaces is the tangent space to X, and the
cokernel is a space of obstructions. Usually, ifX is a moduli space then it has
an obstruction theory, and if this is perfect then the expected dimension is
constant on X. Once we are given an obstruction theory, with the additional
(technical) assumption that it admits a global resolution, we can define a
virtual fundamental class of the expected dimension.

An application of the results of this work is contained in a paper [3] by
the first author. There Gromov-Witten invariants are constructed for any
genus, any target variety and the axioms listed in [4] are verified.

We now give a more detailed outline of the contents of the paper. In
the first section we recall what we need about cones and we introduce the
notion of cone stacks over a Deligne-Mumford stack X. These are Artin
stacks which are locally the quotient of a cone by a vector bundle acting
on it. We call a cone abelian if it is defined as Spec SymF , where F is
a coherent sheaf on X. Every cone is contained as a closed subcone in a
minimal abelian one, which we call its abelian hull. The notions of being
abelian and of abelian hull generalize immediately to cone stacks.

In the second section we construct, for a complex E• in the derived cate-
gory D(OX) which satisfies some suitable assumptions (which we call Condi-
tion (⋆), see Definition 2.3), an associated abelian cone stack h1/h0((E•)∨).
In particular the cotangent complex L•

X of X satisfies Condition (⋆), so we
can define the abelian cone stack NX := h1/h0((L•

X)∨), the intrinsic normal
sheaf.

The name is motivated in the third section, where NX is constructed
more directly as follows: étale locally on X, embed an open set U of X in a
smooth scheme W , and take the stack quotient of the normal sheaf (viewed
as abelian cone) NU/W by the natural action of TW |U . One can glue these
abelian cone stacks together to get NX . The intrinsic normal cone CX is the
closed subcone stack of NX defined by replacing NU/W by the normal cone
CU/W in the previous construction.

In the fourth section we describe the relationship between the intrinsic
normal sheaf of a Deligne-Mumford stack X and the deformations of affine
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X-schemes, showing in particular that NX carries obstructions for such de-
formations. With this motivation, we introduce the notion of obstruction
theory for X. This is an object E• in the derived category together with
a morphism E• → L•

X , satisfying Condition (⋆) and such that the induced
map NX → h1/h0((E•)∨) is a closed immersion.

An obstruction theory E• is called perfect if E = h1/h0((E•)∨) is smooth
over X. So we have a vector bundle stack E with a closed subcone stack
CX , and to define the virtual fundamental class of X with respect to E• we
simply intersect CX with the zero section of E. This construction requires
Chow groups for Artin stacks, which we do not have at our disposal. There
are several ways around this problem. We choose to assume that E• is
globally given by a homomorphism of vector bundles F−1 → F 0. Then CX

gives rise to a cone C in F1 = F−1∨ and we intersect C with the zero section
of F1.

Another approach, suggested by Kontsevich [11], is via virtual structure
sheaves (see Remark 5.4). The drawback of that approach is that it requires
a Riemann-Roch theorem for Deligne-Mumford stacks, for which we do not
know a reference.

In the sixth section we give some examples of how this construction can
be applied in some standard moduli problems. We consider the following
cases: a fiber of a morphism between smooth algebraic stacks, the scheme
of morphisms between two given projective schemes, a moduli space for
Gorenstein projective varieties.

In the seventh section we give a relative version of the intrinsic normal
cone and sheaf CX/Y and NX/Y for a morphism X → Y with unramified
diagonal of algebraic stacks; we are mostly interested in the case where Y is
smooth and pure-dimensional, which preserves many good properties of the
absolute case (e.g., CX/Y is pure-dimensional). This is not needed in this
paper, but will be applied by the first author to give an algebraic definition
of Gromov-Witten classes for smooth projective varieties.

The starting point for this work was a talk by Jun Li at the AMS Summer
Institute on Algebraic Geometry, Santa Cruz 1995, where he reported on
joint work in progress with G. Tian. Their construction, in the complex
analytic context, is based on the existence of the Kuranishi map; by using
it they define, under suitable assumptions, a pure-dimensional cone in some
bundle and get classes of the expected dimension by intersecting with the
zero section.

Our construction owes its existence to theirs; we started by trying to
understand and reformulate their results in an algebraic way, and found
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stacks to be a convenient, intrinsic language. In our opinion the introduction
of stacks is very natural, and it seems almost surprising that the intrinsic
normal cone was not defined before. We find it important to separate the
construction of the cone, which can be carried out for any Deligne-Mumford
stack, from its embedding in a vector bundle stack. We work completely in
an algebraic context; of course the whole paper could be rewritten without
changes over the category of analytic spaces.

Acknowledgments. This work was started in the inspiring atmosphere of the
Santa Cruz conference. A significant part of it was done during the authors’
stay at the Max-Planck-Institut für Mathematik in Bonn, to which both
authors are grateful for hospitality and support. The second author is a
member of GNSAGA of CNR.

Notations and Conventions

Unless otherwise mentioned, we work over a fixed ground field k.
An algebraic stack is an algebraic stack over k in the sense of [1] or [12].

Unless mentioned otherwise, we assume all algebraic stacks (in particular all
algebraic spaces and all schemes) to be quasi-separated and locally of finite
type over k.

A Deligne-Mumford stack is an algebraic stack in the sense of [5], in other
words an algebraic stack with unramified diagonal. For a Deligne-Mumford
stack X we denote by Xfl the big fppf-site and by Xét the small étale site of
X. The associated topoi of sheaves are denoted by the same symbols.

Recall that a complex of sheaves of modules is of perfect amplitude con-
tained in [a, b], where a, b ∈ Z, if, locally, it is isomorphic (in the derived
category) to a complex Ea → . . .→ Eb of locally free sheaves of finite rank.

1 Cones and Cone Stacks

Cones

To fix notation we recall some basic facts about cones.
Let X be a Deligne-Mumford stack. Let

S =
⊕

i≥0

Si

be a graded quasi-coherent sheaf of OX -algebras such that S0 = OX , S1

is coherent and S is generated locally by S1. Then the affine X-scheme
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C = SpecS is called a cone over X. A morphism of cones over X is an X-
morphism induced by a graded morphism of graded sheaves of OX -algebras.
A closed subcone is the image of a closed immersion of cones. If

C2

↓
C1 −→ C3

is a diagram of cones over X, the fibered product C1 ×C3
C2 is a cone over

X.
Every cone C → X has a section 0 : X → C, called the vertex of C,

and an A1-action (or a multiplicative contraction onto the vertex), that is a
morphism

γ : A
1 × C −→ C

such that

1.

C
(1,id)
−→ A1 × C

id ց ↓ γ

C

commutes,

2.

C
(0,id)
−→ A1 × C

0 ց ↓ γ

C

commutes,

3.

A1 × A1 × C
id×γ
−→ A1 × C

m×id ↓ ↓ γ

A1 × C
γ

−→ C

commutes, where m : A1 × A1 → A1 is multiplication, m(x, y) = xy.

The vertex of C is induced by the augmentation S → S0, the A1-action is
given by the grading of S. In fact, the morphism S → S[x] giving rise to γ
maps s ∈ Si to sxi.

Note that a morphism of cones is just a morphism respecting 0 and γ.
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Abelian Cones

If F is a coherent OX -module we get an associated cone

C(F) = SpecSym(F).

For any X-scheme T we have

C(F)(T ) = Hom(FT ,OT ),

so C(F) is a group scheme over X. We call a cone of this form an abelian
cone. A fibered product of abelian cones is an abelian cone. If E is a vector
bundle over X, then E = C(E∨), where E is the coherent OX-module of
sections of E and E∨ its dual.

Any cone C = Spec
⊕
i≥0 S

i is canonically a closed subcone of an abelian
cone A(C) = SpecSymS1, called the associated abelian cone or the abelian
hull of C. The abelian hull is a vector bundle if and only if S1 is locally free.
Any morphism of cones φ : C → D induces a morphism A(φ) : A(C) →
A(D), extending φ. Thus A defines a functor from cones to abelian cones
called abelianization. Note that φ is a closed immersion if and only if A(φ)
is.

Lemma 1.1 A cone C over X is a vector bundle if and only if it is smooth
over X.

Proof. Let C = Spec
⊕
i≥0 S

i, and assume that C → X has constant
relative dimension r. Then S1 = 0∗ΩC/X is a rank r vector bundle. C is a
closed subcone of A(C) = (S1)∨, hence by dimension reasons C = A(C). 2

If E and F are abelian cones over X, then any morphism of cones φ :
E → F is a morphism of X-group schemes. If E and F are vector bundles,
then φ is a morphism of vector bundles.

Example If X → Y is a closed immersion with ideal sheaf I, then
⊕

n≥0

In/In+1

is a sheaf of OX -algebras and

CX/Y = Spec
⊕

n≥0

In/In+1

is a cone over X, called the normal cone of X in Y . The associated abelian
cone NX/Y = SpecSym I/I2 is also called the normal sheaf of X in Y .

More generally, any local immersion of Deligne-Mumford stacks has a
normal cone whose abelian hull is its normal sheaf (see [14], definition 1.20).
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Exact Sequences of Cones

Definition 1.2 A sequence of cone morphisms

0 −→ E
i

−→ C −→ D −→ 0

is exact if E is a vector bundle and locally over X there is a morphism of
cones C → E splitting i and inducing an isomorphism C → E ×D.

Remark Given a short exact sequence

0 −→ F ′ −→ F −→ E −→ 0

of coherent sheaves on X, with E locally free, then

0 −→ C(E) −→ C(F ′) −→ C(F) −→ 0

is exact, and conversely (see [6], Example 4.1.7).

Lemma 1.3 Let C → D be a smooth, surjective morphism of cones, and
let E = C ×D,0 X; then the sequence

0 −→ E −→ C −→ D −→ 0

is exact.

Proof. Write C = Spec
⊕
Si, D = Spec

⊕
S′i. We start by proving that

0 −→ E −→ A(C) −→ A(D) −→ 0

is exact.
By base change we may assume S′i = 0 for i ≥ 2. The cone E =

Spec SymE is a vector bundle because it is smooth. On the other hand,
E = Spec

⊕
(Si/S′1Si−1). As C → D is smooth and surjective, S1 → S′1 is

injective. So we get an exact sequence

0 −→ S1 −→ S′1 −→ E −→ 0.

To complete the proof, remark that C → A(C) ×A(D) D is a closed im-
mersion, and both these schemes are smooth of the same relative dimension
over C. 2
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E-Cones

If E is a vector bundle and d : E → C a morphism of cones, we say that C
is an E-cone, if C is invariant under the action of E on A(C). We denote
the induced action of E on C by

E × C −→ C

(ν, γ) 7−→ dν + γ .

A morphism φ from an E-cone C to an F -cone D (or a morphism of vector
bundle cones) is a commutative diagram of cones

E
d

−→ C
φ ↓ ↓ φ

F
d

−→ D.

If φ : (E, d,C) → (F, d,D) and ψ : (E, d,C) → (F, d,D) are morphisms, we
call them homotopic, if there exists a morphism of cones k : C → F , such
that

1. kd = ψ − φ,

2. dk = ψ − φ.

Here the second condition is to be interpreted as saying that φ + dk = ψ.
(More precisely, we say that k is a homotopy from φ to ψ.)

Remark A sequence of cone morphisms with E a vector bundle

0 −→ E
i

−→ C −→ D −→ 0

is exact if and only if C is an E-cone, C → D is surjective, and the diagram

E × C
σ

−→ C
p ↓ ↓ φ

C
φ

−→ D

is cartesian, where p is the projection and σ the action.
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Proposition 1.4 Let (C, 0, γ) and (D, 0, γ) be algebraic X-spaces with sec-
tions and A1-actions and let φ : C → D be an A1-equivariant X-morphism,
which is smooth and surjective. Let E = C ×D,0 X. Then C is an E-cone
over X if and only if D is a cone over X. Moreover, C is abelian (a vector
bundle) if and only if D is.

Proof. Let us first assume that C is an abelian cone, C = SpecSymF .
The morphism E → C gives rise to F → E∨, where E is the coherent OX -
modules of sections of E. Note that F → E∨ is an epimorphism, since
E → C is injective. Let G be the kernel, so that

0 −→ G −→ F −→ E∨ −→ 0

is a short exact sequence. Then

0 −→ E −→ C −→ C(G) −→ 0

is a short exact sequence of abelian cones over X, so D ∼= C(G) and so D is
an abelian cone.

In general, C ⊂ A(C) is defined by a homogeneous sheaf of ideals I ⊂
SymS1, where S =

⊕
Si and C = SpecS. Let F = S1 and let G as above be

the kernel of F → E∨. Let J = I ∩ SymG, which is a homogeneous sheaf of
ideals in SymG, so C ′ = Spec SymG/J is a cone over X. By construction,
C ′ is the scheme theoretic image of C in C(G). Hence C ′ is the quotient of
C by E and so C ′ ∼= D and D is a cone.

Now for the converse. The claim is local in X. So since D is affine over
X we may assume that C = D ×E as X-schemes with A1-action. Then we
are done. 2

Cone Stacks

Let X be, as above, a Deligne-Mumford stack over k. We need to define the
2-category of algebraic stacks with A1-action over X.

Definition 1.5 Let C be an algebraic stack over X, together with a section
0 : X → C. An A1-action on (C, 0) is given by a morphism of X-stacks

γ : A
1 × C −→ C

and three 2-isomorphisms θ1, θ0 and θγ between the 1-morphisms in the
following diagrams.
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1.

C
(1,id)
−→ A1 × C

id ց ↓ γ

C

and θ1 : id → γ ◦ (1, id).

2.

C
(0,id)
−→ A1 × C

0 ց ↓ γ

C

and θ0 : 0 → γ ◦ (0, id).

3.

A1 × A1 × C
id×γ
−→ A1 × C

m×id ↓ ↓ γ

A1 × C
γ

−→ C

and θγ : γ ◦ (m× id) → γ ◦ (id×γ).

The 2-isomorphisms θ1, θ0 and θγ are required to satisfy certain compati-
bilities which we leave to the reader to make explicit (see also Section 1.4
in Exposé XVIII of [2], where a similar problem, the definition of Picard
stacks, is dealt with).

Let (C, 0, γ) and (D, 0, γ) beX-stacks with sections and A1-actions. Then
an A1-equivariant morphism φ : C → D is a triple (φ, η0, ηγ), where φ : C →
D is a morphism of algebraic X-stacks and η0 and ηγ are 2-isomorphisms
between the morphisms in the following diagrams.

1.
X

0
−→ C

0 ց ↓ φ

D

(1)

and η0 : 0 → φ ◦ 0.

2.

A1 × C
id×φ
−→ A1 × D

γ ↓ ↓ γ

C
φ

−→ D

(2)

and ηγ : φ ◦ γ → γ ◦ (id×φ).
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Again, the 2-isomorphisms have to satisfy certain compatibilities we leave
to the reader to spell out.

Finally, let (φ, η0, ηγ) : C → D and (ψ, η′0, η
′
γ) : C → D be two A1-

equivariant morphisms. An A1-equivariant isomorphism ζ : φ → ψ is a
2-isomorphism ζ : φ→ ψ such that the diagrams (notation compatible with
(1) and (2))

1.

0
η0
−→ φ ◦ 0

η′
0
ց ↓ ζ◦0

ψ ◦ 0

2.

φ ◦ γ −→ γ ◦ (id×φ)
ζ◦γ ↓ ↓ γ◦(id×ζ)

ψ ◦ γ −→ γ ◦ (id×ψ)

commute.

If C is an E-cone, then since E acts on C, we may form the stack quotient
of C by E over X, denoted [C/E]. For an X-scheme T , the groupoid of
sections of [C/E] over T is the category of pairs (P, f), where P is an E-
torsor (a principal homogeneous E-bundle) over T and f : P → C is an
E-equivariant morphism.

TheX-stack [C/E] comes with a section 0 : X → [C,E] and an A1-action
γ : A1 × [C/E] → [C/E]. The section 0 is given by the pair (ET , 0) over
every X-scheme T ; here ET is the trivial E-bundle on T and 0 : ET → C is
the vertex morphism. The A1-action of α ∈ A1(T ) = OT (T ) on the category
[C/E](T ) is given by α · (P, f) = (αP,αf), where αP = P ×E,α E and
αf : P ×E,α E → C is given by [p, ν] 7→ αf(p) + d(ν).

If φ : (E,C) → (F,D) is a morphism of vector bundle cones we get
an induced A1-equivariant morphism φ̃ : [C/E] → [D/F ]. A homotopy
k : φ → ψ gives rise to an A1-equivariant 2-isomorphism k̃ : φ̃ → ψ̃ of A1-
equivariant morphism of stacks with A1-action. (See Section 2 where these
constructions are made explicit in a similar case.)

Lemma 1.6 Let φ,ψ : (E,C) → (F,D) be morphisms and ζ : φ̃→ ψ̃ an A1-
equivariant 2-isomorphism between the associated A1-equivariant morphisms
[C/E] → [D/F ]. Then ζ = k̃, for a unique homotopy k : φ→ ψ.
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Proof. We indicate how to construct k : C → F . Given a section c ∈
C(T ) of C over the X-scheme T , we consider the induced object (ET , c) of
[C/E](T ). The associated FT -torsors ET ×ET ,φ0 FT and ET ×ET ,ψ0 FT are
trivial, so that φ(T )(ET , c) is a section of F over T . This section we define
to be k(c). 2

Proposition 1.7 Let C be an E-cone and D an F -cone. Let φ : (E,C) →
(F,D) be a morphism. If the diagram

E −→ C
↓ ↓
F −→ D

is cartesian and F ×C → D; (µ, γ) 7→ dµ+φ(γ) is surjective, then [C/E] →
[D/F ] is an isomorphism of algebraic X-stacks with A1-action.

Proof. Similar to the proof of Proposition 2.1 below. 2

Definition 1.8 We call an algebraic stack (C, 0, γ) over X with section and
A1-action a cone stack, if, locally with respect to the étale topology on X,
there exists a cone C over X and an A1-equivariant morphism C → C that
is smooth and surjective.

The morphism C → C, or by abuse of language C, is called a local
presentation of C. The section 0 : X → C is called the vertex of C.

Let C and D be cone stacks over X. A morphism of cone stacks φ : C →
D is an A1-equivariant morphism of algebraic X-stacks.

A 2-isomorphism of cone stacks is just an A1-equivariant 2-isomorphism.

If C → C is a presentation of C, and E = C ×C,0 X, then C is an
E-cone and C ∼= [C/E] as stacks with A1-action (use Lemma 1.3 and Propo-
sition 1.4).

If φ : C → D is a morphism of cone stacks, then, locally with respect to
the étale topology onX, φ is A1-equivariantly isomorphic to [C/E] → [D/F ],
where E → F is a morphism of vector bundles over X and C → D is a
morphism from the E-cone C to the F -cone D.

A 2-isomorphism of cone stacks ζ : φ → ψ, where φ,ψ : C → D, is
locally over X given by a homotopy of morphisms of vector bundle cones.
More precisely, one can find local presentations C ∼= [C/E] and D ∼= [D/F ]
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such that both φ and ψ are induced by morphisms of vector bundle cones
φ,ψ : (E,C) → (F,D) and under these identifications ζ comes from a
homotopy from φ to ψ. This follows from Lemma 1.6.

Remark Let C be a cone stack over X. By Proposition 1.4 the fibered
product over C of any two local presentations is again a local presentation.
Moreover, if C is a representable cone stack over X, then C is a cone. Every
fibered product of cone stacks is a cone stack.

Examples All cones are cone stacks and all morphisms of cones are mor-
phisms of cone stacks. For a vector bundle E on X, the classifying stack
BE is a cone stack. Every homomorphism of vector bundles φ : E → F
gives rise to a morphism of cone stacks.

Definition 1.9 A cone stack C over X is called abelian, if, locally in X, one
can find presentations C → C, where C is an abelian cone. A cone stack is
a vector bundle stack, if one can find such local presentations such that C is
a vector bundle. If C is abelian (a vector bundle stack), then for every local
presentation C → C the cone C will be abelian (a vector bundle).

Proposition 1.10 Every cone stack is a closed subcone stack of an abelian
cone stack. There exists a universal such abelian cone stack. It is called the
associated abelian cone stack or the abelian hull.

Proof. Just glue the stacks obtained from the abelian hulls of local pre-
sentations. 2

Definition 1.11 Let E be a vector bundle stack and E → C a morphism of
cone stacks. We say that C is an E-cone stack, if E → C is locally isomor-
phic (as a morphism of cone stacks, i.e. A1-equivariantly) to the morphism
[E1/E0] → [C/F ] coming from a commutative diagram

E0 −→ F
↓ ↓
E1 −→ C,

where C is both an E1- and an F -cone.
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If C is an E-cone stack, then there exists a natural morphism E × C → C

coming from the action E1 × C → C in a local presentation of E → C as
above. We call E × C → C the action of E on C.

Definition 1.12 Let E → C → D be a sequence of morphisms of cone
stacks, where C is an E-cone stack. If

1. C → D is a smooth epimorphism,

2. the diagram
E × C

σ
−→ C

p ↓ ↓
C −→ D

(where p is the projection and σ the action) is cartesian,

we call 0 → E → C → D → 0 a short exact sequence of cone stacks. Note
that this is equivalent to C being locally isomorphic to E × D.

Proposition 1.13 The sequence E → C → D of morphisms of cone stacks
is exact if and only if locally in X there exist commutative diagrams

0 −→ E0 −→ F −→ G −→ 0
↓ ↓ ↓

0 −→ E1 −→ C −→ D −→ 0,

where the top row is a short exact sequence of vector bundles and the bottom
row is a short exact sequence of cones, such that E → C → D is isomorphic
to [E1/E0] → [C/F ] → [D/G].

Proof. The statement is local on X. To prove the only if part we can
assume C = E×D, and then it’s trivial. To prove the if part, note that both
short exact sequences are locally split. 2

2 Stacks of the Form h1/h0

The General Theory

We shall review here some aspects of the theory of Picard stacks developed
by Deligne in Section 1.4 of Exposé XVIII in [2]. For the precise definition of
Picard stack see [ibid.]. Roughly speaking, a Picard stack is a stack together
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with an ‘addition’ operation, that is both associative and commutative. An
example would be the stack of torsors under a commutative group sheaf.

Let X be a topos and d : E0 → E1 a homomorphism of abelian sheaves
on X, which we shall consider as a complex of abelian sheaves on X. Via
d, the abelian sheaf E0 acts on E1 and we may consider the stack-theoretic
quotient of this action, denoted

h1/h0(E•) = [E1/E0],

which is a Picard stack on X. (See also [ibid.] 1.4.11, where h1/h0(E•) is
denoted ch(E•).) For an object U ∈ obX the groupoid h1/h0(E•)(U) of
sections of h1/h0(E•) over U is the category of pairs (P, f), where P is an
E0-torsor (principal homogeneous E0-bundle) over U and f : P → E1|U is
an E0-equivariant morphism of sheaves on U .

Now if d : F 0 → F 1 is another homomorphism of abelian sheaves on X
and φ : E• → F • is a homomorphism of homomorphisms (or in other words
a homomorphism of complexes), then we get an induced morphism of Picard
stacks (an additive morphism in the terminology of [ibid.])

h1/h0(φ) : h1/h0(E•) −→ h1/h0(F •).

For an object U ∈ obX the functor h1/h0(φ)(U) maps the pair (P, f) to
the pair (P ×E0,φ0 F 0, φ1(f)), where φ1(f) denotes the map

φ1(f) : P ×E0 F 0 −→ F 1

[p, ν] 7−→ φ1(f(p)) + d(ν).

Now, if ψ : E• → F • is another homomorphism of complexes and k :
φ→ ψ is a homotopy, i.e. a homomorphism of abelian sheaves k : E1 → F 0,
such that

1. kd = ψ0 − φ0,

2. dk = ψ1 − φ1,

then we get an induced isomorphism θ : h1/h0(φ) → h1/h0(ψ) of mor-
phisms of Picard stacks from h1/h0(E•) to h1/h0(F •). If U ∈ obX is an ob-
ject, then θ(U) is a natural transformation of functors from h1/h0(φ)(U) to
h1/h0(ψ)(U). For an object (P, f) of h1/h0(E•)(U) the morphism θ(U)(P, f)
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is a morphism from h1/h0(φ)(U)(P, f) to h1/h0(ψ)(U)(P, f) in the category
h1/h0(F •)(U). In fact, θ(U)(P, f) is the isomorphism of F 0|U -torsors

θ(U)(P, f) : P ×E0,φ0 F 0 −→ P ×E0,ψ0 F 0 (3)

[p, ν] 7−→ [p, kf(p) + ν],

such that the diagram of F 0|U -sheaves

P ×E0,φ0 F 0

θ(U)(P,f) ↓ ց φ1(f)

P ×E0,ψ0 F 0 ψ1(f)
−→ F 1

commutes.

Proposition 2.1 Let φ : E• → F • be a homomorphism of homomorphisms
of abelian sheaves on X, as above. If φ induces isomorphisms on kernels and
cokernels (i.e. if φ is a quasi-isomorphism), then h1/h0(φ) : h1/h0(E•) →
h1/h0(F •) is an isomorphism of Picard stacks over X.

Proof. First let us treat the case that φ is a homotopy equivalence. Then,
in fact, any homotopy inverse of φ will provide an inverse to h1/h0(φ), by
the above remarks.

As a second case, let us assume that φ• : E• → F • is an epimorphism (i.e.
φ0 and φ1 are epimorphisms). In this case E1 → [F 1/F 0] is an epimorphism,
so for [E1/E0] to be isomorphic to [F 1/F 0], it is necessary and sufficient that

E0 × E1 d+id
−→ E1

pr ↓ ↓
E1 −→ [F 1/F 0]

be cartesian. This quickly reduces to proving that

E1 × E0 −→ E1

↓ ↓
E1 × F 0 −→ F 1

is cartesian, which, in turn, is equivalent to

E0 −→ E1

↓ ↓
F 0 −→ F 1
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being cartesian, which is a consequence of the assumptions.
Finally, let us note that a general φ factors as a homotopy equivalence

followed by an epimorphism. To see this consider E•⊕F 0, which is homotopy
equivalent to E•. Define a homomorphism ψ : E• ⊕ F 0 → F • by ψ0(ν, µ) =
φ0(ν) + µ and ψ1(χ, µ) = φ1(χ) + d(µ). Then ψ is surjective and φ = ψ ◦ i,
where i : E• → E• ⊕ F 0 is given by i = id⊕0. 2

If E• is a complex of arbitrary length of abelian sheaves on X, let

Zi(E•) = ker(Ei → Ei+1)

Ci(E•) = cok(Ei−1 → Ei).

The complex E• induces a homomorphism

τ[0,1]E
• = [C0(E•) → Z1(E•)]

and we let h1/h0(E•) = h1/h0(τ[0,1]E
•).

Now let OX be a sheaf of rings on X and C(OX), K(OX) and D(OX)
the category of complexes of OX -modules, the category of complexes of OX -
modules up to homotopy and the derived category of the category Mod(OX)
of OX-modules, respectively. Let φ : E• → F • be a morphism in D(OX).
Let

H•
ψ

−→ F •

α ↓
E•

be a diagram in C(OX) giving rise to φ, where α is a quasi-isomorphism.
We get an induced diagram of Picard stacks

h1/h0(H•)
h1/h0(ψ)
−→ h1/h0(F •)

h1/h0(α) ↓
h1/h0(E•),

where h1/h0(α) is an isomorphism by Proposition 2.1. Choosing an inverse
of h1/h0(α) induces a morphism

h1/h0(E•) −→ h1/h0(F •).

One checks that different choices of (α,H•, ψ) and h1/h0(α)−1 give rise to
isomorphic morphisms h1/h0(E•) → h1/h0(F •). This proves in particu-
lar that if E• and F • are isomorphic in D(OX), then the Picard X-stacks
h1/h0(E•) and h1/h0(F •) are isomorphic.
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Example If d : E0 → E1 is a monomorphism then h1/h0(E•) = cok(d) is
a sheaf over X.

If d : E0 → E1 is an epimorphism then h1/h0(E•) = B ker(d) is a gerbe
over X.

Lemma 2.2 1. Let φ,ψ : E• → F • be two morphisms in D(OX). Then, if
for some choice of h1/h0(φ) and h1/h0(ψ) we have h1/h0(φ) ∼= h1/h0(ψ) as
morphisms of Picard stacks, then φ = ψ.

2. Let 0(E,F ) be the zero morphism 0(E,F ) : h1/h0(E•) → h1/h0(F •).
Then Aut(0(E,F )) = Hom−1

D(OX)(E
•, F •).

Proof. These are similar to Lemma 1.6. See also [ibid.]. 2

Application to Schemes

Let X be a Deligne-Mumford stack. Consider the morphism of topoi

v : Xfl −→ Xét.

The functor v∗ restricts a sheaf on the big fppf-site to the small étale site
and its left adjoint v−1 extends the embedding of the étale site into the flat
site.

Let OXfl
and OXét

denote the sheaves of rings induced by OX on Xfl

and Xét, respectively. There is a canonical morphism of sheaves of rings
v−1OXét

→ OXfl
, so that we have a morphism of ringed topoi

v : (Xfl,OXfl
) → (Xét,OXét

).

The induced functor from Mod(OXét
) to Mod(OXfl

) will be denoted by v∗:

v∗(M) = v−1M ⊗v−1OXét

OXfl
.

Since Mod(OXét
) has enough flat modules we may derive the right exact

functor v∗ to get the functor Lv∗ : D−(OXét
) → D−(OXfl

). To abbreviate
notation, we write M •

fl
= Lv∗M • for M • ∈ obD−(OXét

).
We shall also need to consider the functor

RHom( · ,OXfl
) : D−(OXfl

) −→ D+(OXfl
).

It is defined using an injective resolution OXfl

∼
→ I• of OXfl

, i.e.

RHom(M •,OXfl
) = totHom(M •,I•),
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but if M • happens to have a projective resolution P•
∼
→M •, then we have

RHom(M •,OXfl
) ∼= Hom(P•,OXfl).

We shall abbreviate notation by writing

M •∨ = RHom(M •,OXfl
).

We will be interested in the stack h1/h0((M •

fl
)∨) associated to an object

M • ∈ obD−(OXét
). Note that for such M • ∈ obD−(OXét

) we have

h1/h0((M •

fl
)∨) ∼= h1/h0((τ≥−1M

•

fl
)∨).

Definition 2.3 We say that an object L• of D(OXét
) satisfies Condition (⋆)

if

1. hi(L•) = 0 for all i > 0,

2. hi(L•) is coherent, for i = 0,−1.

Proposition 2.4 Let L• ∈ obD(OXét
) satisfy Condition (⋆). Then the X-

stack h1/h0((L•

fl
)∨) is an algebraic X-stack, in fact an abelian cone stack

over X. Moreover, if L• is of perfect amplitude contained in [−1, 0], then
h1/h0((L•

fl
)∨) is a vector bundle stack.

Proof. The claim is local in X (with respect to the étale topology), so we
may assume that L• has a free resolution, or that L• itself consists of free
OX -modules. We may also assume that Li = 0, for all i > 0 and that L0

and L−1 have finite rank. Then L•

fl
is given by L• itself, since a free sheaf

is flat, and (L•

fl
)∨ is given by L∨•, taking duals component-wise, since a free

module is projective. Thus

h1/h0((L•

fl
)∨) = [Z1(L∨•

)/L∨0
],

which is the cone stack given by the homomorphism of abelian cones L∨0 →
Z1(L∨•) = C(C−1(L•)).

If L• is of perfect amplitude contained in [−1, 0], then we may assume
that in addition to the above assumptions Li = 0, for all i ≤ −2. Then
Z1(L∨•) = L∨1 is a vector bundle. 2
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So if φ : E• → L• is a homomorphism in D(OXét
), where E• and L•

satisfy (⋆), then we get an induced morphism of algebraic stacks

φ∨ : h1/h0((L•

fl
)∨) −→ h1/h0((E•

fl
)∨).

Proposition 2.5 The morphism φ∨ is a morphism of abelian cone stacks.
Moreover, h0(φ) is surjective, if and only if φ∨ is representable.

Proof. The fact that φ∨ is a morphism of abelian cone stacks is immediate
from the definition. The second question is local in X, so we may assume
that E• and L• are complexes of free OX -modules and that Ei = Li = 0,
for i > 0, and that L0, L−1, E0 and E−1 are of finite rank. Consider the
commutative diagram

C−1(E•) −→ E0

↓ ↓
C−1(L•) −→ L0

of coherent sheaves on X. Let F be the fibered product

F −→ E0

↓ ↓
C−1(L•) −→ L0.

The fact that h0(φ) is surjective, is equivalent to saying that the sequence

0 −→ F −→ E0 ⊕ C−1(L•) −→ L0 −→ 0

is exact. Since L0 is free, we get an induced exact sequence of cones

0 −→ L∨0
−→ E∨0

⊕ Z1(L∨•

) −→ C(F ) −→ 0.

Hence by Proposition 1.7 we have

[Z1(L∨•

)/L∨0
] ∼= [C(F )/E∨0

].

In particular the diagram

C(F ) −→ Z1(E∨•)
↓ ↓

h1/h0((L•

fl
)∨) −→ h1/h0((E•

fl
)∨)

is cartesian, hence φ∨ is representable.
For the converse, note that φ∨ representable implies that L∨0 → E∨0 ×

Z1(L∨•) is a closed immersion, which implies that E0 ⊕ C−1(L•) → L0 is
an epimorphism. 2
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Proposition 2.6 The morphism φ∨ is a closed immersion if and only if
h0(φ) is an isomorphism and h−1(φ) is surjective. Moreover, φ∨ is an iso-
morphism if and only if h0(φ) and h−1(φ) are.

Proof. Following the previous argument, φ∨ is a closed immersion if and
only if C(F ) → Z1(E∨•) is. This is equivalent to C−1(E•) → F being
surjective. A simple diagram chase shows that this is equivalent to h0(φ)
being an isomorphism and h−1(φ) being surjective. The ‘moreover’ follows
similarly. 2

Proposition 2.7 Let

E• −→ F • −→ G• −→ E•[1]

be a distinguished triangle in D(OXét
), where E• and F • satisfy (⋆) and G•

is of perfect amplitude contained in [−1, 0]. Then the induced sequence

h1/h0(G∨) −→ h1/h0(F∨) −→ h1/h0(E∨)

is a short exact sequence of abelian cone stacks over X.

Proof. The question is local, so assume that Ei and F i are 0 for i > 0 and
vector bundles for i = 0,−1, and that Gi = F i ⊕ Ei+1. We have to prove
that

0 −→ [Z1(G∨)/G∨0
] −→ [Z1(F∨)/F∨0

] −→ [Z1(E∨)/E∨0
] −→ 0

is a short exact sequence of cone stacks. By Proposition 1.13, it is enough
to prove that the exact sequence of sheaves

0 −→ C−1(E•) −→ C−1(F •) ⊕ E0 −→ C−1(G•) −→ 0

is exact. This is then a straightforward verification. 2

3 The Intrinsic Normal Cone

Normal Cones

Normal cones have the following functorial property. Consider a commuta-
tive diagram of (arbitrary) algebraic k-stacks

X ′ j
−→ Y ′

u ↓ ↓ v

X
i

−→ Y,

(4)
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where i and j are local immersions. Then there is a natural morphism of
cones over X ′

α : CX′/Y ′ −→ u∗CX/Y .

If (4) is cartesian, then α is a closed immersion. If, moreover, v is flat, then
α is an isomorphism.

Proposition 3.1 Consider a commutative diagram of Deligne-Mumford
stacks

X
i′

−→ Y ′

i ց ↓ f

Y,

where i and i′ are local immersions and f is smooth. Then the sequence of
morphisms of cones over X

i′
∗
TY ′/Y

β
−→ CX/Y ′

α
−→ CX/Y , (5)

where the maps α and β are the natural ones, is exact.

Proof. The question is local, so we can assume that X, Y and Y ′ are
schemes and that i′ and i are immersions. This is then Example 4.2.6 in
[6]. 2

Lemma 3.2 Let
U

f
−→M

be a local immersion of affine k-schemes of finite type, where M is smooth
over k. Then the normal cone CU/M →֒ NU/M is invariant under the action
of f∗TM on NU/M . In other words, CU/M is an f∗TM -cone.

Proof. Let pi : M ×M → M , i = 1, 2, be the two projections. Each one
gives rise to a commutative diagram

U
∆f
−→ M ×M
f ց ↓ pi

M,

and hence to an exact sequence

0 −→ f∗TM
ji−→ NU/M×M

pi∗−→ NU/M −→ 0
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of abelian cones on U .
The diagonal gives rise to the commutative diagram

U
f

−→ M
∆f ց ↓ ∆

M ×M

and hence to a homomorphism

NU/M
s

−→ NU/M×M

of abelian cones on U .
Now s is a section of both p1∗ and p2∗. Using (j1, p1∗) we make the

identification
NU/M×M = f∗TM ×NU/M . (6)

Then p2∗ is identified with the action of f∗TM on NU/M . Since the same
functorialities of normal sheaves used so far are enjoyed by normal cones,
we get that under the identification (6) the subcone CU/M×M ⊂ NU/M×M

corresponds to f∗TM × CU/M and the action p2∗ : f∗TM ×NU/M → NU/M

restricts to p2∗ : f∗TM × CU/M → CU/M . 2

The following is not used until Section 5.
Consider the diagram (4), assume it is cartesian and assume that v

is a regular local immersion. Assume also that Y is smooth of constant
dimension. Let C = CX/Y and N = NY ′/Y . Then we get an induced
cartesian diagram

N ×Y C −→ u∗C −→ C
↓ ↓ ↓

j∗N −→ X ′ u
−→ X

↓ j ↓ ↓ i

N
ρ

−→ Y ′ v
−→ Y.

(7)

If Y is a scheme, Vistoli constructed in [14] a canonical rational equivalence
β(Y ′,X) ∈W∗(N ×Y C) such that

∂β(Y ′,X) = [Cu∗C/C ] − [ρ∗CX′/Y ′ ].
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Note Let 0 : u∗C → N ×Y C be the zero section. Then

0![Cu∗C/C ] = v![C] ∈ A∗(u
∗C),

by the definition of v!. On the other hand,

0![ρ∗CX′/Y ′ ] = 0!ρ![CX′/Y ′ ] = [CX′/Y ′ ] ∈ A∗(u
∗C).

So the existence of Vistoli’s rational equivalence implies that

v![C] = [CX′/Y ′ ].

Proposition 3.3 Vistoli’s rational equivalence commutes with any smooth
base change φ : Y1 → Y . More precisely, if we denote by a subscript ( · )1
the base change via φ of any object in (7), then

φ∗β(Y ′,X) = β(Y ′
1 ,X1) ∈W∗(N1 ×Y1

C1).

Proof. If φ is étale, this is Lemma 4.6(ii) in [14]. Vistoli’s proof is based
on the fact that the following commute with étale base change: blowing up
a scheme along a closed subscheme; normalization; order of a Cartier divisor
along an irreducible Weil divisor on a reduced, equidimensional scheme. But
all these operations do in fact commute with smooth base change. 2

A first consequence of this proposition is that we may drop the assump-
tion that Y be a scheme. We get β(Y ′,X) ∈ W∗(N ×Y C) for any situa-
tion (7). The consequence v![C] = [CX′/Y ′ ] holds if Y (and hence all other
stacks in (7)) is of Deligne-Mumford type.

Now let us assume that i : X → Y factors as

X
ı̃

−→ Ỹ
i ց ↓ π

Y,

where ı̃ is another local immersion and π is of relative Deligne-Mumford type
(i.e. has unramified diagonal) and is smooth of constant fiber dimension.
Then we construct the cartesian diagram

Ỹ ′ ṽ
−→ Ỹ

↓ ↓ π

Y ′ v
−→ Y
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and over
X ′ u

−→ X
̃ ↓ ↓ ı̃

Ỹ ′ ũ
−→ Ỹ

we construct the analogue of (7):

N ×Y C̃ −→ u∗C̃ −→ C̃
↓ ↓ ↓

j∗N −→ X ′ u
−→ X

↓ ̃ ↓ ↓ ı̃

π∗N
ρ̃

−→ Ỹ ′ ṽ
−→ Ỹ ,

(8)

i.e. C̃ = C
X/Ỹ

. Diagrams (7) and (8) may be fused into one large diagram

N ×Y C̃ −→ u∗C̃ −→ C̃
↓ ↓ ↓ α

N ×Y C −→ u∗C −→ C
↓ ↓ ↓

j∗N −→ X ′ u
−→ X

↓ ̃ ↓ ↓ ı̃

π∗N
ρ̃

−→ Ỹ ′ ṽ
−→ Ỹ

↓ ↓ ↓ π

N
ρ

−→ Y ′ v
−→ Y.

(9)

By Proposition 3.1 the morphism C̃ → C is a T
Ỹ /Y

×
Ỹ
C-bundle.

Proposition 3.4 We have α∗(β(Y ′,X)) = β(Ỹ ′,X) in W∗(N ×Y C̃).

Proof. By the compatibilities of β proved in [14] we reduce to the case
that Ỹ = AnY , π : AnY → Y is a relative affine n-space and ı̃ : Y → AnY is the
zero section. Then one checks that Vistoli’s construction commutes with
π. 2

Proposition 3.5 In the situation of Diagram (7) assume that Y is of
Deligne-Mumford type. Vistoli’s rational equivalence β(Y ′,X) ∈ W∗(N ×Y

C) is invariant under the natural action of j∗N ×Y TY on N ×Y C.
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Proof. The vector bundle i∗TY acts on the X-cone C by Lemma 3.2.
Pulling back from X to j∗N gives the natural action of j∗N ×Y TY on
N×Y C. Using the construction of the proof of Lemma 3.2 the claim follows
from Proposition 3.4 applied to Ỹ = Y × Y and ı̃ = ∆ ◦ i : X → Y × Y . 2

The Intrinsic Normal Cone

Let X be a Deligne-Mumford stack, locally of finite type over k. Let L•

X be
the cotangent complex of X relative to k. Then L•

X ∈ obD(OX ét) and L•

X

satisfies (⋆).

Definition 3.6 We denote the algebraic stack h1/h0(((L•

X)fl)
∨) by NX and

call it the intrinsic normal sheaf of X.

We shall now construct the intrinsic normal cone as a closed subcone
stack of NX .

Definition 3.7 A local embedding of X is a diagram

U
f

−→ M
i ↓
X ,

where

1. U is an affine k-scheme of finite type,

2. i : U → X is an étale morphism,

3. M is a smooth affine k-scheme of finite type,

4. f : U →M is a local immersion.

By abuse of language we call the pair (U,M) a local embedding of X.
A morphism of local embeddings φ : (U ′,M ′) → (U,M) is a pair of

morphisms φU : U ′ → U and φM : M ′ →M such that

1. φU is an étale X-morphism,

2. φM is a smooth morphism such that

U ′ f ′
−→ M ′

φU ↓ ↓ φM

U
f

−→ M

commutes.

27



If (U ′,M ′) and (U,M) are local embeddings ofX, then (U ′×XU,M
′×M)

is naturally a local embedding of X which we call the product of (U ′,M ′)
and (U,M), even though it may not be the direct product of (U ′,M ′) and
(U,M) in the category of local embeddings of X.

Let

U
f

−→ M
i ↓
X

be a local embedding of X. Let I/I2 be the conormal sheaf of U in M .
There is a natural homomorphism of coherent OU -modules I/I2 → f∗ΩM .
Moreover, there exists a natural homomorphism

φ : L•

X |U −→ [I/I2 → f∗ΩM ]

in D(OUét
), where we think of [I/I2 → f∗ΩM ] as a complex concentrated

in degrees −1 and 0. Moreover, φ induces an isomorphism on h−1 and h0

(see [9], Chapitre III, Corollaire 3.1.3). Hence by Proposition 2.6 we get an
induced isomorphism of cone stacks

φ∨ : [NU/M/f
∗TM ] −→ i∗NX ,

where TM is the tangent bundle of M and NU/M is the normal sheaf of
the local embedding f . In other words, NU/M is a local presentation of the
abelian cone stack NX .

If χ : (U ′,M ′) → (U,M) is a morphism of local embeddings we get an
induced commutative diagram

I/I2|U ′ −→ f∗ΩM |U ′

↓ ↓
I ′/I ′2 −→ f ′∗ΩM ′ ,

in other words a homomorphism

χ̃ : [I/I2 → f∗ΩM ]|U ′ −→ [I ′/I ′2 → f ′
∗
ΩM ′ ] .

We have χ̃ ◦ φ|U ′ = φ′ in D(OU ′

ét
), because of the naturality of φ. Thus the

induced morphism

χ̃∨ : [NU ′/M ′/f ′
∗
TM ′ ] −→ [NU/M/f

∗TM ]|U ′

is compatible with the isomorphisms to NX . Note that, in particular, χ̃∨ is
an isomorphism of cone stacks over U ′.
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Recall Lemma 3.2. Let χ : (U ′,M ′) → (U,M) be a morphism of local em-
beddings. Then we get an induced morphism from the f ′∗TM ′-cone CU ′/M ′

to the f∗TM |U ′-cone CU/M |U ′. Note that the kernel of f ′∗TM ′ → f∗TM |U ′

is f ′∗TM ′/M .

Lemma 3.8 The pair (CU/M →֒ NU/M )|U ′ is the quotient of (CU ′/M ′ →֒
NU ′/M ′) by the action of f ′∗TM ′/M .

Proof. This follows immediately from Proposition 3.1. 2

Corollary 3.9 The isomorphism

χ̃∨ : [NU ′/M ′/f ′
∗
TM ′ ] −→ [NU/M/f

∗TM ]|U ′

identifies the closed subcone stack [CU ′/M ′/f ′∗TM ′ ] with the closed subcone
stack [CU/M/f

∗TM ]|U ′.

By this corollary, there exists a unique closed subcone stack CX →֒
NX , such that for every local embedding (U,M) of X we have CX |U =
[CU/M/f

∗TM ], or in other words that

CU/M −→ NU/M

↓ ↓
CX −→ NX

is cartesian.

Definition 3.10 The cone stack CX is called the intrinsic normal cone of
X.

Theorem 3.11 The intrinsic normal cone CX is of pure dimension zero.
Its abelian hull is NX .

Proof. The second claim follows because the normal sheaf is the abelian
hull of the normal cone, for any local embedding. To prove the claim about
the dimension of CX , consider a local embedding (U,M) of X, giving rise to
the local presentation CU/M of CX . Assume that M is of pure dimension.
We then have a cartesian and cocartesian diagram of U -stacks

f∗TM × CU/M −→ CU/M
↓ ↓

CU/M −→ [CU/M/f
∗TM ].
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Thus CU/M→[CU/M/f
∗TM ] is a smooth epimorphism of relative dimension

dimM . So since CU/M is of pure dimension dimM (see [6], B.6.6) the stack
[CU/M/f

∗TM ] has pure dimension dimM − dimM = 0. 2

Remark One may construct NX by simply gluing the various stacks
[NU/M/f

∗TM ], coming from the local embeddings of X. So one doesn’t
need the construction preceding Proposition 2.4 to define the intrinsic nor-
mal sheaf and the intrinsic normal cone. But for objects E• of D−(OXét

)
satisfying (⋆) other than L•

X , we could not prove that such gluing works
a priori. The problem is, that in general one does not have such a nice
distinguished class of local resolutions of E• (like the one coming from lo-
cal embeddings for L•

X). In general, local (free) resolutions of E• are only
compatible up to homotopy.

Basic Properties

Proposition 3.12 (Local Complete Intersections) The following are
equivalent.

1. X is a local complete intersection,

2. CX is a vector bundle stack,

3. CX = NX .

If, for example, X is smooth, we have CX = NX = BTX .

Proof. (1)=⇒(3). If X is a local complete intersection, then local embed-
dings of X are regular immersions, but for regular immersions normal cone
and normal sheaf coincide.

(3)=⇒(2). If for a local embedding normal cone and normal sheaf coin-
cide, then it is a regular immersion. Thus X is a local complete intersection
so that NX is a vector bundle stack.

(2)=⇒(1). If CX is a vector bundle stack it is equal to its abelian hull.
Hence CX = NX and X is a local complete intersection. 2

Proposition 3.13 (Products) Let X and Y be Deligne-Mumford stacks
of finite type over k. Then

NX×Y = NX × NY
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and
CX×Y = CX × CY .

Proof. If X ⊂ V and Y ⊂ W are affine schemes, it is easy to check that
there is a natural isomorphism CX/V × CY/W → CX×Y/V×W , compatible
with étale base change; the same is true if we replace the normal cone by
the normal sheaf.

If C is an E-cone and D is an F -cone, then C × D is an E × F -cone
and there is a canonical isomorphism of cone stacks [C/E]× [D/F ] → [C ×
D/E × F ].

Putting together this remarks and verifying that the canonical isomor-
phisms glue completes the proof. 2

Proposition 3.14 (Pullback) Let f : X → Y be a local complete inter-
section morphism. Then we have a natural short exact sequence of cone
stacks

NX/Y −→ CX −→ f∗CY

over X, where NX/Y = h1/h0(T •

X/Y ).

Proof. We have a distinguished triangle in D(OXét
)

f∗LY −→ LX −→ LX/Y −→ f∗LY [1],

and LX/Y is of perfect amplitude contained in [−1, 0]. So by Proposition 2.7
we have a short exact sequence of abelian cone stacks

NX/Y −→ NX −→ f∗NY

on X. So the claim is local in X and we may assume that we have a diagram

X
i

−→ M ′′ −→ M ′

ց ↓ ↓
Y −→ M,

where the square is cartesian, the vertical maps are smooth, the horizontal
maps are local immersions, i is regular and M is smooth. Then we have a
morphism of short exact sequences of cones on X:

i∗TM ′′/Y −→ TM ′ |X −→ TM |X

↓ ↓ ↓
NX/M ′′ −→ CX/M ′ −→ CY/M |X.
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This is a local presentation for the short exact sequence

NX/Y −→ CX −→ f∗CY

of cone stacks. 2

4 Obstruction Theory

The Intrinsic Normal Sheaf as Obstruction

A closed immersion T → T of schemes is called a square-zero extension with
ideal sheaf J if J is the ideal sheaf of T in T and J2 = 0.

Let X be a Deligne-Mumford stack, NX its intrinsic normal sheaf. Let
T → T be a square zero extension with ideal sheaf J and g : T → X
a morphism. By the functorialities of the cotangent complex we have a
canonical homomorphism

g∗L•

X −→ L•

T −→ L•

T/T
(10)

in D(OTét
). Since τ≥−1L

•

T/T
= J [1], this homomorphism may be considered

as an element ω(g) of Ext1(g∗L•

X , J). Recall the following basic facts of
deformation theory. An extension g : T → X of g exists if and only if
ω(g) = 0 and if ω(g) = 0 the extensions form a torsor under Ext0(g∗L•

X , J) =
Hom(g∗ΩX , J).

These facts can be interpreted in terms of the intrinsic normal sheaf NX

of X. To do this, note that (10) gives rise to a morphism

h1/h0(L•

T/T
) −→ h1/h0(g∗L•

X)

of cone stacks over T . Since h1/h0(L•

T/T
) = C(J) and h1/h0(g∗L•

X) = g∗NX

we have constructed a morphism ob(g) : C(J) → g∗NX . We also consider
the morphism 0(g) : C(J) → g∗NX given as the composition of C(J) → X
with the vertex of g∗NX . By Hom(ob(g), 0(g)) we shall denote the sheaf of
2-isomorphisms of cone stacks from ob(g) to 0(g), restricted to Tét.

Given a square zero extension T → T and a morphism g : T → X, we
denote the set of extensions g : T → X of g by Ext(g, T ). These extensions
in fact form a sheaf on Tét which we shall denote Ext(g, T ).

Proposition 4.1 There is a canonical isomorphism

Ext(g, T )
∼
−→ HomOT

(ob(g), 0(g))
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of sheaves on Tét. In particular, extensions of g to T exist, if and only if
ob(g) is A1-equivariantly isomorphic to 0(g).

Proof. Locally, we may embed X into a smooth scheme M and call the
embedding i : X → M , the conormal sheaf I/I2. Then there always exist
local extensions h : T →M of i ◦ g : T →M .

T −→ T
g ↓ ↓ h

X
i

−→ M

Any such h gives rise to a homomorphism h♯ : g∗I/I2 → J , and hence
to a realization of ob(g) as the morphism of cone stacks induced by the
homomorphism of complexes

h♯ : g∗[I/I2 → i∗ΩM ] −→ [J → 0].

Note that if h̃ is another such extension, the difference between h and h̃
induces a homomorphism g∗i∗ΩM → J , which is in fact a homotopy from
h♯ to h̃♯.

Now let g : T → X be an extension of g. Then (i◦g)♯ = 0, so that we get
a homotopy from any local h♯ as above to 0, or in other words a local A1-
equivariant isomorphism from ob(g) to 0(g). Since these local isomorphisms
glue, we get the required map

Ext(g, T ) −→ Hom(ob(g), 0(g)).

To construct the inverse, let θ : ob(g) → 0(g) be a 2-isomorphism of cone
stacks. Note that θ defines for every local h as above an extension of h♯ to

h
♯
: i∗ΩM → J (use Lemma 1.6). Changing h by h

♯
defines h′ : T →M such

that (h′)♯ = 0. Thus h′ factors through X, and in fact these locally defined
h′ glue to give the required extension g : T → X. 2

Proposition 4.2 There is a canonical isomorphism

Aut(0(g))
∼
−→ Hom(g∗ΩX , J)

of sheaves on Tét.
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Proof. Again, Lemma 1.6 shows that the automorphisms of 0(g) are (lo-
cally) the homomorphisms from g∗i∗ΩM to J vanishing on g∗I/I2. The
exact sequence

I/I2 −→ i∗ΩM −→ ΩX −→ 0

finishes the proof. See also Lemma 2.2. 2

Corollary 4.3 The sheaf Hom(ob(g), 0(g)) is a formal Hom(g∗ΩX , J)-
torsor. So if ob(g) ∼= 0(g), the set Hom(ob(g), 0(g)) is a torsor under the
group Hom(g∗ΩX , J).

Note Combining this with Proposition 4.1 gives that Ext(g, T ) is a
Hom(g∗Ω, J)-torsor if the obstruction vanishes, reproving this fact from de-
formation theory alluded to above.

Obstruction Theories

Definition 4.4 Let E• ∈ obD(OXét
) satisfy (⋆) (see Definition 2.3). Then

a homomorphism φ : E• → L•

X in D(OXét
) is called an obstruction theory

for X, if h0(φ) is an isomorphism and h−1(φ) is surjective. By abuse of
language we also say that E• is an obstruction theory for X.

Note By Proposition 2.6 the homomorphism φ : E• → L•

X is an obstruc-
tion theory if and only if

φ∨ : NX −→ E

is a closed immersion, where E = h1/h0((E•

fl
)∨). So if E• is an obstruction

theory and CX ⊂ NX is the intrinsic normal cone of X, then φ∨(CX) is a
closed subcone stack of E of pure dimension zero. We sometimes call φ∨(CX)
the obstruction cone of the obstruction theory φ : E• → L•

X .

Let E• ∈ obE(OXét
) satisfy (⋆) and let φ : E• → L•

X be a homomor-
phism. Let E = h1/h0((E•

fl
)∨) and φ∨ : NX → E the induced morphism of

cone stacks. If T → T is a square zero extension of k-schemes with ideal
sheaf J and g : T → X is a morphism, then we denote by φ∗ω(g) the image
of the obstruction ω(g) ∈ Ext1(g∗L•

X , J) in Ext1(g∗E•, J) and by φ∨(ob(g))
the composition

C(J)
ob(g)
−→ g∗NX

g∗φ∨
−→ g∗E

of morphisms of cone stacks over T .
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Theorem 4.5 The following are equivalent.

1. φ : E• → L•

X is an obstruction theory.

2. φ∨ : NX → E is a closed immersion of cone stacks over X.

3. For any (T, T , g) as above, the obstruction φ∗(ω(g)) ∈ Ext1(g∗E•, J)
vanishes if and only if an extension g of g to T exists; and if
φ∗(ω(g)) = 0, then the extensions form a torsor under Ext0(g∗E•, J) =
Hom(g∗h0(E•), J).

4. For any (T, T , g) as above, the sheaf of extensions Ext(g, T ) is iso-
morphic to the sheaf Hom(φ∨(ob(g)), 0) of A1-equivariant isomorphism
from φ∨(ob(g)) : C(J) → g∗E to the vertex 0 : C(J) → g∗E.

Proof. The equivalence of (1) and (2) has already been noted. In view
of Proposition 4.1 it is clear that (2) implies (4). The implication (4)⇒(3)
follows from Lemma 2.2. So let us prove that (3) implies (1).

To prove that h0(φ) is an isomorphism we can assume that X = SpecR
is an affine scheme (as the statement is local); let A be any R-algebra, M any
A-module. Let T = SpecA, T = Spec(A⊕M), where the ring structure is
given by (a,m)(a′,m′) = (aa′, am′ + a′m). Let g : T → X be the morphism
induced by the R-algebra structure of A. Then g extends to T , so there is a
bijection Hom(h0(L•

X)⊗A,M) → Hom(h0(E•)⊗A,M). This implies easily
that h0(φ) is an isomorphism.

The fact that h−1(φ) is surjective is local in the étale topology (and
only depends on τ≥−1E

•). Assume therefore that X is an affine scheme,
i : X → W a closed embedding in a smooth affine scheme W , and let I be
the ideal of X in W . We can assume that E0 = f∗ΩW (see the proof of 2.5),
that E−1 is a coherent sheaf, and that Ei = 0 for i 6= 0,−1.

We have to prove that E−1 → I/I2 is surjective; let M be its image. Let
T = X, M̃ ⊂ I the inverse image of M , and T ⊂ W the subscheme defined
by M̃ ; let g : T → X be the identity. We can extend g to the inclusion
g̃ : T →W . Let π : I/I2 → I/M̃ be the natural projection. By assumption
π factors via E0 if and only if g extends to a map T → X, if and only if
π ◦φ−1 : E−1 → I/M̃ factors via E0. As π ◦φ−1 is the zero map, it certainly
factors. Therefore π also factors. Consider now the commutative diagram
with exact rows

E−1 −→ E0 −→ h0(E•) −→ 0
φ ↓ ‖ ‖
I/I2 −→ E0 −→ h0(E•) −→ 0.
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By an easy diagram chasing argument, the fact that π factors via E0 together
with π ◦ φ−1 = 0 implies π = 0, hence φ−1 : E−1 → I/I2 is surjective. 2

Obstructions for Small Extensions

Let Art be the category of local Artinian k-algebras with residue field k. A
small extension will be a surjective morphism A′ → A in Art with kernel J
isomorphic to k. A semi-small extension is one with kernel isomorphic to a
k-vector space as an A′-algebra.

Let F : Art → Sets be a pro-representable covariant functor (in the sense
of [13]). An obstruction space for F is a set k-vector space T 2 and, for any
semi-small extension A′ → A with kernel J , an exact sequence

F (A′) −→ F (A)
ob
−→ T 2 ⊗ J.

This means that, for all ξ ∈ F (A), ξ is in the image of F (A′) if and only if
ob(ξ) = 0. It is also required that ob is functorial in the obvious sense (see
[10]). We say that v ∈ T 2 obstructs a small extension A′ → A if ob(ξ) = v⊗w
for some ξ ∈ F (A) and some nonzero w ∈ J .

Let X be a Deligne-Mumford stack, p ∈ X a fixed point with residue
field k. Let hp : Art → Sets be the covariant functor associating to an object
A of Art the set of morphisms SpecA → X sending the closed point to p.
The functor hp is pro-representable, and it is unchanged if we replace X by
any étale open neighborhood of p.

Let Np = p∗NX , and let Np be the coarse moduli space of Np. Note
that Np = T 1

X,p/T
0
X,p, so that Np is in fact a k-vector space. Here T iX,p =

hi(p∗T •

X) = hi(p∗L•

X)
∨

are the ‘higher tangent spaces’ of X at p. Let Cp ⊂
Np be the subcone coarsely representing p∗CX . Proposition 4.1 implies that
Np is an obstruction space for hX . The following is probably known but we
include a proof for lack of a suitable reference; it is a version of Theorem 4.5
for semi-small extensions.

Lemma 4.6 The space Np is a universal obstruction space for hp; that is,
for any other obstruction space T 2, there is a unique injection Np → T 2

compatible with the obstruction maps.

Proof. Let (U,W ) be a local embedding for X near p. Assume that
W = SpecP , U = SpecR = SpecP/I; let m be the maximal ideal of p in P ,
and assume that I ⊂ m2. In this case Np = (I/mI)∨.
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If n is sufficiently large, the natural map I/mI → (I + mn)/(mI + mn) is
an isomorphism; choose such an n. Let A′

n → An be the extension P/(mI +
mn) → P/(I + mn), and let ξn ∈ hp(An) be the natural quotient map. Then
if T 2 is any obstruction space, the obstruction to ξn gives a linear map
I/mI → T 2 which must be injective. It is easy to check by functoriality
that taking a different n does not change the map. But given any semi-
small extension A′ → A, there is always an extension of the type A′

n → An
mapping to it, so one can apply functoriality again. 2

Proposition 4.7 Every v ∈ Np obstructs some small extension; it obstructs
some small curvilinear extension if and only if v ∈ Cp.

Proof. Let v ∈ Np, and view it as a linear map I → k having mI in the
kernel; we prove first that v is an obstruction for some small extension. Let
L = ker v, and choose n sufficiently large, so that L + mn 6= I + mn. Let
A = P/I + mn, and A = P/L + mn; choose ξ : R → A to be the natural
surjection. Let J = ker(A′ → A); J is naturally isomorphic to I/L. Then
obξ : I/mI → J is the obvious map, and the image of the dual map in Np

is the vector space generated by v.
Choose a set of generators f1, . . . , fr of I inducing a basis for I/mI. This

defines a map f : W → Ar such that U is the fiber over the origin. Then
Cp is the normal cone to the image of W in Ar. The proof then follows the
argument of Proposition 20.2 in [8]. 2

5 Obstruction Theories and Fundamental Classes

Virtual Fundamental Classes

As usual, let X be a Deligne-Mumford stack over k.

Definition 5.1 We call an obstruction theory E• → L•

X perfect, if E• is of
perfect amplitude contained in [−1, 0].

Now assume that X is separated (or, more generally, satisfies the condi-
tion of Vistoli in [14]). We shall denote by Ak(X) the rational Chow group of
cycles of dimension k on X modulo rational equivalence tensored with Q (see
[ibid]). We shall also use the corresponding bivariant groups Ak(X → Y ),
for morphisms X → Y of separated Deligne-Mumford stacks.
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Let E• be a perfect obstruction theory for X, and let CX →֒ h1/h0(E∨)
be the intrinsic normal cone. We call rkE• the virtual dimension of X with
respect to the obstruction theory E•. Recall that rkE• = dimE0−dimE−1,
if locally E• is written as a complex of vector bundles [E−1 → E0]. This
is a well-defined locally constant function on X. We shall assume that the
virtual dimension of X with respect to E• is constant, equal to n.

To construct the virtual fundamental class [X,E•] ∈ An(X) of X with
respect to the obstruction theory E•, we would like to simply intersect the
intrinsic normal cone CX with the vertex (zero section) of h1/h0(E∨). Since
h1/h0(E∨) is smooth of relative dimension −n over X, the codimension of
X in h1/h0(E∨) is −n, so that the dimension of the intersection of CX with
X is 0 − (−n) = n. Unfortunately, this construction would require Chow
groups for Artin stacks, which we do not have at our disposal. This is why
we shall make the assumption that E• has global resolutions.

Definition 5.2 Let F • = [F−1 → F 0] be a homomorphism of vector bun-
dles on X considered as a complex of OX -modules concentrated in degrees
−1 and 0. An isomorphism F • → E• in D(OXét

) is called a global resolution
of E•.

Let F • be a global resolution of E•. Then

h1/h0(E∨) = [F−1∨/F 0∨],

so that F1 = F−1∨ is a (global) presentation of h1/h0(E∨). Let C(F •) be
the fibered product

C(F •) −→ F1

↓ ↓
CX −→ h1/h0(E∨).

Then C(F •) is a closed subcone of the vector bundle F1. We define the
virtual fundamental class [X,E•] to be the intersection of C(F •) with the
zero section of F1. Note that C(F •) → CX is smooth of relative dimension
rkF0 (where F0 = F 0∨), so that C(F •) has pure dimension rkF0 and [X,E•]
then has degree

rkF0 − rkF1 = rkE• = n.

Proposition 5.3 The virtual fundamental class [X,E•] is independent of
the global resolution F • used to construct it.
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Proof. Let H• be another global resolution of E•. Without loss of gen-
erality assume that H• → E• and F • → E• are given by morphisms of
complexes. Then we get an induced homomorphism H0 ⊕ F 0 → E0. So by
constructing the cartesian diagram

K−1 −→ H0 ⊕ F 0

↓ ↓
E−1 −→ E0,

and letting K0 = H0 ⊕ F 0, we get a global resolution K• of E• such that
both H• and F • map to K• by a strict monomorphism. So it suffices to
compare F • with K•. Dually, we have an epimorphism K1 → F1. Consider
the diagram

X
0

−→ C(H•) −→ C(F •)
↓ ↓ ↓

X
0

−→ K1
α

−→ F1,

in which both squares are cartesian. Note that α is smooth. The virtual
fundamental class using F • is equal to

(α ◦ 0)![C(F •)] = 0!α![C(F •)] = 0![C(H•)],

which is the virtual fundamental class using H•. 2

Example If X is a complete intersection, then L•

X is of perfect amplitude
contained in [−1, 0], so that L•

X itself is a perfect obstruction theory. Any
embedding of X into a smooth Deligne-Mumford stack gives rise to a global
resolution of L•

X .The virtual fundamental class [X,L•

X ] thus obtained is
equal to [X], the ‘usual’ fundamental class.

Remark 5.4 [Virtual Structure Sheaves] Let X be a Deligne-Mumford
stack and let C →֒ E be a closed subcone stack of a vector bundle stack.
Then we define a graded commutative sheaf of coherent OX -algebras O(C,E)

as follows.
If E ∼= [E1/E0], then C induces a cone C in E1 and we set

Oi
(C,E) = Tor

OE1

i (OC ,OX),
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where we think of OX as an OE1
-algebra via the zero section of E1. Standard

arguments show that
O(C,E) =

⊕

i

Oi
(C,E)

is independent of the choice of presentation E ∼= [E1/E0]. Hence the locally
defined sheaves glue, giving rise to a globally defined sheaf.

If C = CX , E• is a perfect obstruction theory of X and E = h1/h0(E•∨),
we call O(C,E) the virtual structure sheaf of X with respect to the obstruction
theory E•, denoted O(X,E•). This seems to be the virtual structure sheaf
proposed by Kontsevich in [11].

If one has on X a homological Chern character τ : K0(X) → A∗(X) one
can define the virtual fundamental class of X with respect to E• by

[X,E•] = td(E•) ∩ τ(O(X,E•)).

This agrees with the above definition using global resolutions if they exist.
In the absence of a general Riemann Roch theorem, we rather assume the
existence of global resolutions.

Basic Properties

Proposition 5.5 (No obstructions) If E• is perfect, h0(E•) is locally
free and h1(E•) = 0, then X is smooth, the virtual dimension of X with
respect to E• is dimX and the virtual fundamental class [X,E•] is just [X],
the usual fundamental class. 2

Proposition 5.6 (Locally free obstructions) Let X be smooth and E•

a perfect obstruction theory for X. If h0(E•) is locally free (or equivalently
h1(E•∨) is locally free) then the virtual fundamental class is

[X,E•] = cr(h
1(E•∨)) · [X],

where r = rkh1(E•∨).

Proof. To see this, note that if F • is a global resolution of E•, then
C(F •) = im(F0 → F1). 2

40



Proposition 5.7 (Products) Let E → LX be a perfect obstruction theory
for X and F → LY a perfect obstruction theory for Y . Then LX×Y =
LX ⊞ LY . The induced homomorphism E ⊞ F → LX ⊞ LY is a perfect
obstruction theory for X × Y . If E and F have global resolutions, then so
does E ⊞ F and we have

[X × Y,E ⊞ F ] = [X,E] × [Y, F ]

in ArkE+rkF (X × Y ).

Proof. The statement about cotangent complexes is [9], Chapitre II, Corol-
laire 3.11. To prove the rest, use Proposition 3.13. 2

Consider a cartesian diagram of Deligne-Mumford stacks

X ′ u
−→ X

g ↓ ↓ f

Y ′ v
−→ Y,

(11)

where v is a local complete intersection morphism. Let E → LX and F →
LX′ be perfect obstruction theories for X and X ′, respectively.

Definition 5.8 A compatibility datum (relative to v) for E and F is a triple
(φ,ψ, χ) of morphisms in D(OX′) giving rise to a morphism of distinguished
triangles

u∗E
φ

−→ F
ψ

−→ g∗LY ′/Y
χ

−→ u∗E[1]

↓ ↓ ↓ ↓
u∗LX −→ LX′ −→ LX′/X −→ u∗LX [1].

Given a compatibility datum, we call E and F compatible (over v).

Assume that E and F are endowed with such a compatibility datum.
Then we get (Proposition 2.7) a short exact sequence of vector bundle stacks

g∗h1/h0(T •

Y ′/Y ) −→ h1/h0(F∨) −→ u∗h1/h0(E∨)

which we shall abbreviate by

g∗NY ′/Y −→ F
φ

−→ u∗E.

If v is a regular local immersion, then NY ′/Y = NY ′/Y is the normal
bundle of Y ′ in Y . Its pullback to X ′ we shall denote by N .
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Lemma 5.9 If Y and Y ′ are smooth and v a regular local immersion, then
there is a (canonical) rational equivalence β(Y ′,X) ∈W∗(N × F) such that

∂β(Y ′,X) = [φ∗Cu∗CX/CX
] − [N × CX′ ].

Proof. Let X →M be a local embedding, where M is smooth. We get an
induced cartesian diagram

X ′ −→ X
↓ ↓

Y ′ ×M −→ Y ×M,

which we enlarge to

N ×X C −→ u∗C −→ C
↓ ↓ ↓

N −→ X ′ u
−→ X

↓ j ↓ ↓ i

NY ′/Y ×M
ρ

−→ Y ′ ×M
v

−→ Y ×M,

where C is the normal cone of X in Y ×M . As in Section 3 we have a
canonical rational equivalence β(Y ′ ×M,X) ∈W∗(N ×X C) such that

∂β(Y ′ ×M,X) = [Cu∗C/C ] − [N × CX′/Y ′×M ].

By Proposition 3.5 β(Y ′ × M,X) is invariant under the action of N ×
u∗i∗TY×M on N ×X C. So it descends to N ×X CX . In particular,
β(Y ′ ×M,X) is invariant under the subsheaf N × j∗TY ′×M and thus de-
scends to N × [u∗C/j∗TY ′×M ]. Note that [u∗C/j∗TY ′×M ] = F×E CX , which
is a closed subcone stack of F. So pushing forward via this closed immersion,
we get a rational equivalence on N × F which we denote by β(Y ′,X). We
have

∂β(Y ′,X) = [φ∗Cu∗CX/CX
] − [N × CX′ ]

as required. Now use Proposition 3.4 to show that β(Y ′,X) does not de-
pend on the choice of the local embedding X → M . So even if no global
embedding exists, the locally defined rational equivalences glue, proving the
lemma. 2

Proposition 5.10 (Functoriality) Let E and F be compatible perfect ob-
struction theories, as above. If E and F have global resolutions then

v![X,E] = [X ′, F ]

holds in the following cases.
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1. v is smooth,

2. Y ′ and Y are smooth.

Proof. First note that one may choose global resolutions [E0 → E1] of E∨

and [F0 → F1] of F∨ together with a pair of epimorphisms φ0 : F0 → u∗E0

and φ1 : F1 → u∗E1 such that

F0
φ0

−→ u∗E0

↓ ↓

F1
φ1

−→ u∗E1

commutes. Letting Gi be the kernel of φi we get a short exact sequence of
homomorphisms of vector bundles

0 −→ G0 −→ F0 −→ u∗E0 −→ 0
↓ ↓ ↓

0 −→ G1 −→ F1 −→ u∗E1 −→ 0.

The induced short exact sequence

[G1/G0] −→ [F1/F0] −→ [u∗E1/u
∗E0]

of vector bundle stacks is isomorphic to g∗NY ′/Y → F → E. We let C1 =

CX×EE1 and D1 = CX′×FF1. Then [X,E] = 0!
E1

[C1] and [X ′, F ] = 0!
F1

[D1],
where 0E1

and 0F1
are the zero sections of E1 and F1, respectively.

If v is smooth, then by Proposition 3.14 the diagram

CX′ −→ u∗CX
↓ ↓
F −→ u∗E

is cartesian, which implies that

D1 −→ u∗C1

↓ ↓
F1 −→ u∗E1

is cartesian. Hence 0!
u∗E1

[u∗C1] = 0!
F1

[D1] and we have

v![X,E] = v!0!
E1

[C1]

= 0!
u∗E1

[u∗C1]

= 0!
F1

[D1]

= [X ′, F ].
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If Y ′ and Y are smooth, let us first treat the case that v is a regular
local immersion. Then we may choose F1 as the fibered product

F1 −→ E1

↓ ↓

F
φ

−→ E.

Lifting the rational equivalence β(Y ′,X) of Lemma 5.9 to N × F1 we get
that

[N ×D1] = φ∗[Cu∗C1/C1
]

in A∗(N × F1). Then we have

[X ′, F1] = 0!
F1

[D1]

= 0!
N×F1

[N ×D1]

= 0!
N×F1

φ∗[Cu∗C1/C1
]

= 0!
N×u∗E1

[Cu∗C1/C1
]

= 0!
∗E1

v![C1]

= v!0!
E1

[C1]

= v![X,E].

In the general case factor v as

Y ′ Γv−→ Y ′ × Y
p

−→ Y.

Then Diagram 11 factors as

X ′ −→ Y ′ ×X −→ X
↓ ↓ ↓

Y ′ Γv−→ Y ′ × Y
p

−→ Y.

Since Y ′ is smooth it has a canonical obstruction theory, namely ΩY ′ . As
obstruction theory on Y ′ × X take ΩY ′ ⊞ E. Then ΩY ′ ⊞ E is compatible
with E over p and F is compatible with ΩY ′ ⊞ E over Γv. So combining
Cases (1) and (2) yields the result. 2
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6 Examples

The Basic Example

Assume that

X
j

−→ V
g ↓ ↓ f

Y
i

−→ W

is a cartesian diagram of schemes, that V and W are smooth and that i is a
regular embedding. Let E• be the complex [g∗NY/W

∨ → j∗ΩV ] (in degrees
−1 and 0), where the map is given by pulling back to X and composing
NY/W

∨ → i∗ΩW with f∗ΩW → ΩV . The complex E• has a natural mor-
phism to L•

X , induced by g∗L•

Y → L•

X and j∗L•

V → L•

X (note that E• is
the cokernel of g∗i∗L•

W → j∗L•

V ⊕ g∗L•

Y , where the first component is the
negative of the canonical map).

This makes E• into a perfect obstruction theory for X; the virtual fun-
damental class [X,E•] is just i![V ] as defined in [6], p. 98. The construction
also works in case X, Y , V and W are assumed to be just Deligne-Mumford
stacks.

Fibers of a Morphism between Smooth Stacks

Let f : V → W be a morphism of algebraic stacks. We shall assume that
V and W are smooth over k and that f has unramified diagonal, so that
V is a relative Deligne-Mumford stack over W . Let w : Speck → W be a
k-valued point of W and let X be the fiber of f over w. In this situation X
has an obstruction theory as follows.

Choose a smooth morphism W̃ → W , with W̃ a scheme, and a lifting
w̃ : Speck → W̃ of w (assume k algebraically closed). Let Ṽ be the fiber
product V ×W W̃ ; by the assumptions Ṽ is a smooth Deligne-Mumford
stack. Then X is isomorphic to the fiber over w̃ of Ṽ → W̃ , hence it has an
obstruction theory as above.

To check that the obstruction theory so defined does not depend on the
choices made, it is enough to compare two different ones induced by a smooth
morphism of schemes W̃ ′ → W̃ ; this is then a straightforward verification.
Similarly, one generalizes to the case of arbitrary ground field k.

See Example 7.6 for an alternative construction.
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Moduli Stacks of Projective Varieties

Let M and X be Deligne-Mumford stacks. Let p : M → X be a flat,
relatively Gorenstein projective morphism: by this we mean that it has
constant relative dimension and that the relative dualizing complex ω•

M/X
is a line bundle ω.

If G• ∈ D+(OX), we have p!G• = p∗G• ⊗ ω. So for any complex F • ∈
D−(OM ) we have natural isomorphisms

ExtkOM
(F •, p∗G•) → ExtkOM

(F • ⊗ ω, p!G•) → ExtkOX
(Rp∗(F

• ⊗ ω), G•).

In particular, the Kodaira-Spencer map LM/X → p∗LX [1] induces a map
E• → L•

X (well-defined up to homotopy). Define the complex E• on X to
be Rp∗(L

•

M/X ⊗ ω)[−1].

Proposition 6.1 Let p : M → X be a flat, projective, relatively Gorenstein
morphism of Deligne-Mumford stacks, and assume that the family M is
universal at every point of X (e.g., X is an open set in a fine moduli space
and M is the universal family). Then E• → L•

X is an obstruction theory for
X.

Proof. Let T be a scheme, f : T → X a morphism, and consider the
cartesian diagram

N
g

−→ M
q ↓ ↓ p

T
f

−→ X.

If T → T̄ is a square zero extension with ideal sheaf J , the obstruction
to extending N to a flat family over T̄ lies in Ext2(L•

N/T , q
∗J ), and the

extensions, if they exist, are a torsor under Ext1(L•

N/T , q
∗J ). Now L•

N/T =
g∗L•

M/X because p is flat, hence

ExtkON
(L•

N/T , q
∗J ) = ExtkOM

(L•

M/X , Rg∗q
∗J ) = ExtkOM

(L•

M/X , p
∗Rf∗J ).

By the previous argument,

ExtkOM
(L•

M/X , p
∗Rf∗J ) = Extk−1

OX
(E•, Rf∗J ) = Extk−1

OT
(f∗E•,J ).

Assume now that X is an open subset of a fine moduli space, that is the
family M is universal at every point. This implies that the fibers of p have
finite and reduced automorphism group, hence E• satisfies (⋆).
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The map E• → L•

X induces morphisms

φk : ExtkON
(L•

N/T , q
∗J ) = Extk−1

OT
(f∗E•,J ) → Extk−1

OT
(f∗L•

X ,J )

and the fact that X is a moduli space implies that φ1 is an isomorphism
and φ2 is injective. By Theorem 4.5, this implies that E• is an obstruction
theory for X. 2

Remark If p is smooth of relative dimension ≤ 2, then E• is a perfect
obstruction theory.

Spaces of Morphisms

Let C and V be projective k-schemes. Let X = Mor(C, V ) be the k-scheme
of morphisms from C to V (see [7]). Let f : C ×X → V be the universal
morphism and π : C ×X → X the projection. By the functorial properties
of the cotangent complex we get a homomorphism

f∗L•

V −→ L•

C×X −→ L•

C×X/C

and a homomorphism
π∗L•

X −→ L•

C×X/C .

The latter is an isomorphism so that we get an induced homomorphism

e : f∗L•

V −→ π∗L•

X .

Assume that C has a dualizing complex ωC . Then we get a homomorphism

e⊗ ωC : f∗L•

V

L
⊗ωC −→ π∗L•

X

L
⊗ωC = π!L•

X

and by adjunction a homomorphism

π∗(e⊗ ωC) : Rπ∗(f
∗L•

V

L
⊗ωC) −→ L•

X .

By duality we have

Rπ∗(f
∗L•

V

L
⊗ωC) = (Rπ∗(f

∗T •

V ))∨.

Let us denote the resulting homomorphism by

π∗(e
∨)

∨
: (Rπ∗(f

∗T •

V ))∨ −→ L•

X .
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Proposition 6.2 Assume that C is Gorenstein. Then the homomorphism
φ := π∗(e

∨)∨ is an obstruction theory for X. If C is a curve and V is
smooth then this obstruction theory is perfect.

Proof. Let T be an affine scheme, g : T → X a morphism, J a coherent
sheaf on T ; let p : C × T → T be the projection, h : C × T → V the
morphism induced by g.

By an argument analogous to that in the previous example, we get

ExtkOC×T
(h∗L•

V , p
∗J ) = ExtkOC

(g∗E•,J ).

Apply now Theorem 4.5, more precisely the equivalence between (1) and
(3). Choose any square zero extension T̄ of T with ideal sheaf J . Then g
extends to ḡ : T̄ → X if and only if h extends to h̄ : C × T̄ → V , if and
only if φ∗ω(g) is zero in Ext1OC×T

(h∗L•

V , p
∗J ). The extensions, if they exist,

form a torsor under HomOC×T
(h∗L•

V , p
∗J ). 2

7 The Relative Case

Bivariant Theory for Artin Stacks

For what follows, we need a little bivariant intersection theory for algebraic
stacks that are not necessarily of Deligne-Mumford type.

For simplicity, let us assume that f : X → Y is a morphism of algebraic
k-stacks which is representable. This assumption implies that whenever

X ′ −→ Y ′

↓ ↓

X
f

−→ Y

is a cartesian diagram and Y ′ is a Deligne-Mumford stack satisfying the
condition needed to define its Chow group (see [14]), then X ′ is of the same
type. The following remarks can be generalized to any morphism f satisfying
this property, e.g. any f which has finite unramified diagonal.

For such an f : X → Y we define bivariant groups A∗(X → Y ) by using
the same definition as Definition 5.1 in [14]. Then just as in [ibid.] one proves
that the elements of A∗(X → Y ) act on Chow groups of Deligne-Mumford
stacks.

The same definition as [ibid.] Definition 3.10 applies in case f : X → Y
is a regular local immersion, and defines a canonical element [f ] ∈ A∗(X →
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Y ) whose action on cycle classes is denoted by f !. This is justified, since
Theorems 3.11, 3.12, and 3.13 from [ibid.] hold with the same proofs in this
more general context. In fact, [f ] even commutes with the Gysin morphism
for any other local regular immersion of algebraic stacks.

Similarly, if f : X → Y is flat, flat pullback of cycles defines a canonical
orientation [f ] ∈ A∗(X → Y ).

The Relative Intrinsic Normal Cone

We shall now replace the base Spec k by an arbitrary smooth (or more
generally pure dimensional, but always of constant dimension) algebraic
k-stack Y (not necessarily of Deligne-Mumford type). We shall consider
algebraic stacks X over Y which are of relative Deligne-Mumford type over
Y , i.e. such that the diagonal X → X ×Y X is unramified. This assures
that hi(L•

X/Y ) = 0, for all i > 0 (i.e. h1(L•

X/Y ) = 0), so that LX/Y satisfies

Condition (⋆).
The relative intrinsic normal sheaf NX/Y is defined as

NX/Y = h1/h0(T •

X/Y ).

Using local embeddings of X into schemes smooth over Y , we construct as in
the absolute case a subcone stack CX/Y ⊂ NX/Y called the relative intrinsic
normal cone of X over Y . If n = dimY , then CX/Y is of pure dimension n.

The definition of a relative obstruction theory is the same as Defini-
tion 4.4, with L•

X replaced by L•

X/Y . As in the absolute case the relative
intrinsic normal cone embeds as a closed subcone stack of a vector bundle
stack

CX/Y ⊂ h1/h0(E∨),

if E is a perfect relative obstruction theory. (Note that ‘perfect’ means
‘absolutely perfect’.)

So let E be a perfect obstruction theory for X over Y admitting global
resolutions. If X is a separated Deligne-Mumford stack then we get a virtual
fundamental class [X,E•] ∈ An+rkE(X) by ‘intersecting CX with the vertex
of h1/h0(E∨)’ as in the discussion preceding Proposition 5.3.

Consider the following diagram, where Y and Y ′ are smooth of constant
dimension, v has finite unramified diagonal and X and X ′ are separated
Deligne-Mumford stacks.

X ′ u
−→ X

↓ ↓

Y ′ v
−→ Y

(12)

49



Proposition 7.1 There is a natural morphism

α : CX′/Y ′ −→ CX/Y ×Y Y
′.

If (12) is cartesian, then α is a closed immersion. If, moreover, v is flat,
then α is an isomorphism.

Proof. Both statements follow immediately from the corresponding prop-
erties of normal cones for schemes. 2

Proposition 7.2 (Pullback) Let E → LX/Y be a perfect obstruction the-
ory for X over Y . If (12) is cartesian then u∗E is a perfect obstruction
theory for X ′ over Y ′. If E has global resolutions so does u∗E and for the
induced virtual fundamental classes we have

v![X,E] = [X ′, u∗E],

at least in the following cases.

1. v is flat,

2. v is a regular local immersion.

Proof. Let E−1 → E0 be a global resolution of E• and C the cone induced
by CX/Y in E1. Let u∗Ei = E′

i, and D the cone induced by CX′/Y ′ in E′
1.

If v is flat we have CX′/Y ′ = v∗CX/Y and hence D = v∗C by Propo-

sition 7.1 and the statement follows ¿from the fact that v! is a bivariant
class; in this case that v! commutes with 0!

E1
, where 0 : X → E1 is the zero

section.
If v is a regular local immersion, let N = NY ′/Y and use Vistoli’s rational

equivalence
β(Y ′,X) ∈W∗(N ×Y C)

(see Proposition 3.3) to prove that v![C] = [D]. Then proceed as before. 2

The following are relative versions of the basic properties of virtual fun-
damental classes from Section 5.

Proposition 7.3 (Locally free obstructions) Let E• be a perfect rela-
tive obstruction theory for X over Y such that h0(E•) is locally free. As-
sume that E• has global resolutions and X is a separated Deligne-Mumford
stack, so that the virtual fundamental class [X,E•] exists.

50



1. If h−1(E•) = 0, then X is smooth over Y and [X,E•] = [X].

2. If X is smooth over Y , then h1(E∨) is locally free and [X,E•] =
cr(h

1(E∨)) · [X], where r = rkh1(E∨).

Proof. The proofs are the same as in the absolute case (Propositions
5.5and 5.6). 2

Proposition 7.4 (Products) Let E be a perfect relative obstruction theory
for X over Y and F a perfect relative obstruction theory for X ′ over Y ′.
Then E ⊞F is a perfect relative obstruction theory for X ×X ′ over Y ×Y ′.
If E and F have global resolutions and X and X ′ are separated Deligne-
Mumford stacks, then E⊞F has global resolutions and X×X ′ is a separated
Deligne-Mumford stack and we have

[X ×X ′, E ⊞ F ] = [X,E] × [X ′, F ]

in AdimY+dimY ′+rkE+rkF (X ×X ′).

Let E be a perfect relative obstruction theory for X over Y and F
a perfect relative obstruction theory for X ′ over Y . Let v : Z ′ → Z be a
local complete intersection morphism of Y -stacks that have finite unramified
diagonal over Y . Let there be given a cartesian diagram

X ′ u
−→ X

g ↓ ↓ f

Z ′ v
−→ Z

of Y -stacks. Then E and F are compatible over v if there exists a homo-
morphism of distinguished triangles

u∗E −→ F −→ g∗LZ′/Z −→ u∗E[1]

↓ ↓ ↓ ↓
u∗LX/Y −→ LX′/Y −→ LX′/X −→ u∗LX/Y [1].

in D(OX′).

Proposition 7.5 (Functoriality) If E and F are compatible over v, then

v![X,E] = [X ′, F ],

at least if v is smooth or Z ′ and Z are smooth over Y .
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Proof. The proof is the same as that of Proposition 5.10. 2

Example 7.6 Consider a cartesian diagram

X
j

−→ V
g ↓ ↓ h

Y
i

−→ W

of algebraic stacks, where i and j are local immersions and h has unramified
diagonal. We have a canonical homomorphism

φ : j∗LV/W −→ LX/Y ,

which makes j∗LV/W a relative obstruction theory for X over Y . To see
this, it suffices to prove that h−1(F •) = h0(F •) = 0, where F • is the cone of
φ. But F • is isomorphic to the cone of the homomorphism

g∗LY/W −→ LX/V ,

so this is indeed true.
Now if V and W are smooth, then hi(LV/W ) = 0 for all i 6= −1, 0

and j∗LV/W is a perfect obstruction theory. In particular, we get a virtual
fundamental class

[X, j∗LV/W ] ∈ AdimY+dimV−dimW (X),

if Y is pure dimensional, j∗LV/W has global resolutions and X is a separated
Deligne-Mumford stack.

If, in addition, i is a regular local immersion with normal bundle NY/W ,
the normal cone CX/V of X in V is a closed subcone of g∗NY/W and inter-
secting it with the zero section 0 of g∗NY/X gives a class

0![CX/V ] ∈ AdimY+dimV−dimW (X).

The proof that
0![CX/V ] = [X, j∗LV/W ]

is similar to the proof of Proposition 7.2.
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