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Abstract

We construct a 2-category of differential graded schemes. The local
affine models in this theory are differential graded algebras, which are
graded commutative with unit over a field of characteristic zero, are con-
centrated in non-positive degrees and have perfect cotangent complex.
Quasi-isomorphic differential graded algebras give rise to 2-isomorphic
differential graded schemes and a differential graded algebra can be re-
covered up to quasi-isomorphism from the differential graded scheme it
defines. Differential graded schemes can be glued with respect to an étale
topology and fibered products of differential graded schemes correspond
on the algebra level to derived tensor products.
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Introduction

The goal of this paper is to define a useful notion of differential graded scheme.
This is done with the following criteria in mind:

(i) Differential graded schemes can be glued from local data. Quasi-
isomorphisms are considered to be isomorphisms for the purposes of gluing.

(ii) Every differential graded scheme locally determines a differential graded
algebra up to quasi-isomorphism, the local affine coordinate ring.

(iii) Fibered products of differential graded schemes exist and are given lo-
cally on the level of affine coordinate rings as derived tensor products.

(iv) Differential graded schemes form a category. Thus moduli spaces such
as the ones constructed in [5] solve universal mapping problems in this category
and so their differential graded structure is determined entirely by a universal
mapping property.

It turns out that these requirements cannot be met by a usual category. Some
higher categorical structure is needed. Our central message is that the simplest
of all higher categorical structures, namely that of 2-category, is sufficient for a
satisfying theory.

This is somewhat of a surprise, because differential graded algebras form a
simplicial category, which is a version of (weak) infinity category. Passing to
2-categories is achieved by a process of truncation, which leads, by its nature,
to loss of information. The fact that the lost information was not necessary for
the purposes of geometry is rather subtle. It is the content of the results we
present under the heading of Descent Theory.

Overview of the construction

We start with a suitable 2-category of differential graded algebras. This is the
2-category of perfect resolving algebras, which we denote by Rpf . A perfect
resolving algebra is a differential graded algebra concentrated in non-positive
degrees (the differential has degree +1), such that the underlying graded algebra
is free (commutative with 1, over a field k of characteristic 0) on finitely many
generators in each degree, and such that its complex of differentials is perfect.
For a detailed study of perfect resolving algebras, see [1].

The perfect resolving algebras form a full subcategory of the differential
graded algebras, which form a simplicial closed model category. Thus, given
any two perfect resolving algebras B, A, the set of morphisms from B to A
is a simplicial set Hom∆(B,A). Because perfect resolving algebras are both
fibrant and cofibrant, the simplicial set Hom∆(B,A) is fibrant, i.e., it has the
Kan extension property. Thus the fundamental groupoid of Hom∆(B,A) exists
and we define

Hom(B,A) = Π1 Hom∆(B,A) .

With this definition of hom-groupoid, the perfect resolving algebras form the
2-category Rpf . Let us note that two perfect resolving algebras are isomorphic
in Rpf (in the ‘relaxed’, 2-categorical sense), if and only if they are quasi-
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isomorphic. This is because quasi-isomorphisms are the weak equivalences in
the closed model category of differential graded algebras.

The 2-category Rpf serves as the category of affine coordinate rings of affine
differential graded schemes. To construct differential graded schemes over Rpf ,
we imitate the usual construction of algebraic spaces over the category of k-
algebras (of finite type, to keep the analogy with Rpf).

Thus, the first step is to pass to the opposite category of Rpf , which we
denote S. Then we introduce a Grothendieck topology on the 2-category S.
The usual étale topology on the category of affine k-schemes of finite type has an
analogue in S, called, not surprisingly, the étale topology on S. The necessary
facts about étale morphisms between perfect resolving algebras are proved in [1].

As soon as we have a 2-category with a Grothendieck topology, we have the
category of sheaves over it. We call a sheaf over S a differential graded sheaf.
Differential graded schemes are then defined to be differential graded sheaves
satisfying an extra condition (see below).

Since we are working over a 2-category, the notion of sheaf resembles more
closely the usual concept of stack, rather than the usual concept of sheaf. In
fact, a sheaf over S is defined to be a 2-category fibered in groupoids over S.
It is required to satisfy sheaf axioms, which are direct adaptations of the usual
stack axioms. Thus, on a certain formal level, our theory of differential graded
schemes resembles the usual theory of algebraic stacks.

There is one essential difference: there is no 1-category which generates the
2-category of differential graded schemes in the same way that the 1-category
of usual schemes generates the 2-category of algebraic stacks. The local affine
models for differential graded schemes already form a 2-category, in contrast to
the local affine models for algebraic stacks, which form only a 1-category.

A key ingredient in the construction of usual algebraic spaces is descent
theory. By this we mean two results: descent for morphisms and descent for
algebras. Descent for morphisms says that the contravariant functor

Spec(R) : (finite type affine k-schemes) −→ (sets) (1)

represented by the finite type k-algebra R, is a sheaf. Thus we obtain a con-
travariant functor

Spec : (finite type k-algebras) −→
(
sheaves on (finite type affine k-schemes)

)
.

By Yoneda’s lemma, it is fully faithful. Without descent theory, we would
have to pass from SpecR to the associated sheaf, which would destroy the
fully faithful property of Spec. As a consequence, we would not be able to
reconstruct the finite type k-algebra R from the sheaf (and hence the algebraic
space) associated to it.

Thus, in view of our requirement (ii) on differential graded schemes, a result
on descent for morphisms in S is essential. It says that the 2-category fibered
in groupoids over S

Spec(B)
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represented by the perfect resolving algebra B is a sheaf. From the ‘lax functor’
point of view, this 2-category fibered in groupoids Spec(B) may be considered
as a contravariant 2-functor

Spec(B) : S −→ (groupoids) ,

making the analogy with (1) more apparent.
We obtain a contravariant 2-functor

Spec : Rpf −→ (sheaves on S) .

By Yoneda’s lemma for 2-categories, it is fully faithful. Again, the key point
is that there is no need to pass to an associated sheaf, and so there is no
information loss when passing from a perfect resolving algebra to the sheaf on
S it gives rise to. This means that our requirement (ii), above, is fulfilled.

Usual descent for algebras can be formulated as follows. Call a morphism
of sheaves f : X → Y on the category of finite type k-algebras affine, if for
every morphism SpecR → Y , the fibered product X ×Y SpecR is isomorphic
to SpecS, for some finite type k-algebra S. Descent for algebras says that for
f : X → Y to be affine it suffices to have an étale cover SpecRi → Y of Y ,
such that for every i, the fibered product X×Y SpecRi is isomorphic to SpecSi,
for some finite type k-algebra Si. We abbreviate this property by saying that
‘affine’ is a local property for morphisms between sheaves. When developing the
theory of algebraic spaces from the theory of affine schemes, this fact is essential.
Without it, it would be impossible to ever check that any given morphism is
affine. By extension, it would be impossible to ever prove that a given sheaf is
an algebraic space.

Thus we prove an analogue of descent for algebras in the 2-category S. Once
this is done, we define differential graded schemes in three steps:
• An affine differential graded scheme is a differential graded sheaf, 2-

isomorphic to SpecB, for some perfect resolving algebra B.
• An affine morphism of differential graded sheaves is a morphism, whose

base change to an affine differential graded scheme always gives rise to an affine
differential graded scheme. For affine morphisms, the property of being étale
makes sense.
• A differential graded scheme is a differential graded sheaf X, which can

be covered by affine étale morphisms SpecBi → X. Thus, a differential graded
scheme is étale locally affine.

By the local nature of this definition, it is clear that it satisfies our crite-
rion (i), above. A more detailed study of the gluing properties of differential
graded schemes is the content of [2]. There we will prove, for example, that
every local complete intersection scheme can be considered as a differential
graded scheme. Requirement (iv) is also clearly fulfilled: morphisms between
differential graded schemes are just morphism of differential graded sheaves.
Because of the truncation procedure involved in our construction, Property (iii)
is somewhat non-trivial. It will be dealt with in [3]. For the present purposes
is sufficient to have base changes by étale morphisms (see Proposition 1.39).

5



Recall (Theorem 3.8 in [1]), that every perfect resolving algebra is locally
finite. Thus every differential graded scheme can be glued using only finite
resolving algebras. In other words, the 2-category of affine differential graded
schemes associated to finite resolving algebras generates the 2-category of differ-
ential graded schemes. Thus we could base our theory entirely on finite resolving
algebras instead of perfect resolving algebras. On the other hand, the descent
result for algebras fails in the context of finite resolving algebras. Hence finite
resolving algebras give rise differential graded schemes which are somewhat too
local, to be considered as the class of all affine differential graded schemes.

Because of these observations, one might speculate that it should be possible
to develop the theory of differential graded schemes without descent for algebras.
On the other hand, the development is greatly simplified by its use.

Outline of the paper

In Section 1, we start by reviewing a few basic facts about 2-categories. Then we
define presheaves over 2-categories. We introduce the notion of Grothendieck
topology on a 2-category and define sheaves on a 2-category endowed with a
Grothendieck topology.

We proceed to introduce the 2-category of resolving algebras R, together
with its subcategories of quasi-finite, perfect and finite resolving algebras, Rqf ,
Rpf and Rf . We obtain a base 2-category S by passing to the opposite 2-
category of any of Rqf , Rpf or Rf . We prove that base changes by étale mor-
phisms exist in S.

Finally, we introduce the étale topology on S and define differential graded
sheaves as sheaves on S.

Section 2 contains our results on descent theory. There is, first of all, a
theorem on descent for morphisms: Theorem 2.1 and its Corollary 2.3. It holds
for both finite and perfect resolving algebras. This result is really the technical
heart of the whole theory, because it justifies using 2-categories for differential
graded schemes. Without it, one would have to consider some type of infinity
category (as is done in [10]). To prove our descent theorem, we use the main
result of [1], on ‘linearization of homotopy groups’. It says that for every ` > 0
there exists a canonical bijection

Ξ` : h−` Der(B,A) −→ π` Hom∆(B,A) ,

where Der(B,A) is the differential graded A-module of (internal) derivations D :
B → A. Thus π` Hom∆(B,A) can be given the structure of h0(A)-module, which
suffices to reduce descent for morphisms in S to usual descent for morphisms
in the category of finite type k-algebras.

To formulate our theorem on descent for algebras, we need to introduce a
special class of gluing data in S. We leave the general theory of gluing data in
S to [2]. Here we only require relative gluing data, which have a much simpler
structure. These gluing data can be conveniently pictured as diagrams in the
shape of truncated hypercubes in S. We prove that relative gluing data can be
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strictified, which means that 2-arrows appearing in the squares of the hypercube
can be replaced by identity 2-arrows.

Once these preliminaries are dispensed with, we proceed to prove our theo-
rem on descent for algebras, Theorem 2.11. As mentioned above, it is the basis
for the theory of affine morphisms of differential graded sheaves and is therefore
also an integral part of the definition of differential graded scheme.

Section 3 contains this definition, as outlined above. At this point, we refrain
from going much further than the bare definition of differential graded scheme.

Instead, in Section 4, we proceed to construct the basic ‘1-categorical invari-
ants’ of a differential graded scheme X. All of these are sheaves (or complexes of
sheaves) on the 1-category associated to the 2-category underlying X. An object
of this 1-category may be thought of as an isomorphism class of morphisms

SpecA→ X .

There are first of all the higher structure sheaves. These associate to SpecA→ X

the h0(A)-module hi(A), for i ≤ 0.
Then there are the higher tangent sheaves h`(ΘX). If X = SpecB is affine,

they associate to SpecA→ SpecB the h0(A)-module h` Der(B,A), for various
`.

Next there are the homotopy sheaves π`(X), for ` > 0. Again, let us just
say here that in the affine case X = SpecB, they are given by associating to
SpecA→ SpecB the group π` Hom∆(B,A). These are, in fact, sheaves, by our
results on descent theory. Moreover, they coincide with certain of the higher
tangent sheaves: there exists a canonical isomorphism of sheaves

Ξ` : h−`(ΘX) ∼−→ π`(X) ,

for all ` > 0.
To put the homotopy sheaves π`(X) into context, let us make a few general

remarks. Let C be a simplicial closed model category with homotopy category
Ho(C), say in its incarnation as category of fibrant-cofibrant objects with sim-
plicial homotopy classes of maps as morphisms. For every ` ≥ 0 and every
morphism f : X → Y in Ho(C) we let π`(X/Y ) be the presheaf on Ho(C)/X
defined by π`(X/Y )(U) = π` Hom∆

Y (U,X), for all U → X in Ho(C)/X . Here
Hom∆

Y (U,X) denotes the fiber of Hom∆(U,X) → Hom∆(U, Y ). For Y = ∗,
we obtain the presheaf π`(X). There is a long exact sequence of presheaves of
pointed sets on Ho(X)

. . . −→ π`(X/Y ) −→ π`(X) −→ f−1π`(Y ) ∂−→ π`−1(X/Y ) −→ . . .

. . . −→ f−1π1(Y ) ∂−→ π0(X/Y ) −→ π0(X) −→ π0(Y ) .

Formally, our homotopy sheaves π`(X), of which there also exist relative
versions π`(X/Y), behave somewhat as if they were obtained, as above, from a
simplicial closed model category structure underlying the 2-category of differ-
ential graded schemes. In particular, they also fit into a long exact sequence.
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We do not know if there exists such a simplicial closed model category structure
underlying the 2-category of simplicial schemes, but we find it quite likely.

There is a special feature in our case of differential graded schemes: the
analogue of the homotopy category Ho(C)/X is the 1-category associated to
the differential graded scheme X. Thus in our case this homotopy category is
endowed with a Grothendieck topology, with respect to which all the π`(X), for
` > 0, are sheaves. This property does not seem to have a meaningful analogue,
for example, in the simplicial closed model categories of topological spaces or
simplicial sets.

Finally,we define the cotangent complex of a morphism of differential graded
schemes and the algebraic space associated to a differential graded scheme. The
associated algebraic space is obtained by gluing the truncations Spech0(Bi) of
the affine differential graded schemes SpecBi, which cover a differential graded
scheme X. The cotangent complex of a differential graded scheme gives rise to
an obstruction theory in the sense of [4] on the associated algebraic space. Thus
in the case of perfect amplitude 1, it defines a virtual fundamental class on the
associated algebraic space.

Notation

References of the form I.0.0, refer to Result 0.0 of [1].
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1 The étale topology

1.1 2-Categories

All our 2-categories will have invertible 2-morphisms. Thus they are categories
enriched over groupoids. To fix notation, let us recall the definition. (See
also [9]).

Definition 1.1 A 2-category S consists of
(i) a set of objects ob S,
(ii) for every pair U , V of objects of S a groupoid Hom(U, V ),
(iii) for every triple U , V , W of objects of S a functor

◦ : Hom(V,W )×Hom(U, V ) −→ Hom(U,W ) (2)
(f, g) 7−→ f ◦ g

(iv) for every object U of S an object idU of Hom(U,U), or rather a functor

∗ idU−→ Hom(U,U),

such that
(i) the composition ◦ is associative, i.e., for four objects U , V , W , Z of S

the diagram of functors

Hom(W,Z)×Hom(W,V )×Hom(V, U)

��

// Hom(V, Z)×Hom(U, V )

��
Hom(W,Z)×Hom(U,W ) // Hom(U,Z)

commutes (strictly),
(ii) idU acts as identity, i.e., the induced diagrams

Hom(U, V )

�� ))RRRRRRRRRRRRRR
Hom(U, V )

))RRRRRRRRRRRRRR
// Hom(V, V )×Hom(U, V )

��
Hom(U, V )×Hom(U,U) // Hom(U, V ) Hom(U, V )

commute (strictly), for any two objects U , V .
Composition in Hom(U, V ) is called vertical composition, the operation ◦

of (2) is called horizontal composition. Vertical composition we shall denote
by α · β.

Objects of Hom(U, V ) are called 1-morphisms (of S), morphisms in
Hom(U, V ) are called 2-morphisms (of S). We also use the words 2-
isomorphism and 2-arrow instead of 2-morphism. An identity 2-arrow is also
called a strictly commutative diagram.
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Every set X is a category by taking the elements of X as objects and admit-
ting only identity morphisms. Every category C is a 2-category, by considering
the Hom-set Hom(A,B) as a category, for any two objects A, B of C.

Given a 2-category S, the objects of S together with the 1-morphisms and
horizontal composition form a 1-category, the underlying 1-category of S.
Replacing Hom(A,B) by its set of isomorphism classes, we obtain another 1-
category, the 1-category associated to S, which we denote by S. There is a
canonical functor from the underlying 1-category of S to S.

Compatibilities between 2-morphisms can often be phrased conveniently by
saying that certain ‘2-spheres’ commute. This means that the objects involved
should be considered as vertices, 1-morphisms as edges and 2-morphisms as faces
of a ‘triangulation’ of a topological 2-sphere. There should always be one ‘source
object’, having only 1-morphisms emanating from it, and one ‘target object’,
which has no 1-morphism emanating from it. Then all the different directed
paths from the source to the target object can be considered as vertices of a
commutative polygon of 2-arrows, i.e., a commutative polygon for the vertical
composition. Often we project such a 2-sphere stereographically onto the plane,
so that we get a flat diagram, whose exterior should be considered as a 2-cell,
even if it is not labelled as such.

If the distinction is important, we say that such a 2-sphere 2-commutes. This
is contrast to a 2-sphere all of whose faces are identity 2-arrows (in other words,
are commutative diagrams in the underlying 1-category), which we call strictly
commutative. If all faces are strictly commutative, a 2-sphere is automatically
2-commutative.

Isomorphisms and fibered products in 2-categories

Definition 1.2 For lack of better terminology, we will call a morphism of
groupoids f : X → Y categorically étale, if for every object x of X the
induced group homomorphism AutX(x)→ AutY

(
f(x)

)
is bijective.

Let S be a 2-category.

Definition 1.3 We call a 1-morphism A → B in S faithful (categorically
étale, a monomorphism), if for every object S the induced morphism of
groupoids Hom(S,A)→ Hom(S,B) is faithful (categorically étale, fully faith-
ful).

Thus we have the implications:

monomorphism =⇒ categorically étale =⇒ faithful .

Definition 1.4 Let f : A → B be a 1-morphism in a 2-category S. A 2-
inverse of f is given by the data (g, φ, ψ), where g : B → A is a 1-morphism
and φ : idA ⇒ g ◦f and ψ : f ◦g ⇒ idB are 2-arrows, such that the two diagrams
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A

f

��

f
//

idA

!!
�� ��
�� φ
B

g

��

g
// A

f

��

B

g

��

g
//

idB

!!� �� �KS
ψ

A

f

��

f
// B

g

��
B

g //
==

idB

�� ��
�� ψ
A

f // B A
f //

==

idA

� �� �KS
φ
B

g // A

commute.

The inverse of f : A → B is unique up to a unique 2-isomorphism in the
following sense. If (g′, φ′, ψ′) is another inverse to f , then there exists a unique
2-isomorphism θ : g → g′, such that the two diagrams

A
f //

idA

��

�� ��
�� φ

DD

idA

� �� �KS
φ′

B

g
&&

g′
88

�� ��
�� θ A B

g
&&

g′
88

�� ��
�� θ

idB

��
� �� �KS

ψ

DD

idB

�� ��
�� ψ
′

A
f // B

commute.

Definition 1.5 We call a 1-morphism f : A→ B in a 2-category 2-invertible,
an equivalence or even an isomorphism, if it admits a 2-inverse. We hope
that there will be no confusion with the term 2-isomorphism, which stands for
the 2-arrows in S.

By the same token, we call two objects A and B isomorphic, if there exists
a 2-invertible morphism f : A→ B.

The following is a very useful criterion by which to recognize equivalences:

Proposition 1.6 Let f : A → B be a 1-morphism in S. If there exists a 1-
morphism g : B → A such that idA ∼= g ◦ f and idB ∼= f ◦ g, then f is an
equivalence. �

Corollary 1.7 A 1-morphism A → B in S is an isomorphism, if and only if
Hom(S,A)→ Hom(S,B) is an equivalence of groupoids, for all objects S.

Definition 1.8 A diagram
W

��

//

����
<D
B

��
A // Z

(3)
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in a 2-category S is called a fibered product, if for any object S of S the
functor

Hom(S,W ) −→ Hom(S,A) ×Hom(S,Z) Hom(S,B) (4)

is an equivalence of groupoids. Here, the fibered product in (4) is the usual
fibered product of groupoids.

We also say that Diagram (3) is 2-cartesian.

A 1-cartesian diagram in the 2-category S is a strictly commutative square,
which is cartesian in the underlying 1-category.

2-Functors and natural 2-transformations

Definition 1.9 Let S and T be 2-categories. A 2-functor f : S→ T consists
of

(i) a map f : ob S→ ob T,
(ii) for every pair U , V of objects of S a functor

f : Hom(U, V ) −→ Hom(f(U), f(V )),

such that
(iii) for every object U of S the diagram of functors

∗

idU
��

idf(U)

))SSSSSSSSSSSSSSS

Hom(U,U)
f // Hom(f(U), f(U))

commutes (strictly),
(iv) for every triple U , V , W of objects of S

Hom(V,W )×Hom(U, V )

◦
��

f // Hom(f(V ), f(W ))×Hom(f(U), f(V ))

◦
��

Hom(U,W )
f // Hom(f(U), f(W ))

is a (strictly) commutative diagram of functors.

Definition 1.10 Consider a 2-functor f : S→ T.
(i) f is called fully faithful, if for any two objects U , V of S the functor

Hom(U, V )→ Hom
(
f(U), f(V )

)
is an equivalence of groupoids.

(ii) f is called an equivalence of 2-categories, if it is fully faithful, and
for every object T of T, there exists an object S of S, such that f(S) ∼= T .

Definition 1.11 Let f : S→ T and g : S→ T be two 2-functors between the
2-categories S and T. A natural 2-transformation θ : f → g is given by a
functor

∗ θ(U)−→ Hom(f(U), g(U)),
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for every object U of S, such that

Hom(U, V )

g×θ(U)

��

θ(V )×f // Hom(f(V ), g(V ))×Hom(f(U), f(V ))

◦
��

Hom(g(U), g(V ))×Hom(f(U), g(U)) ◦ // Hom(f(U), g(V ))

is a commutative diagram of functors, for any two objects U , V in S.

Remark 2-categories, 2-functors and natural 2-transformations form a 2-
category.

Definition 1.12 Let S be a 2-category. We define the opposite 2-category
Sop as follows:

(i) objects of Sop are the same as the objects of S,
(ii) given objects U and V of Sop, we set

HomSop(U, V ) = HomS(V, U)op,

(iii) horizontal composition in Sop is defined to be the ‘opposite’ of horizontal
composition in S, up to changing the order of the arguments,

(iv) identity objects in Sop are the same as in S.
A contravariant 2-functor S→ T is a 2-functor Sop → T.

Of course, the opposite 2-category is again a 2-category.

1.2 Presheaves

We shall now introduce the notion of a presheaf over a 2-category. This gen-
eralizes the notion of category fibered in groupoids, known from the theory of
1-categories (and used in the theory of stacks). If the base category is a 2-
category, it is natural to think of this structure as generalizing the notion of
presheaf over a 1-category.

Definition 1.13 A 2-functor π : F→ S of 2-categories is called a presheaf, if
(i) for every 1-morphism

V // U

in S, and every object x of F lying over U , there exists a 1-morphism

y // x

in F, lying over V → U ,
(ii) for every 2-commutative triangle

V ′ //

AAAAAAA

  
f ′

����
<D V

f

��
U

(5)
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in S, and every diagram of 1-morphisms

y′

e′ ��???????
y

e

��
x

in F, where e′ lies over f ′ and e lies over f , there exists a unique pair (r, γ) in
F such that the triangle

y′
r //

???????

��
e′

����
;Cγ
y

e

��
x

(6)

2-commutes in F and the triangle (6) lies over the triangle (5).

The following special case of Condition (ii) is worth pointing out:

Lemma 1.14 Let π : F→ S be a presheaf. Then for every 2-morphism

V

f ′

&&

f

88
�� ��
�� α U

in S, whose target f : V → U has been lifted to a 1-morphism

y 55
e

x

in F, there exists a unique 2-morphism

y
e′

$$

e

::
�� ��
�� γ x

in F with target e, which lies over α.

Proof. Apply the case that y = x and e the identity in Condition (ii) of
Definition 1.13 to the inverse of α. �

Note that the fibers of a presheaf are groupoids. We denote the fiber of
F→ S over the object U of S by FU .

Definition 1.15 If π : F→ S is a presheaf, and the lifting required in Condi-
tion (i) of Definition 1.13 is always unique, then we call F a presheaf of sets.
Note that this makes Condition (ii) empty. Moreover, it implies that all fibers
of π are sets.
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Definition 1.16 Let F and G be presheaves over S. A morphism of
presheaves is a 2-functor F → G commuting with the projections to S. A
2-morphism of morphisms of presheaves is a natural 2-transformations lying
over the identity natural 2-transformation.

The presheaf morphisms from F to G form a groupoid HomS(F,G), the
groupoid of presheaf morphisms from F to G.

There is an obvious way to define a composition functor

HomS(G,H)×HomS(F,G) −→ HomS(F,H) ,

thus turning the presheaves over S into a 2-category.
Since the fibers of a presheaf over S are groupoids, presheaves behave more

like categories than like 2-categories:

Lemma 1.17 Let F and G be presheaves over S. A morphism F : F → G is
a 1-functor of the underlying 1-categories of F and G, commuting with the un-
derlying 1-functors to the underlying 1-category S, with the following property:
if

y

f
$$

g

::
�� ��
�� θ x

is a 2-morphism in F, lying over

V
''
77

�� ��
�� U , (7)

then there exists a 2-morphism

F (y)
F (f) **

F (g)
44

�� ��
�� η F (x)

lying over (7), also.
Let F,G : F → G be 1-morphisms of presheaves over S. A 2-isomorphism

θ : F ⇒ G is a natural 1-transformation between the underlying 1-functors F
and G, which maps every object x of F to a morphism of G lying over idU (where
x lies over U). The compatibility with 2-isomorphisms is then automatic. �

Proposition 1.18 Let F : F → G be a morphism of presheaves over S. The
following are equivalent:

(i) F is faithful (categorically étale, a monomorphism, an isomorphism) as
a 1-morphism in the 2-category of presheaves over S,

(ii) for every object U of S, the fiber functor FU : FU → GU is faithful
(categorically étale, fully faithful, an equivalence). �

15



Relative 2-categories, Yoneda Theory

Given an object U of a 2-category S, we define the relative 2-category S/U as
follows.

Objects of S/U are 1-morphisms V → U in S with target U . Given two
such relative objects f ′ : V ′ → U and f : V → U , we define the groupoid of
morphisms HomS/U (V ′, V ) to have as objects the 2-commutative diagrams

V ′
e //

AAAAAAA

  
f ′

����
<Dα
V

f

��
U,

and to have as 2-morphisms from (e, α) to (g, β) the 2-morphisms in S

V ′
e

&&

g

88
�� ��
�� θ V,

such that (f ◦ θ) · α = β, i.e., the diagram of 2-arrows in S

f ′
α +3

β �%
CCCCCCCC

CCCCCCCC f ◦ e

f◦θ
��

f ◦ g

commutes.
Composition in HomS/U (V ′, V ) is induced from vertical composition in S.

We define horizontal composition S/U by the formula

(e, α) ◦ (g, β) =
(
e ◦ g, (α ◦ g) · β

)
.

By projecting onto the source, more precisely, mapping V → U to V , (e, α)
to e and θ to θ, we get a 2-functor S/U → S.

Lemma 1.19 The 2-functor S/U → S is a presheaf. �

Abbreviate for an object U of S the relative 2-category S/U by U .
The association U → U defines a 2-functor from S to the 2-category of

presheaves over S. The analogue of Yoneda’s lemma in this context is that this
2-functor is fully faithful:

Proposition 1.20 (Yoneda’s lemma for 2-categories) The 2-functor

S −→ (presheaves/S)
U 7−→ U

is fully faithful. �
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Remark A 1-morphism f : U → V in S is faithful (categorically étale, a
monomorphism, an isomorphism) if and only if the induced 1-morphism U →
V of presheaves over S is faithful (categorically étale, a monomorphism, and
isomorphism).

Remark For every presheaf F over S and every object U of S, there is a
canonical morphism of groupoids

Hom(U,F) −→ FU , (8)

given by evaluation at idU . It is always an equivalence of groupoids. Given an
object x of F lying over U , any choice of pullbacks for x defines a morphism
U → F mapping to x under (8).

Thus, it is justified to write F(U) instead of FU .

Fibered products of presheaves

Let S be a 2-category.

Proposition 1.21 Fibered products exist in the 2-category of presheaves over
S. The Yoneda functor S → (presheaves/S) commutes with any fibered prod-
ucts which exist in S.

Proof. The construction is analogous to the proof of the fact that fibered
products exist in the 2-category of categories fibered in groupoids over a 1-
category. �

1.3 Topologies and sheaves

Sieves

Definition 1.22 Let S be a 2-category and U an object of S. A sieve for U
is given by a collection R of objects V → U of U such that if V → U is in R
and

W //

AAAAAAAA

  

����
<D V

��
U

is a 1-morphism in U , then W → U is in R, also.

A sieve R for U defines a sub-2-category of U by

HomR(W,V ) = HomU (W,V ),

whenever V and W are objects in R. We shall always identify a sieve R for U
with this sub-2-category of U it generates.

Thus, given a sieve R for U , we have the canonical inclusion 2-functor R→ U
and by composing with U → S a canonical 2-functor R→ S.

17



Proposition 1.23 If R is a sieve for U , then R→ S is a presheaf. Conversely,
a sub-2-category R of U , such that R → S is a presheaf comes from a unique
sieve for U . �

Note that a morphism V → U is an object of the sieve R ⊂ U if and only if
the induced morphism of S-presheaves V → U factors through R ⊂ U .

More precisely, if V → U partakes in the sieve R ⊂ U , then there exists a
unique strictly commutative diagram

V //

��>>>>>>> R

��
U

of presheaves over S. If there exists a 2-commutative diagram

V //

��>>>>>>>
~~~~

;C
R

��
U

of presheaves over S, then V → U partakes in R.

Lemma 1.24 Finite intersections and arbitrary unions of sieves for U are
sieves for U . �

Construction 1.25 (pullback sieve) Consider a morphism f : V → U in S.
If R is a sieve for U , define f−1R ⊂ V to consist of all W → V such that the
composition W → V → U is in R. Of course f−1R is a sieve for V . Note that

f−1R

��

� � // V

��
R

� � // U

is a 2-cartesian diagram of presheaves over S.

Topologies

We shall now define topologies on 2-categories. A topology is characterized by
its collection of covering sieves.

Definition 1.26 Let S be a 2-category. A topology on S is given by the data
• for every object U of S a collection of sieves for U , called the covering

sieves of U ,
subject to the constraints:

18



(i) (pullbacks) for all morphisms f : V → U in S and all covering sieves
R ⊂ U of U , the pullback f−1R ⊂ V is a covering sieve for V ,

(ii) (local nature) if R ⊂ U is a covering sieve for U and R′ ⊂ U is another
sieve, which covers R-locally, the sieve R′ is also a covering sieve of U . Here we
say that R′ covers R-locally, if for all f : V → U in R the pullback f−1R′ is a
covering sieve of V ,

(iii) (identities) for every object U of S the sieve U is a covering sieve for U .
A 2-category which has been endowed with a topology is called a 2-site.

Sometimes, a topology can be defined in terms of a pretopology. A pretopol-
ogy is given by its collection of covering families.

Definition 1.27 Let S be a 2-category. A pretopology on S is given by the
data
• for every object U of S a collection of families of U -objects, called the

covering families of U ,
subject to the constraints:

(i) (pullbacks) if (Ui → U)i∈I is a covering family of U and V → U is a
morphism, then there exists a 2-pullback Vi → V of Ui → U , for all i ∈ I, such
that (Vi → V )i∈I is a covering family of V ;

(ii) (composition) if (Ui → U)i∈I is a covering family of U and for every
i ∈ I we have a covering family (Vij → Ui)j∈Ji of Ui, then the total family
(Vij → U)i∈I,j∈Ji , obtained by composition, is a covering family of U ;

(iii) (identity) the one-member family (id : U → U) is a covering family of
U , for all objects U of S.

Remark Note that in the pullback condition we do not require that every
pullback of a covering family is a covering family. We only demand that there
exists at least one pullback family which is covering.

In particular, a family isomorphic to a covering family need not be a covering
family.

We can associate a topology to a given pretopology as follows. Call a sieve
R ⊂ U covering if there exists a covering family (for the given pretopology)
(Ui → U) such that for all i we have that Ui is in R.

Lemma 1.28 This defines a topology on S. This topology is called the topology
associated to the given pretopology.

Proof. This proof is very similar to the corresponding proof in the 1-category
setting. �

Sheaves

Definition 1.29 A presheaf F → S is called a sheaf if, for every object U of
S and every covering sieve R ⊂ U , the canonical restriction functor

HomS(U,F) −→ HomS(R,F)
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is an equivalence of groupoids.

Suppose that (Ui → U) is a covering family for a pretopology. We denote by
Ui0...ip the fibered product Ui0×U . . .×UUip . For a presheaf F, and an object x of
FU , we write x |Ui0...ip for a chosen pullback of x. Given a morphism α : x→ y
in F(U), it induces a unique morphism α |Ui0...ip : x |Ui0...ip → y |Ui0...ip .

Lemma 1.30 Assume that the topology on S is defined by a pretopology. Then
the presheaf F → S is a sheaf if and only if for every object U of S and every
covering family U = (Ui → U) the following three conditions are satisfied:

(i) Assume given two objects x, y ∈ F(U) and two morphisms α, β : x → y.
If α|Ui = β|Ui, for all i, then α = β.

(ii) Assume given two objects x, y ∈ F(U) and for every i a morphism
αi : x|Ui → y|Ui, such that αi|Uij = αj |Uij, for all i, j. Then there exists
a morphism α : x→ y such that α|Ui = αi, for all i.

(iii) Given, for every i, an object xi of F(Ui) and for all i, j a morphism
αij : xi |Uij → xj |Uij in F(Uij), such that for all i, j, k we have αjk |Uijk ◦
αij |Uijk = αik |Uijk, then there exists an object x of F(U), and morphisms
αi : x |Ui → xi, such that αij ◦ αi |Uij = αj |Uij, for all i, j. �

Definition 1.31 Given two sheaves F, G over S, the groupoid of sheaf mor-
phisms from F to G is defined to be the groupoid HomS(F,G) of presheaf
morphisms from F to G.

Thus the sheaves over S are a 2-category. There is the canonical fully faithful
inclusion functor

i : (sheaves/S) −→ (presheaves/S) .

Proposition 1.32 Fibered products of sheaves exist and i commutes with them.
A morphism of sheaves is faithful (categorically étale, a monomorphism, an iso-
morphism) if and only if it is faithful (categorically étale, a monomorphism, an
isomorphism) considered as a morphism of presheaves (cf. Proposition 1.18). �

Definition 1.33 A family Fi → F of morphisms of sheaves is called epimor-
phic, if for every object U of S and every morphism U → F, the sieve for U ,
consisting of all V → U admitting a 2-commutative diagram

V //

��
����

;C
U

��
Fi

// F

for some i, is a covering sieve.

Remark If the topology is given by a pretopology, then Fi → F is an epimor-
phic family of sheaf morphisms, if and only if for every U → F, there exists a
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covering family Vj → U for the pretopology, such that for every j there exists
an i and a 2-commutative diagram

V j //

��
����

;C

U

��
Fi // F

1.4 From simplicial categories to 2-categories

The 2-category we use to construct differential graded schemes comes from a
simplicial category of differential graded algebras. See [1] for our conventions
concerning simplicial categories and differential graded algebras.

We may consider every groupoid as a simplicial set, by passing to the sim-
plicial nerve. Every groupoid becomes a Kan (i.e. fibrant) simplicial set in this
way. Thus we may consider every 2-category as a simplicial category.

Recall (see, for example, Page 36 of [6]) that to a Kan simplicial set X we
can associate the fundamental groupoid Π1X as follows. Objects of Π1X are
the vertices ∆0 → X . Morphisms in Π1X are homotopy classes (relative ∂∆1)
of ‘paths’ ∆1 → X . Composition is defined by using the Kan property: Any
two composable paths give rise to a horn. Filling this horn with a 2-simplex
yields the composition as the third edge.

Proposition 1.34 Let S be a simplicial category all of whose hom-spaces are
fibrant. If U and V are objects of S, define

Hom(U, V ) = Π1 Hom∆(U, V ).

This definition endows S with the structure of a 2-category S̃ in such a way
that S→ S̃ is a simplicial functor. �

Note that the condition that S→ S̃ is a simplicial functor determines that
structure of 2-category on S̃ uniquely. It is called the 2-category associated
to the simplicial category S.

Example 1.35 Let S be a simplicial closed model category and U ⊂ S a full
subcateogry all of whose objects are fibrant and cofibrant. Then all hom-spaces
in U are fibrant and so there is an associated 2-category Ũ. This is how our
2-categories arise.

For the following result concerning the compatability of homotopy fibered
products with fibered products in the associated 2-category, we need an addi-
tional property of the simplicial closed model category S. We say that S admits
finite tensors, if for every object X of S and every finite simplicial set K, there
exists an object K⊗X in S, and a simplicial map K → Hom∆(X,K⊗X), such
that for every object Y of S, the induced map

Hom(K ⊗X,Y ) −→ Hom
(
K,Hom∆(X,Y )

)
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is bijective.

Lemma 1.36 Let S be a simplicial clsoed model category admitting finite ten-
sors and U a full subcategory of fibrant-cofibrant objects. Let V → U be a
fibration in U, and U ′ → U an arbitrary morphism in U. Consider the (strict)
fibered product in S

V ′

��

// U ′

��
V // U.

(9)

Assume that V ′ is in U. Moreover, let at least one of the two conditions
(i) for all Z ∈ U, we have that π2 Hom∆(Z,U) = 0,
(ii) for all Z ∈ U, we have that π1 Hom∆(Z, V ′)→ π1 Hom∆(Z,U ′) is injec-

tive,
be satisfied. Then (9) is a fibered product in the associated 2-category Ũ.

Proof. Because S admits finite tensors, the diagram

Hom∆(Z, V ′)

��

// Hom∆(Z,U ′)

��
Hom∆(Z, V ) // Hom∆(Z,U)

is a cartesian diagram of simplicial sets, for every object Z of U. Moreover, since
V → U is a fibration, by the simplicial model category axiom, Hom∆(Z, V ) →
Hom∆(Z,U) is a fibration of (fibrant) simplicial sets. Using these two facts, it
is easy to prove that under either of the two assumptions (i) or (ii), the induced
diagram

Π1 Hom∆(Z, V ′)

��

// Π1 Hom∆(Z,U ′)

��
Π1 Hom∆(Z, V ) // Π1 Hom∆(Z,U)

is a cartesian diagram of groupoids. �

Resolving algebras

Recall (see [1]), that a differential graded algebra is always graded commutative
with unit, over a field k of characteristic zero. A differential graded algebra
is a resolving algebra if is free as a graded commutative algebra with unit, on
generators in non-positive degrees. If finitely many generators in each degree
suffice, we call a resolving algebra quasi-finite, if in total finitely many generators
suffice we speak of a finite resolving algebra. A quasi-finite resolving algebra
with perfect complex of differentials is called a perfect resolving algebra (see
Definition I.3.1).
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We proved (see Corollary I.1.18), that the resolving algebras are fibrant-
cofibrant objects in the simplicial closed model category A of all differential
graded algebras. Thus, by Example 1.35, the category of all resolving algebras
admits an associated 2-category, as all hom-spaces between such algebras are
fibrant.

Definition 1.37 This 2-category of resolving algebras is called R.
The full sub-2-categories of resolving algebras which are quasi-finite, perfect

or finite are denoted by Rqf , Rpf and Rf , respectively.

Remark By the results of Section 1.4 in [1], a morphism of resolving algebras
A→ B is a quasi-isomorphism if and only if it is 2-invertible in R. If two mor-
phisms f, g : A → B are 2-isomorphic, they induce identical homomorphisms
h∗(A)→ h∗(B) on cohomology.

Fibered products

Since, for the purposes of doing geometry, we will pass to the opposite cate-
gory Rop of R, we will state our results here in terms of Rop. Note that by
Remark I.1.15, the opposite of A admits finite tensors.

Proposition 1.38 Absolute products exist in the opposite categories of R, Rqf ,
Rpf and Rf . The inclusions Rf ⊂ Rpf ⊂ Rqf ⊂ R commute with them.

Proof. Use tensor products over k. Note that Hom∆(k,A) = ∗, for all dif-
ferential graded algebras A, so that π2 Hom∆(k,A) = 0, and we can apply
Lemma 1.36. �

Recall the definitions of étale morphism and standard étale morphism of
quasi-finite resolving algebras, Definitions I.2.8 and I.2.16.

Proposition 1.39 Let A → B be an étale morphism of finite (perfect, quasi-
finite) resolving algebras. Let A → A′ be an arbitrary morphism of finite (per-
fect, quasi-finite) resolving algebras.

A′

B A
étaleoo

OO

The induced fibered product in R
op
f (Rop

pf , R
op
qf ) exists. If B′ is this fibered

product, then A′ → B′ is again étale.
Moreover, if A → B is standard étale, then we may choose A′ → B′ to be

standard étale, too.
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Proof. By the results of Section I.5, we can choose a finite (quasi-finite)
resolution of A → B. Thus, we may assume without loss of generality that
A→ B is itself a finite (quasi-finite) resolving morphism. We let B′ = B⊗AA′,
which represents a strict fibered product in the opposite of the category of all
resolving algebras. Moreover, A′ → B′ is again a finite (quasi-finite) resolving
morphism, and so B′ is a finite (perfect, quasi-finite) resolving algebra. Clearly,
A′ → B′ is again étale. By Proposition I.4.18, Lemma 1.36 applies, and so B′

provides us with a fibered product in R
op
f (Rop

pf , R
op
qf ). �

1.5 The étale topology

We need a base category over which to do geometry. There are various choices,
all leading to the same notion of differential graded scheme. This base cate-
gory will be the opposite category of a suitable category of resolving algebras,
somewhere between Rf and Rqf .

Definition 1.40 Let S be a full sub-2-category of Rop satisfying
(i) every object of S is quasi-finite,
(ii) if A→ B is a finite resolving morphism in R and A belongs to S, then

so does B. The ground field k belongs to S.

In particular, all finite resolving algebras are contained in S.

Example 1.41 We could let S consist of any of the following:
(i) all quasi-finite resolving algebras,
(ii) all perfect resolving algebras,
(iii) all finite resolving algebras.
If we use one of these categories for S, then we write Sqf , Spf or Sf ,

respectively.

We call a morphism V → U in S étale or standard étale, respectively, if
the corresponding morphism of quasi-finite resolving algebras is étale or stan-
dard étale.

We define a functor

S −→ (finite type k-schemes)

U 7−→ h0(U) ,

by associating to a differential graded algebra A the spectrum of h0(A). This
functor maps étale morphisms to étale morphisms.

Definition 1.42 The étale topology on S is defined by calling, for an object
U of S, a sieve R ⊂ U covering, if there exists a family of étale morphisms
Ui → U in R such that

∐
i h

0(Ui)→ h0(U) is a surjective morphism of schemes.

We will show that this notion of covering sieve defines a topology on S by
proving that there exists a pretopology on S, whose associated topology is given
by Definition 1.42.
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Definition 1.43 The étale pretopology on S is defined by calling a family
(Ui → U) a covering family if

(i) every Ui → U is standard étale,
(ii)

∐
i h

0(Ui)→ h0(U) is a surjective morphism of schemes.

Proposition 1.44 Definition 1.43 defines a pretopology on S.

Proof. We need to check the three properties of Definition 1.27.
(i) (pullbacks) Let (Ui → U) be a covering family for the étale pretopology.

Thus every Ui → U is standard étale. By Proposition 1.39, the base change
Vi → V exists in S and may be chosen to be standard étale, again. Note that
h0 commutes with pullback. Hence (Vi → V ) is a covering family for the étale
pretopology.

(ii) (composition) This property is satisfied because a composition of stan-
dard étale morphisms is standard étale.

(iii) the identity property is trivially verified. �

Lemma 1.45 Let X → Y be an étale morphism in S. Then there exists a
family of 2-commutative diagrams in S

Xi

�� AAAAAAA

  ����|�
X // Y

(10)

such that
(i) Every Xi → X is an open immersion,
(ii)

∐
h0(Xi)→ h0(X) is onto,

(iii) every Xi → Y is standard étale.

Proof. Translating the Main Lemma I.2.19 into the opposite category S, we
get diagrams

X ′i

��

// Xi

��
X // Y

with
(i) every X ′i → X is an elementary open immersion,
(ii)

∐
h0(X ′i)→ h0(X) is onto,

(iii) every X ′i → Xi is an isomorphism in R,
(iv) every Xi → Y is standard étale.

Choosing a 2-inverse for X ′i → Xi we obtain (10). �

Theorem 1.46 A sieve R ⊂ U is a covering sieve for the topology induced by
the étale pretopology if and only if it satisfies the condition of Definition 1.42.
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Proof. If R ⊂ U is a covering sieve for the associated topology it satisfies
Definition 1.42 trivially. Let us prove the converse. Thus assume that R ⊂ U
is a sieve and that (Ui → U)i∈I is a family of étale morphisms in R such that∐
i h

0(Ui) → h0(U) is surjective. We have to show that R contains a covering
family for the étale pretopology.

For given i ∈ I, choose a family of 2-commutative diagrams

Vij

�� AAAAAAA

  ����|�
Ui // U,

for j ∈ Ji, as in Lemma 1.45. Then the total family (Vij → U)i∈I,j∈Ji is in R
and is a covering family for the étale pretopology. �

Corollary 1.47 Definition 1.42 defines a topology on S.

Corollary 1.48 The étale topology is the topology associated to the étale pre-
topology.

We end this section with a definition:

Definition 1.49 A differential graded sheaf is a sheaf on S with the étale
topology.
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2 Descent theory

2.1 Descent for morphisms

Let us fix a morphism of quasi-finite resolving algebras C → A and a family
of étale quasi-finite resolving morphisms A → Ai, such that

∐
i Spech0(Ai) →

Spech0(A) is surjective. We think of the family A → Ai as giving rise to a
covering family Ui → U for the étale topology on S.

Let
Ai0...ip = Ai0 ⊗A . . .⊗A Aip

and denote the corresponding object of S by Ui0...ip . For every λ : {0, . . . , q} →
{0, . . . , p} we have a canonical morphism of differential graded algebras

Aiλ(0)...iλ(q) −→ Ai0...ip (11)

a0 ⊗ . . .⊗ aq 7−→
⊗

λ(κ)=0

aκ ⊗ . . .⊗
⊗

λ(κ)=p

aκ .

Let C → B be quasi-finite resolving morphism and let σ = (σi0...iq )i0,...,iq
be a family of `-simplices σi0...iq ∈ Hom∆

C(B,Ai0...iq ). We denote by

σiλ(0)...iλ(q) |Ui0...ip

the image of σiλ(0)...iλ(q) under the map

Hom∆
C(B,Aiλ(0)...iλ(q) ) −→ Hom∆

C(B,Ai0...ip)

induced by (11).
For a composition of maps λ : {0, . . . , q} → {0, . . . , p} and µ : {0, . . . , p} →

{0, . . . , r} we have(
σiµλ(0) ...iµλ(q) |Uiµ(0)...iµ(p)

)
|Ui0...ir = σiµλ(0)...iµλ(q) |Ui0...ir .

This means that we have a cosimplicial space∏
i

Hom∆
C(B,Ai) ////

∏
i,j

Hom∆
C(B,Aij) ////

//
. . .

For every ` ≥ 0, we also get a cosimplicial set∏
i

π` Hom∆
C(B,Ai) ////

∏
i,j

π` Hom∆
C(B,Aij) ////

//
. . . , (12)

where for ` ≥ 1 this assumes that we have chosen a base point P : B → A.
We set

H0
(
U, π`(B/C)

)
= ker

( ∏
i

π` Hom∆
C(B,Ai) ////

∏
i,j

π` Hom∆
C(B,Aij)

)
.
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For ` ≥ 1, having chosen a base point P : B → A, we also define the pointed set

H1
(
U, π`(B/C)

)
in analogy to non-abelian first Čech cohomology. More precisely, we set

Z1
(
U, π`(B/C)

)
=

{(αij) ∈
∏
ij

π` Hom∆
C(B,Aij) | ∀i, j, k : αik |Uijk = αjk |Uijk ∗ αij |Uijk} .

Then we let
C0
(
U, π`(B/C)

)
=
∏
i

π` Hom∆
C(B,Ai)

act (from the left) on Z1 by (γi)i∗(αij)ij = (γjαijγ−1
i )ij and letH1

(
U, π`(B/C)

)
by the quotient of Z1 by this action.

Finally, for ` ≥ 2, we associate to (12) the cochain complex obtained by
setting the coboundary map equal to ∂ =

∑
i(−1)i∂i. We denote the associated

cohomology groups by
Hi
(
U, π`(B/C)

)
.

More notation: V = Spech0(A), Vi = Spech0(Ai) and V denotes the étale
covering family Vi → V of affine schemes. Let

Vi0...ip = Vi0 ×V . . .×V Vip .

Note that h0(Ui0...ip) = Vi0...ip .

Theorem 2.1 (Descent) Assume that B is finite over C. Then
(i) H0

(
U, π`(B/C)

)
= π` Hom∆

C(B,A), for every ` ≥ 0,
(ii) H1

(
U, π`(B/C)

)
= 0, for every ` ≥ 1,

(iii) Hi
(
U, π`(B/C)

)
= 0, for all i ≥ 2 and for every ` ≥ 2.

Proof. Induction on the number n of elements in a basis for B over C. Choose
a subalgebra B′ ⊂ B such that B′ has a C-basis of n− 1 elements and B has a
B′-basis consisting of one element x of degree r. By induction, we can assume
the theorem to hold for B′.

Let us start by considering the case ` = 0. Recall (Section I.4.3), that for a
given morphism of C-algebras P : B′ → A we have defined the homomorphism
of h0(A)-modules

ξP : h−1 DerC(B′, A) −→ hr(A)
D 7−→ D(dx) .

The cokernel cok ξP is hence a finitely generated h0(A)-module. Thus we may
consider cok ξP as a coherent sheaf on the affine scheme V .
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Note that the cokernel of

h−1 DerC(B′, Ai0...ip) −→ hr(Ai0...ip)
D 7−→ D(dx)

is equal to cok ξP ⊗h0(A) h
0(Ai0...ip), by Corollary I.2.12.

Consider the commutative diagram

0 // cok ξP //

��

π0 Hom∆
C(B,A) //

��

π0 Hom∆
C(B′, A)

��
0 // C0(V, cok ξP ) // ∏

i π0 Hom∆
C(B,Ai) // ∏

i π0 Hom∆
C(B′, Ai)

(13)
The rows are exact, by Corollary I.4.14. The left vertical arrow is injective by
usual étale descent theory for coherent modules. The right vertical arrow is
injective by induction hypothesis.

To prove injectivity of π0 Hom∆
C(B,A) →

∏
i π0 Hom∆

C(B,Ai), we may
choose a base point of π0 Hom∆

C(B,A) and thus a base point P : B′ → A, as
above. Thus we have diagram (13) at our disposal, and a simple chase around
the diagram proves the required injectivity.

Now let us prove surjectivity of

π0 Hom∆
C(B,A) −→ ker

( ∏
i

π0 Hom∆
C(B,Ai) ////

∏
i,j

π0 Hom∆
C(B,Aij)

)
(14)

For this we start with the diagram

π0 Hom∆
C(B,A) //

��

π0 Hom∆
C(B′, A) //

��

hr+1(A)

��∏
i π0 Hom∆

C(B,Ai)

����

// ∏
i π0 Hom∆

C(B′, Ai)

����

// C0
(
V, hr+1(A)

)
∏
ij π0 Hom∆

C(B,Aij) //
∏
ij π0 Hom∆

C(B′, Aij)

(15)
whose right horizontal arrows are defined by evaluation at dx. The rows are
exact in the middle by Proposition I.4.15. The middle column is exact by the
induction hypothesis and the rightmost column is injective by usual étale descent
theory applied to the coherent sheaf hr+1(A) on V .

Let (αi) ∈
∏
i π0 Hom∆

C(B,Ai), such that αi |Uij = αj |Uij , for all i, j.
Chasing (αi) around Diagram (15), we obtain α ∈ π0 Hom∆

C(B,A), such that
(αi) and (α |Ui) map to the same element of

∏
i π0 Hom∆

C(B′, A). We also obtain
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a base point P : B′ → A (to which α maps), supplying us with the diagram

0 // cok ξP //

��

π0 Hom∆
C(B,A) //

��

π0 Hom∆
C(B′, A)

��
0 // C0(V, cok ξP ) //

��

∏
i π0 Hom∆

C(B,Ai)

����

// ∏
i π0 Hom∆

C(B′, Ai)

0 // C1(V, cok ξP ) //
∏
ij π0 Hom∆

C(B,Aij)

(16)
Again, the rows are exact by Corollary I.4.14. The leftmost column is exact by
étale descent for the coherent sheaf cok ξP on V . Now chasing (αi) and (α |Ui)
around Diagram 16, we obtain β ∈ cok ξP such that β ∗ α |Ui = αi, for all i.
This proves surjectivity of (14) and finishes the proof of the theorem in the case
` = 0.

Let us now consider the case ` = 1 and prove that H1
(
U, π1(B/C)

)
= 0.

The advantage over the previous case is that we now have a fixed base point
P : B → A for all spaces we consider. We have a commutative diagram

0 // C0(V, cok δ) //

��

∏
i π1 Hom∆

C(B,Ai)

����

//

0 // C1(V, cok δ) //

��

∏
ij π1 Hom∆

C(B,Aij)

�� ����

//

0 // C2(V, cok δ) //
∏
ijk π1 Hom∆

C(B,Aijk) //

π1 Hom∆
C(B′, A)

��

// im δ //

��

0

// ∏
i π1 Hom∆

C(B′, Ai)

����

// C0(V, im δ)

��

// 0

//
∏
ij π1 Hom∆

C(B′, Aij) //

�� ����

C1(V, im δ) // 0

//
∏
ijk π1 Hom∆

C(B′, Aijk)

(17)

Here cok δ is the cokernel of the boundary map

δ : h−2 DerC(B′, A) −→ h−1 DerB′(B,A) = hr−1(A) ,

which is given by δ(D) = −D(dx) (see Proposition I.4.10). Moreover, im δ is
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the image of the boundary map

δ : h−1 DerC(B′, A) −→ h0 DerB′(B,A) = hr(A) ,

which is given by δ(D) = D(dx). Both cok δ and im δ are coherent sheaves
on V and so the first and last columns of (17) are exact. The B′-column is
exact by induction hypothesis. The rows of (17) are exact by Lemma I.4.8 and
Theorem I.4.11. We can now prove that the B-column is exact in the middle
by a diagram chase around (17).

For all other cases of the theorem, note that

H i
(
U, π`(B/C)

)
= Hi

(
V, h−` DerC(B,A)

)
,

by Theorem I.4.11 and Corollary I.2.12. Thus we are reduced to usual étale
descent for the coherent sheaf h−` DerC(B,A) over V . �

Corollary 2.2 The same holds if we assume only that B is perfect over C.

Proof. This follows immediately by passing to the limit over the various
truncations B(n). This is permitted, because of Corollary I.4.12 and also Equa-
tion (I.18), which features in its proof. We should remark that for ` = 0, we
are only claiming the left exactness of a certain sequence, which is preserved by
taking limits.

For ` = 1, we wish to see that the sequence

0 // π1 Hom∆
C(B,A) // C0

(
U, π1(B/C)

)
◦Z1

(
U, π1(B/C)

)
// 0

is exact, in the sense that the group in the middle acts transitively on the pointed
set on the right, in such a way that the stabilizer of the distinguished point is
the group on the left. This exactness follows from check that this it

true!
lim←−
n

1π1 Hom∆
C(B(n), A) = 0 ,

which is true, by Equation (I.18). �
Notation: if x, y ∈ X are points of a fibrant simplicial set X and α, β : x→ y

are paths in X , then we write α ∼ β if there exists a homotopy between α and
β, which fixes the endpoints x and y. In other words, α ∼ β if and only if α
and β define the same arrow inside the fundamental groupoid Π1X .

Corollary 2.3 Let B be a perfect resolving algebra.
(i) Given two points x, y ∈ Hom∆(B,A) and two paths α, β : x → y in

Hom∆(B,A), such that for every i, we have α |Ui ∼ β |Ui, then α ∼ β.
(ii) Given two points x, y ∈ Hom∆(B,A) and for every i a path αi : x |Ui →

y |Ui, such that αi |Uij ∼ αj |Uij , for all i, j, there exists a path α : x→ y such
that α |Ui ∼ αi, for all i.

(iii) Given, for every i, a point xi ∈ Hom∆(B,Ai), and for all i, j a path
αij : xi |Uij → xj |Uij, such that for all i, j, k we have αjk |Uijk ◦ αij |Uijk ∼
αik |Uijk, there exists a point x ∈ Hom∆(B,A) and paths αi : x |Ui → xi, such
that αij ◦ αi |Uij ∼ αj |Uij, for all i, j.
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Proof. This is easy to prove using Theorem 2.1. �

2.2 Hypercubes

We need a few definitions to make the following more efficient.

Definition 2.4 Let S be a 2-category and I a set. A truncated hypercube
in S with indexing set I is given by the following data:
• four families of objects of S:

(Ui)i∈I (Uij)(i,j)∈I2 (Uijk)(i,j,k)∈I3 (Uijkl)(i,j,k,l)∈I4

• nine families of 1-morphisms as follows:

t : Uij → Ui, s : Uij → Uj

p1 : Uijk → Uij , m : Uijk → Uik, p2 : Uijk → Ujk

a : Uijkl → Uijk, b : Uijkl → Uijl, c : Uijkl → Uikl, d : Uijkl → Ujkl

• nine families of 2-isomorphisms as follows:
− three families of 2-isomorphisms fitting into the truncated cube

Uijk

}}{{{{{{{{

�� !!DDDDDDDD

Uij

�� !!CCCCCCCC Uik

}}{{{{{{{{

!!DDDDDDDD Ujk

}}zzzzzzzz

��
Ui Uj Uk

(18)

− six families of 2-isomorphisms fitting into half of a hypercube

Uijkl

vvllllllllllllllll

||yyyyyyyy

�� ((QQQQQQQQQQQQQQQ

Uijk

}}{{{{{{{{

�� ((RRRRRRRRRRRRRRRR Uijl

vvmmmmmmmmmmmmmmmm

�� ((RRRRRRRRRRRRRRRRR Uikl

vvlllllllllllllllll

||yyyyyyyyy

((QQQQQQQQQQQQQQQQ Ujkl

vvmmmmmmmmmmmmmmmm

}}{{{{{{{{

��
Uij Uik Uil Ujk Ujl Ukl

(19)

subject to the constraint
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• all four cubes in the truncated hypercube

Uijkl

vvllllllllllllllll

||yyyyyyyy

�� ((QQQQQQQQQQQQQQQ

Uijk

}}{{{{{{{{

�� ((RRRRRRRRRRRRRRRR Uijl

vvmmmmmmmmmmmmmmmm

�� ((RRRRRRRRRRRRRRRRR Uikl

vvlllllllllllllllll

||yyyyyyyyy

((QQQQQQQQQQQQQQQQ Ujkl

vvmmmmmmmmmmmmmmmm

}}{{{{{{{{

��
Uij

�� ((QQQQQQQQQQQQQQQQQ Uik

}}{{{{{{{{

((RRRRRRRRRRRRRRRRR Uil

vvmmmmmmmmmmmmmmmmm

((RRRRRRRRRRRRRRRRR Ujk

||yyyyyyyy

��

Ujl

vvlllllllllllllllll

��

Ukl

vvmmmmmmmmmmmmmmmmm

}}{{{{{{{{

Ui Uj Uk Ul

are 2-commutative, for all (i, j, k, l) ∈ I4.
We call a truncated hypercube U• 2-cartesian (strict), if every one of

the 2-commutative squares appearing in the definition is 2-cartesian (strictly
commutative).

Definition 2.5 Let U• and V• be truncated hypercubes in S, both with index-
ing set I. Then a morphism of truncated hypercubes φ• : U• → V• consists
of
• four families of 1-morphisms in S:

φi : Ui → Vi, φij : Uij → Vij , φijk : Uijk → Vijk, φijkl : Uijkl → Vijkl ,

• nine families of 2-morphisms fitting into the diagrams:

Uij

~~}}}}
  BBBB φij

**UUUUUUUUUUUUUUU

Ui

φi **UUUUUUUUUUUUUUUU Uj

φj **UUUUUUUUUUUUUUU Vij

~~~~~~
  AAAA

Vi Vj

(20)

Uijk

}}{{{{{{{{

�� !!DDDDDDDD
φijk

**VVVVVVVVVVVVVVVVVVVVVVVV

Uij

φij
**VVVVVVVVVVVVVVVVVVVVVVVVV Uik

**VVVVVVVVVVVVVVVVVVVVVVVVV Ujk

**VVVVVVVVVVVVVVVVVVVVVVVV Vijk

}}{{{{{{{{

�� ""DDDDDDDD

Vij Vik Vjk,

(21)
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Uijkl

vvllllllllllllllll

||yyyyyyyy

�� ""EEEEEEEE
φijkl

++VVVVVVVVVVVVVVVVVVVVVVVVV

Uijk

φijk
++VVVVVVVVVVVVVVVVVVVVVVVVVV Uijl

++VVVVVVVVVVVVVVVVVVVVVVVVVV Uikl

++VVVVVVVVVVVVVVVVVVVVVVVVVV Ujkl

++VVVVVVVVVVVVVVVVVVVVVVVVV Vijkl

vvllllllllllllllll

||zzzzzzzz

�� ""FFFFFFFF

Vijk Vijl Vikl Vjkl ,

(22)

subject to the condition that the obvious nine cubes, built over the nine
squares (18) and (19), 2-commute, for every (i, j, k) ∈ I3 and every (i, j, k, l) ∈
I4.

A morphism of truncated hypercubes is 2-cartesian (strict), if every one
of the 2-commutative squares appearing in (20), (21) and (22) is 2-cartesian
(strictly commutative).

Definition 2.6 Given two morphisms φ• and ψ• from U• to V•, then a 2-
morphism of morphisms of truncated hypercubes θ• : φ• ⇒ ψ• is given by four
families of 2-morphisms in S:

Ui

φi
&&

ψi

88
�� ��
�� θi Vi Uij

φij
((

ψij

66
�� ��
�� θij Vij Uijk

φijk
))

ψijk

55
�� ��
�� θijk Vijk Uijkl

φijkl
**

ψijkl

44
�� ��
�� θijkl Vijkl

such that the nine families of ‘2-cylinders’ built over (20), (21) and (22) all
2-commute.

It is clear that the truncated hypercubes in S form a 2-category.

Definition 2.7 Let U• be a truncated hypercube in S. An augmentation of
U• consists of
• an object X of S,
• a family of 1-morphisms:

ι : Ui −→ X

• a family of 2-morphisms:

Uij

  BBBB
~~}}}}

____ +3Ui

!!CCCC Uj

}}{{{{

X

(23)
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subject to the constraint that the cube

Uijk

}}{{{{{{{{

�� !!DDDDDDDD

Uij

�� !!CCCCCCCC Uik

}}{{{{{{{{

!!DDDDDDDD Ujk

}}zzzzzzzz

��
Ui

""DDDDDDDD Uj

��

Uk

||yyyyyyyy

X

2-commutes, for all (i, j, k) ∈ I3.
An augmentation is called 2-cartesian (strict), if Diagram (23) is 2-

cartesian (strictly commutative), for every (i, j) ∈ I2.
A truncated hypercube endowed with an augmentation is also called a hy-

percube. A hypercube is 2-cartesian (strict) if its underlying truncated
hypercube and its augmentation are both 2-cartesian (strict).

Definition 2.8 Let U• → V• be a morphism of truncated hypercubes. Let
U• → X and V• → Y be augmentations. Then a morphism of augmentations
from X to Y consists of
• a morphism f : X → Y ,
• a family of 2-morphisms:

Ui

��

φi //

����
<D
Vi

��
X

f
// Y

(24)

such that for every (i, j) ∈ I2 the cube

Uij

~~}}}}
  BBBB φij

**UUUUUUUUUUUUUUU

Ui

  AAAAA

**UUUUUUUUUUUUUUUU Uj

~~|||||

**UUUUUUUUUUUUUUU Vij

~~~~~~
  AAAA

X

f **UUUUUUUUUUUUUUUU Vi

!!BBBB Vj

}}||||

Y

2-commutes.
A morphism of augmentations is 2-cartesian (strict), if Diagram (24) is

2-cartesian (strictly commutative) for every (i, j) ∈ I2.
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A morphism of hypercubes is a morphism of truncated hypercubes together
with a morphism of augmentations. A morphism of hypercubes is 2-cartesian
(strict) if both its underlying morphism of hypercubes and its underlying mor-
phism of augmentations are 2-cartesian (strict).

Definition 2.9 Let (φ•, f) and (ψ•, g) be two morphisms of hypercubes. Then
a 2-isomorphism of morphisms of augmentations is a 2-isomorphism

X

f
&&

g

88
�� ��
�� η Y ,

such that for every i ∈ I the ‘2-cylinder’

Ui

��

φi

��ψi ,,





�
 θi

X
f

��g --

������ η

Vi

��
Y

2-commutes.

Of course, the hypercubes in S also form a 2-category. Moreover, all the
augmentations of a fixed truncated hypercube form a 2-category.

2.3 Descent for algebras

We begin by describing our setup:
Let A be a quasi-finite resolving algebra and A→ Ai a family of étale quasi-

finite resolving morphisms such that
∐
i Spech0(Ai)→ Spec h0(A) is surjective.

Define Aij = Ai⊗AAj , Aijk = Ai⊗AAj⊗AAk and Aijkl = Ai⊗AAj⊗AAk⊗AAl.
Note that the induced strict hypercube A → A• in R

op
qf is 2-cartesian, because

of Proposition 1.39.
Now suppose given perfect resolving morphisms Ai → Bi, Aij → Bij ,

Aijk → Bijk and Aijkl → Bijkl. Moreover, assume that these 1-morphisms
form part of the data for a strict, 2-cartesian (sic!) morphism of truncated
hypercubes A• → B• in R

op
qf . Finally, assume that the truncated hypercube B•

itself is strict (it is necessarily 2-cartesian).
In this situation, we wish to construct
(i) a perfect resolving morphism A→ B,
(ii) for every i, a morphisms of A-algebras fi : B → Bi,
(iii) for all i, j, a morphism of A-algebras fij : B → Bij ⊗ Ω1, such that

fij(0) = fi, fij(1) = fj,

in such a way that the following conditions are met:
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(iv) for all i, j, k there exists a morphism of A-algebras fijk : B → Bijk⊗Ω2,
such that

fijk(t, 0) = fij(t), fijk(0, t) = fik(t), fijk(1− t, t) = fjk(t),

(in other words, the above data (i), (ii) and (iii) give rise to an augmentation
of the truncated hypercube B•)

(v) for every i, the (strictly commutative) square

A

��

// Ai

��
B // Bi

(25)

is 2-cartesian.
Our first aim is to reformulate this 2-cartesian requirement. For this, con-

sider the finite type affine k-scheme defined by h0(A). It is endowed with an
étale cover h0(Ai). The induced cartesian cube in the category of finite type
k-schemes is given by

h0(A) // h0(Ai) //// h0(Aij) ////
//
h0(Aijk) . (26)

We also have a cartesian truncated cube

h0(Bi) //// h0(Bij) ////
//
h0(Bijk) (27)

and a cartesian morphism of truncated cubes from (26) to (27). In other words,
(27) is gluing data for a finite type h0(A)-algebra R:

R // h0(Bi) //// h0(Bij) ////
//
h0(Bijk) .

Let us denote h0(B∗) by R∗, for every multi-index ∗.
Furthermore, for every n ≤ 0, the truncated cube

hn(Bi) //// hn(Bij) ////
//
hn(Bijk)

is gluing data for a finitely generated R-module Mn, because it is in a certain
sense cartesian over (26):

Mn // hn(Bi) //// hn(Bij) ////
//
hn(Bijk) .

Of course, M0 = R.
Now, given the data (i), (ii) and (iii), or f• : B → B•, we get an induced

morphism of h0(A)-algebras h0(B)→ R and induced homomorphisms of h0(B)-
modules hn(B)→Mn such that for every i the diagram

hn(B)

�� $$IIIIIIIII

Mn // hn(Bi)
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commutes.
Now we can say that (25) is 2-cartesian, if and only if hn(B) → Mn is

bijective, for all n ≤ 0.
If we are given data (i), (ii) and (iii), we say that f• : B → B• is a homotopy

square. If condition (iv) is satisfied for f• : B → B•, we say that this homotopy
square defines an augmentation.

We will build up B by an inductive procedure. The following lemma will be
useful:

Lemma 2.10 Suppose given a homotopy square f• : B → B• and a finite
resolving morphism B → B̃ together with a homotopy square F• : B̃ → B•, such
that F• |B is equal to f•. Suppose that B̃ has a B-basis consisting of finitely
many elements, all in the same degree r.

Assume that f• defines an augmentation. Then we may replace the Fij by
other morphisms F ′ij : B̃ → Bij ⊗Ω1, in such a way that the modified homotopy
square F ′• : B̃ → B•, with F ′i = Fi, still restricts to f•, i.e., F ′• |B = f•, but now
also defines an augmentation.

Proof. Choose fijk as in Condition (iv).
For purposes of abbreviation, let us introduce the notation X∗ =

Hom∆
A(B,B∗) and X̃∗ = Hom∆

A(B̃, B∗), for every multi-index ∗. Then we have
a commutative diagram of spaces∏

i

X̃i

��

////
∏
i,j

X̃ij

��

////
// ∏
i,j,k

X̃ijk

��

//////
// ∏
i,j,k,l

X̃ijkl

��∏
i

Xi ////
∏
i,j

Xij
////
// ∏
i,j,k

Xijk //////
// ∏
i,j,k,l

Xijkl

All vertical maps in this diagram are fibrations.
The space Xi has a canonical base point, given by fi. The space Xij has

two canonical base points, given by fi and fj . Use the notation X0
ij to denote

the space Xij endowed with the base point fi and X1
ij for Xij endowed with

the base point fj . These two base points are connected by the path fij , which
gives an isomorphism

π`X
0
ij
∼−→ π`X

1
ij , (28)

for all ` ≥ 0, which we consider to be canonical. The space Xijk has three base
points, giving rise to three pointed spaces X0

ijk, X1
ijk and X2

ijk, with base points
fi, fj and fk, respectively. We have canonical isomorphisms

π`X
0
ijk = π`X

1
ijk = π`X

2
ijk ,

because, by existence of fijk, it is irrelevant which of the canonical paths we
take between the three different base points.
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By Theorem I.4.11 and its Corollary I.4.12, for ` ≥ 2, the homotopy groups
π`X

ε
∗ are finitely generated R∗-modules and by Remark I.4.5(iii), all the canon-

ical maps between them are R∗-linear. Moreover, we have

π`Xi ⊗Ri Rij = π`X
0
ij

and
π`Xj ⊗Rj Rij = π`X

1
ij .

Thus, for ` ≥ 2, the canonical isomorphisms (28) define a gluing datum for a
finitely generated R-module N`, which comes endowed with homomorphisms of
R-modules

N` −→ π`Xi ,

inducing isomorphisms N` ⊗R Ri → π`Xi, and which make the diagrams

N` //

!!BBBBBBBBB π`Xi
// π`X0

ij

∼=
��

π`Xj // π`X1
ij

commute. We will only use N2, in what follows.
The Fi induce in a similar way various base points for the X̃∗. We use

notation X̃ε
∗ in a way compatible with Xε

∗, to denote the induced pointed spaces.
Let us denote the fiber of the fibration of pointed spaces X̃ε

∗ → Xε
∗ by Y ε∗ .

The Fij induce a commutative diagram

π1Y
0
ijk

//

��8888888
π1Y

1
ijk

���������

π1Y
2
ijk

(29)

because these homotopy groups are abelian (see Lemma I.4.8) and the closed
path ηijk = F−1

ik ∗Fjk ∗Fij representing the obstruction to commutativity of (29)
maps to the boundary of a 2-simplex in Xijk, and hence can be brought into
any fiber Y εijk .

Thus, by gluing, we obtain another R-module P1 which is locally isomorphic
to π1Yi. There is a canonical homomorphism of R-modules N2 → P1, which
makes the diagrams

N2

��

// π2Xi

δ

��
P1

// π1Yi

commute.
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Of particular importance to us will be the R-module

Q = cok(N2 → P1) .

Note that Fij , Fik and Fjk are paths in the space X̃ijk, which fit together
so as to form the circumference of a triangle and thus give rise to an ele-
ment of π1X̃

0
ijk, which we shall denote by ηijk . Note that under the fibration

X̃ijk → Xijk, the homotopy class ηijk maps to zero, because its image forms
the boundary of the 2-simplex fijk. Thus, via our above identifications, we may
think of ηijk as an element of Q⊗R h0(Bijk).

Now the key observation is that ηijk is a Čech 2-cocycle of SpecR with
respect to the étale covering Spech0(Bi) and with values in the coherent R-
module Q. This can be checked by considering the 1-skeleton of a tetrahedron
defined by the Fij inside the space X̃ijkl. Note: this is the

only place we ac-
tually need the
Bijkl

Since this Čech cohomology group vanishes, there exist

θij ∈ Q⊗R h0(Bij) = cok(π2X
0
ij → π1Y

0
ij) = ker(π1X̃

0
ij → π1X

0
ij) ,

such that
ηijk = θ−1

ik ∗ θjk ∗ θij

in π1X̃
0
ijk. We are careful to choose representatives θij which are contained in

the fiber Y 0
ij .

Now we define
F ′ij = Fij ∗ θ−1

ij .

More precisely, we choose F ′ij : B̃ → Bij⊗Ω1 in such a way that F ′ij is homotopic
to Fij ∗θ−1

ij and such that F ′ij |B = fij . This is possible because θij is contained
in the fiber of the fibration X̃ij → Xij .

Now F ′ij , F
′
ik and F ′jk again form the circumference of a triangle in X̃ijk.

The homotopy class of this triangle is

η′ijk = θik ∗ ηijk ∗ θ−1
jk ∗ θ

−1
ij ,

which is zero in π1X̃
0
ijk, because the kernel of the homomorphism from π1X̃

0
ijk

to π1X
0
ijk is abelian. Thus we can find a 2-simplex F ′ijk in X̃ijk, whose boundary

consists of F ′ij , F
′
ik and F ′jk.

There is no reason why we should be able to make F ′ijk restrict to fijk. For
this, η′ijk would have to represent zero in π1Y

0
ijk, and not just in im(π1Y

0
ijk →

π1X̃
0
ijk). �

Theorem 2.11 There exists a perfect resolving morphism A → B, together
with the structure of a 2-cartesian augmentation f• : B → B•, such that A→ B
becomes a strict, 2-cartesian morphism of augmentations (in R

op
qf ).

40



Proof. As mentioned, we will build up B and f• by an inductive procedure.
Suppose given an integer n ≥ −1 and a finite resolving morphism A→ B(n),

together with morphisms of A-algebras fi : B(n) → Bi and fij : B(n) → Bij⊗Ω1,
such that fij(0) = fi and fij(1) = fj. Suppose also that there exists fijk :
B(n) → Bijk ⊗ Ω2, satisfying Condition (iv), above.

Moreover, assume that the induced homomorphism of h0(A)-modules

h`(B(n)) −→M `

is bijective, for all ` > −n, and surjective for ` = −n.
We will construct a resolving morphism B(n) → B(n+1) and extensions Fi

and Fij of the fi and the fij to B(n+1) in such a way that this extended homotopy
square also defines an augmentation and

h`(B(n+1)) −→M `

is bijective, for all ` > −n− 1, and surjective for ` = −n− 1.
For the construction, let us choose fijk : B(n) → Bijk ⊗ Ω2, satisfying

Condition (iv).
We start by choosing elements bν ∈ Z−n(B(n)) whose classes [bν ] in

h−n(B(n)) generate the kernel of the epimorphism of R-modules h−n(B(n)) →
M−n (if n = −1, we do not choose any bν , if n = 0, we choose elements bν ∈ B(0)

generating the kernel of the morphism h0(B(0))-algebras h0(B(0)) → R). We
also choose generators mµ for the R-module M−n−1 (if n = −1, we take gener-
ators for the h0(A)-algebra R). Then we choose γµi ∈ Z−n−1(Bi) such that mµ

maps to [γµi ] under M−n−1 → h−n−1(Bi).
Let B(n+1) = B(n)[xν , yµ], where xν and yµ are formal variables in degree

−n− 1. Set dxν = bν and dyµ = 0. We construct the Fi and Fij by specifying
where they send the xν and the yµ.

Let us start with xν . Since bν maps to zero in h−n(Bi), the image bνi = fi(bν)
of bν in Bi is a coboundary. Choose βνi ∈ B−n−1

i , such that dβνi = bνi . Similarly,
let bνij = fij(bν). Since d(bνij − bνi ) = 0 and (bνij − bνi )(0) = 0, by Lemma I.4.2,
there exists βνij ∈ (Bij ⊗ Ω1)−n−1, such that

d βνij = bνij − bνi and βνij(0) = 0 .

Again, using Lemma I.4.2, we choose βνijk ∈ (Bijk ⊗ Ω2)−n−1, such that

d βνijk(s, t) = bνijk(s, t)− bνij(s)− bνik(t) + bνi

and
βνijk(t, 0) = βνijk(0, t) = 0 ,

where bνijk = fijk(bν).
Let us prove that βνij(1) − βνik(1) + βνjk(1) is a coboundary. For this we

consider the expression

δνijk(t) = βνijk(1− t, t) + βνij(1− t) + βνik(t)− βνjk(t)− βνij(1) ,
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which is an element of Bijk ⊗ Ω1. We have that d δνijk = 0 and δνijk(0) = 0,
so using Lemma I.4.2 once again, we find ∆ν

ijk(t), such that d∆ν
ijk = δνijk and

∆ν
ijk(0) = 0. Evaluating ∆ν

ijk at t = 1, reveals that βνij(1) − βνik(1) + βνjk(1) is,
indeed, a coboundary.

Thus we have proved that [βνj − βνi − βνij(1)] defines a Čech 1-cocycle of
the affine scheme SpecR and the étale cover Spec h0(Bi) with values in the
coherent sheaf M−n−1. Since this Čech cohomology group vanishes, we can
bound the cocycle [βνj − βνj − βνij(1)]. So by changing the βνi , we may assume
that [βνj − βνi − βνij(1)] = 0 in h−n−1(Bij). Therefore, there exist θνij ∈ B−n−2

ij ,
such that dθνij = βνj − βνi − βνij(1), for all i, j.

We now define

Fi(xν) = βνi

and

Fij(xν)(t) = (1− t)βνi + t
(
βνj − βνij(1)

)
+ βνij(t) + (−1)nθνij dt

Let us deal with yµ. In this case, [γµj − γ
µ
i ] is directly seen to be zero in

h−n−1(Bij), and there is no need (and no freedom anyway) to change the γµi to
find θµij ∈ B−n−2

ij , such that dθµij = γµj − γ
µ
i , for all i, j. In this case we set

Fi(yµ) = γµi and Fij(yµ) = (1− t)γµi + tγµj + (−1)nθµij dt .

We see that this does extend the morphisms of A-algebras fi and fij to
B(n+1) = B(n)[xν , yµ], and that the relations

Fij(0) = Fi and Fij(1) = Fj

are satisfied. Moreover, by construction, h`(B(n+1)) −→M ` is bijective, for all
` > −n− 1, and surjective, for all ` ≥ −n− 1.

The only thing left to worry about is if the homotopy square F• : B(n+1) →
B• defines an augmentation. If it does not, then we apply Lemma 2.10. This
leads to a change in the Fij , but since the Fi are not affected, the properties of
h`(B(n+1)) −→M ` are not affected.

Thus our inductive procedure works. Starting with B(−1) = A, we let

B = lim−→
n

B(n) .

Since at every step of the induction Fi and Fij are extensions of fi and fij , we get
induced morphisms of A-algebras fi : B → Bi and fij : B → Bij⊗Ω1, satisfying
fij(0) = fi and fij(1) = fj . Therefore, we also get an induced morphism
of h0(A)-algebras h0(B) → R and induced homomorphisms of h0(B)-modules
h`(B) → M `, for all ` ≤ 0. All these are isomorphisms, by construction, and
hence the (strictly commutative) square

A //

��

Ai

��
B // Bi
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is 2-cartesian in R
op
qf . This proves that A → B is perfect, as this property is

local in the étale topology on A.
To prove that we have an augmentation f• : B → B•, we need to check

that for all i, j, k the path f−1
ik ∗ fjk ∗ fij in π1

(
Hom∆

A(B,Bijk), fi
)

represents
zero. But by construction, the image of this path in π1

(
Hom∆

A(B(n), Bijk), fi
)

represents zero, for all n. Thus we conclude, using the fact that

π1 Hom∆
A(B,Bijk) = lim←−

n

π1 Hom∆
A(B(n), Bijk)

which is Corollary I.4.12. �

2.4 Strictifying truncated hypercubes

Definition 2.12 A morphism f : X → Y in a 2-category S is called a fibra-
tion, if for every 2-commutative diagram

X

f

��
T y

//

x
22

� �� �KSη

Y

there exists a lift η′ of η to X , i.e., a diagram

X

f

��
T y

//

x
11

x′

AA
0000T\

η′

Y

such that f ◦ η′ = η.
Another way to say this is that the morphism of groupoids X(T ) → Y (T )

makes X(T ) into a fibered category over Y (T ), for all objects T of S.

Definition 2.13 Let S be a 2-category with a distinguished class of 1-
morphisms called F -morphism. We say that S has enough F -morphisms,
if for every morphism X → Y in S there exists a strict factorization

X

  BBBBBBBB
∼ // X ′

����
Y

where X → X ′ is 2-invertible and X ′ → Y is an F -morphism. We call any such
factorization an F -resolution of X → Y

Proposition 2.14 Let S be a 2-category with a distinguished class of mor-
phisms called F -morphism such that
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(i) every F -morphism is a fibration,
(ii) strict fibered products exist in S, if at least one of the two participating

morphisms is of type F ,
(iii) A strict base change of an F -morphism is an F -morphism,
(iv) compositions of F -morphisms are F -morphisms.

Then if U• is a strict truncated hypercube and V• → U• is a morphism of trun-
cated hypercubes, then there exists a strictly commutative diagram

V•
∼ //

  @@@@@@@@ V ′•

��
U•

where V• → V ′• is a 2-invertible morphism of truncated hypercubes, and V ′• , as
well as V ′• → U•, is strict. Moreover, V ′• → U• can be chosen such that all its
structure 1-morphisms are F -morphisms.

Proof. Start by choosing F -resolutions Vi → V ′i → Ui of Vi → Ui. Then,
for every (i, j) ∈ I2, replace the two morphisms Vij → V ′i and Vij → V ′j by
2-isomorphic ones, in such a way that the two squares

Vij //

��

V ′i

��
Uij // Ui

Vij //

��

V ′j

��
Uij // Uj

(30)

commute strictly.
Next, consider the strict fibered products

Pij

��

// V ′i × V ′j

��
Uij // Ui × Uj

We have canonical morphisms Vij → Pij , which we F -resolve: Vij → V ′ij → Pij .
We replace Vij by V ′ij . This preserves the strictness of the diagrams (30). It
makes V ′ij → Uij into F -morphisms.

Use the fact that V ′ij → Uij is a fibration to replace Vijk → V ′ij by a 2-
isomorphic morphism making the square

Vijk

��

// V ′ij

��
Uijk // Uij

strictly commutative.
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Next, consider the diagram

Vijk

!!CCCCCCCC
//

��
rrrru}

����
DL

V ′ij

  @@@@@@@@

Uijk

!!DDDDDDDD
V ′ik

��

// V ′i

��
Uik // Ui

(31)

Both the square and the exterior hexagon in this diagram strictly commute.
Using the fact that V ′ik → Uik ×Ui V ′i is a fibration, we may replace Vijk → V ′ik
by a 2-isomorphic morphism making the whole diagram (31) strictly commute.

Thus, we now have a diagram

Vijk

vvvvw�

� �� �
FN

$$HHHHHHHHHH

��

// V ′ij × V ′ik

%%KKKKKKKKKK

Uijk

$$IIIIIIIII
V ′jk

��

// V ′j × V ′k

��
Ujk // Uj × Uk

(32)

in which, again, both the square and the exterior hexagon strictly commute. We
exploit the fact that V ′jk → Pjk is a fibration, to make (32) strictly commute.
At this point all squares in V•, as well as all squares in V• → U•, which have
Vijk as source, are strictly commutative.

The next step is to consider the strict fibered products

Pijk

��

// V ′ij × V ′ik × V ′jk

��
Uijk // Uij × Uik × Ujk

and to resolve the canonical morphism Vijk → Pijk by the composition Vijk →
V ′ijk → Pijk . As above, we can strictify all squares in V• and in V• → U• whose
source is Vijkl .

Finally, resolve Vijkl → Pijkl , do finish the proof. �

We will apply this proposition to R
op
pf , with ‘F -morphism’ meaning ‘perfect

resolving morphism’.
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3 Differential graded schemes

3.1 Differential graded sheaves

We return to considering the 2-category S with the étale topology, introduced
in Section 1.5. Recall that we had defined a differential graded sheaf to be any
sheaf on S.

If B is a perfect resolving algebra, then it induces a representable presheaf
Xqf over Sqf . Let us restrict Xqf to S via the the canonical embedding S →
Sqf . We get a presheaf X over S, which may not be representable (depending
on the choice of S) if B is not finite.

By Corollary 2.3, this presheafX over S is a sheaf. We denote the differential
graded sheaf X by

SpecB .

If B → C is a morphism of perfect resolving algebras, then we get an induced
morphism of differential graded sheaves

SpecC −→ SpecB .

In fact, we get a contravariant 2-functor

Spec : Rpf −→ (differential graded sheaves) .

Lemma 3.1 Let B be a perfect resolving algebra and U the object of Spf given
by B. Then there exists a finite covering family of Ui → U for the étale pre-
topology on Spf , such that every Ui is given by a finite resolving algebra.

Proof. By Theorem I.3.8 there exist gi ∈ B0, such that the elementary open
immersions B → B{gi} define a covering family and such that each B{gi} is
quasi-isomorphic to a finite resolving algebra. �

Corollary 3.2 In case S is contained in Spf, the canonical restriction 2-
functor

(sheaves over Spf) −→ (sheaves over S)

is fully faithful.

Proof. By Lemma 3.1, S generates Spf . �

Corollary 3.3 The contravariant 2-functor

Spec : Rpf → (differential graded sheaves)

is fully faithful.
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Proof. First let us consider the case that Rpf ⊂ S. By Yoneda’s lemma,
Proposition 1.20, we have a fully faithful 2-functor

Rpf −→ (presheaves over S) .

By Corollary 2.3, this 2-functor maps into the subcategory of sheaves over S.
So we have a fully faithful 2-functor

Rpf −→ (sheaves over S) .

Now let us consider the case that S ⊂ Rpf . The above considerations applied
to Spf give us a fully faithful 2-functor

Rpf −→ (sheaves over Spf) .

Composing with the fully faithful 2-functor of Corollary 3.2 finishes the proof. �

3.2 Affine differential graded schemes

Definition 3.4 A differential graded sheaf, which is isomorphic to SpecB,
for some perfect resolving algebra B, is called an affine differential graded
scheme, or simply affine.

If an affine differential graded scheme is isomorphic to SpecB, for a finite
resolving algebra B, we call it finite affine, or simply finite.

Note 3.5 By Corollary 3.3, the 2-functor Spec induces contravariant equiva-
lences of 2-categories

Spec : Rpf −→ (affine differential graded schemes)
Spec : Rf −→ (finite affine differential graded schemes) .

Example 3.6 Every complete intersection in affine space over k gives rise to
an affine differential graded scheme, which is well-defined up to isomorphism.
This is because every complete intersection in affine space is defined by a reg-
ular sequence, and so the associated Koszul complex gives a differential graded
algebra, which is determined by the complete intersection scheme up to quasi-
isomorphism. For example, any finite extension field K of k may be considered
as an affine differential graded scheme.

If A is the usual affine coordinate ring of such a complete intersection, we
commit the abuse of writing SpecA for this differential graded scheme.

Lemma 3.7 If X and Y are affine differential graded schemes, then so is X×Y .
If X and Y are finite, then so is X × Y .

Proof. This follows from Proposition 1.38. �
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Let f : X → Y be a morphism between affine differential graded schemes,
where X ∼= SpecB and Y ∼= SpecC. Then, by Corollary 3.3, there exists a
morphism of perfect resolving algebras φ : C → B, such that Spec φ = f . The
morphism φ is unique up to homotopy.

Definition 3.8 The morphism of affine differential graded schemes f : X → Y
is called étale, (an open immersion) if the corresponding morphism φ :
C → B of perfect resolving algebras is étale (an open immersion). (See Defini-
tions I2.8 and I.2.13.)

Lemma 3.9 If f : X → Y is a morphism of affine differential graded schemes
and Y ′ → Y is an étale morphism (an open immersion) of affine differential
graded schemes, then the fibered product X ′ = X ×Y Y ′ is an affine differential
graded scheme and X ′ → X is étale (an open immersion). If X, Y and Y ′ are
finite, then so is X ′.

Proof. This follows directly from Proposition 1.39. �

Lemma 3.10 (affine descent) Let X → U be a morphism of differential
graded sheaves, where U is affine. Assume that there exists an epimorphic family
of morphisms of differential graded sheaves Ui → U , where every Ui is affine,
and every morphism Ui → U is étale. Assume that for every i, the 2-fibered
product Xi = X×U Ui is affine. Then X itself is affine.

Proof. Without loss of generality, the morphisms Ui → U are given by (étale)
quasi-finite resolving morphisms A → Ai of perfect resolving algebras A, Ai.
Because (Ui → U) is epimorphic,

∐
i Spech0(Ai) → Spec h0(A) is surjective.

Define the strict cartesian hypercube A → A• in R
op
pf as in Section 2.3. Let

U• = SpecA•, so that U• → U is a (strict, cartesian) hypercube of affine
differential graded schemes.

Form the fibered products X• = X ×U U• of differential graded sheaves.
These form a 2-cartesian morphism

X• → U•

of 2-cartesian truncated hypercubes of differential graded sheaves. By
Lemma 3.9, the truncated hypercube X• consists of affine differential graded
schemes. Thus, via Corollary 3.3, we may choose a 2-cartesian truncated hyper-
cube B• of perfect resolving algebras, such that SpecB• = X•. The morphism
X• → U• gives rise to a 2-cartesian morphism A• → B•.

Now apply Proposition 2.14 to A• → B• in R
op
pf , with ‘F -morphism’ meaning

‘perfect resolving morphism’, to show that we may assume, without loss of
generality, that B•, as well as A• → B•, is strict. Moreover, we may assume that
A• → B• consists of perfect resolving morphisms. Thus we are now in the setup
of Section 2.3, and from Theorem 2.11 we obtain a perfect resolving morphism
A → B and a 2-cartesian morphism of hypercubes [A → A•] → [B → B•] in
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R
op
pf . Applying Spec, we obtain a cartesian morphism of hypercubes [X• →

X ]→ [U• → U ] of affine differential graded schemes.
Then X ∼= X as sheaves on S, and so X is representable by the perfect

resolving algebra B. �

Remark We cannot conclude that X is finite, even if U , all Ui and all Xi

are finite. A counterexample can be derived from Example I.3.11 or, more
specifically, Example I.3.12. Let A and B be the differential graded algebras
defined in Example I.3.12. Thus,

A = k[x, y, ]{ξ}/dξ = y2 − 4(x3 − x) ,

in the notation of Section I.2.5. Moreover, B is a quasi-finite resolution of the
differential graded algebra h0(A) ⊕ L. Here L is a projective h0(A)-module of
rank one, which we put in degree -1. The differential on h0(A)⊕ L is zero. We
get a counterexample if L is non-trivial.

Suppose the elementary open immersion A → Ai trivializes L. Then Bi =
B ⊗A Ai is quasi-isomorphic to a finite resolving algebra. Thus A, all Ai and
all Bi are ‘essentially’ finite, but B is not.

Proposition 3.11 A morphism of affine differential graded schemes is étale
if and only if it is a categorically étale morphism of sheaves. It is an open
immersion if and only if it is a monomorphism of sheaves (cf. Propositions 1.18
and 1.32).

Proof. Let our morphism be SpecB′ → SpecB. First we reduce to the case
that B → B′ is a resolving morphism. Then the categorically étale property
translates into bijectivity of

π1 Hom∆(B′, A) −→ π1 Hom∆(B,A) ,

for all resolving morphisms B′ → A. By Proposition I.4.18, this is equivalent
to B → B′ being étale.

For the second claim, we may assume that SpecB′ → SpecB is étale. Then
SpecB′ → SpecB is an open immersion, if and only if the diagram

SpecB′

��

// SpecB′

��
SpecB′ // SpecB

is 2-cartesian. This is the case if and only if

π0 Hom∆(B′, A)→ π0 Hom∆(B,A)

is injective, for all A, which is the monomorphism property of SpecB′ →
SpecB. �
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Definition 3.12 An affine Zariski cover of an affine differential graded
scheme X is a collection of open immersions Ui → X , where every Ui is affine.

Proposition 3.13 Every affine differential graded scheme X admits an affine
Zariski cover Ui → X, such that for every multi-index (i0, . . . , ip), with p ≥ 0,
the fibered product

Ui0...ip = Ui0 ×X . . .×X Uip

is finite.

Proof. Let X = SpecB. As in Lemma 3.1, we choose gi ∈ B0, such that the
elementary open immersion B → B{gi} cover X , and such that each B{gi} is
quasi-isomorphic to a finite resolving algebra Ai.

The fibered product SpecB{gi} ×X SpecB{gj} is represented by B{gigj},
which is quasi-isomorphic to Ai{gj} and hence finite. Similarly for iterated
fibered products. �

3.3 Affine étale morphisms

Definition 3.14 A morphism F → G of differential graded sheaves is called
affine étale (an affine open immersion), if for every morphism U → G, with
U affine, the fibered product V = F×G U is affine and the morphism V → U is
étale (an open immersion).

Proposition 3.15 A morphism F → G is affine étale (an affine open immer-
sion) if and only if there exists an epimorphic family Ui → G of morphisms
with (finite) affine Ui, such that for every i the fibered product Vi = F×G Ui is
affine and the morphism Vi → Ui is étale (an open immersion).

Proof. This follows directly from Lemmas 3.9 and 3.10. �

In particular, a morphism of affine differential graded schemes is étale if and
only if it is affine étale. Similarly for open immersions.

Proposition 3.16 If F→ G and F′ → G′ are affine étale morphisms of differ-
ential graded sheaves, then so is F× F′ → G×G′.

Proof. This follows from the fact the affine étale property is stable under
composition and arbitrary base change. �

Note 3.17 Let f : X → Y be a morphism of affine differential graded schemes.
Suppose there exists an epimorphic family of affine étale morphisms Ui → X ,
where for all i the composition Ui → Y is étale. Then f is étale.
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3.4 Differential graded schemes

Definition 3.18 A differential graded sheaf X is called a differential graded
scheme, if there exists an epimorphic family of affine étale morphisms Ui → X

such that each Ui is affine.
Any such epimorphic family Ui → X is called an affine étale cover of X.

If all Ui → X are affine open immersion, we speak of an affine Zariski cover
of X.

Remark It would be more accurate to call these objects ’differential graded
algebraic spaces with affine diagonal’, but we find that terminology too clumsy.

It seems likely that one can iterate this definition, and obtain more general
objects, which would be differential graded schemes with weaker separation
condition. At this point it is not clear how useful this would be, and so we call
the above objects simply differential graded schemes, without a further qualifier.

Proposition 3.19 If X is a differential graded scheme, then there exists an
affine étale cover Ui → X, where every Ui is finite.

Proof. This follows directly from Proposition 3.13. �

Proposition 3.20 Let X and Y be differential graded schemes. Then X×Y is
a differential graded scheme.

Proof. Let Ui → X and Vj → Y be affine étale covers. Then Ui×Vj → X×Y

is an affine étale cover of the product X×Y. �

Lemma 3.21 (descent) Let F → X be a morphism of differential grade
sheaves, where X is a differential graded scheme. Let Ui → X be an affine
étale cover, such that the fibered product Vi = F×X Ui, is a differential graded
scheme, for all i. Then F is a differential graded scheme.

Proof. Let Vij → Vi be an affine étale cover of Vi, for all i. Since the affine
étale property, as well as the epimorphism property are stable under base change
and composition, it follows that Vij → F is an affine étale cover. �

Definition 3.22 A differential graded scheme X is of amplitude N , if for
every affine étale morphism SpecB → X, the perfect resolving algebra B is of
amplitude N .

If there exists an affine étale cover SpecBi → X, where for every i, the
perfect resolving algebra Bi is of amplitude N , then X is of amplitude N .
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3.5 Affine morphisms

Definition 3.23 A morphism X → Y of differential graded schemes is called
affine, if for every affine étale morphism U → Y, with U affine, the fibered
product V = X×Y U is affine.

Proposition 3.24 A morphism X → Y is affine if there exists an affine étale
cover Ui → Y, such that for every i the fibered product Vi = X×Y Ui is affine.

Proof. This follows from Lemmas 3.9 and 3.10. �

Proposition 3.25 The diagonal X→ X× X of a differential graded scheme X

is affine.

Proof. If Ui → X is an affine étale cover of X, then Ui × Uj is an affine étale
cover of X× X, and we have 2-cartesian diagrams

Uij

��

// Ui × Uj

��
X // X× X

where Uij = Ui ×X Uj , which is affine, by the definition of affine étale mor-
phism. �

3.6 Étale morphisms

Definition 3.26 A morphism f : X → Y of differential graded schemes is
called étale, if for every morphism U → Y, with U affine, the fibered product
V = X×YU is a differential graded scheme and for every affine étale morphism
V → V, with V affine, the composition V → U is étale.

Proposition 3.27 Let f : X → Y be a morphism of differential graded
schemes. Suppose given an epimorphic family of morphisms Ui → Y, with Ui
affine for all i. Suppose further that for every i the fibered product Vi = X×YUi
is a differential graded scheme and that there exists an affine étale cover
Vij → Vi of Vi such that the composition Vij → Ui is étale, for all j. Then f
is étale

Proof. This is not difficult to prove using the techniques developed so far. In
particular, use Lemma 3.21 and Note 3.17. �

Note A morphism of differential graded schemes is affine and étale if and only
if it is affine étale. An étale morphism with affine source is affine étale.

Corollary 3.28 If X → Y is a morphism of differential graded schemes and
Y′ → Y an étale morphism of differential graded schemes, then the fibered
product X′ = X×Y Y′ is a differential graded scheme and X′ → X is étale. �
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Remark The question of the existence of more general fibered products in the
2-category of differential graded schemes is rather subtle. It is treated in detail
in [3].

Proposition 3.29 Consider the 2-commutative diagram of differential graded
schemes

X
f //

h ��==== Y

g������

Z

If g is étale, then f is étale if and only if h is étale. If f is an étale epimorphism,
then g is étale if and only if h is étale. �

Proposition 3.30 A morphism of differential graded schemes is étale if and
only if it is categorically étale. proof!

Definition 3.31 An étale morphism f : X→ Y of differential graded schemes
is called an open immersion, if it is a monomorphism of differential graded
sheaves.

Remark An affine étale morphism is an open immersion if and only if it is an
affine open immersion. Open immersions are stable under base change.

Proposition 3.32 A morphism of differential graded schemes is an open im-
mersion if and only if it is a monomorphism. proof!

Definition 3.33 If X is a differential graded scheme, an open subscheme of
X is a full sub-2-category X′ ⊂ X, such that X′ is itself a differential graded
scheme and the inclusion morphism X′ → X is an open immersion.

53



4 The basic 1-categorical invariants

For any differential graded sheaf F, the underlying 2-category F is endowed
with a topology in a canonical way. (A sieve is covering in F if its image in S

is covering.) Thus every differential graded scheme X has an associated 2-site,
namely the 2-category X itself, with this canonical topology.

Definition 4.1 A sheaf over X, is a sheaf on this associated 2-site.

Write X for the 1-category associated to X. By the basic 1-categorical in-
variants of the differential graded scheme X we mean certain sheaves of sets on
X. Note that every sheaf of sets on X comes in a unique and canonical way from
a sheaf on X. Thus the terminology.

should it be
topoi?Remark The rule X→ X defines a 2-functor from the 2-category of differential

graded schemes to the 2-category of sites.

4.1 The associated graded structure sheaf

Let X be a differential graded scheme. For an object x of X, denote the image
of x under the structure 2-functor X→ S by Ax.

Definition 4.2 The truncated structure sheaf of X is the sheaf of sets on
X defined by

x 7−→ h0(Ax) .

We denote the truncated structure sheaf by h0(OX). This is an abuse of nota-
tion, as we have not defined OX.

Note that for every morphism U → X, with U affine, h0(OX)(U) is a finitely
generated k-algebra.

The fact that h0(OX) is a sheaf, follows directly from the definition of the
étale topology.

Thus h0(OX) is a sheaf of k-algebras on X.

Definition 4.3 The n-th higher structure sheaf is the sheaf of sets on X

defined by
x 7−→ hn(Ax) .

We denote the n-the higher structure sheaf by hn(OX).
The direct sum

h∗(OX) =
⊕
n

hn(OX)

is called the associated graded structure sheaf of X.
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For every morphism U → X with U affine, hn(OX)(U) is a finitely generated
h0(OX)(U)-module and h∗(OX) is a graded h0(OX)-algebra. Thus hn(OX) is a
coherent sheaf of modules and h∗(OX) a graded sheaf of algebras over the sheaf
of k-algebras h0(OX).

Of course, hn(OX) = 0, for all n > 0.

Remark 4.4 Let φ : X → Y be a morphism is differential graded schemes.
Then there is a natural isomorphism (sic!) of sheaves of graded k-algebras

φ−1h∗(OY) −→ h∗(OX) .

For example, for Y = Spec k = S, we get that h∗(OX) is the pullback of
h∗(OSpeck) via the structure functor X → S (which is also clear from the defi-
nition). We will abbreviate h∗(OSpec k) by h∗(O).

4.2 Higher tangent sheaves

We need some preliminaries concerning the naturality properties of Der(B,A),
for resolving algebras B, A. (For the notation Der(B,A), see Section I1.5.)

Let f : B → A and g : B → A be morphisms of resolving algebras. Let
θ : f ⇒ g be a homotopy, i.e., a morphism θ : B → A ⊗ Ω1, such that ∂0θ = f
and ∂1θ = g.

B

f
&&

g

88
�� ��
�� θ A

Recall (Definition I.3.7), that θ induces a canonical isomorphism of h0(B)-
modules

h` Der(B, fA) θ∗−→ h` Der(B, gA) .

Recall also, that θ∗ depends only on the homotopy class of θ, and is thus well-
defined for a 2-isomorphism θ : f ⇒ g in R. Moreover, it is functorial for
vertical composition of 2-morphisms: θ∗η∗ = (θη)∗.

We will require two further naturality properties of this induced canonical
isomorphism. First, some more notation:

Suppose given a 2-commutative diagram

B

  AAAAAAA
//

����|� η
A

f

��
A′

We denote the composition

h` Der(B,A)
f∗−→ h` Der(B, fA′)

η∗−→ h` Der(B,A′)

by η(f∗).
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Proposition 4.5 Consider a diagram

B //
��

� �� �KSη

CC�� ��
�� ζ
A

f
''

g

77 A
′ (33)

where the two morphisms from B to A′ are equal. We get two homomorphisms
of h0(B)-modules

h` Der(B,A)
η(f∗) --

ζ(g∗)
11 h` Der(B,A′) .

These are equal, if there exists a 2-isomorphism

A

f
''

g
77

�� ��
�� θ A′

making Diagram (33) commute, i.e., such that η = ζθ.

Proof. The proof is similar to the construction of the induced canonical iso-
morphism. �

Proposition 4.6 Consider a diagram

B

f
''

g
77

�� ��
�� θ B′

p // A .

Then the induced diagram

h` Der(B, fA)

(pθ)∗

��
h` Der(B′, A)

f∗ 22eeeeeeeeeee

g∗ ,,YYYYYYYYYYYY

h` Der(B, gA)

commutes.

Proof. This proposition is a little more tricky. The problem is that B′⊗Ω1 is
not a resolving algebra. Thus it is not clear if B′ ⊗ Ω1 is cofibrant, and hence
if Der(B′ ⊗ Ω1, · ) is sufficiently well-behaved. Thus, instead of working with
Der(B′ ⊗ Ω1, · ), we use HomB′⊗Ω1

(LB′⊗Ω1 , · ). This requires a theory of the
cotangent complex for non-resolving algebras, as developed in [7]. We omit the
details of the rather lengthy diagram chases that conclude the proof. �
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We are now ready to define the higher tangent sheaves. Let B be a perfect
resolving algebra.

Definition 4.7 The `-th higher tangent sheaf of SpecB is the sheaf of sets
on SpecB defined by

(B x→ A) 7−→ h` Der(B,A) = h`(ΘB ⊗B A) .

We denote the `-th higher tangent sheaf of SpecB by h`(ΘSpecB).

This definition gives rise to a presheaf, because of Proposition 4.5. The fact
that h`(ΘSpecB) is a sheaf follows from Corollary I.2.12.

Remark A morphism of perfect resolving algebras f : B → B′, which gives
rise to the morphism of differential graded schemes φ : SpecB′ → SpecB,
defines a canonical sheaf map here is one place

where the correct
definition of op-
posite 2-category
is important

h`(ΘSpecB′) −→ φ−1h`(ΘSpecB) . (34)

Let θ : f ⇒ g be a homotopy between the morphisms f, g : B → B′. Letting φ be
the morphism of differential graded schemes induced by f and ψ the morphism
of differential graded schemes induced by g, we get an induced 2-isomorphism
η : ψ ⇒ φ. The 2-isomorphism η gives rise to a natural equivalence of functors
η−1 : φ−1 → ψ−1 and hence to a sheaf isomorphism

η−1 : φ−1h`(ΘSpecB) −→ ψ−1h`(ΘSpecB) .

The induced triangle of sheaves

φ−1h`(ΘSpecB)

η−1

��
h`(ΘSpecB′)

22eeeeeeeeeeee

,,YYYYYYYYYYY

ψ−1h`(ΘSpecB)

commutes. This follows from Proposition 4.6.
Because of this, we may define h`(ΘU ) for any affine differential graded

scheme U , because the sheaf on U pulled back via any isomorphism U → SpecB,
is independent of the choice of B and U → SpecB, at least up to canonical
isomorphism.

Let X be a differential graded scheme. Let V → X and U → X be étale
morphisms, with V and U affine. Assume given a 2-commutative diagram of
differential graded schemes

V
f //

��@@@@@@@
����|�
U

��
X

(35)
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we get an induced sheaf map

h`(ΘV ) −→ f−1h`(ΘU ) ,

which is an isomorphism, by Proposition I.1.37, and because V → U is neces-
sarily étale.

Thus, as we let U → X vary over all étale morphisms with affine U , we get
gluing data for a sheaf of sets h`(ΘX) on X.

maybe we should
kill the word
‘associated’, here
and earlier?

Definition 4.8 The sheaf h`(ΘX) is called the `-th higher tangent sheaf of
X. The associated graded tangent sheaf of X is the direct sum

h∗(ΘX) =
⊕
`

h`(ΘX) .

The higher tangent sheaf h`(ΘX) comes with isomorphisms

h`(ΘU ) −→ h`(ΘX) |U ,

for every étale U → X with affine U . Any diagram (35) induces a commutative
diagram

h`(ΘV )

��

// f−1h`(ΘU )

��
h`(ΘX) |V // f−1

(
h`(ΘX) |U

)
of sheaves on V .

Every higher tangent sheaf h`(ΘX) is a coherent h0(OX)-module. The asso-
ciated graded tangent sheaf h∗(ΘX) is a sheaf of graded h∗(OX)-modules.

Note that h`(ΘX) = 0, for ` < −N , if X is of amplitude N .

Remark If SpecB → X is étale and B → A is an arbitrary morphism of
perfect resolving algebras, then we have, by construction of h`(ΘX), a canonical
isomorphism of h0(B)-modules

h` Der(B,A) ∼−→ h`(ΘX)(SpecA) .

For example, if φ : SpecK → X is a K-valued point of X, then

h`(ΘX)(φ) = h` Der(B,K) ,

for any affine étale neighbourhood SpecK → SpecB → X of φ.
Products on
these?Definition 4.9 The higher tangent spaces of X at the K-valued point φ of

X are the K-vector spaces h`(ΘX)(φ).
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Proposition 4.10 If f : X→ Y is a morphism of differential graded schemes,
then we get an induced canonical homomorphism of sheaves of h0(OX)-modules

h`(ΘX) −→ f−1h`(ΘY) . (36)

The morphism f is étale, if and only if (36) is an isomorphism, for all ` (or for
one fixed ` ≥ 0).

If φ : SpecK → X is a K-valued point of X, then f induces a canonical
homomorphism of K-vector spaces

h`(ΘX)(φ) −→ h`(ΘY)
(
f(φ)

)
, (37)

for all `. The morphism f is étale, if and only if (37) is an isomorphism, for
all `. �

The relative case

Note that if C′ → C → B → A is a composition of morphisms of resolving
algebras, with C, C′ and B perfect and C → B as well as C′ → B resolving,
then the canonical homomorphism of h0(A)-modules

h` DerC(B,A) −→ h` DerC′(B,A)

is an isomorphism, if C′ → C is étale.
Now assume given a morphism of differential graded schemes φ : X→ Y.

Definition 4.11 The `-th relative higher tangent sheaf of X→ Y, notation
h`(ΘX/Y), is defined in such a way that for every resolving morphism of perfect
resolving algebras C → B and any 2-commutative diagram of differential graded
schemes

SpecB

��

//






AI
SpecC

��
X // Y

(38)

where SpecB → X and SpecC → Y are étale, we have a canonical isomorphism

h`(ΘB/C) −→ h`(ΘX/Y) | SpecB ,

where h`(ΘB/C) is the sheaf on SpecB defined by

(B → A) 7−→ h` DerC(B,A) .

By the remark preceding the definition, h`(ΘB/C) does not depend on the
choice of C. Note also that the étale morphisms SpecB → X admitting a
factorization (38) are cofinal in the 2-category of all étale SpecB → X and still
cover X. Thus the fact that h`(ΘX/Y) exists with the required properties is
proved as in the absolute case.
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Remark 4.12 The morphism X → Y is étale, if and only if h`(X/Y) = 0 for
all `, or for on fixed ` ≥ 0.

Remark 4.13 Given C → B and a diagram such as (38), for every morphism
of resolving algebras B → A we have a short exact sequence of complexes of
A-modules

0 −→ DerC(B,A) −→ Der(B,A) −→ Der(C,A) −→ 0 .

These give rise to natural long exact sequences of h0(OX)-modules

. . . −→ h`(ΘX/Y) −→ h`(ΘX) −→ φ−1h`(ΘY) −→ h`−1(ΘX/Y) −→ . . . (39)

Let

X
φ //

κ
��>>>>>>>>

~~~~
;C
Y

ψ

��
Z

(40)

be a 2-commutative diagram of differential graded schemes. By the naturality
properties of (39), we have a ‘long exact braid with four strands’ think this

through again,
especially with
respect to the
2-iso

φ−1h`(ΘY/Z)
""

##GGGGGGG
h`−1(ΘX/Y)

""

##GGGGGGG
h`−1(ΘX)

h`(ΘX/Z)

;;wwwwwww

##GGGGGGG
φ−1h`(ΘY)

;;wwwwwww

##GGGGGGG
h`−1(ΘX/Z)

;;wwwwwww

##GGGGGGG

h`(ΘX)
<<

;;wwwwwww
κ−1h`(ΘZ)

<<

;;wwwwwww
φ−1h`−1(ΘY/Z)

(41)

4.3 Homotopy sheaves

The homotopy sheaves of a differential graded scheme are defined similarly to
the higher tangent sheaves. First, they are defined for affine differential graded
schemes and then they are glued with respect to the étale topology.

Let B be a perfect resolving algebra and ` > 0 and integer.

Definition 4.14 The `-th homotopy sheaf of SpecB, notation π`(SpecB),
is the sheaf of sets on SpecB defined by

(B x→ A) 7−→ π` Hom∆(B,A) .
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The fact that this defines a sheaf on SpecB follows directly from descent
theory, Theorem 2.1(i).

A morphism of perfect resolving algebras f : B → B′ gives rise to a canonical
sheaf map

π`(SpecB′) −→ φ−1π`(SpecB) , (42)

via the restriction map Hom∆(B′, A) → Hom∆(B,A). For étale f , the sheaf
map (42) is an isomorphism, by Proposition I.4.18. (Here we use the fact that
` > 0.)

Let now X be a differential graded scheme. As we let SpecB → X vary
over all perfect resolving algebras B and all étale morphisms to X, the various
π`(SpecB) glue, via the gluing maps (42), to a sheaf of sets π`(X) on X.

Definition 4.15 The sheaf π`(X) is called the `-th homotopy sheaf of the
differential graded scheme X.

By construction, π`(X) is endowed with a sheaf isomorphism

π`(SpecB) −→ π`(X) | SpecB ,

for all étale SpecB → X. This isomorphism is compatible with the gluing
isomorphisms (42). Thus, if A is an arbitrary resolving algebra in R, endowed
with a morphism B → A, then

π`(X)(A) = π` Hom∆(B,A) .

The sheaves π`(X) are sheaves of groups; abelian, for ` ≥ 2.
check it’s a sheaf

Remark 4.16 Let AutX denote the sheaf of sets on X given by

x 7−→ Aut(x) .

Here Aut(x) stands for the automorphism group of the object x of X inside the
fiber XA, where x lies over A ∈ R. For X = SpecB, we have π1(X)(x) = Aut(x),
for every object x : B → A of SpecB. Hence π1(X) = Aut X.

For every morphism of differential graded schemes φ : Y → X, we have an
induced morphism AutY → φ−1 AutX of sheaves of sets on Y. In particular,
for a morphism φ : SpecB → X, we get a canonical morphism π1(SpecB) →
φ−1 AutX. These canonical morphisms glue to give a canonical morphism

π1(X) −→ AutX ,

which is trivially an isomorphism.
If we choose pullbacks for the fibered category X → S, we can identify the

fiber XA of X over the differential graded algebra A in R, with the groupoid
Hom(SpecA,X). Doing this we have

π1(X)(x) = π1 Hom(SpecA,X) ,

for any x : SpecA→ X.
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Definition 4.17 Let π0(X) denote the presheaf of pointed sets on X defined by

π0(X)(x) = π0(XAx) ,

where Ax is the image of x in S. Note that by Theorem 2.1 (i), for affine X,
the presheaf π0(X) is a sheaf. and it’s not a

sheaf for general
X?Example Denote Spec k[x], where deg x = 0, by A1. Then we have π`(A1) =

h−`(OA1). Thus, we have that π`(A1) is the pullback of h−`(O) via the structure
functor A1 → S, for all ` ≥ 0.

Let us call a morphism of differential graded schemes φ : X→ A1 a regular
function on X. Then for any regular function φ on the differential graded
scheme X we have

h−`(OX) = φ−1π`(A1) ,

for all ` ≥ 0.
We have a canonical map

π0 Hom(X,A1) −→ Γ
(
X, h0(OX)

)
,

which is bijective, if X is affine.

The relative case

Just like the higher tangent sheaves, the homotopy sheaves also admit relative
versions. Let φ : X→ Y be a morphism of differential graded schemes and ` > 0
an integer.

Definition 4.18 The `-th relative homotopy sheaf of X over Y, notation
π`(X/Y), is defined in such a way that for every resolving morphism of perfect
resolving algebras C → B and any 2-commutative diagram of differential graded
schemes (38), where SpecB → X and SpecC → Y are étale, we have a conical
isomorphism

π`(B/C) −→ π`(X/Y) | SpecB ,

where π`(B/C) is the sheaf on SpecB defined by

(B → A) 7−→ π` Hom∆
C(B,A) .

Moreover, define the presheaf of pointed sets on X

π0(X/Y)

by defining π0(X/Y)(x) to be π0 of the fiber through x of the morphism of
groupoids XA → YA, where A is the object of R over which the object x of X

lies.
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Proposition 4.19 Let φ : X→ Y be a morphism of differential graded schemes
and r > 0 and integer. The following are equivalent:

(i) π`(X/Y) = 0, for all ` > 0,
(ii) πr(X/Y) = 0,
(iii) π`(X) → φ−1π`(Y) is an isomorphism of sheaves of groups, for all

` > 0,
(iv) πr(X)→ φ−1πr(Y) is an isomorphism of sheaves of groups.

Proof. Follows from Proposition I.4.18. �

Proposition 4.20 (Long exact homotopy sequence) There is a natural
long sequence of presheaves on X

. . . −→ π`(X/Y) −→ π`(X) −→ φ−1π`(Y) ∂−→ π`−1(X/Y) −→ . . .

. . . −→ φ−1π1(Y) ∂−→ π0(X/Y) −→ π0(X) −→ π0(Y) . (43)

This sequence gives rise to a long exact sequence of groups and pointed sets,
when evaluated at an object x : SpecA→ X of X, which admits a factorization

SpecA

x

��

//






AI
SpecC

��
X

φ
// Y

with étale SpecC → Y. In particular, the part of (43) ending with φ−1π1(Y) is
an exact sequence of sheaves of groups on X.

Proof. Let C → B be a resolving morphism of perfect resolving algebras
together with a 2-commutative diagram

SpecB

��

ψ //






AI
SpecC

��
X

φ
// Y

(44)

with SpecB → X and SpecC → Y étale. Then for any morphism of resolving
algebras B → A, we get a fibration of spaces

Hom∆(B,A) −→ Hom∆(C,A)

with fiber Hom∆
C(B,A). The associated long exact homotopy sequence, which

is natural in A, gives rise to a long exact sequence of presheaves on SpecB

. . . −→ π`(B/C) −→ π`(B) −→ ψ−1π`(C) −→ . . . −→ ψ−1π1(C) .
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One checks that the various maps in this sequence glue, to give a sequence of
sheaves on X

. . . −→ π`(X/Y) −→ π`(X) −→ φ−1π`(Y) −→ . . . −→ φ−1π1(Y) . (45)

By construction, this sequence is exact on the level of groups of sections over
any object x of X, lying over A in R, such that x : SpecA→ X factors through
a diagram (44).

By construction, we have, for any object x of X, an exact sequence of groups
and pointed sets

Aut(x) −→ Aut
(
φ(x)

)
−→ π0(X/Y)(x) −→ π0(X)(x) −→ π0(Y)

(
φ(x)

)
.

(This is a general fact about morphisms of groupoids.) Thus we get an exact
sequence of presheaves of groups and pointed sets on X

Aut(X) −→ φ−1 Aut(Y) −→ π0(X/Y) −→ π0(X) −→ φ−1π0(Y) .

By Remark 4.16, we have natural identifications π1(X) = Aut(X) and π1(Y) =
Aut(Y), and so we can extend the sequence (45) three steps further to the right,
as required. �

think about it
againRemark 4.21 Given a 2-commutative diagram of differential graded

schemes (40), then the various long exact homotopy sequences (43) are nat-
ural enough to give rise to a commutative long exact braid with four strands,
similar to (41), except that it has a right end.

4.4 Differentials

Let φ : X→ Y be a morphism of differential graded schemes.

Proposition 4.22 There exists an object ΩX/Y in the derived category of
h0(OX), together with natural isomorphisms

ΩX/Y | SpecB ∼−→ ΩB/C ,

for every resolving morphism of perfect resolving algebras C → B and every
2-commutative diagram (44) with étale SpecB → X and SpecC → Y. Here
ΩB/C is the complex of sheaves of (finitely generated, free) h0(OSpecB)-modules
defined by

(B x→ A) 7−→ ΩB/C(x) = ΩB/C ⊗B h0(A) .

The complex ΩX/Y is perfect.

Proof. Note that ΩB/C ⊗B h0(A) = ΩB/C ⊗B h0(B) ⊗h0(B) h
0(A). Hence

ΩB/C is a presheaf of complexes of h0(OSpecB)-modules. Because every one
of the complexes of sections of ΩB/C is finitely generated and free, ΩB/C is, in
fact, a complex of sheaves of h0(OSpecB)-modules. Thus we have constructed an
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object ΩB/C in the derived category of h0(OSpecB)-modules which are bounded
above and have coherent cohomology.

This construction gives rise to a functor from the (1-category associated to
the) category of all C → B and Diagrams (44), to the derived category h0(OX)-
modules, and by cohomological descent, we get the required object ΩX/Y. � look up cohomo-

logical descent

Definition 4.23 The complex ΩX/Y is called the cotangent complex or the
complex of differentials of X over Y. Its dual is denoted by ΘX/Y and is
called the tangent complex of X over Y.

Proposition 4.24 Given a 2-commutative diagram (40) of differential graded
schemes, we get induced distinguished triangles

φ−1ΩY/Z −→ ΩX/Z −→ ΩX/Y −→ φ−1ΩY/Z[1]

and
ΘX/Y −→ ΘX/Z −→ φ−1ΘY/Z −→ ΘX/Y[1]

in the derived category of h0(OX). These distinguished triangles are natural in
the sense that they give rise to commutative ‘octahedra’. Let us only display the
octahedron for Θ:

φ−1ΘY/Z

""

##GGGGGG
ΘX/Y[1]

##GGGGGG

ΘX/Z

;;wwwwww

##GGGGGGG
φ−1ΘY

;;wwwwww

##GGGGGGG
ΘX/Z[1]

##GGGGGG

ΘX/Y

;;wwwwww

<< ΘX <<

;;wwwwwww
κ−1ΘZ <<

;;wwwwwww
φ−1ΘY/Z[1]

Definition 4.25 If ΩX/Y has perfect amplitude contained in [−N, 0], we say
that φ : X → Y has amplitude N . If φ : X → Y has amplitude N , we write
N = amp(X/Y).

Note that this definition of amplitude agrees with the earlier one for the
absolute case, Definition 3.22.

Corollary 4.26 We have

amp(X) = max
(

amp(Y), amp(X/Y)
)
,

amp(X/Y) = max
(

amp(Y) + 1, amp(X)
)
,

amp(Y) = max
(

amp(X/Y)− 1, amp(X)
)
.

Proof. This follows from Proposition 4.24, see also Remark I.3.4. Note that
we also have relative versions of these statements, with respect to a composition
X→ Y→ Z. �
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Proposition 4.27 (Spectral sequence) There is a natural convergent third
quadrant spectral sequence of coherent h0(OX)-modules

Ep,q2 = hq(OX)⊗h0(OX) h
p(ΘX/Y) =⇒ hp+q(ΘX/Y) .

If X→ Y has amplitude N , then all terms of this spectral sequence with p+ q >
N vanish.

Proof. Glue the spectral sequences from Proposition I.3.5 together. �

Locally free morphisms
is this the correct
name?Definition 4.28 Let φ : X→ Y be a morphism of differential graded schemes.

Suppose there exist affine étale covers SpecBi → X and SpecCi → Y, resolving
morphisms Ci → Bi and 2-commutative diagrams

SpecBi

��

//

����
AI
SpecCi

��
X // Y

where for every i, there exists a basis (xν)ν∈Ii for Bi over Ci, such that dxν ∈ Ci,
for all ν ∈ Ii. In this case we call φ locally free.

Note that for a locally free morphism of differential graded schemes X→ Y,
the cotangent complex ΩX/Y has locally free cohomology sheaves over h0(OX),
and hence is locally isomorphic (in the derived category of h0(X)) to a finite
complex of finitely generated free modules with zero differential.

Example Every étale morphism if locally free.

Proposition 4.29 For every morphism X → Y of differential graded schemes
there exists an étale cover Xi → X, such that each composition Xi → Y factors
into finitely many locally free morphisms.

Proof. Use Proposition 3.19. �

Proposition 4.30 There are natural isomorphisms of sheaves of sets on X

Ξ` : h`(ΘX/Y) −→ π`(X/Y) ,

for all ` > 0. For ` ≥ 2, these are isomorphisms of sheaves of abelian groups.
If φ is locally free, then Ξ1 is also an isomorphism of sheaves of groups.

To make the naturality properties of Ξ` more precise, let

X
φ //

κ
��>>>>>>>>

~~~~
;C
Y

ψ

��
Z
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be a 2-commutative diagram of differential graded schemes. Then we have in-
duced commutative diagrams

h`(ΘX/Y) //

Ξ`

��

h`(ΘX/Z) //

Ξ`

��

φ−1h`(ΘY/Z)

Ξ`

��
π`(X/Y) // π`(X/Z) // φ−1π`(Y/Z)

If, moreover, φ is locally free, then we also have a commutative diagram

φ−1h`(ΘY/Z)

Ξ`

��

δ // h`−1(ΘX/Y)

Ξ`−1

��
φ−1π`(Y/Z) ∂ // π`−1(X/Y)

in other words, we get a homomorphism from the long exact sequence of higher
relative tangent sheaves to the long exact sequence of relative homotopy sheaves,
both truncated at the transition from ` = 1 to ` = 0.

Proof. This follows from the results of Section I.4.2. �

4.5 The associated algebraic space

Proposition 4.31 There exists a natural 2-functor

h0 : (dg-schemes) −→ (algebraic spaces)

from the 2-category of differential graded schemes to the 1-category of algebraic
spaces over k, which satisfies the following properties:

(i) For every perfect resolving algebra B we have

h0(SpecB) = Spech0(B) ,

(ii) étale morphisms get mapped to étale morphisms,
(iii) any 2-cartesian diagram in which the two vertical morphisms are étale

is mapped to a 1-cartesian diagram (with two vertical étale morphisms),
(iv) any affine étale cover gets mapped to an affine étale cover.
Moreover, for every differential graded scheme X, the algebraic space h0(X)

is locally of finite type over k and has affine diagonal.

Definition 4.32 We call h0(X) the algebraic space associated to the differ-
ential graded scheme X, or the truncation of X.

Let X be a differential graded scheme and X its associated 1-site. Let X =
h0(X) be the associated algebraic space, which we consider as a fibered category
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over the category of finite type affine k-schemes. Thus X has an induced étale
topology. Then we can use Proposition 4.31 to construct a natural functor

h0 : X −→ X ,

which fits into a commutative diagram of categories

X

��

h0
// X

��
S

h0
// (finite type affine k-schemes)

The functor h0 : X → X is a continuous functor of categories endowed with
Grothendieck topologies. Thus sheaves on X pull back via h0 to sheaves on or is it cocontin-

tuous?X. Let us denote this pull back functor by ι∗. It has a left adjoint ι−1, which
extends h0 from representable sheaves to all sheaves:

(sheaves on X)
ι−1

// (sheaves on X)
ι∗

oo

Thus we have a morphism of topoi

ι : (sheaves on X) −→ (sheaves on X)

and a morphism of sites look up mor-
phism of sitesι : X −→ X .

This morphism of sites should be thought of as a globalization and a dualization
of the natural morphism of differential graded algebras A → h0(A). But note
that we cannot think of the algebraic space X as a differential graded scheme,
unless it has perfect cotangent complex. (See [2].)

Note that ι−1h0(OX) = OX . Because ι−1 is exact, we can pull back the
higher structure sheaves, higher tangent sheaves, and the tangent and cotangent
complex from X to X , simply by applying ι−1. All the exactness properties are
preserved under this operation. We will use the notation · ⊗OX , to denote the
functor ι−1. For example,

ΩX/Y ⊗OX = ι−1ΩX/Y .

Proposition 4.33 A morphism X→ Y of differential graded schemes if étale,
if and only if ΩX/Y is acyclic and if and only if ΩX/Y ⊗OX is acyclic. �

Proposition 4.34 There is a one-to-one correspondence between the open sub-
schemes of a differential graded scheme X and the open subspaces of the associ-
ated algebraic space X. �
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Define a closed point of the differential graded scheme X to be an equivalence
class of morphisms SpecK → X, where K is a finite extension field of k. The
equivalence relation is generated by considering SpecK → X and SpecL → X

equivalent, if there exists a 2-commutative diagram

SpecK //

%%KKKKKKKKKK
����

AI SpecL

��
X

Let |X| denote the set of all closed points of X. It is a topological space by
calling a subset open if it is the set of all closed points of an open subscheme of
X. We call |X| the Zariski topological space associated to X.

If |X | is the set of closed points of the algebraic space X associated to X,
endowed with the Zariski topology, then there is a homeomorphism |X | → |X|.

Definition 4.35 For a morphism of differential graded schemes f : X→ Y, we
call rk ΩX/Y the relative dimension of X over Y.

The relative dimension is a locally constant, integer-valued function on |X|.

Proposition 4.36 A morphism of differential graded schemes is an isomor-
phism, if and only if it is étale and induces an isomorphism on truncations.

Proof. This follows from Corollary I.2.9. �

Obstruction theory

Proposition 4.37 Let X → Y be a morphism of differential graded schemes
and X → Y its truncation. Then we have a canonical morphism in the derived
category of OX

α : ΩX/Y ⊗OX −→ LX/Y ,

where LX/Y is the relative cotangent complex of the morphism of algebraic spaces
X → Y . The morphism α is a relative obstruction theory for X over Y in the
sense of [4]. �

Let f : X→ Y be a morphism of differential graded schemes of amplitude 1
and X → Y its truncation. Let d be the relative dimension of X over Y. For
every pullback diagram of algebraic spaces

U //

��

V

��
X // Y

we get an induced relative obstruction theory ΩX/Y ⊗ OU → LU/V for U over
V , which is perfect, in the terminology of [4].
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If V is a variety, then this perfect obstruction theory defines a virtual fun-
damental class f ![V ] ∈ A∗(U). As we let V vary, we get a bivariant class
f ! ∈ Ad(X → Y ), or, in other words, an orientation of X over Y .

Proposition 4.38 Let f : X → Y and g : Y→ Z be morphisms of differential
graded schemes, both of amplitude 1. Let h : X → Z be isomorphic to the
composition g ◦ f . Then h is also of amplitude 1 and h! = g! · f !.

Proof. This is a generalization of Proposition 7.5 of [4] on compatible obstruc-
tion theories. The present result can be proved using the results of [8], which
improve on [loc. cit.]. �

In particular, any differential graded scheme X of amplitude 1 has a virtual
fundamental class [X] ∈ Ad(X), where d = dim X. If f : X → Y is a morphism
of amplitude 1 between differential graded schemes of amplitude 1, then we have
f ![Y] = [X].
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