
MATH 523: Primal-Dual Maximum Weight Matching Algorithm

We start with a graph G = (V, E) with edge weights {c(e) : e ∈ E}

Primal P:
max

∑

{c(e)x(e) : e ∈ E}

subject to
∑

{x(e) : e hits i} + yi = 1 for all i ∈ V
∑

{x(e) : both ends of e are in Sk} + zk = sk for all Sk ⊆ V with |Sk| = 2sk + 1
x(e), yi, zk ≥ 0

Dual D:
min

∑

{αi : i ∈ V } +
∑

{skγk : Sk ⊆ V, |Sk| = 2sk + 1}

subject to

αi + αj +
∑

{γk : i, j ∈ Sk} ≥ c(e) for all e = (i, j) ∈ E
αi, γk ≥ 0

Note that the positivity constraints follow from the variables yi and zk. Alternatively we could
delete these variables yi, zk replacing the equalities by inequalities and it will still be true that
αi, γk ≥ 0.

An initial solution π for D:

αi = max{{
1

2
c(e) : e hits i}, 0} for all i ∈ V

γk = 0 for all Sk ⊆ V, |Sk| = 2sk + 1

For any solution π to D, we compute Je = {e = (i, j) : αi + αj +
∑

{γk : i, j ∈ Sk} = c(e)},
Jm = {i : αi = 0}, Jb = {k : γk = 0}.

Restricted Primal (RP) determined from a solution π to D.
max −

∑

{xa
i }

subject to
∑

{x(e) : e hits i} + yi + xa
i = 1 for all i ∈ V

∑

{x(e) : both ends of e are in Sk} + zk = sk for all Sk ⊆ V with |Sk| = 2sk + 1
x(e), yi, zk, x

a
i ≥ 0

e /∈ Je ⇒ x(e) = 0, i /∈ Jm ⇒ yi = 0, k /∈ Jb ⇒ zk = 0

Dual of Restricted Primal (DRP):
min

∑

{ᾱi : i ∈ V } +
∑

{skγ̄k : Sk ⊆ V, |Sk| = 2sk + 1}

subject to

ᾱi + ᾱj +
∑

{γ̄k : i, j ∈ Sk} ≥ 0 for all e = (i, j) ∈ Je

ᾱi ≥ −1, γ̄k free
i ∈ Jm ⇒ ᾱi ≥ 0, k ∈ Jb ⇒ γ̄k ≥ 0

We could eliminate yi and zk by giving the constraints with cases:
∑

{x(e) : e hits i} + xa
i ≤ 1 for all i ∈ Jm

∑

{x(e) : e hits i} + xa
i = 1 for all i /∈ Jm

∑

{x(e) : both ends of e are in Sk} ≤ sk for all k ∈ Jb



∑

{x(e) : both ends of e are in Sk} = sk for all k /∈ Jb

There are three solution invariants preserved by the algorithm:

invariant a) x(e) ∈ {0, 1} i.e. x yields a matching M .

invariant b) γk > 0 ⇒ G|Sk
has precisely sk edges of M .

invariant c) γi, γj > 0 ⇒ Si ∩ Sj = ∅ or Si ⊆ Sj or Sj ⊆ Si.

We solve RP as a maximum cardinality matching problem, but to preserve invariants b),c) we
work in the graph GJ (‘admissible’ graph) where we include V and only the edges in Je but then
shrink vertex sets Sk with γk > 0 to pseudonodes (where invariant c) makes this well defined).
Note that i ∈ Jm means we can take xa

i = 0 (either i is matched or we can take yi = 1). Also for
k ∈ Jb we either have a set Sk saturated with sk edges or we can define zk to take up the slack. For
k /∈ Jb, invariant b) ensures that we may take zk = 0.

We need not match (but can match) the vertices in Jm but otherwise seek a maximum matching
in GJ . We do blossom tree growing from unmatched vertices of V \ Jm. At termination, let Gc

be the final graph of trees rooted at unmatched vertices/pseudonodes (more pseudonodes may be
created in the tree growing process).

Let a vertex/pseudonode of Gc be outer (respectively inner) if it belongs to one of the trees
and is joined to the root by a path of an even (possibly zero) number of edges (respectively an odd
number of edges). Vertices of G inherit the outer/inner designation from the pseudonode containing
them (actually the maximal such pseudonode).

An optimal solution π̄ to DRP can now be determined as follows:

ᾱi =







−1 if i is outer
1 if i is inner
0 otherwise

γ̄k =







2 if Sk is outer pseudonode of Gc

−2 if Sk is inner pseudonode of Gc

0 otherwise

A little work is required for invariant b). Pseudonodes are seen to yield odd sets by checking their
inductive buildup.

Now π̄ is fairly easy to check for feasibility using the fact that Gc is a tree at termination so for
example there are no edges of Je from outer vertices to vertices not in the tree.

Why is π̄ optimal?

−(
∑

{ᾱi : i ∈ V } +
∑

{skγ̄k : Sk ⊆ V })

= excess of outer vertices/pseudonodes over inner vertices/pseudonodes of Gc.

= number of unmatched vertices/pseudonodes of Gc apart from Jm.

= number of unmatched vertices of G not in Jm when matching in GJ is mapped to a matching
in G preserving invariant b).

=
∑

{xa
i : i ∈ V }



Thus the optimality for RP and DRP solutions is verified. What is the θ of the primal dual
algorithm? The new solution π∗ to D is π∗ + θπ̄. Now let

θ = min(δ1, δ2, δ3, δ4)

where

δ1 = min{1

2
(αi + αj − c(e)) : e = (i, j) joins two outer vertices in different pseudonodes}

δ2 = min{(αi + αj − c(e)) : e = (i, j) joins outer vertex to vertex not in trees }

δ3 = min{γk/2 : Sk inner pseudonode of Gc}

δ4 = min{αi : i outer vertex}

Now if

θ = δ1 (i, j) will enter Je forming blossom or extending matching

θ = δ2 (i, j) will enter Je and tree can grow

θ = δ3 blossom Sk will no longer be shrunk in GJ

θ = δ4 node i enters Jm, need not be matched

One point that may trouble you is extending the matching in GJ to a matching in G. The
pseudonodes of GJ have matchings satisfying invariant b) and the inductive buildup of blossoms
ensures that there are alternating walks (paths) from the base to any node of the blossom ending
in a matched edge (with the exception of the base). Thus the matched and unmatched edges can
be interchanged to make any vertex in the pseudonode unmatched.

Example

We use the following graph. Note that it has 11 vertices.
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Our first step in the algorithm is to give node labels αi = minj{
1

2
c(i, j) : (i, j) ∈ E}
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Having given the node labels, we can compute Je which we identify by bold edges.
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When an edge enters the matching it is also bold but dashed. We seek a maximum cardinality
matching in the graph with edges Je. There are a few choices (depending on what unmatched
nodes you begin with).
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We now grow trees from the unmatched vertices (or pseudonodes but there aren’t any yet).
As we do so we are able to add (3, 4), (7, 8), (9, 10) TO M . At the end, we have trees rooted at
1,2,5,6,11.
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αi =

{

−1 i ∈ {1, 2, 3, 4, 5, 6, 9, 10, 11}
0 otherwise

γk =

{

2 Sk = {3, 4, 5}, {9, 10, 11}
0 otherwise

We have

δ1 =
1

2
, δ2 =

1

2
, δ3 = ∞, δ4 = 3 and so θ =

1

2

We update labels and Je.
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We now grow trees from the unmatched vertices 1,2,6 and the unmatched pseudonodes {3, 4, 5},{9, 10, 11}.
So we get trees rooted at 1,6 and {9, 10, 11}. As we do so we add the edge joining 2 and the pseudon-
ode {3, 4, 5}. and hence add (2, 3) to M while adding (4, 5) to M and removing (3, 4) from M . This
last interchange corresponds to the fact that we can move the unmatched vertex of a pseudonode
to any vertex we want, in this case we wanted 3 unmatched so we could add (2, 3).
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αi =

{

−1 i ∈ {1, 6, 7, 8, 9, 10, 11}
0 otherwise

γk =

{

2 Sk = {7, 8, 9, 10, 11}
0 otherwise

We have

δ1 = 1, δ2 = 1, δ3 = ∞, δ4 = 2
1

2
and so θ = 1

We update labels and Je.
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We now grow trees from the unmatched vertices 1,6 and the unmatched pseudonode {7, 8, 9, 10, 11}.
As we do so the Matching increases by adding the edge (6, 8) to M and then we shuffled the edges of
M in the pseudonode so that 8 is unmatched by removing (7, 8), (9, 10) and adding (7, 9), (10, 11).
M now has 5 edges.

� ����� �

αi =











−1 i ∈ {1, 2}
1 i ∈ {3, 4, 5}
0 otherwise

γk =

{

−2 Sk = {3, 4, 5}
0 otherwise

We have

δ1 = 2, δ2 = 1, δ3 =
1

2
, δ4 = 1

1

2
and so θ =

1

2

We update labels and Je.
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We now grow a tree from the unmatched vertex 1.
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αi =











−1 i ∈ {1, 2}
1 i ∈ {3}
0 otherwise

We have

δ1 =
3

2
, δ2 =

1

2
, δ3 = ∞, δ4 = 1 and so θ =

1

2

We update labels and Je.
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We again grow a tree from the unmatched vertex 1.
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αi =











−1 i ∈ {1, 2, 7, 8, 9, 10, 11}
1 i ∈ {3, 6}
0 otherwise

γk =

{

2 Sk = {7, 8, 9, 10, 11}
0 otherwise



We have

δ1 = 1, δ2 = 3
1

2
, δ3 = ∞, δ4 =

1

2
and so θ =

1

2

We update labels and Je.
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There is no unmatched vertex with α > 0. The edges of Je are no longer crucial, just the five
edges of M . We verify that we have an optimal solution to the Primal.

Weight of matching = 8 + 10 + 8 + 13 + 14 = 53

∑

αi +
∑

skγk = 0 + 2 + 6 + 5 + 5 + 3 + 5 + 5 + 5 + 5 + 5 + 1 · 1 + 2 · 3 = 53

Thus the αi’s and γk’s provide a certificate of the optimality of the final matching M .


