MATH 523: Primal-Dual Maximum Weight Matching Algorithm

We start with a graph $G=(V, E)$ with edge weights $\{c(e): e \in E\}$
Primal P:

$$
\max \sum\{c(e) x(e): e \in E\}
$$

subject to

$$
\sum\{x(e): e \text { hits } i\}+y_{i}=1 \text { for all } i \in V
$$

$\sum\left\{x(e)\right.$: both ends of e are in $\left.S_{k}\right\}+z_{k}=s_{k}$ for all $S_{k} \subseteq V$ with $\left|S_{k}\right|=2 s_{k}+1$

$$
x(e), y_{i}, z_{k} \geq 0
$$

Dual D:

$$
\min \sum\left\{\alpha_{i}: i \in V\right\}+\sum\left\{s_{k} \gamma_{k}: S_{k} \subseteq V,\left|S_{k}\right|=2 s_{k}+1\right\}
$$

subject to

$$
\begin{gathered}
\alpha_{i}+\alpha_{j}+\sum\left\{\gamma_{k}: i, j \in S_{k}\right\} \geq c(e) \text { for all } e=(i, j) \in E \\
\alpha_{i}, \gamma_{k} \geq 0
\end{gathered}
$$

Note that the positivity constraints follow from the variables y_{i} and z_{k}. Alternatively we could delete these variables y_{i}, z_{k} replacing the equalities by inequalities and it will still be true that $\alpha_{i}, \gamma_{k} \geq 0$.

An initial solution π for D :

$$
\begin{gathered}
\alpha_{i}=\max \left\{\left\{\frac{1}{2} c(e): e \text { hits } i\right\}, 0\right\} \quad \text { for all } i \in V \\
\gamma_{k}=0 \quad \text { for all } S_{k} \subseteq V,\left|S_{k}\right|=2 s_{k}+1
\end{gathered}
$$

For any solution π to D , we compute $J_{e}=\left\{e=(i, j): \alpha_{i}+\alpha_{j}+\sum\left\{\gamma_{k}: i, j \in S_{k}\right\}=c(e)\right\}$, $J_{m}=\left\{i: \alpha_{i}=0\right\}, J_{b}=\left\{k: \gamma_{k}=0\right\}$.

Restricted Primal (RP) determined from a solution π to D.

$$
\max -\sum\left\{x_{i}^{a}\right\}
$$

subject to

$$
\sum\{x(e): e \text { hits } i\}+y_{i}+x_{i}^{a}=1 \quad \text { for all } i \in V
$$

$\sum\left\{x(e)\right.$: both ends of e are in $\left.S_{k}\right\}+z_{k}=s_{k} \quad$ for all $S_{k} \subseteq V$ with $\left|S_{k}\right|=2 s_{k}+1$

$$
x(e), y_{i}, z_{k}, x_{i}^{a} \geq 0
$$

$$
e \notin J_{e} \Rightarrow x(e)=0, \quad i \notin J_{m} \Rightarrow y_{i}=0, \quad k \notin J_{b} \Rightarrow z_{k}=0
$$

Dual of Restricted Primal (DRP):

$$
\min \sum\left\{\bar{\alpha}_{i}: i \in V\right\}+\sum\left\{s_{k} \bar{\gamma}_{k}: S_{k} \subseteq V,\left|S_{k}\right|=2 s_{k}+1\right\}
$$

subject to

$$
\begin{gathered}
\bar{\alpha}_{i}+\bar{\alpha}_{j}+\sum\left\{\bar{\gamma}_{k}: i, j \in S_{k}\right\} \geq 0 \text { for all } e=(i, j) \in J_{e} \\
\quad \bar{\alpha}_{i} \geq-1, \bar{\gamma}_{k} \text { free } \\
i \in J_{m} \Rightarrow \bar{\alpha}_{i} \geq 0, \quad k \in J_{b} \Rightarrow \bar{\gamma}_{k} \geq 0
\end{gathered}
$$

We could eliminate y_{i} and z_{k} by giving the constraints with cases:

$$
\begin{array}{ll}
\sum\{x(e): e \text { hits } i\}+x_{i}^{a} \leq 1 & \text { for all } i \in J_{m} \\
\sum\{x(e): e \text { hits } i\}+x_{i}^{a}=1 & \text { for all } i \notin J_{m}
\end{array}
$$

$$
\sum\left\{x(e): \text { both ends of } e \text { are in } S_{k}\right\} \leq s_{k} \text { for all } k \in J_{b}
$$

$$
\sum\left\{x(e): \text { both ends of } e \text { are in } S_{k}\right\}=s_{k} \text { for all } k \notin J_{b}
$$

There are three solution invariants preserved by the algorithm:

$$
\text { invariant a) } x(e) \in\{0,1\} \text { i.e. } x \text { yields a matching } M \text {. }
$$

invariant b) $\gamma_{k}>\left.0 \Rightarrow G\right|_{S_{k}}$ has precisely s_{k} edges of M.
invariant c) $\gamma_{i}, \gamma_{j}>0 \Rightarrow S_{i} \cap S_{j}=\emptyset$ or $S_{i} \subseteq S_{j}$ or $S_{j} \subseteq S_{i}$.
We solve RP as a maximum cardinality matching problem, but to preserve invariants b), c) we work in the graph G_{J} ('admissible' graph) where we include V and only the edges in J_{e} but then shrink vertex sets S_{k} with $\gamma_{k}>0$ to pseudonodes (where invariant c) makes this well defined). Note that $i \in J_{m}$ means we can take $x_{i}^{a}=0$ (either i is matched or we can take $y_{i}=1$). Also for $k \in J_{b}$ we either have a set S_{k} saturated with s_{k} edges or we can define z_{k} to take up the slack. For $k \notin J_{b}$, invariant b) ensures that we may take $z_{k}=0$.

We need not match (but can match) the vertices in J_{m} but otherwise seek a maximum matching in G_{J}. We do blossom tree growing from unmatched vertices of $V \backslash J_{m}$. At termination, let G_{c} be the final graph of trees rooted at unmatched vertices/pseudonodes (more pseudonodes may be created in the tree growing process).

Let a vertex/pseudonode of G_{c} be outer (respectively inner) if it belongs to one of the trees and is joined to the root by a path of an even (possibly zero) number of edges (respectively an odd number of edges). Vertices of G inherit the outer/inner designation from the pseudonode containing them (actually the maximal such pseudonode).

An optimal solution $\bar{\pi}$ to DRP can now be determined as follows:

$$
\begin{gathered}
\bar{\alpha}_{i}= \begin{cases}-1 & \text { if } i \text { is outer } \\
1 & \text { if } i \text { is inner } \\
0 & \text { otherwise }\end{cases} \\
\bar{\gamma}_{k}= \begin{cases}2 & \text { if } S_{k} \text { is outer pseudonode of } G_{c} \\
-2 & \text { if } S_{k} \text { is inner pseudonode of } G_{c} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

A little work is required for invariant b). Pseudonodes are seen to yield odd sets by checking their inductive buildup.

Now $\bar{\pi}$ is fairly easy to check for feasibility using the fact that G_{c} is a tree at termination so for example there are no edges of J_{e} from outer vertices to vertices not in the tree.

Why is $\bar{\pi}$ optimal?
$-\left(\sum\left\{\bar{\alpha}_{i}: i \in V\right\}+\sum\left\{s_{k} \bar{\gamma}_{k}: S_{k} \subseteq V\right\}\right)$
$=$ excess of outer vertices/pseudonodes over inner vertices/pseudonodes of G_{c}.
$=$ number of unmatched vertices/pseudonodes of G_{c} apart from J_{m}.
$=$ number of unmatched vertices of G not in J_{m} when matching in G_{J} is mapped to a matching in G preserving invariant b).

$$
=\sum\left\{x_{i}^{a}: i \in V\right\}
$$

Thus the optimality for RP and DRP solutions is verified. What is the θ of the primal dual algorithm? The new solution π^{*} to D is $\pi^{*}+\theta \bar{\pi}$. Now let

$$
\theta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right)
$$

where

$$
\begin{aligned}
& \delta_{1}=\min \left\{\frac{1}{2}\left(\alpha_{i}+\alpha_{j}-c(e)\right): e=(i, j) \text { joins two outer vertices in different pseudonodes }\right\} \\
& \delta_{2}=\min \left\{\left(\alpha_{i}+\alpha_{j}-c(e)\right): e=(i, j) \text { joins outer vertex to vertex not in trees }\right\} \\
& \delta_{3}=\min \left\{\gamma_{k} / 2: S_{k} \text { inner pseudonode of } G_{c}\right\} \\
& \delta_{4}=\min \left\{\alpha_{i}: i \text { outer vertex }\right\}
\end{aligned}
$$

Now if
$\theta=\delta_{1} \quad(i, j)$ will enter J_{e} forming blossom or extending matching
$\theta=\delta_{2} \quad(i, j)$ will enter J_{e} and tree can grow
$\theta=\delta_{3} \quad$ blossom S_{k} will no longer be shrunk in G_{J}
$\theta=\delta_{4} \quad$ node i enters J_{m}, need not be matched
One point that may trouble you is extending the matching in G_{J} to a matching in G. The pseudonodes of G_{J} have matchings satisfying invariant b) and the inductive buildup of blossoms ensures that there are alternating walks (paths) from the base to any node of the blossom ending in a matched edge (with the exception of the base). Thus the matched and unmatched edges can be interchanged to make any vertex in the pseudonode unmatched.

Example

We use the following graph. Note that it has 11 vertices.

Our first step in the algorithm is to give node labels $\alpha_{i}=\min _{j}\left\{\frac{1}{2} c(i, \bar{j}):(i, j) \in E\right\}$

Having given the node labels, we can compute J_{e} which we identify by bold edges.

When an edge enters the matching it is also bold but dashed. We seek a maximum cardinality matching in the graph with edges J_{e}. There are a few choices (depending on what unmatched nodes you begin with).

We now grow trees from the unmatched vertices (or pseudonodes but there aren't any yet). As we do so we are able to add $(3,4),(7,8),(9,10)$ TO M. At the end, we have trees rooted at 1,2,5,6,11.

(1)

$$
\alpha_{i}=\left\{\begin{array}{cl}
-1 & i \in\{1,2,3,4,5,6,9,10,11\} \\
0 & \text { otherwise }
\end{array} \quad \gamma_{k}= \begin{cases}2 & S_{k}=\{3,4,5\},\{9,10,11\} \\
0 & \text { otherwise }\end{cases}\right.
$$

We have

$$
\delta_{1}=\frac{1}{2}, \quad \delta_{2}=\frac{1}{2}, \quad \delta_{3}=\infty, \quad \delta_{4}=3 \text { and so } \theta=\frac{1}{2}
$$

We update labels and J_{e}.

We now grow trees from the unmatched vertices $1,2,6$ and the unmatched pseudonodes $\{3,4,5\},\{9,10,11\}$. So we get trees rooted at 1,6 and $\{9,10,11\}$. As we do so we add the edge joining 2 and the pseudonode $\{3,4,5\}$. and hence add $(2,3)$ to M while adding $(4,5)$ to M and removing $(3,4)$ from M. This last interchange corresponds to the fact that we can move the unmatched vertex of a pseudonode to any vertex we want, in this case we wanted 3 unmatched so we could add $(2,3)$.
\bigcirc

$$
\alpha_{i}=\left\{\begin{array}{cl}
-1 & i \in\{1,6,7,8,9,10,11\} \\
0 & \text { otherwise }
\end{array} \quad \gamma_{k}= \begin{cases}2 & S_{k}=\{7,8,9,10,11\} \\
0 & \text { otherwise }\end{cases}\right.
$$

We have

$$
\delta_{1}=1, \quad \delta_{2}=1, \quad \delta_{3}=\infty, \quad \delta_{4}=2 \frac{1}{2} \quad \text { and so } \theta=1
$$

We update labels and J_{e}.

We now grow trees from the unmatched vertices 1,6 and the unmatched pseudonode $\{7,8,9,10,11\}$. As we do so the Matching increases by adding the edge $(6,8)$ to M and then we shuffled the edges of M in the pseudonode so that 8 is unmatched by removing $(7,8),(9,10)$ and adding $(7,9),(10,11)$. M now has 5 edges.

$$
\alpha_{i}=\left\{\begin{array}{ll}
-1 & i \in\{1,2\} \\
1 & i \in\{3,4,5\} \\
0 & \text { otherwise }
\end{array} \quad \gamma_{k}=\left\{\begin{array}{cl}
-2 & S_{k}=\{3,4,5\} \\
0 & \text { otherwise }
\end{array}\right.\right.
$$

We have

$$
\delta_{1}=2, \quad \delta_{2}=1, \quad \delta_{3}=\frac{1}{2}, \quad \delta_{4}=1 \frac{1}{2} \text { and so } \theta=\frac{1}{2}
$$

We update labels and J_{e}.

We now grow a tree from the unmatched vertex 1 .

$$
\alpha_{i}=\left\{\begin{array}{cl}
-1 & i \in\{1,2\} \\
1 & i \in\{3\} \\
0 & \text { otherwise }
\end{array}\right.
$$

We have

$$
\delta_{1}=\frac{3}{2}, \quad \delta_{2}=\frac{1}{2}, \quad \delta_{3}=\infty, \quad \delta_{4}=1 \text { and so } \theta=\frac{1}{2}
$$

We update labels and J_{e}.

We again grow a tree from the unmatched vertex 1.

$$
\alpha_{i}=\left\{\begin{array}{cl}
-1 & i \in\{1,2,7,8,9,10,11\} \\
1 & i \in\{3,6\} \\
0 & \text { otherwise }
\end{array} \quad \gamma_{k}= \begin{cases}2 & S_{k}=\{7,8,9,10,11\} \\
0 & \text { otherwise }\end{cases}\right.
$$

We have

$$
\delta_{1}=1, \quad \delta_{2}=3 \frac{1}{2}, \quad \delta_{3}=\infty, \quad \delta_{4}=\frac{1}{2} \text { and so } \theta=\frac{1}{2}
$$

We update labels and J_{e}.

There is no unmatched vertex with $\alpha>0$. The edges of J_{e} are no longer crucial, just the five edges of M. We verify that we have an optimal solution to the Primal.

Weight of matching $=8+10+8+13+14=53$

$$
\sum \alpha_{i}+\sum s_{k} \gamma_{k}=0+2+6+5+5+3+5+5+5+5+5+1 \cdot 1+2 \cdot 3=53
$$

Thus the α_{i} 's and γ_{k} 's provide a certificate of the optimality of the final matching M.

