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ON THE MOTIVE OF THE STACK OF BUNDLES

KAI BEHREND AND AJNEET DHILLON

Abstract. Let G be a split connected semisimple group over a
field. We give a conjectural formula for the motive of the stack
of G-bundles over a curve C, in terms of special values of the
motivic zeta function of C. The formula is true if C = P1 or G =
SLn. If k = C, upon applying the Poincaré or Serre characteristic,
the formula reduces to results of Teleman and Atiyah-Bott on the
gauge group. If k = Fq, upon applying the counting measure,
it reduces to the fact that the Tamagawa number of G over the
function field of C is |π1(G)|.

1. Introduction

We work over a ground field k. For a variety Y we write µ(Y ) for
its class in the K-ring of varieties, K0(Vark).

As any principal GLn-bundle (or GLn-torsor) P → X (X a va-
riety) is locally trivial in the Zariski topology, we have the formula
µ(P ) = µ(X)µ(GLn). We will use this fact to define µ(X) ∈ K̂0(Vark)
whenever X is an algebraic stack stratified by global quotients. Here
K̂0(Vark) is the dimensional completion of K0(Vark)[

1
L
], in which

µ(GLn) is invertible. In fact, if X ∼= [X/GLn] is a global quotient,
we define µ(X) = µ(X)

µ(GLn) , and generalize from there. Note that every
Deligne-Mumford stack of finite type is stratified by global quotients.

We will also introduce a variation on K̂0(Vark), namely the modified
ring K̂G

0 (Vark) obtained by imposing the extra relations (the ‘torsor
relations’)

µ(P ) = µ(X)µ(G),

whenever P → X is a G-torsor and G is a fixed connected split linear
algebraic group. One can show that all the usual characteristics factor
through this ring. In the appendix, the second author will show that
there is a ring homomorphism

K̂G
0 (Vark) → K0(DMeff

gm(k, Q)),

where DMeff
gm(k, Q) is the Q-linearization of Voevodsky’s triangulated

category of effective geometrical motives and char(k) = 0.
1
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Throughout this paper C is a smooth projective geometrically con-
nected curve over k. We fix also a split semisimple connected algebraic
group G over k. Let BunG,C denote the moduli stack of G-torsors on C.
The stack BunG,C is stratified by global quotients, and even though it

is not of finite type, its motive still converges in K̂0(Vark), because the
dimensions of the boundary strata (where the bundle becomes more
and more unstable) tend to −∞.

The purpose of this paper is to propose a conjectural formula for the
motive of BunG,C in K̂G

0 (Vark). Our formula expresses µ(BunG,C) in
terms of special values of the motivic zeta function of C. For simply
connected G, the formula reads:

µ(BunG,C) = L(g−1) dim G
r∏

i=1

Z(C, L−di) ,

where the di are the numbers one higher than the exponents of G.
If k is a finite field, we can apply the counting measure to this for-

mula. We obtain a statement equivalent to the celebrated conjecture of
Weil, to the effect that the Tamagawa number of G (as a group over the
function field of C) is equal to 1. Of course, Weil’s conjecture is much
more general, as it applies to arbitrary semisimple simply connected
groups over any global field.

The proof of the Tamagawa number conjecture in the case of a split
group induced from the ground field was completed by Harder [Har74]
by studying residues of Eisenstein series and using an idea of Langlands.
Motivic Eisenstein series have been defined in [Kap00] so it is natural
to ask if there is a proof of our conjecture along similar lines.

We consider our conjecture to be a motivic version of Weil’s Tama-
gawa number conjecture. Thus we are lead to consider

τ(G) = L(1−g) dimGµ(BunG,C)
r∏

i=1

Z(C, L−di)−1 ∈ K̂G
0 (Vark)

as the motivic Tamagawa number of G. We hope to find an interpre-
tation of τ(G) as a measure in a global motivic integration theory, to
be developed in the future.

We provide four pieces of evidence for our conjecture:
In Section 4, we prove that if k = C and we apply the Poincaré

characteristic to our conjecture, the simply connected case is true. It
follows from results on the Poincaré series of the gauge group of G and
the purity of the Hodge structure of BunG,C due to Teleman [Tel98].

In Section 5, we verify that if k = Fq, and we apply the counting
measure to our conjecture it reduces to theorems of Harder and Ono
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that assert that the Tamagawa number of G is the cardinality of the
fundamental group of G.

In Section 6, we prove our conjecture for G = SLn using the con-
struction of matrix divisors in [BGL94].

Finally, in Section 7, we prove our conjecture for C = P1, using the
explicit classification of G-torsors due to Grothendieck and Harder.

2. The Motive of an Algebraic Stack

2.1. Dimensional completion of the K-ring of varieties. Let k be
a field. The underlying abelian group of the ring K0(Vark) is generated
by the symbols µ(X), where X is the isomorphism class of a variety
over k, subject to all relations

µ(X) = µ(X \ Z) + µ(Z) if Z is closed in X .

We call µ(X) the motive of X.
Cartesian product of varieties induces a ring structure on K0(Vark).

Thus K0(Vark) becomes a commutative ring with unit. Let L denote
the class of the affine line in K0(Vark).

The ring K̂0(Vark) is obtained by taking the dimensional comple-
tion of K0(Vark). Explicitly, define F m(K0(Vark)L) to be the abelian
subgroup of

K0(Vark)L = K0(Vark)[
1
L
]

generated by symbols of the form

µ(X)

Ln

where dim X − n ≤ −m. This is a ring filtration and K̂0(Vark) is
obtained by completing K0(Vark)L with respect to this filtration.

Note that Ln − 1 is invertible in K̂0(Vark) as

1

Ln − 1
=

1

Ln
(

1

1 − 1
Ln

)

= L−n(1 + L−n + . . .).

Using the Bruhat decomposition one finds that

µ(GLn) = (Ln − 1)(Ln − L) . . . (Ln − Ln−1)

and hence that the motive of GLn is invertible in K̂0(Vark). This will
be important below. For other groups we are interested in we have:
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Proposition 2.1. Let G be a connected split semisimple group over k.
Then

µ(G) = LdimG
r∏

i=1

(1 − L−di)

in K̂0(Vark). Here r is the rank of G and the di are the numbers one
higher than the exponents of G.

Proof. We choose a Borel subgroup B of G with maximal torus T and
unipotent radical U . Since T -bundles and U -bundles over varieties are
Zariski-locally trivial, we have µ(G) = µ(G/P )µ(T )µ(U). The torus T
is a product of multiplicative groups, so µ(T ) = (L−1)r. The unipotent
group U is an iterated extension of additive groups, so µ(U) = Lu,
where u = 1

2(dim G − r) is the dimension of U . Finally, the flag variety
G/B has a cell decomposition coming from the Bruhat decomposition,
and we have µ(G/B) =

∑
w∈W L!(w), where W is the Weyl group and

"(w) the length of a Weyl group element. We have

(L − 1)r
∑

w∈W

L!(w) =
r∏

i=1

(Ldi − 1) ,

by Page 150 of [Kan00] or Page 155 of [Car72], and hence

µ(G) = Lu
r∏

i=1

(Ldi − 1) = Ldim G
r∏

i=1

(1 − L−di) ,

since u +
∑r

i=1 di = dim G, by Solomon’s theorem, see Page 320
of [Kan00]. !

2.2. The motive of an algebraic stack. All our algebraic stacks will
be Artin stacks, locally of finite type, all of whose geometric stabilizers
are linear algebraic groups. We will simply refer to such algebraic
stacks as stacks with linear stabilizers.

By a result of Kresch (Proposition 3.5.9 in [Kre99]), every stack with
linear stabilizers admits a stratification by locally closed substacks all
of which are quotients of a variety by GLn, for various n. Note that
unless the stack X is of finite type, there is no reason why such a
stratification should be finite.

Let us remark that for any stack Z, the reduced substack Zred ⊂ Z
is locally closed, so that X and Xred have the same stratifications by
locally closed reduced substacks.

Definition 2.2. We call a stack X with linear stabilizers essentially
of finite type, if it admits a countable stratification X =

⋃
Zi, where

each Zi is of finite type and dim Zi → −∞ as i → ∞.
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Every stack with linear stabilizers which is essentially of finite type
admits countable stratifications X =

⋃
Zi, where

lim
i→∞

dim Zi = −∞

and every Zi is a global quotient of a k-variety Xi by a suitable GLni
.

We call such stratifications standard.
Let

X =
∞⋃

i=0

[Xi/GLni
]

be a standard stratification of the essentially of finite type stack X.
Define

µ(X) =
∞∑

i=0

µ(Xi)

µ(GLni
)
.

Note that the infinite sum converges in K̂0(Vark), by our assumptions.
The next lemma implies that our definition of µ(X), the motive of

the stack X, does not depend on the choice of a standard stratification
of X.

Lemma 2.3. Let X ∼= [X/GLn] be a global quotient stack, where X
is a variety. Let X =

⋃N
i=1 Zi be a stratification of X by locally closed

substacks Zi, which are, in turn, global quotient stacks Zi
∼= [Xi/GLni

].
Then

µ(X)

µ(GLn)
=

N∑

i=1

µ(Xi)

µ(GLni
)

in K̂0(Vark).

Proof. Let Zi be the preimage of Zi ⊂ X in X under the structure
morphism X → X. Then Zi

∼= [Zi/GLn] and Zi
∼= [Xi/GLni

]. Define
Yi as the fibered product

Yi
!!

""

Zi

""

Xi
!! Zi

Then Yi → Xi is a principal GLn-bundle and Yi → Zi is a principal
GLni

-bundle. Since GLn-bundles are always Zariski-locally trivial, we
conclude that µ(Yi) = µ(Xi)µ(GLn) and µ(Yi) = µ(Zi)µ(GLni

). Thus
we have

µ(X)

µ(GLn)
=

N∑

i=1

µ(Zi)

µ(GLn)
=

N∑

i=1

µ(Xi)

µ(GLni
)

as required. !
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According [Kre99, Proposition 3.5.5] the class of algebraic stacks X
for which µ(X) makes sense includes all Deligne-Mumford stacks of
finite type.

2.3. The torsor relations. An essential ingredient in the definition of
the motive of a stack with linear stabilizers was the fact that every GLn-
principal bundle over a variety is Zariski locally trivial. This implies
that if P → X is a principal GLn-bundle, then

(1) µ(P ) = µ(X)µ(GLn) ,

even if X is a stack (where GLn-bundles are not necessarily Zariski
locally trivial any longer).

In Section 7, we will need (1) to hold for more general groups than
GLn. This is why we make the following definition.

Definition 2.4. Fix an algebraic group G. We define K̂G
0 (Vark) to be

the quotient of the ring K̂0(Vark) by the ideal generated by all elements

µ(P ) − µ(X)µ(G)

where X is a k-variety, and P → X is a G-torsor.

Lemma 2.5. Let X be an essentially of finite type stack with linear
stabilizers and P → X a G-torsor. Then P is also essentially of finite
type with linear stabilizers and we have

µ(P ) = µ(X)µ(G)

in K̂G
0 (Vark).

Example 2.6. Let G be a connected split semisimple group over k. Then
we have

µ(BG) = L− dimG
r∏

i=1

(1 − L−di)−1

in K̂G
0 (Vark). Indeed,the torsor relation for G (or Lemma 2.5) implies

that we have µ(BG) = µ(G)−1. Now apply Proposition 2.1.

Remark 2.7. Introducing the torsor relation µ(P ) = µ(X)µ(G) for
disconnected G kills K̂0(Vark). For example, consider the µ2-torsor
Gm → Gm. If char k (= 2, µ2

∼= Z/2 and the torsor relation would
imply L − 1 = 2(L − 1) and hence 1 = 2, as L − 1 is invertible.

Remark 2.8. For connected G, the ring K̂G
0 (Vark) is non-trivial. For

example, the "-adic Hodge-Poincaré characteristic (called the Serre
characteristic by some authors), factors through K̂G

0 (Vark). This fol-
lows from the fact that a connected group cannot act non-trivially on
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its own "-adic cohomology. By the same token, the singular Hodge-
Poincaré characteristic (in case k = C) and the counting measure (in
case k = Fq) also factor through K̂G

0 (Vark).

Remark 2.9. The second named author of this paper proves in the ap-
pendix that the torsor relation (for split and connected linear algebraic
groups) holds in Voevodsky’s category of effective geometrical motives.

Remark 2.10. Recall that an algebraic group G over k is called special,
if all its torsors over k-varieties are Zariski-locally trivial. For special
groups G, we have K̂G

0 (Vark) = K̂0(Vark). Special groups include SLn

and the symplectic groups Sp2n.
One may ask to what extent K̂G

0 (Vark) differs from K̂0(Vark), for
various groups G.

3. The Main Conjecture

Let G be a split connected semisimple algebraic group over k. We
denote by d1, d2, . . . , dr, where r is the rank of G, the numbers one
higher than the exponents G. It will be important below that di ≥ 2.
Let W be the Weyl group of G and X(T ) the character group of a
maximal torus T of G. Then W acts on the symmetric algebra of
X(T ). The di are characterized by the fact that the ring of invariants
has generators in degrees di, see [Che55].

Let C be a smooth projective geometrically connected algebraic
curve over k, of genus g. Denote by C(n) the nth symmetric power
of C. Recall that the motivic zeta function of C is the power series

Z(C, u) =
∞∑

n=0

µ(C(n))un ∈ K̂0(Vark)[[u]] .

It is known that this function is in fact rational in u, see [Kap00] and
[LL, §3]. The denominator is

(1 − u)(1 − Lu)

and hence evaluating the zeta function at u = L−n makes sense when
n ≥ 2.

We denote by BunG,C the moduli stack of G-torsors over C. The
motive of BunG,C is defined by the following lemma.

Lemma 3.1. The stack BunG,C is essentially of finite type with linear
stabilizers.

Proof. See [Beh] or [BD05] for full details. For foundational results on
the canonical parabolic the reader is referred to [Beh95]. The automor-
phism group scheme of a G-bundle E is equal to the scheme of global
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sections Γ(C, AutG), where Aut(G) is the group scheme over X of au-
tomorphisms of E. Since Aut(G) an affine over C and C is projective,
Γ(C, AutG) is affine, hence linear. Thus BunG,C has linear stabilizers.

Choose a Borel subgroup B of G and call parabolic subgroups of G
containing B standard. Then every G-torsor E over C has a canoni-
cal reduction of structure group F to a uniquely determined standard
parabolic P ⊂ G. Thus E = F ×P G. The degree of (the Lie algebra
of) the group scheme Aut(F ) = F P = F ×P,ad P is called the degree of
instability of E. It is a non-negative integer (and 0 if and only if E is
semi-stable). Note that we allow G itself to be a parabolic subgroup
in this context.

For every m ≥ 0, the substack Bun≤m ⊂ BunG,C of torsors of degree
of instability less than or equal to m is open in BunG,C and of finite
type. The substack Bunm of torsors of degree of instability equal to m
is locally closed in BunG,C and of dimension dim P (g − 1) − m, which
is certainly less than or equal to dim G(g− 1)−m, so tends to −∞, as
m goes to ∞. !

We now come to our main conjecture.

Conjecture 3.2. If G is simply connected, we have

µ(BunG,C) = L(g−1) dim G
r∏

i=1

Z(C, L−di)

in K̂G
0 (Vark).

Remark 3.3. The conjecture makes sense inside the ring K̂0(Vark), but
we dare not conjecture its truth in the absence of the torsor relations
for G. The proof in the case of C = P1 uses the torsor relations in
an essential way, as we use the formula µ(BP )µ(G) = µ(G/P ), for all
parabolic subgroups P of G. But note that this requires the torsor
relations only for the group G and no others.

Note also, how the formula in Example 2.6 can be thought of as an
analogue of our conjecture for C replaced by Speck. Example 2.6 also
relies on the torsor relation for G.

We can generalize the conjecture to arbitrary split connected
semisimple G:

Conjecture 3.4. We have

µ(BunG,C) = |π1(G)|L(g−1) dimG
r∏

i=1

Z(C, L−di)

in K̂G
0 (Vark).
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Heuristically, the general case follows from the simply connected case
because we expect BunG,C to have |π1(G)| connected components, all

with motive equal to the motive of Bun
G̃,C

, where G̃ is the universal
covering group of G.

The rest of this paper is devoted to providing evidence for our con-
jecture.

4. Evidence from Gauge Field Theory

In this section, k = C. Denote by

χc : K̂0(VarC) → Z((t−1))

the Poincaré characteristic. We will check that Conjecture 3.2 holds
after applying χc to both sides.

For a smooth C-variety X of dimension n, we have

χc(µ(X)) =
∑

i,j

(−1)j dim W iHj
c (X, C)ti

= t2n
∑

i,j

(−1)j dim W iHj(X, C)t−i

= t2nPw(X, t−1) ,

by Poincaré duality, where Pw(X, t) is the Poincaré polynomial of X
using weights.

The cohomology of a finite type C-stack is endowed with a mixed
Hodge structure. It is constructed via simplicial resolutions of the
stack. Because every C-stack X, which is essentially of finite type
with linear stabilizers, can be exhausted by finite type open substacks,
the cohomology Hn(X, C) of X also carries a mixed Hodge structure
(for every n, the space Hn(X, C) is equal to the n-th cohomology of
a sufficiently large finite type open substack of X). Thus, X has a
Poincaré series

Pw(X, t) =
∑

i,j

(−1)j dim W iHj(X, C)ti .

Lemma 4.1. For every essentially of finite type C-stack with linear
stabilizers X which is smooth, we have

χc(µ(X)) = t2 dim XPw(X, t−1) .

Proof. If X = [X/GLn] is a global quotient, the formula holds by the
Leray spectral sequence for the projection X → X.

Suppose X is smooth of finite type and Z a smooth closed substack.
Then Pw(X, t) = Pw(X− Z, t) + t2 codim(Z,X)Pw(Z, t). This follows easily
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from the scheme case by using a simplicial resolution X• of X and the
fact that Pw(X, t) =

∑
j(−1)jPw(Xj , t)tj.

Putting these two remarks together, we get the lemma in the finite
type case. For the general case, we choose a stratification X =

⋃∞
i=0 Zi,

such that every Xn =
⋃n

i=0 Zi is a finite type open substack of X and
limi→∞ dim Zi = −∞. Then we have

χc(µ(X)) = χc( lim
n→∞

µ(Xn))

= lim
n→∞

χc(µ(Xn))

= t2 dimX lim
n→∞

Pw(Xn, t
−1)

= t2 dimXPw(X, t−1) ,

where the last equality follows from the fact that for fixed p, the coho-
mology group Hp(Xn, Q) stabilizes, as n → ∞. !

From [Mac62] we have that

χc(Z(C, u)) =
(1 + ut)2g

(1 − u)(1 − ut2)
.

So because BunG,C is smooth of dimension dim G(g−1), our conjecture
for the simply connected case becomes

(2) Pw(BunG,C , t) =
r∏

i=1

(1 + t2di−1)2g

(1 − t2di)(1 − t2(di−1))
.

upon applying χc to both sides.
The Hodge structure on the cohomology of BunG,C has been com-

puted by Teleman [Tel98]. In fact, Teleman shows (Proposition (4.4) of
[ibid.]) that the Hodge structure on H∗(BunG,C) is pure, i.e., that the
Poincaré series Pw using weights is equal to the Poincaré series P using
Betti numbers. Thus we are reduced to computing Betti numbers of
BunG,C. Atiyah and Bott [AB82] show that

H∗(BunG,C) ∼= H∗(G)⊗2g ⊗ H∗(BG) ⊗ H∗(ΩG) .

It is well known, see for example [Bor53], that we have the following
formulas for Poincaré series:

P (G, t) =
r∏

i=1

(1 + t2di−1)

P (BG, t) =
r∏

i=1

1

1 − t2di
.
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For the loop group ΩG we have, see [Bot56] or [GR75],

P (ΩG, t) =
r∏

i=1

1

1 − t2(di−1)
.

This proves the desired formula (2).

Remark 4.2. With no extra effort we can generalize the results of this
section to the Hodge-Poincaré or Serre characteristic. Recall that the
Serre characteristic s(X; u, v) of a C-variety X is defined as

s(X; u, v) =
∑

i,p,q

(−1)ihp,qH i(X, C)upvq

The Serre characteristic is also well-defined for elements of K̂0(VarC)
and for essentially of finite type C-stacks. If we apply the Serre char-
acteristic to our conjecture (in the simply connected case) we obtain

(3) s(BunG,C ; u, v) =
r∏

i=1

(1 + udivdi−1)g(1 + udi−1vdi)g

(1 − udivdi)(1 − udi−1vdi−1)

This is exactly what Teleman proves in Proposition (4.4) of [Tel98].

5. Evidence from Automorphic Forms

In this section k = Fq. The counting measure # : K0(VarFq) → Z
extends to a ring morphism

# : K0(VarFq)[L
−1] −→ Q ,

but this extension is not continuous, so there is no natural extension
of # to K̂0(VarFq) with values in R. Still, we can make sense of # on
a certain subring of convergent motives.

Choose a an embedding Q! ↪→ C. We have the compactly supported
Frobenius characteristic

Fc : K̂0(VarFq) −→ C((t−1)) ,

which is characterized by

Fc(µX, t) =
∑

i,j

(−1)j tr Fq|W
iHj

c (X, Q!)t
i ,

for varieties X over Fq. Here Hj
c (X, Q!) is the "-adic étale cohomology

with compact supports of the lift X of X to the algebraic closure of
Fq. The (geometric) Frobenius acting on "-adic cohomology is denoted
by Fq.
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Definition 5.1. We call an element x ∈ K̂0(VarFq) with compactly
supported Frobenius characteristic Fc(x, t) =

∑
n ant−n convergent if

the series
∑

n an converges absolutely in C. If this is the case, we call
the sum

∑
n an the counting measure of x, notation #(x).

The convergent elements form a subring K̂0(VarFq)conv of K̂0(VarFq),
and we have a well-defined counting measure

# : K̂0(VarFq)conv −→ C ,

which is a ring morphism. Note that # is not continuous. For example,
the sequence qn/Ln converges to zero in K̂0(VarFq), but its counting
measure converges to 1.

Lemma 5.2. Every finite type Fq-stack with linear stabilizers X has
convergent motive µ(X). Moreover, #(µX) is equal to #X(Fq), the
number of rational points of X over Fq, counted in the stacky sense,
i.e., we count isomorphism classes of the category X(Fq), weighted by
the reciprocal of the number of automorphisms.

Proof. This lemma reduces to the Lefschetz trace formula for Fq on the
compactly supported cohomology of an Fq-variety. The reduction uses
the simple fact that #[X/GLn](Fq) = #X(Fq)/#GLn(Fq). !

Because of the non-continuity of the counting measure, this lemma
does not generalize to all essentially finite type stacks over Fq. But we
do have a result for certain smooth stacks:

Lemma 5.3. Let X be a smooth stack with linear stabilizers over Fq.
Suppose that X has a stratification X = ∪∞

i=0Zi by smooth substacks
Zi, such that for every n the stack Xn = ∪n

i=0Zi is an open substack of
finite type and

∞∑

n=0

q− codim(Zn,X)
∑

i,j

dim W iHj(Zn, Q!)q
−i/2 < ∞ .

Then X is essentially of finite type, its motive µX is convergent and
#(µX) = #X(Fq).

Proof. Let us emphasize that we assume that for every i, the substack
Zi is non-empty and its codimension inside X is constant. Let us denote
this codimension by ci.

Let us also remark that our assumptions imply that X is essentially
of finite type and that limn→∞ cn = ∞. We may also assume, without
loss of generality, that the dimension of X is constant.

First, we will prove that the trace of the arithmetic Frobenius on the
"-adic cohomology of X converges absolutely to q−dim X#X(Fq).
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There is a spectral sequence of finite dimensional Q!-vector spaces

Epq
1 = Hp+q−2cp(Zp, Q!(−cp)) =⇒ Hp+q(X, Q!) .

Even though this is not a first quadrant spectral sequence, we do have
that for every n there are only finitely many (p, q) with p + q = n and
Epq

1 (= 0, so this spectral sequence does converge.
Our assumption on X implies that the arithmetic Frobenius Φq acting

on E1 has absolutely convergent trace. Thus we get the same result
for this trace, no matter in which order we perform the summation.
Thus, using the trace formula for the arithmetic Frobenius on finite
type smooth stacks with linear stabilizers (see [Beh93]) we have

#X(Fq) =
∞∑

p=0

#Zp(Fq)

=
∞∑

p=0

qdimZp tr Φq|H
∗(Zp, Q!)

= qdim X
∞∑

p=0

tr Φq|H
∗(Zp, Q!(−cp))

= qdim X tr Φq|H
∗(X, Q!)

In particular, we see that #X(Fq) is finite.
Next we will examine the motive of X. Note that for smooth stacks

of finite type Y, we have

Fc(µY, t) = (qt2)dim YΦ(Y, t−1)

where Φ is the Frobenius characteristic defined using the arithmetic
Frobenius acting on cohomology without compact supports:

Φ(Y, t) =
∑

i,j

(−1)j tr Φq|W
iHj(Y, Q!)t

i .

This is essentially Poincaré duality for smooth varieties. Thus we have

Fc(µX, t) = lim
n→∞

Fc(µXn, t)

= (qt2)dimX lim
n→∞

Φ(Xn, t−1)

= (qt2)dimXΦ(X, t−1) .

So to prove that µX is convergent, we need to prove that
∑

i

∣∣∣
∑

j

(−1)j tr Φq|W
iHj(X, Q!)

∣∣∣ < ∞ .
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But our spectral sequence implies that
∑

dim W iHj(X, Q!)q
−i/2 < ∞ ,

which is a stronger statement. So we see that µX is, indeed, convergent
and its counting measure takes the value

#(µX) = qdimX tr Φq|H
∗(X, Q!) .

This we have seen above to be equal to #X(Fq). !

We say that a morphism of stacks Z → Z̃ is a universal homeomor-
phism if it is representable, finite, surjective and radical.

Lemma 5.4. Lemma 5.3 is still valid if we only assume the morphisms
Zi → X to be universal homeomorphisms onto their image.

Proof. Let Z → X be a morphism of finite type smooth schemes which
factors as Z → Z̃ → X, where π : Z → Z̃ is a universal homeomor-
phism and i : Z̃ → X a closed immersion with complement U . We
have a long exact sequence

. . . → H∗(Z̃, i!Q!) → H∗(X, Q!) → H∗(U, Q!) → . . .

Let c = dim X − dim Z. We have

H∗−2c(Z, Q!(−c)) = H∗(Z, π!i!Q!)

because Z and X are smooth. Now pulling back via π induces an
isomorphism of étale sites (see [Gro61, Expose IX,4.10]). As π∗ is the
right adjoint of π∗, it is the inverse of π∗ and hence also a left adjoint
of π∗. Since π is proper, we conclude that π! = π∗. Thus, we have

H∗(Z, π!i!Q!) = H∗(Z, π∗i!Q!) = H∗(Z̃, i!Q!) ,

Thus we have a natural long exact sequence

. . . → H∗−2c(Z, Q!(−c)) → H∗(X, Q!) → H∗(U, Q!) → . . .

This result extends to stacks and filtrations of schemes and stacks con-
sisting of more than two pieces. !

Lemma 5.5. The motive of BunG,C is convergent. Moreover,
#µ(BunG,C) = #BunG,C(Fq).

Proof. The hypotheses of Lemma 5.3, or rather its generalization 5.4,
are satisfied by the stack BunG,C . We may consider the strata BunP,m

G,C,
which contain the bundles E which canonically reduce to the standard
parabolic P of G and whose degree of instability is equal to m, see
[Beh95]. These strata are not known to be smooth, but the canonical
morphism Bunss,m

P,C → BunP,m
G,C is a universal homeomorphism. Here
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Bunss,m
P,C is the open substack of BunP,C consisting of semi-stable bun-

dles of positive (multi-)degree, giving rise to degree of instability m
when extending the group to G.

If H is the quotient of P by its unipotent radical, the induced mor-
phism Bunss,m

P,C → Bunss,m
H,C induces an isomorphism on "-adic cohomol-

ogy, because it is an iterated torsor for vector bundle stacks.
This leaves us with proving the convergence of

∑

P

∞∑

m=1

q−m+(1−g) dim RuP
∑

i,j

dim W iHj(Bun
ss,m

H,C , Q!)q
−i/2 .

This is not difficult to do using the fact that for fixed H , all Bunss,m
H,C

are isomorphic to a finite set among them. !

By this lemma, both sides of our conjectured formula are in the
subring K̂0(VarFq)conv. We can thus apply the counting measure # to
our conjecture. Doing this we obtain:

(4) #BunG,C(Fq) = |π1(G)|q(g−1) dim G
r∏

i=1

ζK(di)

Here ζK(s) is the usual zeta function of the function field K of the curve
C over Fq. It is obtained from the motivic zeta function Z(C, u) of the
curve C by applying the counting measure and making the substitution
u = q−s.

Formula (4) is classical, at least in the simply connected case. Let
us recall how it is proved. We consider the adèle ring AK of the global
field K and notice that the groupoid BunG,C(Fq) is equivalent to the
transformation groupoid of the action of G(K) on G(AK)/K, where
K =

∏
P∈C G(ÔC,P ) is the canonical maximal compact subgroup of

G(AK).
The transformation groupoid of the G(K)-action on G(AK)/K

is equivalent to the transformation groupoid of the K-action on
G(K)\G(AK). The groupoid number of points of the latter trans-
formation groupoid can be calculated as

(5)
vol(G(K)\G(AK))

volK
,

where vol denotes any Haar measure on the locally compact group
G(AK). This is a simple measure theoretic argument using σ-additivity.

There is a standard normalization of the Haar measure on G(AK)
known as the Tamagawa measure. With respect to this measure the
numerator of (5) is known as the Tamagawa number of G, notation
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τ(G). We conclude that

#BunG,C(Fq) = τ(G)vol(K)−1 .

The volume of the maximal compact K with respect to the Tamagawa
measure is easily calculated. We get

vol(K) = q(1−g) dimG
r∏

i=1

ζK(di)
−1 ,

see [BD05], and thus

#BunG,C(Fq) = τ(G)q(g−1) dim G
r∏

i=1

ζK(di) .

Comparing this with our conjecture (4) we see that the conjecture
becomes equivalent to

(6) τ(G) = |π1(G)| .

In the simply connected case, the fact τ(G) = 1 was proved by Harder
[Har74]. The results of [Ono65] remain true in the function field case
(see [BD05]) and from these it follows that the Tamagawa number of
a general connected split semisimple group G is equal to |π1(G)|.

6. The Case of Sln

In the section we prove our conjecture in the case where the group
is G = SLn. Recall that the exponents of SLn are 2, 3, . . . , n. Thus our
conjecture states that

µ(BunSLn,C) = L(n2−1)(g−1)
n∏

i=2

Z(C, L−i) .

To calculate the motive of BunSLn
, note that the inclusion SLn ↪→

GLn defines a morphism of stacks BunSLn,C → BunGLn,C, whose image
is a smooth closed substack Bundet of BunGLn

. Moreover, BunSLn
is a

Gm-bundle over Bundet. Thus we have

µ(BunSLn
) = (L − 1)µ(Bundet) .

We can interpret Bundet is the stack of vector bundles over C with
trivial determinant.

We will use the construction of matrix divisors in [BGL94]. Let D
be an effective divisor on C. We denote by Div(D) the Quot scheme
parameterizing subsheaves

E ↪→ OC(D)n ,
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where E is a locally free sheaf of rank n and degree 0 on C. The scheme
Div(D) is smooth and proper of dimension n2 deg D.

Let Divdet(D) ⊂ Div(D) by the closed subscheme defined by requir-
ing the determinant of E to be trivial. This is a smooth subscheme of
codimension g. (See [Dhied] for the proof of this.)

Now let us fix, for the moment, an integer m ≥ 0 and consider the
finite type open substack Bun≤m

det , of bundles whose degree of instability
is at most m. Let D be an effective divisor of sufficiently high degree,
such that H1(E,O(D)n) = 0, for all bundles E in Bun≤m

det . Then the
vector spaces Hom(E,O(D)n), for E ∈ Bun≤m

det , are the fibres of a
vector bundle W≤m(D) over Bun≤m

det . The rank of this vector bundle
is n2(deg D + 1 − g).

Let W≤m
0 (D) ⊂ W≤m(D) be the open locus of injective maps E →

O(D)n. Note that

W≤m
0 (D) = Div≤m

det (D)

is the open subvariety of Divdet(D) parameterizing subsheaves E ⊂
O(D)n of degree of instability at most m.

W≤m(D)

vector bundle ##!
!

!
!

!
!

!
!

!
!

W≤m
0 (D)!

"$$

""

Div≤m
det (D) #

$
!!

%%""
"
"
"
"
""

"
"

Divdet(D)

%%""""""""""""

Bun≤m
det

#
$

!! Bundet

Lemma 6.1. Let E and F be vector bundles of equal rank on C. Let
D be an effective divisor on C such that H1(E, F (D)) vanishes. Then
the locus of the non-injective maps inside Hom(E, F ) has codimension
at least deg D.

Proof. This is proved in Lemma 8.2 of [BGL94]. !

This lemma implies that

lim
deg D→∞

µ(W≤m
0 )

Ln2(deg D+1−g)
= lim

deg D→∞

µ(W≤m)

Ln2(deg D+1−g)
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inside K̂0(Vark). Thus we have

µ(Bundet) = lim
m→∞

µ(Bun≤m
det )

= lim
m→∞

lim
deg D→∞

µ(W≤m(D))

Ln2(deg D+1−g)

= lim
m→∞

lim
deg D→∞

µ(Div≤m
det (D))

Ln2(deg D+1−g)

= lim
deg D→∞

lim
m→∞

µ(Div≤m
det (D))

Ln2(deg D+1−g)

= lim
deg D→∞

µ(Divdet(D))

Ln2(deg D+1−g)
.

Therefore, the conjecture translates into

lim
deg D→∞

µ(Divdet(D))

Ln2(deg D+1−g)
=

L(n2−1)(g−1)

L − 1

n∏

i=2

Z(C, L−i)

or, in other words,

(7) lim
deg D→∞

µ(Divdet(D))

Ln2(deg D+1−g)

=
L(n2−1)(g−1)

L − 1

∑

m=(m2,...,mn)

µ(C(m))L−
∑n

i=2
imi .

Here the sum ranges over all (n − 1)-tuples of non-negative integers
and we use the abbreviation C(m) = C(m2) × . . . × C(mn).

It remains to calculate the motive of Divdet(D). This we will do by
using the stratification induced by a suitable Gm-action via the results
of Bia&lynick-Birula [BB73]. Note that we can neglect strata whose
codimension goes to infinity, as deg D goes to infinity.

Consider the action of the torus Gn
m on Div(D) induced by the canon-

ical action on the vector bundle OC(D)n. It restricts to an action of
Gn

m on Divdet(D).
The fixed points of Gn

m on Div(D) correspond to inclusions of the
form ⊕n

i=1 OC(D − Ei) ↪→ OC(D)n ,

where E1, . . . , En are effective divisors with
∑

deg Ei = n deg D (see
[BGL94]). Thus, the components of the fixed locus in Div(D) are
indexed by ordered partitions m′ = (m1, . . . , mn) of n deg D and the
component indexed by m′ is isomorphic to

C(m′) = C(m1) × . . . × C(mn) .
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The intersection of the fixed component C(m′) with the subvariety
Divdet(D) is given by the condition that

∑
Ei be linearly equivalent to

nD. Thus, if m1 > 2g−2, this intersection is a projective space bundle
with fibre Pm1−g over C(m), where m = (m2, . . . , mn). So the motive
of the fixed component of Divdet(D) indexed by m′ is given by

Lm1−g+1 − 1

L − 1
µ(C(m)) .

We will see below, that we can neglect the fixed components indexed
by m′ with m1 ≤ 2g − 2.

Now, consider the Gm-action induced by the one-parameter subgroup
Gm → Gn

m given by

t .−→ (tλ1 , . . . , tλn) ,

where (λ1, . . . ,λn) is any strictly increasing sequence of integers λ1 <
. . . < λn. The fixed locus of Gm on Div(D) is then the same as that of
the whole torus Gn

m. We will study the strata

X+
m

′ = {x ∈ Div(D) | lim
t→0

tx ∈ C(m′)} .

and

Y +
m

′ = {x ∈ Divdet(D) | lim
t→0

tx ∈ C(m′) ∩ Divdet(D)} .

There is a morphism X+
m

′ → C(m′) making X+
m

′ into a Zariski locally
trivial affine space bundle over C(m′), see [BB73]. The rank of this
fibration is the same as the rank of the subbundle N+ of N on which
Gm acts with positive weights. Here N is the normal bundle of C(m′)

inside Div(D).
The tangent space inside Div(D) to the fixed point P given by

(E1, . . . , En) ∈ C(m′) is equal to
⊕

i,j Hom(OC(D − Ei),OEj
) and the

torus Gn
m acts on the summand Hom(OC(D − Ei),OEj

) through the
character χi − χj , where χi is given by the i-th projection χi : Gn

m →
Gm. Thus we see that the fibre of N+ over P is

N+
P =

⊕
i>j Hom(OC(D − Ei),OEj

) ,

and so the rank of N+ is equal to
∑n

i=1(n − i)mi.
If P is in the subvariety Divdet(D), the tangent space to P inside

Divdet(D) is the kernel of the diagonal part of the boundary map
⊕

i,j Hom(OC(D − Ei),OEj
) −→

⊕
i,j H1(C,OC(Ei − Ej))

coming from the universal exact sequence

0 −→
⊕n

i=1 OC(D − Ei) −→ OC(D)n −→
⊕n

i=1 OEi
−→ 0 .
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(This is proved in [Dhied].) It follows that the rank of the fibration

Y +
m

′ −→ C(m′) ∩ Divdet(D)

is equal to
∑n

i=1(n − i)mi as well.
Now we see that the biggest stratum corresponds to an index m′

where m1 attains the maximal value n deg D. The dimension of all
strata coming from Xm

′ or Ym
′ with m1 ≤ 2g − 2 is therefore bounded

from above by

dim C(m′) + (n − 1)(2g − 2) + (n − 2)(n deg D − (2g − 2))

= n(n − 1) deg D + 2g − 2 .

Hence their codimension inside Divdet(D) is bounded from below by

n2 deg D − g − n(n − 1) deg D − (2g − 2) = n deg D − 3g + 2

which, indeed, goes to infinity with deg D. We conclude that, up to
terms we are going to neglect, we have

µ(Divdet(D)) ≈
∑

m
′

Lm1−g+1 − 1

L − 1
µ(C(m))L

∑m
i=1

(n−i)mi ,

the sum ranging over all m′ = (m1, . . . , mn) with
∑n

i=1 mi = n deg D.
We can rewrite this as

µ(Divdet(D))

Ln2(deg D+1−g)

≈
∑

m

L−
∑n

i=2
mi − L−n deg D+g−1

L − 1
µ(C(m))L(n2−1)(g−1)+

∑n
i=2

(1−i)mi

where the sum ranges over all m = (m2, . . . , mn) with
∑n

i=2 mi ≤
n deg D − 2g + 2.

As deg D goes to infinity this becomes an equality, in fact, Equa-
tion (7), which we set out to prove.

7. The Case of P1

In this section we use the Grothendieck-Harder classification of tor-
sors on P1 to prove the conjecture in the special case that C = P1.

We fix a split maximal torus T inside G and let W be the Weyl
group. Let X∗(T ) (resp. X∗(T )) be the character (resp. cocharacter)
lattice. We have the root system Φ ⊂ X∗(T ) and its dual Φ∨ ⊂ X∗(T ).

We also choose a Borel subgroup B containing T . It determines bases
∆ of Φ and ∆∨ of Φ∨. Denote by X∗(T )dom the dominant cocharacters
with respect to B. Recall that λ ∈ X∗(T ) is dominant if and only
if (λ,α) ≥ 0, for all α ∈ ∆. The set X∗(T )dom is partially ordered:
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λ1 ≤ λ2 if and only if λ2 − λ1 is a positive integral linear combination
of elements of ∆∨.

For a dominant cocharacter λ ∈ X∗(T )dom, denote by

Eλ = O(1) ×Gm,λ G

the G-bundle associated to the Gm-bundle O(1) via the homomorphism
λ : Gm → G. (Think of the line bundle O(1) as a Gm-bundle.)

Proposition 7.1. Every G-bundle over P1
K, for a field K/k, becomes

isomorphic to Eλ, for a unique λ ∈ X∗(T )dom, after lifting it to the
algebraic closure of K.

Proof. This result is obtained by combining the Grothendieck-Harder
classification of Zariski-locally trivial G-torsors by X∗(T )dom with the
theorem of Steinberg, to the effect that on P1 over an algebraically
closed field, all G-torsors are Zariski-locally trivial. See also Theo-
rem 4.2 and Proposition 4.3 of [Ram83]. !

By Proposition 7.1, the bundles Eλ, for λ ∈ X∗(T )dom, give a com-
plete set of representatives for the points of the stack BunG,P1. Hence
every point of BunG,P1 is k-rational and its residual gerbe is trivial,
equal to B Aut Eλ.

Recall that for X, a locally of finite type algebraic stack over k with
set of points |X|, there is a topology on |X|, the Zariski topology, such
that open substacks of X are in bijection to open subsets of |X|.

Let us identify |BunG,P1| with X∗(T )dom.

Proposition 7.2 (Ramanathan). Let λ ∈ X∗(T )dom. Then the set
of all µ ∈ X∗(T )dom with µ ≤ λ is open in the Zariski topology on
|BunG,P1|.

Proof. This is the content of Theorem 7.4 in [Ram83]. !

It follows from this that the substack of BunG,P1 of torsors isomorphic
to Eλ is locally closed. Moreover, this substack is necessarily equal to
the substack B Aut Eλ, because a monomorphism of reduced algebraic
stacks which is surjective on points is an isomorphism. Thus we have
that

BunG,P1 =
⋃

λ∈X∗(T )dom

B AutEλ

is a stratification of BunG,P1.
To calculate the motive of B Aut Eλ, fix the dominant cocharacter

λ. Denote by P the parabolic subgroup of G defined by λ and by U its
unipotent radical. The group P is generated by T and all root groups
Uα, α ∈ Φ, such that (λ,α) ≥ 0. The group U is generated by the Uα
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with (λ,α) > 0. We will also use the Levi subgroup H ⊂ P . Note that
P = H ! U .

Via λ : Gm → G the multiplicative group acts by conjugation on G,
P and U . We can use this action to twist G, P and U by the Gm-torsor
O(1). We denote the associated twisted groups by Gλ, Pλ and Uλ. For
example, Gλ = O(1) ×Gm,λ,Ad G.

Proposition 7.3. We have Aut Eλ = H ! Γ(P1, Uλ).

Proof. We have Aut Eλ = Γ(P1, Gλ) = Γ(P1, Pλ) = H ! Γ(P1, Uλ). For
more details, see [Ram83], Proposition 5.2. !

Note that for a semidirect product of linear algebraic groups N , H
we have µB(H ! N) = µ(BH)µ(BN). Thus, we may calculate

µ(B Aut Eλ) = µB
(
H ! Γ(P1, Uλ)

)

= µ(BH)µ
(
BΓ(P1, Uλ)

)

=
µ(BP )

µ(BU)
µ
(
BΓ(P1, Uλ)

)

= µ(BP )
µ(U)

µΓ(P1, Uλ)

=
µ(G/P )

µG

µ(U)

µΓ(P1, Uλ)

In the last equation we used the torsor relation for G, i.e., Lemma 2.5.
Now let u be the Lie algebra of U . We have u =

⊕
(λ,α)>0 uα, where

uα is the Lie algebra of Uα. Since T acts on each uα, we obtain line
bundles

(uα)λ = O(1) ×Gm,λ uα .

Note that the degree of (uα)λ is equal to (λ,α). The group scheme Uλ
over P1 is a successive extension of the (uα)λ, and therefore we have

µΓ(P1, Uλ) =
∏

(λ,α)>0

L(λ,α)+1 ,

by Riemann-Roch and hence

µ(U)

µΓ(P1, Uλ)
= L−(λ,2ρ) ,

where ρ is half the sum of all positive roots.
Denote by W (λ) ⊂ W the subgroup of the Weyl group generated by

the reflections coming from simple roots orthogonal to λ. The Bruhat
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decomposition for G/P implies

µ(G/P ) =
∑

w∈W/W (λ)

L!(w) ,

where "(w) is the minimum of all lengths in the coset wW (λ).
This finishes the analysis of the motive of B AutEλ. Putting every-

thing together, we find:

µ(BunG,P1) =
∑

λ∈X∗(T )dom

µ(B Aut Eλ)

=
1

µG

∑

λ∈X∗(T )dom

L−(λ,2ρ)
∑

w∈W/W (λ)

L!(w) .

The combinatorics of summing the various powers of L is contained
in [KR00]. In fact, it is proved in [ibid.] that

∑

λ∈X∗(T )dom

L−(λ,2ρ)
∑

w∈W/W (λ)

L!(w) = |π1(G)|
P (Waff , L−1)

P (W, L−1)
.

Here the series P (Waff , t) (resp. P (W, t)) is the Poincaré series of the
affine Weyl (resp. Weyl) group. It is defined by

P (Waff , t) =
∑

w∈Waff

t!(w).

It is a result of Bott and Steinberg that

P (Waff , t)

P (W, t)
=

r∏

i=1

(1 − tdi−1)−1.

Thus we may complete the calculation

µ(BunG,P1) = |π1(G)|
1

µG

r∏

i=1

(1 − L1−di)−1

= |π1(G)|L−dim G
r∏

i=1

(1 − L−di)−1
r∏

i=1

(1 − L1−di)−1 ,

by Proposition 2.1. In view of the fact that

Z(P1, u) = (1 − u)−1(1 − Lu)−1 ,

this is Conjecture 3.4 for C = P1.
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Appendix A. The Motive of a Torsor

By AJNEET DHILLON

A.1. A Review of Voevodsky’s Category of Motives. We be-
gin by briefly recalling the construction of the triangulated category of
effective geometrical motives from [Voe00]. Denote by SmCor(k) the
category whose objects are schemes smooth over k and a morphism
from X to Y is an algebraic cycle Z on X × Y such that each com-
ponent of Z is finite over X. The finiteness condition allows one to
define composition without having to impose an adequate equivalence
relation. Note that SmCor(k) is an additive category with direct sum
given by X ⊕ Y = X 2 Y .

The homotopy category of bounded of bounded complexes

Hb(SmCor(k))

is a triangulated category. Let T be the minimal thick subcategory
containing all complexes of the following two forms:

1) X × A1 proj
→ X

2) For every open cover U, V of X the complex

U ∩ V ↪→ U ⊕ V
(iu,−iv)
→ X.

The triangulated category DMeff
gm(k, Z) of effective geometrical mo-

tives is defined to be the Karoubian hull of the localization of

Hb(SmCor(k))

with respect to T . We will mostly be interested in its Q-linearization
DMeff

gm(k, Q). The obvious functor Sm(k) → DMeff
gm(k, Q) is denoted

Mgm. We now recall Voevodsky’s alternative construction of it.
A presheaf with transfers is a contravariant functor on SmCor(k). It

is called a sheaf with transfers if it is a sheaf when restricted to the
big etale site on Sm(k). We denote by Shv(SmCor(k)) the category of
such sheaves.

A presheaf with transfers F is called homotopy invariant if for all
smooth schemes X, the natural map F (X) → F (X ×A1) is an isomor-
phism. We denote by DMeff

− (k, Z) the full subcategory of the derived
category D−(Shv(SmCor(k))) consisting of those complexes with ho-
motopy invariant cohomology sheaves. We will be mostly interested in
its Q-linearization DMeff

− (k, Q).
We denote by ∆• the cosimplicial scheme with

∆n = Spec(k[x0, x1, . . . , xn]/
∑

xi = 1)
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and face maps given by setting xi = 0. Given a sheaf with transfers
F we denote by C∗(F ) the complex associated to the simplicial sheaf
with transfers whose nth term is

Cn(F )(X) = F (X × ∆n).

Recall [Voe00, Lemma 3.2.1] that the cohomology sheaves of C∗(F ) are
homotopy invariant.

Theorem A.1. The functor C∗(−) extends to a functor

RC∗ : D−(Shv(SmCor(k))) → DMeff
− (k, Q).

This functor is left adjoint to the natural inclusion.

Proof. See [Voe00, Theorem 3.2.3,§3.3]. !

Theorem A.2. For a perfect field k there is a commutative diagram
of functors

Hb(SmCor(k)) ⊗ Q
L !!

""

D−(Shv(SmCor(k))) ⊗ Q

""

DMeff
gm(k, Q)

i !! DMeff
− (k, Q)

such that i is a fully faithful embedding with dense image.

Proof. See [Voe00, Theorem 3.2.6] including the construction of i. !

If the field k admits a resolution of singularities then there is a functor
called the motive with compact support:

M c
gm : schprop/k → DMeff

gm(k, Q),

here schprop/k is the category whose objects are schemes of finite type
over k and morphisms are proper maps. If Z is a closed subscheme of
X then there is an exact triangle

M c
gm(Z) → M c

gm(X) → M c
gm(X − Z) → M c

gm(Z)[1].

For further properties see [Voe00, pg. 195]. We will now briefly re-
call the construction of M c

gm. For a scheme X and a smooth scheme
U define Lc(X)(U) to be the free abelian group generated by closed
integral subschemes of X ×U quasi-finite over U and dominant over a
component of U . In this way we obtain a sheaf

Lc(X) : SmCor(k)op → Ab.

We have a functor

Lc : schprop/k → Shv(SmCor(k)).
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The motive with compact supports of X is defined to be RC∗Lc(X).
It is a theorem, see [Voe00, Corollary 4.1.4] that this sheaf belongs to
DMeff

gm(k, Q).

Proposition A.3. Let Γ be a finite group acting on the scheme X with
quotient Y = X/Γ. Then

Lc(X) → Lc(Y )

is a quotient in Shv(SmCor(k)) ⊗ Q.

Proof. The category Shv(SmCor(k)) ⊗ Q is equivalent to the category
of sheaves of Q-vector spaces with the equivalence being given by the
functor −⊗ Q. For every U the natural push forward map induces an
isomorphism

Lc(X)(U)Γ → Lc(Y )(U),

see [Ful98, 1.7.6]. The result now follows. !

Corollary A.4. In the above notation the natural map

Lc(X) → Lc(Y )

is a quotient in D−(Shv(SmCor(k))) ⊗ Q.

Proof. Note that one can calculate maps from Lc(X) to F in the de-
rived category by taking an injective resolution I• of F and calculating
homotopy classes of maps to I•. So suppose

φ : Lc(X) → I•

is Γ-equivariant. So for each γ ∈ Γ there exists

hγ : Lc(X) → I1

with φ ◦ γ − φ = d1 ◦ hγ . Then 1
|Γ|

∑
γ∈Γ φ ◦ γ is Γ equivariant in

Shv(SmCor(k)) ⊗ Q and this same map equals φ in the homotopy
category. Now apply the proposition. !

Corollary A.5. In the same notation

M c
gm(X) → M c

gm(Y )

is a quotient in DMeff
gm(k, Q).

Proof. This is because RC∗ is left adjoint to the inclusion. !

Proposition A.6. Consider the family of inclusions

is : X ↪→ X × A1.

Then C∗Lc(i1) = C∗Lc(i0) in Hb(Shv(SmCor(k)) ⊗ Q).

Proof. This is well known. A proof can be found in [MVW, Lemma
2.17]. !
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A.2. The Main Result. We assume throughout this section the char-
acteristic of the ground field k is 0.

Theorem A.7. Let G be a split semisimple connected group or a con-
nected unipotent group over k. Let x ∈ G(A) where A is a finite
generated k algebra that is a domain. Then there is an open affine
Spec(A′) ⊆ Spec(A) and a finite Galois cover Spec(B) → Spec(A′)
and y ∈ G(B[t]) such that
(i) y(0) is the constant morphism to the identity
(ii) The following diagram commutes

Spec(A′) !! SpecA
x !! G

SpecB
y(1)

&&####################

''

Proof. The result is straightforward in the case where G is a connected
unipotent group as in this case the underlying variety of G is an An,
see [Spr98, pg. 243].

So we assume G is semisimple. Let G̃ be the universal cover of G.
As

G̃ → G

is Galois, by replacing Spec(A) by Spec(A)×G,x G̃ we may assume that
G is simply connected.

According to [Ste62] there is a unipotent group U and a morphism

φ : U → G

that is surjective on L points for every field L. Let K be the function
field of A and xK be the A-point of G restricted to K. There is a
K-point x′ of U mapping to xK via φ. By examining denominators we
can find an open affine

Spec(A′) ↪→ Spec(A)

such that xA′ lifts to a A′-point z of U . Now the underlying variety of
U is again an An. !

Let π : Y → X be a finite Galois cover with Galois group Γ. Let P
be a G-torsor trivialized by Y , that is Y ×X P −̃→Y ×G. The action of
Γ on Y lifts to an action of Γ on Y × G with quotient P . This action
is determined by a 1-cocyle

n : Γ × Y → G.
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Proposition A.8. Let G be a connected split semisimple group or a
group whose underlying variety is An. Let P → X be a G-torsor. Then
there is an open affine X ′ ⊆ X and a Galois cover Y ′ → X ′ trivializing
P . Furthermore if Γ is the Galois group and the cocycle

n : Γ × Y → G

defines the action we may assume that n extends to

nt : Γ × Y × A1 → G

with n0 = n and n1 constant at the identity.

Proof. The first part is standard, using Zariski’s main theorem. The
second part is by repeated applications of A.7. !

We denote by K0(DMeff
gm(k, Q)) the K-group of the triangulated

category DMeff
gm(k, Q). It is the free abelian group on the objects of

DMeff
gm(k, Q) subject to the relations

Y = X + Z for each exact triangle X → Y → Z → X[1].

The tensor product of the category DMeff
gm(k, Q) makes

K0(DMeff
gm(k, Q)) into a ring. We have a ring homomorphism

χc
Mot : K0(V ark) → K0(DMeff

gm(k, Q))

given by the motive with compact supports. We denote by χc
Mot(X)

the image of the variety X under this homomorphism.

Theorem A.9. Let G be a connected linear algebraic group that is
split over k. Let P be a G-torsor over X with X of finite type. Then
χc

Mot(P ) = χc
Mot(X)χc

Mot(G).

Proof. By noetherian induction it suffices to find an open subset X ′ of
X such that

χc
Mot(X

′)χc
Mot(G) = χc

Mot(P |U).

First we assume that G is as in A.8. Then we can find Γ, nt X ′ and Y ′

as in the proposition. Now the natural map

M c
gm(P ×X Y ′) → M c

gm(P |X′)

is a quotient by A.5. On the other hand by A.6 the cocycle is M c
gm(n)

is trivial. Hence the result.
For a general group note that P → P/Ru(G) is a Ru(G)-torsor. So

we may assume G is split reductive. But then R(G) is a torus and every
torsor for a torus is Zariski trivial so we are reduced to the semisimple
case. !
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